二次函数数学教案

笔构网

2025-07-28教案

请欣赏二次函数数学教案(精选8篇),由笔构网整理,希望能够帮助到大家。

二次函数数学教案 篇1

教学目标:

让学生经历根据不同的条件,利用待定系数法求二次函数的函数关系式。

重点:二次函数表达式的形式的选择

难点:各种隐含条件的挖掘

教法:引导发现法

教学过程:

(一)诊断补偿,情景引入:

1、二次函数的一般式是什么

2、二次函数的图象及性质

(先让学生复习,然后提问,并做进一步诊断)

(二)问题导航,探究释疑:

一般地,函数关系式中有几个独立的系数,那么就需要有相同个数的独立条件才能求出函数关系式。例如:我们在确定一次函数的关系式时,通常需要两个立的条件:确定反比例函数的关系式时,通常只需要一个条件:如果要确定二次函数的关系式,又需要几个条件呢?

(三)精讲提炼,揭示本质:

例1。某涵洞是抛物线形,它的截面如图26。2。9所示,现测得水面宽1。6m,涵洞顶点O到水面的距离为2。4m,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么?

分析如图,以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立了直角坐标系。这时,涵洞所在的抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式是。此时只需抛物线上的一个点就能求出抛物线的函数关系式。

解由题意,得点B的坐标为(0。8,-2。4),

又因为点B在抛物线上,将它的坐标代入,得所以因此,函数关系式是。

例2、根据下列条件,分别求出对应的二次函数的关系式。

(1)已知二次函数的图象经过点A(0,-1)、B(1,0)、C(-1,2);

(2)已知抛物线的顶点为(1,-3),且与y轴交于点(0,1);

(3)已知抛物线与x轴交于点M(-3,0)(5,0)且与y轴交于点(0,-3);

(4)已知抛物线的顶点为(3,-2),且与x轴两交点间的距离为4。

分析(1)根据二次函数的图象经过三个已知点,可设函数关系式为的形式;(2)根据已知抛物线的顶点坐标,可设函数关系式为,再根据抛物线与y轴的交点可求出a的值;(3)根据抛物线与x轴的两个交点的坐标,可设函数关系式为,再根据抛物线与y轴的交点可求出a的值;(4)根据已知抛物线的顶点坐标(3,-2),可设函数关系式为,同时可知抛物线的对称轴为x=3,再由与x轴两交点间的距离为4,可得抛物线与x轴的两个交点为(1,0)和(5,0),任选一个代入,即可求出a的值。

解(1)设二次函数关系式为,由已知,这个函数的图象过(0,-1),可以得到c= -1。又由于其图象过点(1,0)、(-1,2)两点,可以得到

解这个方程组,得a=2,b= -1。

所以,所求二次函数的关系式是。

(2)因为抛物线的顶点为(1,-3),所以设二此函数的关系式为,又由于抛物线与y轴交于点(0,1),可以得到解得。

所以,所求二次函数的关系式是。

(3)因为抛物线与x轴交于点M(-3,0)、(5,0),

所以设二此函数的关系式为。

又由于抛物线与y轴交于点(0,3),可以得到解得。

所以,所求二次函数的关系式是。

(4)根据前面的分析,本题已转化为与(2)相同的题型请同学们自己完成。

(四)题组训练,拓展迁移:

1、根据下列条件,分别求出对应的二次函数的关系式。

(1)已知二次函数的图象经过点(0,2)、(1,1)、(3,5);

(2)已知抛物线的顶点为(-1,2),且过点(2,1);

(3)已知抛物线与x轴交于点M(-1,0)、(2,0),且经过点(1,2)。

2、二次函数图象的对称轴是x= -1,与y轴交点的纵坐标是–6,且经过点(2,10),求此二次函数的关系式。

(五)交流评价,深化知识:

确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则。二次函数的关系式可设如下三种形式:(1)一般式:,给出三点坐标可利用此式来求。

(2)顶点式:,给出两点,且其中一点为顶点时可利用此式来求。

(3)交点式:,给出三点,其中两点为与x轴的两个交点、时可利用此式来求。

本课课外作业1。已知二次函数的图象经过点A(-1,12)、B(2,-3),

(1)求该二次函数的关系式;

