三角形的内角和的教学设计

笔构网

2025-07-28教案

请欣赏三角形的内角和的教学设计(精选16篇),由笔构网整理,希望能够帮助到大家。

三角形的内角和的教学设计 篇1

一、说教材

北师版八年级下册第六章《证明一》,是在前面对几何结论已经有了一定的直观认识的基础上编排的,而前几册对有关几何结论都曾进行过简单的说理,本章内容则严格给出这些结论的证明,并要求学生掌握证明的一般步骤及书写表达格式。《三角形内角和定理的证明》则是对前几节证明的自然延续。此外,它的证明中引入了辅助线,这些都为后继学习奠定了基础。

二、说目标

1.知识目标:掌握“三角形内角和定理的证明”及其简单的应用。

2.能力目标培养学生的数学语言表达、逻辑推理、问题思考、组内及组间交流、动手实践等能力。

3.情感、态度、价值观:

在良好的师生关系下,建立轻松的学习氛围,使学生体会获得知识的成就感及与他人合作的乐趣,以增强其数学学习的自信心。

4.教学重点、难点

重点:三角形的内角和定理的证明及其简单应用。

难点:三角形的'内角和定理的证明方法的讨论。

三、说学校及学生现实情况

我校是蓝田县一所普通初中,四面非山即岭,距蓝田县城四十里之遥。但由于国家对西部教育的大力支持,学校有远程多媒体网络教室,为师生提供了良好的学习硬件环境。我校学生几乎全部来自本镇农村,而我所教授的八年级四班学生,大多家庭贫苦,所以学习认真踏实,有强烈的求知欲;此外,善于钻研是他们的特点,并且,有较强的合作交流意识。

四、说教法

根据本节课教学内容特点,我采用启发、引导、探索相结合的教学方法,使学生充分发挥学习主动性、创造性。

五、说教学设计

〈一〉、创设情景,直入主题

一堂新课的引入是教师与学生活动的开始,而一个成功的引入,可使学生破除畏难心理,对知识在短时间内产生浓厚的兴趣,接下来的教学活动就变得顺理成章。我的具体做法是:简单回忆旧知识,“证明的一般步骤是什么?”学生轻松做答,我肯定之后紧接着说:“本节课就是用证明的方法学习一个熟悉的结论!是什么呢?请看大屏幕!”。尽量使问题简单化,这样更利于学生投入新课。

〈二〉、交流对话,引导探索

1、巧妙提问,合理引导

证明思想的引入时,问:同学们,七年级时如何得到此结论?(留一定时间让他们讨论、交流、达成共识)学生回答后,我及时肯定并鼓励后抛出问题:他们的共同之处是什么?学生容易回答:凑成一平角。我说:很好!那你们用这样的思想能证明这个命题是个真命题吗?赶快试试吧!这样,既引导了证明的方向,又激发了学生的学习兴趣。接下来学生做题,我巡视。同时让一学生板演。

2、恰当示范,培养学生正确的书写能力

在学生做完之后,我与他们一道分析板演同学证明是否合理,并利用多媒体给出正确书写方法。

3、一题多解,放手让学生走进自主学习空间

正因为学生的预习,所以他们证明的方法有所局限,这时,我抛出问题:再想想,还有其他方法吗?将课堂时间又交还他们,将其思维推向高潮。学生思考,继而热烈讨论,此时,我又走到学生中去,对有困难的学生多加关注和指导,不放弃任何一个,同时,借此机会增进教师与学困生之间的情谊,为继续学习奠定基础。最后,请有新方法的同学叙述其思想方法,我用大屏幕展示不同做法的合情推理过程。

4、展示归纳,合理演绎

利用多媒体展示三角形内角和定理的几种表达形式,以促其学以致用。

5、反馈练习

用随堂练习来巩固学生所学新知,另一方面进一步提高学生的书写能力。同时,在他们作完之后,多媒体展示正确写法,加强教学效果。

〈三〉、课堂小结

1 采用让学生感性的谈认识,谈收获。设计问题:

2(1)、本节课我们学了什么知识?

(2)、你有什么收获?

目的是发挥学生主体意识,培养其语言概括能力。

六、说教学反思

本节课主要是以严谨的逻辑证明方法,验证三角形内角和等于180度。让学生充分体会有理有据的推理才是可靠的。而证明思想、书写的培养,是本节课的重点。自主学习、合作交流是新课程理念,也是我本节课的设计意图。从学生课堂表现可以看出,教学效果良好。而学生的一些出乎意料的做法让我倍感惊喜!把学生还给课堂,把课堂还给学生,也是我一贯的做法。

三角形的内角和的教学设计 篇2

背景分析:

