请欣赏《从一到无穷大》读后感(精选10篇),由笔构网整理,希望能够帮助到大家。
《从一到无穷大》读后感 篇1
第一次看到《从一到无穷大》这本书,因为有趣的书名,我饶有兴趣地翻了一下,就敬而远之——直觉是一本高深枯燥的学术著作。而一个偶然的机会,我重新捧起这本书,在可笑的贵族故事吸引下,我津津有味地读了下去。尽管很多内容并没有读懂,但书中无处不在的思考依然让我感到震撼,引发了自己的一些反思。
《从一到无穷大》是美国著名物理学家和天文学家乔治·伽莫夫的代表科普作品。这本书总共分成四个部分,分别是:做做数字游戏、空间、时间与爱因斯坦,微观世界,宏观世界,包括数学、物理、生物、天文学等多方面的当时最前沿、现在也不过时的知识。这部优秀的科普著作,乔治·伽莫夫不仅以通俗的语言、浅显有趣的例子准确清晰地讲述了科学真理以及真理之间的联系,更在轻松乐观的语调中从入门的“一”开始,引领着人向纵深的“无穷大”去努力,领略科学的“无穷大”、世界的“无穷大”的壮美和人类的方法与潜力“无穷大”,处处闪现着人文精神的光华。
“大数”这一部分最让我着迷。作者在一串真实的故事中,不断追问、思考、并阐释“数有多大”“无穷大是什么”、“无穷大的数能比较大小吗”,让人豁然开朗:原来这些都不是可笑的问题!原来这些问题可以这样来分析和解决!在看到用一一对应的方法比较无穷大的数的大小时,我想起小学数学一年级中的“一一对应”,老师们已经有意识地引导学生去体验这一比较数的大小的方法,而在抽象这种思考方法的过程中站位仍需再高一些,做更多的引导,开阔学生们的思路,让学生们在体验、追问、探索中开始对这一方法的认识、理解、运用。
这种追问与思考在“质数与哥德巴赫猜想”一节中,除了更加明晰的知识阐释,也更多的显示出人文的气息:快乐而坚持的态度;时而循序渐进、时而又另辟蹊径的方法;严谨细致的风格以及“世界很大,我还渺小”的理念。
读及此处,想起了自己。在我们的日常工作与生活中,也是应该以快乐而坚持的态度,从最基础的小事做起,面对问题从不同角度着手看、想、做,摒弃自大,不安于现状止步不前,勇于追问与思考,敢于打破常规,在更大的空间去尝试,我们也会有自己的“无穷大”潜能!
《从一到无穷大》读后感 篇2
《从一到无穷大》是上世纪经典的科普读物,一直想读,后来还送了学生一本,但是直到最近才好好的把它读完了。
这是一本非常引人入胜的科普着作,像书名一样,作者从自然数“一”一直讲到无穷大的宇宙空间,内容涉及数学、物理、化学、生物、天文等,然而可贵的是尽管涉及这么的内容,但是确是非常有内在逻辑的一本书。对在读研究生的我来说,读这书的最大收获莫过于从中感受到的一种联系,知识与知识之间、各个学科之间的联系。殊途同归,我始终相信各个学科所追求的真理应该是同构的、本质上相同的。而品读这本书就让我发现了这样的联系,而发现联系又是学习中多么让人兴奋的感受啊!
说了整体感受,再说说具体内容吧。这本书不厚,两百多页,还包括很多插图。全书共四部分,在这四部分中我最喜欢的是讲解时空和爱因斯坦的那部分。对相对论我始终抱着一种敬畏,认为仅凭我这样的智商大概是一点也不能理解了。我曾经确实完全不理解,小时候的科普读物给我的仅是不能理解的科学事实,在我看来荒谬的毫无逻辑可言,以至于此后我竟对相对论产生了如此大的偏见(看来科普也要分时段,普及的同时也要考虑孩子的可接受程度,不然可能适得其反)!但是这本书,打破了我的这种偏见,让我对相对论有了从新的认识,特别这本书对这个问题的讲解从数学开始,不仅让我这个数学科班出身的人对时空有了新的认识,也对数学、数学与其他科学间的关系有了更深刻的理解!