(2)用配方法把(1)所得的函数关系式化成的形式,并求出该抛物线的顶点坐标和对称轴。

2、已知二次函数的图象与一次函数的图象有两个公共点P(2,m)、Q(n,-8),如果抛物线的对称轴是x= -1,求该二次函数的关系式

二次函数数学教案 篇2

在整个中学数学知识体系中,二次函数占据极其关键且重要的地位,二次函数不仅是中高考数学的重要考点,也是线性数学知识的基础。那老师应该怎么教呢?今天,小编给大家带来初三数学二次函数教案教学方法。

一、 重视每一堂复习课 数学复习课不比新课,讲的都是已经学过的东西,我想许多老师都和我有相同的体会,那就是复习课比新课难上。

二、 重视每一个学生 学生是课堂的主体,离开学生谈课堂效率肯定是行不通的。而我校的学生数学基础大多不太好,上课的积极性普遍不高,对学习的热情也不是很高,这些都是十分现实的事情,既然现状无法更改,那么我们只能去适应它,这就对我们老师提出了更高的要求

三、做好课外与学生的沟通,学生对你教学理念认同和教学常规配合与否,功夫往往在课外,只有在课外与学生多进行交流和沟通,和学生建立起比较深厚的师生情谊,那么最顽皮的学生也能在他喜欢的老师的课堂上听进一点

四、要多了解学生。你对学生的了解更有助于你的教学,特别是在初三总复习间断,及时了解每个学生的`复习情况有助于你更好的制定复习计划和备下一堂课,也有利于你更好的改进教学方法。

2二次函数教学方法一

一、 立足教材,夯实双基:进行中考数学复习的时候,要立足于教材,重新梳理教材中的典例和习题,就显得尤为重要.并且要让学生在掌握的基础上,能够做到知识的延伸和迁移,让解题方法、技巧在学生遇到相似问题时,能在头脑中再现

二、 立足课堂,提高效率:做到教师入题海,学生出题海.教师应多做题、多研究近几年的中考试题,并根据本班学生的实际情况,从众多复习资料中,选择适合本班学生的最佳练习,也可通过对题目的重组。

三、教师在设计教学目标时,要做到胸中有书,目中有人,让每一节课都给学生留有时间,让他们有独立思考、合作探究交流的过程,最大限度的调动学生的参与度,激发他们的学习兴趣,达到最佳的复习效果.

四、激发兴趣,提高质量:兴趣是学习最好的动力,在上复习课时尤为重要.因此,我们在授课的过程中,在关注知识复习的同时,也要关注学生的学习欲望和学习效果,要让学生在学习的过程中体验成功的快感.这样他们才会更有兴趣的学习下去.

3二次函数教学方法二

1.质疑问难是学生自主学习的重要表现,优化课堂结构,激活学生的主体意识,必须鼓励学生质疑问难。教师要创造和谐融合的课堂气氛,允许学生随时“插嘴”、提问、争辩,甚至提出与教师不同的看法。

2.二次函数是初中阶段继一次函数、反比例函数之后,学生要学习的最后一类重要的代数函数,它也是描述现实世界变量之间关系的重要的数学模型。

3.学生有疑而问、质疑问难,是用心思考、自主学习、主动探究的可贵表现,理应得到老师的热情鼓励和赞扬。现在对学生的随时“插嘴”,提出的各种疑难问题,应抱欢迎、鼓励的态度给与肯定,并做出正确的解释。

4.初中阶段主要研究二次函数的概念、图像和性质,用二次函数的观点审视一元二次方程,用二次函数的相关知识分析和解决简单的实际问题。

4二次函数教学方法三

1.教学案例、教学设计、教学实录、教学叙事的区别:教学案例与教案:教案(教学设计)是事先设想的教育教学思路,是对准备实施的教育措施的简要说明,反映的是教学预期;而教学案例则是对已发生的教育教学过程的描述,反映的是教学结果。

2.教学案例与教学实录:它们同样是对教育教学情境的描述,但教学实录是有闻必录(事实判断),而教学案例是根据目的和功能选择内容,并且必须有作者的反思(价值判断)。

3.教学案例与叙事研究的联系与区别:从“情景故事”的意义上讲,教育叙事研究报告也是一种“教育案例”,但“教学案例”特指有典型意义的、包含疑难问题的、多角度描述的经过研究并加上作者反思(或自我点评)的教学叙事;