在学习“三角形的内角和”之前,学生已经学习了三角形的特性和分类,知道平角的度数是180°,并且能够用量角器测量角的大小。“三角形的内角和是180°”是三角形的一个基本特征,也是“空间与图形”领域中的重要内容之一,学好它有助于学生理解三角形三个内角之间的关系,也为以后进一步学习几何知识打下良好的学习基础。

教学目标:

1、通过测量、剪拼、折拼等活动让学生全面经历探索和发现“三角形的内角和等于180°”的过程。

2、会用“三角形的内角和等于180°”这个结论进行一些简单的计算和推理。

3、体会数学学习的魅力,体验探究学习的乐趣。

教学重难点:

探索和发现三角形的内角和等于180°。

教具准备:

多媒体课件、一副三角板、量角器、三角形纸片。

学具准备:

每个小组准备4个量角器、4把剪刀、两副三角板、两个学具袋,两个学具袋中各装有2个完全相同的锐角三角形、1个直角三角形、一个钝角三角形。其中1号学具袋中,还装有表格纸一张。

教学过程:

一、导入课题

1、故事引入,激发兴趣

同学们,今天,老师给大家带来一个小故事,想听吗?

课件显示数学家——帕斯卡的图片

师:孩子们,你们认识他吗?这可是位了不起的人物,他的名字叫帕斯卡。他可是位数学奇人,从小就痴迷于数学,可帕斯卡的父亲却不支持他学习数学,因为,他从小就体弱多病,然而,这并不能阻挡帕斯卡对数学的热爱,一个个数学问题就像磁石一样深深地吸引着帕斯卡。他常常背着父亲一个人偷偷琢磨。12岁那年,他发现了一个改变他一生的数学问题,当父亲知道后激动的热泪盈眶。从此以后,父亲不仅支持他学习数学,而且还尽全力帮助他。在父亲的帮助下,帕斯卡成为了世界著名的数学家、物理学家。

师:究竟是什么发现让父亲的态度发了180°的大转弯呢,想知道吗?

揭示并板书课题:三角形的内角和。生齐读课题。

2、明确目标

学贵有疑,看到这个课题,你想知道些什么?或者你有什么疑问?(什么是三角形的内角和?三角形的内角和是多少度?)

3、效果预期

带着这些问题,我们一起走进今天的探究之旅,老师期待大家的精彩表现,大家准备好了吗?。

〖评析〗教师用数学家生动的励志故事导入新课,从情绪上深深感染了学生,激发了学生的学习兴趣,唤起了学生的求知欲望,同时,也为数学文化的引入作了必要的铺垫。

二、民主导学

1、任务呈现

(1)认识内角、内角和

师:同学们还认识这些三角形宝宝吗?三角形按角分,能分为锐角三角形、钝角三角形、直角三角形。

师:老师手里拿的是?(三角板)它是什么三角形?(直角三角形)老师把它打在白板上。

师:每个三角形的里面都有3个角,我们把它们称之为三角形的内角,为了方便,我们给他们分别编上编号∠1、∠2、∠3,

师:请同学们拿出2号袋中的三角形,快速找出三角形的三个内角,然后像老师这样给他们分别标上∠1、∠2、∠3

师:这个三角板上的三个内角分别是多少度呢?现在我们把这三个内角的度数加起来是(180°),算得真快,也就是说这个三角形的内角和180°这个三角形的内角和呢?也是180°也就是这两个三角形的内角和都是180°。

师:请大家看这里,如果把这个三角形的三个内角搬个家,都搬到一起,能拼成我们学过的什么叫?(平角)平角是多少度?(180°)

师:这是我们学过的特殊三角形,对吧,那么像黑板上这些一般的三角形内角和会是多少度呢?我们先来猜想一下好不好?谁来猜?同学们都认为三角形的内角和是180°,但口说无凭呀,到底是不是180°我们应该验证一下,对吧?

师:我们现在开始验证好吗?动手之前,请听好活动要求

屏幕出示要求,指名学生读:

想一想,你打算怎样验证,在小组内交流你的想法,共同确定一种验证方法;

想用量的方法验证的小组,请取出1号袋中的表格和三角形,根据表格上的内容完成相应的测量、计算,并向小组长汇报,小组长负责填空汇总;

想用其它方法验证的小组,请取出2号袋中的三角形,小组长做好分工,每两个同学用一个三角形进行验证或一人单独验证,动手前,先讨论讨论该怎么做,然后试着拼一拼;

验证结束后,小组内交流你们的发现,回忆验证过程,做好汇报准备。

2、自主学习

学生分组活动,教师巡视指导。(用量的方法的要填写学具袋中的表格)

3、展示交流(提示:汇报时,要说清楚你研究的三角形的类型)

师:来吧孩子们,该到全班交流的时候了。哪个小组愿意先把你们的成果与大家一起分享。

A、剪拼法(撕拼法)