总之,这是一本非常不错的科普读物,中学生可读,但是受过高等教育的人从中也同样会有所收益。我想我还会再读,虽然这本书中的内容已经不再新潮,但是我相信我仍然可以从中体会新的观念,获得新的理解!
《从一到无穷大》读后感 篇3
第一次看到《从一到无穷大》这个书名,就敬而远之,觉得这是一本高深且枯燥的学术著作。而一个偶然的机会,公司让我们自己选择读物,恰巧提供的书目里就有这本书,既然再次相遇,那就是它了。拿到手翻开书页,在可笑的贵族故事吸引下,我津津有味地读了下去,尽管很多内容并没有读懂,但书中无处不在的思考依然让我感到震撼,引发了自己的一些思考。
《从一到无穷大》是美国著名物理学家和天文学家乔治·伽莫夫的代表科普作品,这部优秀的科普著作中,乔治·伽莫夫不仅以通俗的语言、浅显有趣的例子准确清晰地讲述了科学真理以及真理之间的联系,更在轻松乐观的语调中从入门的“一”开始,引领着人向纵深的“无穷大”去努力。其中“大数”这一部分最让我着迷,作者在一串真实的故事中,不断追问、思考、并进而阐释“数有多大”、“无穷大是什么”、“无穷大的数能比较大小吗”,让人豁然开朗,原来这些都不是可笑的问题,原来这些问题可以这样来分析和解决。
这也让我想起了自己,在我们的日常工作与生活中,也是应该以快乐而坚持的态度,从最基础的小事做起,面对问题从不同角度着手,不能安于现状止步不前,要勇于追问与思考,敢于打破常规,在更大的空间去尝试,我们也会有自己的“无穷大”潜能!
《从一到无穷大》读后感 篇4
花了两个多小时的时间,今日终于把第一部分内容读完了,这部分内容让我收获挺多的`。
在我以前的认知中,无穷大的数就是无法计算出具体的大小,而对无穷大与无穷大的数大小的比较没有清晰的认识,只错误的认为无穷大的数中部分无穷数的集合是要少些的,比如错误的认为偶数的个数是要小于整数的个数的。作者用一种通俗的描述方法说明了无穷大的数如何比较大小。即寻找一种一一对应的关系,并举了多个常见的无穷大数的例子,比如所有的偶数、整数、普通分数的个数都是相等的。其实这应该就是我们函数里面学过的一一映射,如果两个集合存在一一映射的关系,这两个集合元素的个数肯定是相等的。但我想,如果作者用这种方法去说明的话,估计能看懂本书的人将会少很多。
无穷大数比较大小的方法解释清楚后,接着,作者抛出问题,是不是所有的无穷大数都相等呢?——层层深入。由此引出了第二级无穷数列,前面的为第一级无穷数列。
作者用反证法说明了线段点的个数是要大于整数的个数。首先把每一个点看做一个无穷小数,这样才方便于建立对应关系。然后假设这两种间存在前面所说的一一对应的关系,那么很容易找出一个无穷小数(这个小数的第n位不等于第n个整数对应的小数的第n位)不在这样的对应关系中,所有不存在这样的对应关系,也就是线段的点的个数要大于整数的个数。作者又说明了任何线、面、体上的点的个数都是相等的。
而到现今,数学家们已经找到第三级无穷数列,所有几何曲线的数目。虽然作者没有给出证明,但应用前面的方法很容易证明,假如线段上的点与几何曲线的数目存在这样的一一对应关系,那么同样,我们也很容易找出一条几何曲线不在这样的对应关系中,比如这样一条曲线,它等于前面一一对应的所有曲线从开始到无穷的和。
有关第一部分心得暂时记到这,作者通篇用最基本的语言给我们讲述了无穷大数比较大小“深奥”理论,基本没有让读者不懂得专业术语,我觉得这是这本书最大的亮点!