4.教学案例必须从教学任务分析的目标出发,有意识地选择有关信息,必须事先进行实地作业,因此日常教育叙事日志可以作为写作教学案例的素材积累。

二次函数数学教案 篇3

二次函数的性质与图像

【学习目标】

1、使学生掌握研究二次函数的一般方法——配方法;

2、应“描点法”画出二次函数 ( 的图像,通过图像总结二次函数的性质;

3、通过研究二次函数和图像的性质,能进一步体会研究一般函数的方法,能由特殊到一般地研究问题。

【自主学习】

二次函数的性质与图像

1)定义:函数 叫二次函数,它的定义域是 。特别地,当 时,二次函数变为 ( 。

2)函数 的图像和性质:

(1)函数 的图像是一条顶点为原点的抛物线,当 时,抛物线开口 ,当 时,抛物线开口 。

(2)函数 为 (填“奇函数”或“偶函数”)。

(3)函数 的图像的对称轴为 。

3)二次函数 的性质

(1)函数的图像是 ,抛物线的顶点坐标是 ,抛物线的对称轴是直线 。

(2)当 时,抛物线开口向上,函数在 处取得最小值 ;在区间 上是减函数,在 上是增函数。

(3)当 时,抛物线开口向下,函数在 处取得最大值 ;在区间 上是增函数,在 上是减函数。

跟踪1、试述二次函数 的性质,并作出它的图像。

跟踪2、研讨二次函数 的性质和图像。

跟踪3、求函数 的值域和它的图像的对称轴,并说出它在那个区间上是增函数?在那个区间上是减函数?

跟踪4、课本P60练习B

1、

【归纳总结】

研究二次函数的`图像与性质的思路是什么?

函数二次函数 (a、b、c是常数,a≠0)

图像a>0 a<0

性质

典例示范】

例1:将函数 配方,确定其对称轴和顶点坐标,求出 它的单调区间及最大值或最小值,并画出它的图像。

例2:二次函数 与 的图像开口大小相同,开口方向也相同。已知函数 的解析式和 的顶点,写出符合下列条件的函数 的解析式。

(1)函数 , 的图像的顶点是(4, );

(2)函数 , 图像的顶点是 。

二次函数数学教案 篇4

教学目标:

1、使学生进一步理解二次函数的基本性质;

2、渗透解析几何,数形结合,函数等数学思想.培养学生发现问题解决问题,及逻辑思维的能力.

3、使学生参与教学过程,通过主体的积极思维,体验感悟数学.逐步建立数学的观念,培养学生独立地获取知识的能力.

教学重点:初步理解数形结合的数学思想

教学难点:初步理解数形结合的数学思想

教学用具:微机

教学方法:探究式、小组合作学习

教学过程:

例1、已知:抛物线y=x2-(m2-1)x-2m2-2

⑴求证:无论m取什么实数,抛物线与x轴一定有两个交点

⑵m取什么实数时,两交点间距离最短?是多少?

解:

△ =(m2-1)2+4(2m2+2)

=m4-2m2+1+8m2+8

=m4+6m2+9

=(m2+3)2

m2≥0

∴m2+3>0

∴△>0

∴抛物线与x轴有两个交点

问题:为什么说当△>0时,抛物线y =ax2+bx+c与x轴有两个交点.(能否从数和形两方面说明)

设计意图:在课堂上创设让学生说数学的机会,学会合作学习,以达到①经验共享,在思维的碰撞中共同提高.②学会合作,消除个人中心.③发现自我,提高参与度.④弘扬个体的主体性,形成健康,丰富的个性.

数:点在曲线上,点的坐标满足曲线的方程.反之,曲线方程的每一个实数解对应的点都在曲线上.抛物线与x轴的交点,既在抛物线上,又在x轴上.所以交点的坐标既满足抛物线的解析式,也满足x轴的解析式.设交点坐标为(x,y)

这样交点问题就转化成求这个二元二次方程组的`解.代入y =0,消去y,转化成ax2+bx+c=0这个一元二次方程求根问题.根据以前学过的知识,当△>0时, ax2+bx+c=0有两个不相等的实根.∴y =ax2+bx+c

y =0

有两个不等的实数解

∴抛物线与x轴交于两个不同的点.

形:顶点在x轴上方,且开口向下.或者顶点在x轴下方,且开口向上.