这个小组通过剪拼得出三角形的内角和是180

B、折拼法

刚才拼的过程中,老师发现有个孩子特别的难过,因为他觉得这些三角形宝宝太可怜了,我们把这些三角形宝宝都大卸三块儿了,的确是这样,现在动脑筋想想,在不破坏三角形的情况下,能不能想办法把三角形的三个内角弄成一个平角?(折)那你们就试试,(行,不行)到底行不行,老师给大家演示一下,先标出三个内角,把∠1折下来,把∠2、∠3分别靠过来,现在观察一下,这三个角通过折的方法拼成平角了吗?行还是不行,刚才说不行的孩子一定没按这种方法折,下面请按老师的方法试试

C、测量法

用量的方法的小组,你们得出的三角形的'内角和都是180°,不是180°的请举手,一样的三角形为何测量得出的结果不一样,是什么原因呢?(误差)由于测量工具测量方法等原因,会难免会有误差,正因为这些误差,导致测量结果五花八门,各不相同,现在你们的疑惑解开了吗?

刚才我们猜想三角形的内角和可能是180°,现在你想说什么?(一定、肯定、绝对、百分之百)

小结:通过刚才同学们的验证,得出了什么结论(板书:结论)三角形的内角和是180°。大家发现了吗?无论是撕一撕、折一折、还是拼一拼,这些方法都有异曲同工之妙,都把本不在一起的三个角,通过移动位置,把它转化成一个平角来验证,都用了转化的策略(板书:转化)。希望大家能把转化的方法运用到今后的学习中去,去解决更多的数学问题。

〖评析〗探索三角形内角和的过程,既是解决数学问题的过程,也是培养学生动手实践能力和科学精神的过程。在这一过程中,学生既经历了新知的形成过程,又获得了成功的体验。

4、数学文化介绍

你们想知道12岁的帕斯卡是用什么方法研究的吗?谁来猜一猜?

生:

师:(边演示边介绍)他把长方形分成两个完全相同的直角三角形,其中一个直角三角形的内角和就是180°

师:接下来,他就想其他三角形的内角和是不是180°呢?于是,他任意画了一个三角形并做高,谁看懂他的意思了?

生:分成了两个直角三角形。

师:你真会观察,请大家看,∠1+∠2=

生:90°

师:∠3+∠4=

师:那么这个三角形的内角和就是

生:180°

师:由此说明任意三角形的内角和都是180°。你们觉得帕斯卡的方法怎么样?

生:巧妙!

师:是的,他的方法太巧妙了。今天同学们用自己的聪明才智也研究出了三角形的内角和是180°,老师相信你们的父亲也会为你们感到骄傲!下面,我们就用这个结论,来解决一些数学问题。

〖评析〗通过对数学文化的介绍,让学生了解帕斯卡的证明过程,既开阔了学生的知识视野,要引导学生的思维由具体到抽象,培养了思维的严谨性,同时激发了学生对数学家的崇敬之情,让学生体验到数学逻辑的论证之美,进而产生了对数学的热爱。

5、练习

(1)猜一猜:在一个三角形中,∠1=30°,∠2=50°,∠3等于多少度?师:让学生回答:说说怎么想的?

(2)2、算一算:三角形每个内角是多少度?师:课件出示后,请大家拿出答题纸快速解答下面的问题:

求出等边三角形每个角的度数?

等腰三角形顶角96°,底角是多少度?

直角三角形的一个锐角是40°,另一个锐角是多少度?

〖评析〗练习设计科学合理,层次清晰,针对性强,让学生较好地巩固了所学知识;拓展性练习不仅加深了学生对新知识的理解和掌握,而且要满足了不同层次学生的认知需要,同时培养了学生思维的灵活性,促进了思维的发展。

三、检测导结(下面进入检测环节,大家愿意接受挑战吗?)

1、目标检测(见检测卡)

2、结果反馈

集体订正

课外作业:那么四边形、五边形、六边形的内角和分别是多少呢?作为课后作业,课后探究。

3、反思总结

回顾一下今天学的内容,你有什么收获?

大家真的非常了不起,不仅学到了数学知识,更重要的是经历了猜想、验证、得出结论、应用的科学探究的过程,老师送给大家一句话:“在数学的天地里,重要的不是我们知道什么,而是我们怎么知道的。——毕达哥拉斯”

其实在历史上有许多数学家都曾经研究过三角形的内角和,最早研究的谁,你们知道吗?