《从一到无穷大》读后感 篇5
前几天母亲给我们买了一本叫《从一到无穷大》的科普读物,很多看过的人都说很难,很枯燥书也看不懂。看这本书只是为了挑战一下自己。
这本由美国的G·盖莫夫写的《从一到无穷大》主要以生动的语言介绍了二十世纪以来科学中的一些中的进展。这本书除了具有内容生动、通俗易懂这些科普读物所共有的特点外,还具有内容丰富、图文并茂等特点。特别应该指出的是:一般科普读物往往怕数学太“枯燥”和“艰深”而不敢使用它,只局限于作定性的概念描述。这本书则恰恰相反,全书都用数学贯穿起来,并讲述了许多新兴的数学分支的内容。正因为使用了数学工具,本书才达到了相当的深度。在我读这本书的时候,文字易读懂,可讲到数学概念方面就立刻呆住了。的确,有些基本概念还是我们尚未学过的。
要说然我喜欢的地方,那可不止一些小故事,还有那些有趣、新颖的话题,就像数字游戏中的你能数到多少?说了些很可笑的事,从前的人只会数到3,超过3就是不计其数……都让人联想现代文化知识的进步。
我在不知不觉中了解了许多新的数学知识,并与其他学科有着重大的联系。现在虽然还没有全部读完它,但是书的精彩却让我等不及要看完它。我相信读完了《从一到无穷大》这本书后,会对我以后的学习有更大的帮助。
《从一到无穷大》读后感 篇6
我这个学期读的《从一到无穷大》,此书是当今世界上最有影响的科普经典名著之一。我一共用了两月的周末时间读完。读这本书之前,听朋友推荐此书的,他们对这本书赞不绝口。我还不相信呢,于是我想看看是否真实,我去图书管找不到只好到网上查,弄了好久才查到就网购买下了,快递员送来的第一个晚上,我就开始读了。
我开始就像读小说一样的。在一个晚上就手就不稀卷地一口气读了第一部分。后来每当周末晚上都读这本书,直到读完。现在想想此书真的很好,是我从小到大读过最好的一本书。无论从其作者的身份、背景等来说,还是从自身水准来说,都是一流的。全书分为四部分。第一部分是做做数学游戏,内容简单又有趣,深受广大师生欢迎。第二部分是写空间、时间与爱因斯坦,第三部分是写微观世届,第四部分宏观世界。
这本很有特殊与个性的书,与其他科普书相比,很不同。完全是一种大家的写作的风格把数学、物理乃至生物学的许多内容有积地结合起来。仿佛作者是想说什么就写什么。将叙述的内容信手载来,事实上,仔细思考,就会感到各部分之间的内容存在的内在的紧密联系。
《从一到无穷大》读后感 篇7
前几天母亲给我们买了一本叫《从一到无穷大》的科普读物,很多看过的人都说很难,很枯燥书也看不懂。看这本书只是为了挑战一下自己。
这本由美国的G·盖莫夫写的《从一到无穷大》主要以生动的语言介绍了二十世纪以来科学中的一些中的进展。这本书除了具有内容生动、通俗易懂这些科普读物所共有的特点外,还具有内容丰富、图文并茂等特点。特别应该指出的是:一般科普读物往往怕数学太“枯燥”和“艰深”而不敢使用它,只局限于作定性的概念描述。这本书则恰恰相反,全书都用数学贯穿起来,并讲述了许多新兴的数学分支的内容。正因为使用了数学工具,本书才达到了相当的深度。在我读这本书的时候,文字易读懂,可讲到数学概念方面就立刻呆住了。的确,有些基本概念还是我们尚未学过的。
要说然我喜欢的地方,那可不止一些小故事,还有那些有趣、新颖的话题,就像数字游戏中的你能数到多少?说了些很可笑的.事,从前的人只会数到3,超过3就是不计其数……都让人联想现代文化知识的进步。
我在不知不觉中了解了许多新的数学知识,并与其他学科有着重大的联系。现在虽然还没有全部读完它,但是书的精彩却让我等不及要看完它。我相信读完了《从一到无穷大》这本书后,会对我以后的学习有更大的帮助。
《从一到无穷大》读后感 篇8
从打开这本书,到我翻最后一页,一共用了5个小时。文字戛然而止,而我的思维却仍在伽莫夫构建的科学之海中遨游着,久久不能释怀……
我看见宇宙如画轴般在我的眼前,缓缓向那无尽的远方展开,上面饰满银白的星点;我看见熟悉而又陌生的数字在我的身旁,跳着数不出的舞蹈,无穷无尽地回旋着;我看见物质一层层地分解成更小,带着几分调皮与嘲笑;我看见了科学,时空中交织,从一到无穷大……
我很遗憾,没有更早接触这本书,一本科学的方向标。我突然催生出一种幻想:如果能有人在整个科学范围内写出像这样一本充满了趣味与知识的科普书籍该多好!