设计意图:渗透解析几何的基本思想

使学生掌握转化思想使学生在解题过程中,感知数学的直观性和形式化这二重性.掌握数形结合,分类讨论的思想方法.逐步学会数学的思维.

转化成代数语言为:

小结:第一种方法,根据解析几何的基本思想.将求曲线的交点问题,转化成求方程组的解的问题.

第二种方法,借助于图象思考问题,比较直观.发现规律后,再用数学的符号语言将其形式化.这既体现了数学中的数形结合的思想方法,也是探索解数学问题的一般方法.

思考:试从数、形两方面说明抛物线与x轴的交点个数与判别 式的符号的关系.

设计意图:数学学习是一个再创造的过程,不能等同于数学知识的汇集,而要让学生经历数学知识的创造过程.使主体积极地参与到学习中去.以数学知识为载体,揭示出蕴涵于其中的数学思想方法,逐步形成数学观念.

⑵m取什么实数时,两交点间距离最短?是多少?

解:设二次函数与x轴的两交点为(x1,0),(x2,0)

解法㈠ 由⑴可知m为任何实数时, 都有△>0

解①

∴ x1+x2=m2-1

x1·x2=-2(m2+1)

∴│x2-x1│=

=

=

=

=m2+3

∴当m =0时,两交点最小距离为3

这里两交点间距离是m的函数

设计意图:培养学生的问题意识.在解题过程中,发现问题,并能运用已有的数学知识,将其一般化,形式化,解决问题,体会数学问题解决的一般方法.培养学生独立地获取数学知识的能力.渗透函数思想

问题: 观察本题两交点间距离与判别式的值之间有何异同?具有一般的规律吗?如何说明.

设x1、x2 为ax2+bx+c =0的两根

可以推出:

还可以理解为顶点到x轴距离最短.

设计意图:在对比、分析中,明确概念,揭示知识间的联系,帮助学生建立良好的认知结构.

小结:观察这道题的结论,我们猜测出规律,将其一般化,推导出这个公式,这是学习数学知识的一般方法.

解法㈡:用十字相乘法或求根公式法求根.

思考:一元二次方程与二次函数的关系.

思考:求m取什么实数时,y =x2-(m2-1)x -2 m2-2被直线y =2所截得的线段最短?是多少?

练习:

观察函数 的图象,回答:

(1)y>0时,x的取值范围如何?

(2)y=0时,x取什么值?

(1)y<0时,x的取值范围如何?

小结:数与形是数学中相互依赖的两个方面.图形比较直观,可以启发思路;而数学的严格证明也是必不可少的.直观性和形式化是数学的两重性.

探究活动

探究问题:

欣欣日用品零售商店,从某公司批发部每月按销售合同以批发单价每把8元购进雨伞(数量至少为100把),欣欣商店根据销售记录,这批雨伞以零售单价每把为14元出售时,月销售量为100把,数学教案-二次函数y=ax2+bx+c 的图象,初中数学教案《数学教案-二次函数y=ax2+bx+c 的图象》。如果零售单价每降价0.1元 , 月销售量就要增加5把.

(1) 欣欣日用品零售商店以零售单价14元出售时,一个月的利润为多少元?

(2) 欣欣日用品零售商店为了扩大销售记录,现实行降价销售,问分别降价0.2元、0.8元、1.2元、1.6元、2.4元、3元时的利润是多少?

(3) 欣欣日用品零售商店实行降价销售后,问降价多少元时利润最大?最大利润为多少元?

(4) 现在该公司的批发部为了再次扩大这种雨伞的销售量,给零售商制定如下优惠措施:如果零售商每月从批发部购进雨伞的数量超过100把,其超过100把的部分每把按原价九五折(即百分之95)付费,但零售价每把不能低于10元。欣欣日用品零售商店应将这种雨伞的零售单价定为每把多少元出售时,才能使这种雨伞的月销售利润最大?最大月销售利润是多少元?(销售利润=销售款额—进货款额)

解:(1)(14—8) (元)

(2)638元、728元、748元、792元、792元、750元。

(3)设降价 元时利润最大,最大利润为 元

=

=

=

∴ 当 时, 有最大值

(4)设降价 元时利润最大,利润为 元

(其中 )。

化简,得 。

∴ 当 时, 有最大值。

∴ 。

数学教案-二次函数y=ax2+bx+c 的图象

二次函数数学教案 篇5

【知识与技能】

1.会用描点法画二次函数y=ax2+bx+c的图象.