生:帕斯卡

师:NO,另有其人,如果大家感兴趣,课后可以去查一查。

〖评析〗引导学生回顾本节课所学知识,有助于对所学内容的内化和提升。同时,将数学文化自然延伸到到课外,使数学文化贯穿整节课的始终。

三角形的内角和的教学设计

作为一位杰出的教职工,常常需要准备教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。如何把教学设计做到重点突出呢?以下是小编帮大家整理的三角形的内角和的教学设计,欢迎阅读与收藏。

三角形的内角和的教学设计 篇3

教学目标:

1、通过测量一量、拼一拼、折一折三个活动,探索和发现三角形三个内角的度数和等于180°。

2、已知三角形两个角的度数,会求出第三个角的度数。

3、经历三角形内角和的研究方法,感受数学研究方法。

教学重点:

1、探索和发现三角形三个内角的度数和等于180°。

2、已知三角形两个角的度数,会求出第三个角的度数。

教学难点:掌握探究方法(猜想-验证-归纳总结),学会用“转化”的数学思想探究三角形内角和。

教学用具:表格、课件。

学具准备:各种三角形、剪刀、量角器。

一、创设情境揭示课题。

1、一天两个三角形发生了争执,他们请你们来评评理。大三角形说:“我的个头大,所以我的内角和一定比你大。”小三角形很不甘心地说:“我有一个钝角,我的内角和一定比你大。”。谁说得有道理呢?今天让我们来做一回裁判吧。

生1:大三角形大(个子大)

生2:小三角形大(有钝角)

(教师不做判断,让学生带着问题进入新课)

2、什么是三角形的内角和?(板书:内角和)

讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。

二、自主探究,合作交流。

(一)提出问题:

1、你认为谁说得对?你是怎么想的?

2、你有什么办法可以比较一下这两个三角形的内角和呢?

生1:用量角器量一量三个内角各是多少度,把它们加起来,再比较。

生2:用拼一拼的办法把三个角拼到一起看它们能不能组成平角。

生3:用折一折的办法把三个角折到一起看它们能不能组成平角

(二)探索与发现

活动一:量一量

(1)①了解活动要求:(屏幕显示)

A、在练习本上画一个三角形,量一量三角形三个内角的度数并标注。(测量时要认真,力求准确)

B、把测量结果记录在表格中,并计算三角形内角和。

C、讨论:从刚才的'测量和计算结果中,你发现了什么?

(引导生回顾活动要求)

②小组合作。

③汇报交流。

你们测量了几个三角形?它们的内角和分别是多少?从测量和计算结果中你们发现了什么?

(引导学生发现每个三角形的三个内角和都在180°,左右。)

(2)提出猜想

刚才我们通过测量和计算发现了三角形内角和都在180度左右,那你能不能大胆的猜测一下:三角形内角和是否相等?三角形的内角和等于多少度呢?(板书:猜测)

活动二:拼一拼,验证猜想

这个猜想是否成立呢?我们要想办法来验证一下。(板书验证)

引导:180°,跟我们学过的什么角有关?我们课前准备了各种三角形纸片,你能不能利用这些三角形纸片,想办法把三角形的三个内角转换成一个平角呢?

(1)小组合作,讨论验证方法。(把三个角撕下来,拼在一起,3个角拼成了一个平角,所以三角形内角和就是180°)。

(2)讨论:锐角三角形、直角三角形、钝角三角形是否都能得出相同的结论呢?

(3)分组汇报,讨论质疑

(4)课件演示,验证结果

活动三:折一折

师生一起活动,教师先让学生看课件演示,然后拿出准备好的三角形纸艮老师一起折一折。

(把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与角1的顶点互相重合,也证明了三角形内角和等于180°,)。

讨论:锐角三角形、直角三角形、钝角三角形能否得到相同的结论?

提问:还有没有其它的方法?

3、回顾两种方法,归纳总结,得出结论。

(1)引导学生得出结论。

孩子们,三角形内角和到底等于多少度呢?”

学生答:“180°!”

(2)总结方法,齐读结论

我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!齐读结论。(板书:得到结论)

(3)解释测量误差

为什么我们刚才通过测量,计算出来的三角形内角和不是180°,呢?

那是因为我们在测量时,由于测量工具、测量操作等各方面的原因,使我们的测量结果存在一定的误差。实际上,三角形内角和就等于180°

(三)回顾问题:

现在你知道这两个三角形谁说得对了吗?(都不对!)

为什么?请大家一起,自信肯定的告诉我。

生:因为三角形内角和等于1800180°。(齐读)

三、巩固深化,加深理解。

1、试一试:数学书28页第3题

∠A=180°-90°-30°

2、练一练:数学书29页第一题(生独立解决)

∠A=180°-75°-28°

3、小法官:数学书29页第二题

四、回顾课堂,渗透数学方法。

1、总结:猜想—验证—归纳—应用的数学方法。

2、介绍:三角形内角和等于180度这个结论的由来;数学领域里还未被证明的其它猜想,如哥德巴赫猜想、霍启猜想、庞加莱猜想等。

3、课堂延伸活动:探索——多边形内角和

板书设计:

探索与发现(一)