有了这本书,我们可以看清当下科学的全貌,而不仅限于盲人摸象;有了这本书,我们可以理清科学的脉络,打通学科之间的壁垒,向着青草更青处荡漾;有了这本书,我们可以更加高效地知道我们做了什么,拥有什么;有了这本书,我们的了解将更加全面,我们的学习将更加满足我们的需求……类似的句子还可以写很多,如果用一句话总结就是:
有了这本书,我们可以知道我们科学的过去与现在,并去追寻他的未来……
我们能否建立起一个体系,将整个科学放入其中,从而方便我们去查阅和获取?我因为自己的才疏学浅、见识浅薄而无法去知晓这个问题在未来甚至现在是否有解。于是我只好展开丰富的想象力去猜测我们可能的一些解决方式。
从现阶段来看,我们构建的知识体系的存在方式主要有两种,一种是利用数字技术以客观数据形式储存,另一种则是通过人类的大脑以主观经验形式来储存。现阶段来看,从我个人的浅薄认识出发,我认为两种方式各有优势,而互为补充。数据形式具有存储量大、再明确目标时易于查找的特点;而经验形式则具有模糊搜索能力和基于自身的再创造能力。
我想前者很好理解,而后者则可能有人质疑,我或许需要用一个例子来解释一下。比如你的研究遇到瓶颈,前路迷茫,我想更多的人会倾向于找一个这方面的专家聊聊天而非拿去让一台电脑来解惑(事实上这是我在一次又一次对着电脑迷茫的经历后得出的个人结论)。即使是当下人工智能处理下的数据也只能给你一堆虽然详尽,但是你已经了解的知识(要不怎么搜得到)。
而经验(不管是自己还是别人的)则能告诉你你到底应该了解什么,换言之,到底什么东西能解决你的问题。
以上两个方面使得当下的探索往往是先找人聊天解决方向问题(获得灵感),再通过精确化的数据搜索获取所需要的知识。
这个过程至少受两方面条件的制约:
当下知识爆炸导致的学科精细化使得各个领域之间的距离不断增大,可以说上文“前一阶段”寻找思路的难度正在加大。即使是当下常见的集合多领域专家“会诊”的模式,也会因为专家的人数与相互交流受限程度之间的负相关,而难以高效运转。
知识存在“多级权限”并且有很强的领域性,获取和掌握上层知识的难度不断升高。
说白了,以上两段话可以总结成一句话:要么不知道找啥,要么找不着,要不找得到却看不懂。
我以为,这是科学、技术与生活运用之间出现明显断层的一条原因。
如果我们无法期待人工智能做到这一点,那么或许只有我们的智慧能够接此重任——做科学的方向标。
我想这正是这本书给我的启迪。
之前我也一直在思索,但这本书无疑极强的促进了我的决心。我想,或许我们真的可以通过一本或几本书来勾勒出我们整个科学的轮廓和架构,以此提高知识学习的效率,并进一步提高全社会知识素养,最终通过知识人群基数的增加来减小科学—技术—生活之间的代沟。
而写这种书的人无疑需要是一名多面手,了解各个学科的分支后跳出细枝末节的具体知识,以全局的眼光和开阔的视野,来构建一个充满相关性、逻辑性而又简洁明了的知识框架。这无疑是一个巨大的挑战,但同时意义非凡。
简而言之,我们需要有人去把我们厚实、丰富却复杂、高深的科学读完、读薄。在自身获得主观经验的同时,利用文字(或数据)的形式将自己的主观感受分享给整个社会。
由此观之,科学的风向标其实是同一个人的两个属性:个人而言,能够在独立研究和互相交流中发挥创造性;社会而言,能够使更多的人走近科学、了解科学。
唯是,我们才能让理论更好地产出技术,让技术更好地服务生活,让我们的生活更加美好,让人类的未来更加光明!
《从一到无穷大》读后感 篇9
有这么一个故事,说的是两个贵族决定做计数游戏――谁说出的数字大谁赢。
“好”一个贵族说,“你先说吧!”
另一个绞尽脑汁想了好几分钟,最后说出了他所想到的最大数字:“三”。
现在轮到第一个动脑筋了。苦思冥想了一刻钟以后,他表示弃权说:“你赢啦!”