2.会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x的增减性.

3.能通过配方求出二次函数y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.

【过程与方法】

1.经历探索二次函数y=ax2+bx+c(a≠0)的图象的作法和性质的过程,体会建立二次函数y=ax2+bx+c(a≠0)对称轴和顶点坐标公式的必要性.

2.在学习y=ax2+bx+c(a≠0)的性质的过程中,渗透转化(化归)的思想.

【情感态度】

进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识.

【教学重点】

①用配方法求y=ax2+bx+c的顶点坐标;

②会用描点法画y=ax2+bx+c的图象并能说出图象的性质.

【教学难点】

能利用二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数y=ax2+bx+c(a≠0)的图象.

一、情境导入,初步认识

请同学们完成下列问题.

1.把二次函数y=-2x2+6x-1化成y=a(x-h)2+k的形式.

2.写出二次函数y=-2x2+6x-1的开口方向,对称轴及顶点坐标.

3.画y=-2x2+6x-1的图象.

4.抛物线y=-2x2如何平移得到y=-2x2+6x-1的图象.

5.二次函数y=-2x2+6x-1的y随x的增减性如何?

【教学说明】上述问题教师应放手引导学生逐一完成,从而领会y=ax2+bx+c与y=a(x-h)2+k的转化过程.

二、思考探究,获取新知

探究1 如何画y=ax2+bx+c图象,你可以归纳为哪几步?

学生回答、教师点评:

一般分为三步:

1.先用配方法求出y=ax2+bx+c的对称轴和顶点坐标.

2.列表,描点,连线画出对称轴右边的部分图象.

3.利用对称点,画出对称轴左边的部分图象.

探究2 二次函数y=ax2+bx+c图象的性质有哪些?你能试着归纳吗?

二次函数数学教案 篇6

学习目标:

1、能解释二次函数 的图像的位置关系;

2、体会本节中图形的变化与 图形上的点的坐标变化之间的关系(转化),感受形数 结合的数学思想等。

学习重点与难点:

对二次函数 的图像的位置关系解释和研究问题的数学方法的感受是学习重点;难点是对数学问题研究问题方法的感受和领悟。

学习过程:

一、知识准备

本节课的学习的内容是课本P12-P14的内容,内容较长,课本上问题较多,需要你操作、观察、思考和概括,请你注意:学习时要圈、点、勾、画,随时记录甚至批注课本,想想那个人是如何研究出来的。你有何新的发现呢?

二、学习内容

1.思考:二次函数 的图象是个什么图形?是抛物线吗?为什么?(请你仔细看课本P12-P13,作出合理的解释)

x -3 -2 -1

0 1 2 3

类似的:二次函数 的图象与函数 的图象有什么关系?

它的对称轴、顶点、最值、增减性如何?

2.想一想:二次函数 的图象是抛物线吗?如果结合下表和看课本P13-P14你的解释是什么?

x

-8 -7 -6 -3 -2 -1 0 1 2 3 4 5 6

类似的:二次函数 的图象与二次函数 的图象有什么关系 ?它的对称轴、顶点呢?它的对称轴、顶点、最值、增减性如何呢

三、知识梳理

1、二次函数 图像的形状,位置的关系是:

2、它们的性质是:

四、达标测试

⒈将抛物线y=4x2向上平移3个单位,所得的`抛物线的函数式是 。

将抛物线y=-5x2+1向下平移5个单位,所得的抛物线的函数式是 。

将函数y=-3x2+4的图象向 平移 个单位可得y=-3x2的图象;

将y=2x2-7的图象向 平移 个单位得到可由 y=2x2的图象。

将y=x2-7的图象向 平移 个单位 可得到 y=x2+2的图象。

2.抛物线y=-3(x-1)2可以看作是抛物线y=-3x2沿x 轴 平移了 个单位;

抛物线y=-3(x+1)2可以看作是抛物线y=-3x2沿x轴 平移了 个单位.

抛物线y=-3(x-1)2的顶点是 ;对称轴 是 ;

抛物线y=-3(x+1)2的顶点是 ;对称轴是 .