三角形内角和等于180°

三角形的内角和的教学设计 篇4

一、教材内容分析

三角形的内角和是三角形的一个重要特征。本课时安排在三角形的特性和分类之后进行的,它是学生以后学习多边形的内角和的基础。学生在掌握知识方面:基本掌握三角形的分类,角的分类等有关知识;能力方面:学生已具备了初步的动手操作能力和主观探究能力以及合作学习的习惯。因此,教材特重视知识的探索宇发现,安排了一系列的实验操作活动。教材在呈现教学内容时,即重视知识的'形成过程,又注意提供学生自主探究的空间,为教师组织教学提供了清晰的思路。学生通过量;剪;拼;算等活动,让学生探索。实验。发现。验证三角形内角和是180度。

二、教学目标(知识,技能,情感态度、价值观)

知识于技能:让学生通过亲自动手量。剪。拼等活动,发现三角形内角和是180度,并会应用这一知识解决生活中简单的实际问题。

过程与方法:让学生在动手获取知识的过程中,培养学生的创新意识和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”的数学思想

情感态度与价值观:通过学习让学生体验成功的喜悦,激发学生主动学习数学的兴趣。

三、学习者特征分析

学生已经认识了三角形,并掌握了三角形的分类,较熟悉平角等有关知识;具备了初步的动手操作能力和主动探究能力。因此概念的形成是通过量。算。拼等活动,让学生探索。实验。发现。讨论。推理。归纳出三角形的内角和是180度。

四、教学策略选择与设计

1。关注学生的学习过程,注意培养学生动手操作能力以及和作与交流的能力,培养应用和创新意识。

2。从学生已有的知识和生活经验出发,让学生通过操作。观察。思考。交流。推理。归等活动,培养学生的学习兴趣,体验数学的价值。

五、教学环境及资源准备

教具准备;多媒体课件。一副三角板。

学具准备:量角器。各种三角形。剪刀等。

三角形的内角和的教学设计 篇5

教学目标:

1.知道三角形的内角和是180度,理解三角形内角和与三角形的大小无关。

2.通过测量、计算、猜想、实验等数学活动,积累认识图形的方法和经验,逐步推理、归纳出三角形内角和。

3.关注学生在操作活动中遇到的真问题,培养学生诚实严谨的实验态度,实事求是的科学的态度。

教学重点:

知道三角形的内角和是180度,理解三角形的内角和与三角形的大小、形状无关。

教学难点:

经历操作活动,推理、归纳出三角形的内角和。

教学资源:

多煤体课件,各种三角形,三角板,量角器,剪刀。

教学活动:

一、创设情境,导入新课。

1.昨天我们学习了三角形的分类,三角形按角的特征怎么分类?按边的特征怎么分类?

2.信封中装一个三角形露出一个锐角,猜一猜信封中装的是一个什么三角形?能确定吗?(露出一个钝角)现在能确定了吗?为什么现在就能确定了?(有一个钝角,两个锐的三角形是钝角三角形)。

3.三角形中还隐藏着那些知识?三角形的三个内角的和是多少度?这节课我们研究三角形的内角和。(板书课题:三角形的内角和)

二、合件交流,操作发现。

1.(课件)你知道三角尺内角的度数分别是多少吗?每个直角三角尺的内角度数之和都是多少度?我们能根据三角尺的内角和是180度,就得出三角形的内角和的结论吗?应该怎么研究?(应该把三角形中所有的类型锐角三角形、直角三角形、钝角三角形都研究后,才能得出结论)(课件出示学习单)。

2.组织学生小组合作:

请同学们以4人为一个小组,三个人分别量一量,算一算一种三角形的内角的度数,小组长填写学习单。老师巡视。①师:能不能只量出两个角的度数,不量第三个角的度数,就开始填表、计算?(我们的`研究必须是科学的、实事求是的,测量的数据必须是真实的,来不的半点马虎)。②同桌交流,你们有什么发现?

3.组织学生汇报交流:

①那个组说一说你们组测量的数据和计算的结果?(学生的计算不是正好180度时,问:大约是多少度?)②你们有什么发现?(锐角三角形、直角三角形、钝角三角形的内角和大约都是180度。③你能提出什么猜想?(我猜三角形的内角和是180度)老师板书:三角形的内角和是180°我们的猜想对不对,(在板书后面打上“?”),就需要我们验证,请同学们想办法验证我们的猜想对不对?(学生通过折的方法剪拼进行验证;学生通过剪、拼的方法进行验证。)

4.学生展台展示自己的难方法。通过验证,我们发现三角形的内角和是180度。老师把“?”改为“!”。

5.操作总会有误差,有没有别的方法说明呢?(老师课件演示长方形的四个角都是直角,所以长方形的内角和应为:90°×4=360°。将长方形沿对角线分割,可以分成两个完全相等的直角三角形,所以直角三角形内角和应为:360°÷2=180°;沿高可以将任意三角形分成两个直角三角形。由于前面证明了任意直角三角形的内角和是180°,因此两个直角三角形的内角和应为:180°×2=360°。而直角三角形的两个直角不属于分割前三角形的内角,因此任意三角形的内角和应为:360°-180°=180°。)

三、实践应用,拓展延伸。

1.这里有一条红领巾,它的形状是等腰三角形,其中∠1=110°,请计算出∠2=()°,∠3=()°。

2.把下面这个三角形沿虚线剪成两个小三角形,每个小三角形的内角和是多少度?(把一个三角形剪成两个小三角形,虽然大小发生了变化,可是内角和依然是180度,说明三角形的内角和与三角形大小无关)。

四、反思总结,自我建构。

这节课你有什么收获?