这两个贵族的智力当然是不很发达的。再说,这很可能是一个挖苦人的故事而已。然而,如果上述对话是发生在原始部族中,这个故事大概就完全可信了。
以上是《从一到无穷大》这本科普书的开头,有趣吧?
这本书以生动的语言介绍了二十世纪以来科学中的一些重大进展。书中先漫谈一些基本的数学知识,然后用一些有趣的比如,阐述了爱因斯坦的相对论和四维时空结构,并讨论了人类在认识微观世界(如基本粒子、基因等)和宏观世界(如太阳系、星系等)方面的成就。
该书作者是俄国血统的美国科学家乔治。盖莫夫,一位卓越的理论物理学家、天体物理学家。他非常重视普及科学知识的工作,除了经常为《美国科学家》、《今日物理学》和《科学的美国人》等杂志撰稿外,还写下了二十多本出色的科普作品。
《从一到无穷大》是盖莫夫的一部代表作,内容丰富,文笔风趣,深入浅出,图文并茂。特别是一反一般科普读物不敢运用数学,怕“枯燥”、“艰深”,而是恰恰相反,全书用数学贯穿,并讲述了许多新兴的数学分支的内容。正是由于使用了数学工具,该书达到了相当的深度。这本书自问世以来,多次再版,并被翻译成许多国家文字,深身各国读者欢迎。许多第一流科学家都高度评价这本书,认为它很值得一读乃至于一读再读。
现在,提倡文理交叉,学科学的人看点文学书,学文史哲的看点科学书。这确是值得无论学自然科学,还是学社会科学的读者诸君一读的。
而我们太缺少这类优秀读物了,我们往往是用文学来宣传科学。想当年,著名作家徐迟的报告文学“哥德巴赫猜想”的发表,象一声春雷轰动全国,它第一次正面宣传了知识分子,讴歌了科学家,于是我们知道了陈景润,以及他的一加一。后来徐迟还写了李四光、蔡希陶、周培源等科学家。但文学关注的是人、人的命运,和科普读物还是不同的。
什么时候我们的科学精神深人人心,科技工作者的地位、待遇高过官员,热爱科学、献身科学蔚然成风,一流科学论文、成果层出不穷,媒体更加关注科学和科学家,诺贝尔奖得主被我们垄断,则科教兴国、科技强国就水到渠成了,伟大民族复兴也就指日可待了。
《从一到无穷大》读后感 篇10
《从一到无穷大》是上世纪经典的科普读物,一直想读,后来还送了学生一本,但是直到最近才好好的把它读完了。
这是一本非常引人入胜的科普着作,像书名一样,作者从自然数“一”一直讲到无穷大的宇宙空间,内容涉及数学、物理、化学、生物、天文等,然而可贵的是尽管涉及这么的内容,但是确是非常有内在逻辑的一本书。对在读研究生的我来说,读这书的最大收获莫过于从中感受到的一种联系,知识与知识之间、各个学科之间的联系。殊途同归,我始终相信各个学科所追求的真理应该是同构的、本质上相同的。而品读这本书就让我发现了这样的联系,而发现联系又是学习中多么让人兴奋的感受啊!
说了整体感受,再说说具体内容吧。这本书不厚,两百多页,还包括很多插图。全书共四部分,在这四部分中我最喜欢的是讲解时空和爱因斯坦的那部分。对相对论我始终抱着一种敬畏,认为仅凭我这样的智商大概是一点也不能理解了。我曾经确实完全不理解,小时候的科普读物给我的仅是不能理解的科学事实,在我看来荒谬的毫无逻辑可言,以至于此后我竟对相对论产生了如此大的偏见(看来科普也要分时段,普及的同时也要考虑孩子的可接受程度,不然可能适得其反)!但是这本书,打破了我的这种偏见,让我对相对论有了从新的`认识,特别这本书对这个问题的讲解从数学开始,不仅让我这个数学科班出身的人对时空有了新的认识,也对数学、数学与其他科学间的关系有了更深刻的理解!
总之,这是一本非常不错的科普读物,中学生可读,但是受过高等教育的人从中也同样会有所收益。我想我还会再读,虽然这本书中的内容已经不再新潮,但是我相信我仍然可以从中体会新的观念,获得新的理解!