3.抛物线y=-3(x-1)2在对称轴(x=1)的左侧,即当x 时, y随着x的增大而 ; 在对称轴(x=1)右侧,即当x 时, y随着x的增大而 .当x= 时,函数y有最 值,最 值是 ;

二次 函数y=2x2+5的图像是 ,开口 ,对称轴是 ,当x= 时,y有最 值,是 。

4.将函数y=3 (x-4)2的图象沿x轴对折后得到的函数解析式是 ;

将函数y=3(x-4)2的 图象沿y轴对折后得到的函数解析式是 ;

5.把抛物线y=a(x-4)2向左平移6个单位后得到抛物线y=- 3(x-h)2的图象,则a= ,h= .

函数y=(3x+6)2的图象是由函数 的图象向左平移5个单位得到的,其图象开口向 ,对称轴是 ,顶点坐标是 ,当x 时,y随x的增大而增大,当x= 时,y有最 值是 .

6.已知二次函数y=ax2+c ,当x取x1,x2(x1x2), x1,x2分别是A,B两点的横坐标)时,函数值相等,

则当x取x1+x2时,函数值为 ( )

A. a+c B. a-c C. c D. c

7.已知二次函数y=a(x-h)2, 当x=2时有最大值,且此函数的图象经过点(1,-3),求此函数的解析式,并指出当x为何值时,y随x的增大而增大?

二次函数数学教案 篇7

I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:

y=ax^2+bx+c

(a,b,c为常数,a0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)

则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a0)

顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]

交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]

注:在3种形式的.互相转化中,有如下关系:

h=-b/2ak=(4ac-b^2)/4ax?,x?=(-bb^2-4ac)/2a

III.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,

可以看出,二次函数的图像是一条抛物线。

二次函数数学教案 篇8

教学目标

【知识与技能】

使学生会用描点法画出函数y=ax2的图象,理解并掌握抛物线的有关概念及其性质.

【过程与方法】

使学生经历探索二次函数y=ax2的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力.

【情感、态度与价值观】

使学生经历探索二次函数y=ax2的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质.

重点难点

【重点】

使学生理解抛物线的有关概念及性质,会用描点法画出二次函数y=ax2的图象.

【难点】

用描点法画出二次函数y=ax2的图象以及探索二次函数的性质.

教学过程

一、问题引入

1.一次函数的图象是什么?反比例函数的图象是什么?

(一次函数的图象是一条直线,反比例函数的图象是双曲线.)

2.画函数图象的一般步骤是什么?

一般步骤:(1)列表(取几组x,y的对应值);(2)描点(根据表中x,y的数值在坐标平面中描点(x,y));(3)连线(用平滑曲线).

3.二次函数的图象是什么形状?二次函数有哪些性质?

(运用描点法作二次函数的图象,然后观察、分析并归纳得到二次函数的性质.)

二、新课教授

【例1】 画出二次函数y=x2的图象.

解:(1)列表中自变量x可以是任意实数,列表表示几组对应值.

(2)描点:根据上表中x,y的数值在平面直角坐标系中描点(x,y).

(3)连线:用平滑的曲线顺次连接各点,得到函数y=x2的图象,如图所示.

思考:观察二次函数y=x2的图象,思考下列问题:

(1)二次函数y=x2的图象是什么形状?

(2)图象是轴对称图形吗?如果是,它的对称轴是什么?

(3)图象有最低点吗?如果有,最低点的坐标是什么?

师生活动:

教师引导学生在平面直角坐标系中画出二次函数y=x2的图象,通过数形结合解决上面的3个问题.

学生动手画图,观察、讨论并归纳,积极展示探究结果,教师评价.

函数y=x2的图象是一条关于y轴(x=0)对称的曲线,这条曲线叫做抛物线.实际上二次函数的图象都是抛物线.二次函数y=x2的图象可以简称为抛物线y=x2.

由图象可以看出,抛物线y=x2开口向上;y轴是抛物线y=x2的对称轴:抛物线y=x2与它的对称轴的交点(0,0)叫做抛物线的顶点,它是抛物线y=x2的最低点.实际上每条抛物线都有对称轴,抛物线与对称轴的交点叫做抛物线的顶点,顶点是抛物线的最低点或最高点.

【例2】 在同一直角坐标系中,画出函数y=x2及y=2x2的图象.

解:分别填表,再画出它们的图象.

思考:函数y=x2、y=2x2的图象与函数y=x2的图象有什么共同点和不同点?

师生活动:

教师引导学生在平面直角坐标系中画出二次函数y=x2、y=2x2的图象.