这节课我们就研究到这儿,同学们再见!

三角形的内角和的教学设计 篇6

教学内容:

北师版小学数学四年级下册《探索与发现(一)—三角形内角和》

教材分析:

《三角形内角和》是北师大版小学数学四年级下册第二单元第三节的内容,是在学生认识了直角三角形、锐角三角形、钝角三角形、等腰三角形和等边三角形的特点的基础上进一步探究三角形有关性质中的三个内角和的性质,是“空间与图形”领域的重要内容之一。教材在呈现教学内容时,不但重视知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间。三角形的内角和的性质没有直接给出,而是提供了丰富多彩的动手实践的素材,让学生通过探索、实验、讨论、交流而获得,从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学经验,同时发展空间观念和推理能力,不断提高自己的思维水平。

学情分析:

本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识,这为感受、理解、抽象“三角形的内角和”的性质,打下了坚实的基础。同时,通过近四年的数学学习,学生已初步掌握了一些学习数学的基本方法,具备了一定的动手操作、观察比较和合作交流的能力。能在小组长带领下,围绕数学问题开展初步的讨论活动,能比较清楚的表达自己的意见,认真倾听他人的发言,具备了初步的数学交流能力。

教学目标:

1、让学生经历“猜想、验证、归纳、应用”等知识形成的全过程,探索并发现“三角形内角和等于1800,”,并能应用规律解决一些实际问题。

2、在探索过程中培养学生的动手实践能力、协作能力及创新意识和探究精神,发展学生的空间思维能力,同时使学生养成独立思考的习惯。

3、在活动中,让学生体验主动探究数学规律的乐趣,体验学数学的价值,激发学生学习数学的热情。

教学重点:

让学生经历“猜想、验证、归纳、应用”等知识形成的全过程,探索并发现三角形内角和等于1800,,并能应用规律解决一些实际问题。

教学难点:

掌握探究方法(猜想-验证-归纳总结),学会用“转化”的数学思想探究三角形内角和。

教学用具:

表格、课件。

学具准备:

各种三角形、剪刀、量角器。

一、创设情境揭示课题。

1、复习

提问:前面我们已经学习了三角形的一些知识,谁能介绍一下呢?

生回忆三角形的特征,三角形分类,三角形具有稳定性等内容。

2、引入

三角形具有稳定形,三角形家族是一个团结的家族,但今天家族内部却发生了激励的争论。

播放课件,提问:它们在争论什么?

什么是三角形的内角和?(板书:内角和)

讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。

二、自主探究,合作交流。

(一)提出问题:

1、你认为谁说得对?你是怎么想的?

2、你有什么办法可以比较一下这两个三角形的内角和呢?

学生可能会说:用量角器量一量三个内角各是多少度,把它们加起来,再比较。

(二)探索与发现

1、初步探索,提出猜想。

(1)量一量

①了解活动要求:(屏幕显示)

A、在练习本上画一个三角形,量一量三角形三个内角的度数并标注。(测量时要认真,力求准确)

B、把测量结果记录在表格中,并计算三角形内角和。

C、讨论:从刚才的测量和计算结果中,你发现了什么?

(引导生回顾活动要求)

②、小组合作。

③、汇报交流。

你们测量了几个三角形?它们的内角和分别是多少?从测量和计算结果中你们发现了什么?

(引导学生发现每个三角形的三个内角和都在1800,左右。)

(2)提出猜想

刚才我们通过测量和计算发现了三角形内角和都在180度左右,那你能不能大胆的猜测一下:三角形内角和是否相等?三角形的内角和等于多少度呢?(板书:猜测)

2、动手操作,验证猜想

这个猜想是否成立呢?我们要想办法来验证一下。(板书验证)

引导:1800,跟我们学过的什么角有关?我们课前准备了各种三角形纸片,你能不能利用这些三角形纸片,想办法把三角形的三个内角转换成一个平角呢?

(1)、小组合作,讨论验证方法。

(2)分组汇报,讨论质疑

学生可能会出现的方法:

A、撕拼的方法

把三个角撕下来,拼在一起,3个角拼成了一个平角,所以三角形内角和就是1800,。

讨论:锐角三角形、直角三角形、钝角三角形是否都能得出相同的.结论呢?

B、折一折的方法

把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与角1的顶点互相重合,也证明了三角形内角和等于1800。

讨论:锐角三角形、直角三角形、钝角三角形能否得到相同的结论?

C提问:还有没有其它的方法?

3、回顾两种方法,归纳总结,得出结论。

(1)课件演示:两种方法的展示。

(2)引导学生得出结论。

孩子们,三角形内角和到底等于多少度呢?”

学生一定会高兴地喊:“1800!

(3)总结方法,齐读结论

我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!齐读结论。(板书:得到结论)

(4)解释测量误差

为什么我们刚才通过测量,计算出来的三角形内角和不是1800,呢?

那是因为我们在测量时,由于测量工具、测量操作等各方面的原因,使我们的测量结果存在一定的误差。实际上,三角形内角和就等于1800

(三)、回顾问题:

现在你知道这两个三角形谁说得对了吗?(都不对!)

为什么?请大家一起,自信肯定的告诉我。

生:因为三角形内角和等于1800,。(齐读)

三、巩固深化,加深理解。

1、试一试:数学书28页第3题

∠A=180°— 90°—30°

2、练一练:数学书29页第一题(生独立解决)

∠A=180°— 75°— 28°

3、小法官:数学书29页第二题

4、拓展创新

A D G

B C E F H R

ABC的内角和是()

DEF的内角和是()

GHR的内角和呢?

小结:三角形的形状和大小虽然不同,但是三角形的内角和都是180度。

四、回顾课堂,渗透数学方法。

1、总结:猜想—验证—归纳—应用的数学方法。

2、介绍:三角形内角和等于180度这个结论的由来;数学领域里还未被证明的其它猜想,如哥德巴赫猜想、霍启猜想、庞加莱猜想等。

3、课堂延伸活动:探索——多边形内角和

板书设计:

三角形内角和等于1800。

猜想验证得出结论应用

三角形的内角和的教学设计 篇7

【教材内容】:

北师大版四年级数学下册

【教学目标】:

1、探索与发现三角形的内角和是180°,已知三角形的两个角度,会求出第三个角度。

2、培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。

3、培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣。

【教学重点和难点】:

重点掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题;难点是探索性质的过程。

【教材分析】

《三角形内角和》属于空间与图形的范畴,是在学生已经接触了三角形的稳定性和三角形的分类相关知识后对三角形的进一步研究,探索三个内角的和。教材中安排了学生对不同形状的、大小的三角形进行进行度量,运用折叠、拼凑等方法发现三角形的内角和是180°。扩充了学生认识图形的一般规律从直观感性的认识到具体的性质探索,更加深入的培养了学生的空间观念。

【教学过程】

一、创设情境,激发兴趣。

出示课件,提出两个两个疑问:

1、两个大小不一样的两个三角形的对话我比你大,所以我的内角和比你大,是这样的吗?

2、三个形状不一样的三角形的争论。我们的形状不一样,所以我们的内角和各不相同,是这样的吗?老师发现它们争论的焦点是三角形的内角和的问题,那什么是三角形的内角?什么又是三角形的内角和呢?

二、初建模型,实际验证自己的猜想

在第一步的基础上学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。这时教师要组织学生进行小组合作,每人用量角器量出一种三角形(锐角三角形、钝角三角形、直角三角形、等腰三角形、等边三角形)的三个内角,并计算出它们的总和是多少?把小组的测量结果和讨论结果记录下来以便全班进行交流。

三角形的形状

三角形每个内角的度数

内角和

锐角三角形

钝角三角形

直角三角形

等腰三角形

等边三角形

三、再建模型,彻底的得出正确的结论

因为在上一环节学生已经得出三角形的内角和大约都是或接近180度。因为我们在测量时由于测量人不同、测量工具不同可能产生一些误差。有的同学难免可能猜想三角形的内角和就是180度呢?我们继续研究和探索。除了测量外我们是否可以利用我们手中的三角形通过拼一拼、折一折、画一画的方法来证明三角形的内角和都是180度呢?教师放手让学生去思考、去动手操作,对有困难和有疑问的同学进行提示和指导。然后让学生到前面演示验证的方法,教师借助多媒体进行演示。

四、应用新知,巩固练习

1、算一算,对于不同形状的三角形给出其中的两个角求第三个角的度数。(1小题属于基本练习)

2、试一试,在直角三角形中已知其中的'一个角求另一个角的度数

3、想一想,已知等腰三角形的顶角如何算出它的两个底角;已知等腰三角形的一个底角的度数求三角形的顶角。

4、说一说,判断三角形的两个锐角的和大于90度;直角三角形的两个两个锐角的和等90度;等腰三角形沿着高对折,每个三角形的内角和是90度。这些说法是否正确?由两个三角形拼成一个大的三角形,大三角形的内角和是360度,对吗?