学生动手画图,观察、讨论并归纳,回答探究的思路和结果,教师评价.

抛物线y=x2、y=2x2与抛物线y=x2的开口均向上,顶点坐标都是(0,0),函数y=2x2的图象的开口较窄,y=x2的图象的开口较大.

探究1:画出函数y=-x2、y=-x2、y=-2x2的.图象,并考虑这些图象有什么共同点和不同点。

师生活动:

学生在平面直角坐标系中画出函数y=-x2、y=-x2、y=-2x2的图象,观察、讨论并归纳.教师巡视学生的探究情况,若发现问题,及时点拨.

学生汇报探究的思路和结果,教师评价,给出图形.

抛物线y=-x2、y=-x2、y=-2x2开口均向下,顶点坐标都是(0,0),函数y=-2x2的图象开口最窄,y=-x2的图象开口最大.

探究2:对比抛物线y=x2和y=-x2,它们关于x轴对称吗?抛物线y=ax2和y=-ax2呢?

师生活动:

学生在平面直角坐标系中画出函数y=x2和y=-x2的图象,观察、讨论并归纳.

教师巡视学生的探究情况,发现问题,及时点拨.

学生汇报探究思路和结果,教师评价,给出图形.

抛物线y=x2、y=-x2的图象关于x轴对称.一般地,抛物线y=ax2和y=-ax2的图象也关于x轴对称.

教师引导学生小结(知识点、规律和方法).

一般地,抛物线y=ax2的对称轴是y轴,顶点是原点.当a0时,抛物线y=ax2的开口向上,顶点是抛物线的最低点,当a越大时,抛物线的开口越小;当a0时,抛物线y=ax2的开口向下,顶点是抛物线的最高点,当a越大时,抛物线的开口越大.

从二次函数y=ax2的图象可以看出:如果a0,当x0时,y随x的增大而减小,当x0时,y随x的增大而增大;如果a0,当x0时,y随x的增大而增大,当x0时,y随x的增大而减小.

三、巩固练习

1.抛物线y=-4x2-4的开口向,顶点坐标是,对称轴是,当x=时,y有最值,是.

【答案】下 (0,-4) x=0 0 大 -4

2.当m≠时,y=(m-1)x2-3m是关于x的二次函数.

【答案】1

3.已知抛物线y=-3x2上两点A(x,-27),B(2,y),则x=,y=.

【答案】-3或3 -12

4.抛物线y=3x2与直线y=kx+3的交点坐标为(2,b),则k=,b=.

【答案】 12

5.已知抛物线的顶点在原点,对称轴为y轴,且经过点(-1,-2),则抛物线的表达式为.

【答案】y=-2x2

6.在同一坐标系中,图象与y=2x2的图象关于x轴对称的是()

A.y=x2B.y=x2

C.y=-2x2 D.y=-x2

【答案】C

7.抛物线y=4x2、y=-2x2、y=x2的图象,开口最大的是()

A.y=x2 B.y=4x2

C.y=-2x2 D.无法确定

【答案】A

8.对于抛物线y=x2和y=-x2在同一坐标系中的位置,下列说法错误的是()

A.两条抛物线关于x轴对称

B.两条抛物线关于原点对称

C.两条抛物线关于y轴对称

D.两条抛物线的交点为原点

【答案】C

四、课堂小结

1.二次函数y=ax2的图象过原点且关于y轴对称,自变量x的取值范围是一切实数.

2.二次函数y=ax2的性质:抛物线y=ax2的对称轴是y轴,顶点是原点.当a0时,抛物线y=x2开口向上,顶点是抛物线的最低点,当a越大时,抛物线的开口越小;当a0时,抛物线y=ax2开口向下,顶点是抛物线的最高点,当a越大时,抛物线的开口越大.

3.二次函数y=ax2的图象可以通过列表、描点、连线三个步骤画出来.

教学反思

本节课的内容主要研究二次函数y=ax2在a取不同值时的图象,并引出抛物线的有关概念,再根据图象总结抛物线的有关性质.整个内容分成:(1)例1是基础;(2)在例1的基础之上引入例2,让学生体会a的大小对抛物线开口宽阔程度的影响;(3)例2及后面的练习探究让学生领会a的正负对抛物线开口方向的影响;(4)最后让学生比较例1和例2,练习归纳总结.

大家都在看