五、拓展与延伸

通过三角形的内角和是180度的事实来探讨四边形、五边行的内角和。

三角形的内角和的教学设计 篇8

教学内容:四年级下册第78~79页的例4和“练一练”,练习十二第10~13题。

教学目标:

1.使学生通过观察、操作、比较、归纳等活动,发现三角形的内角和等于1800,并能应用这一知识求三角形中一个未知角的度数。

2.使学生经历探索和发现三角形内角和等于1800的过程,进一步增强自主探索的意识,积累类比、归纳等活动经验,发展空间观念。

3使学生在参与学习活动的过程中,形成互助合作的学习氛围,培养大胆猜想、敢于质疑、勇于实践的科学精神。

教学重点:让学生经历“三角形内角和等于180°”这一知识的形成、发展和应用的全过程。

教学难点:探究和验证“三角形内角和等于180°”。

教学准备:学生准备三角板一副、量角器;教师准备多媒体课件、信封里装三角形纸片若干。

教学过程:

一、创设情境,产生疑问

1.理解内角和含义。

2.故事激趣

提问:三兄弟围绕什么问题在争吵?你有什么看法?

二、自主学习,合作探究

1提出猜想。

(1)计算三角板的内角和。

(2)提出猜想。

提问:通过刚才的计算,你能得出什么结论?有同学怀疑吗?

指出:“三角形的内角和等于1800”只是根据这两个特殊三角形得到的一个猜想。

引导:需用更多的三角形验证。

2进行验证。

(1)验证教师提供的三角形。

测量:任意三角形的内角和。

①小组合作:用量角器量出信封里不同三角形的内角和。

②交流测量结果。

③提问:根据测量结果,你能得出什么结论?

拼一拼:把一个三角形的.三个角拼在一起。

①思考:除了量,还可以用什么方法验证呢?

②同桌合作:尝试把三个内角拼成一个平角。

③反馈不同的拼法。

④提问:既然三角形的三个内角能拼成一个平角,你能得出什么结论?有怀疑吗?

解释误差问题。

(2)验证学生自己画的三角形。

学生任意画一个三角形,用自己喜欢的方法去验证。

交流:自己画的三角形验证出来内角和是1800吗?有谁验证

出来不是1800的吗?

提问:你又能得到什么结论?还有怀疑吗?

3得出结论。

指出:三角形有无穷多,课上得到的还只是一个猜想。随着验证的深入,能越来越确定这个猜想是对的。

说明:科学家们已经经过严格的论证,证明了所有三角形的内角和确实都是1800。

解决争吵:学生用三角形内角和的知识劝解三兄弟。

三、巩固应用,深刻感悟

1.算一算:求三角形中未知角的度数。

2.拼一拼:用两块相同的三角尺拼成一个三角形。

思考:拼成的三角形内角和是多少?

3.画一画:(1)你能画出一个有两个锐角的三角形吗?

(2)你能画出一个有两个直角的三角形吗?

(3)你能画出一个有两个钝角的三角形吗?

四、全课总结,课后延伸

1.学生自主总结一节课的收获。

2.介绍帕斯卡。

3.用三角形拼成四边形、五边形、六边形??引发新的问题。

三角形的内角和的教学设计 篇9

一、教材依据

苏教版四年级数学第八册第28~29页

二、教学方法及思路

数学学习的价值在于让学生亲身经历知识发生发展的过程。本节课力图带领学生进入这样一个学习过程:利用故事的形式,让学生产生疑问,三角形的内角和是不是180°?接着让学生通过小组合作的方法通过剪或折,得到三角形的三个内角都能凑成一个平角,得出三角形内角和是180°这一规律。通过课件的进一步演示,让学生对结论的形成过程有更系统更清晰的整理,较好的突破了这节课的重、难点部分。在练习设计方面,通过算一算,量一量,选一选,拼一拼,折一折,说一说等多种方式,提高学生解决简单的实际问题的能力。

三、教学目标

1、知识目标:让学生通过量、剪、拼、摆、折等活动,主动探究推导出三角形内角和是180度,并运用所学知识解决简单的实际问题。

2、能力目标:让学生在学习活动中进一步增强探索的意识,提高合作交流的能力,获得成功的体验,树立学习的信心。

3、情感目标:让学生体会几何图形内在的结构美,并充分体会到学习数学的快乐。

四、教学重点

使学生理解并掌握三角形的内角和是180°。

五、教学难点

验证所有三角形的内角之和都是180°。

六、教学设备

量角器、正方形纸、剪刀、各类三角形(也包括等边、等腰)、实物投影、多媒体课件

七、教学过程

(一)创设情境,导入新课

1、师谈话:我们已经认识了三角形,你知道哪些关于三角形的知识?

让学生对了解的有关三角形的知识畅所欲言。

2、师谈话:我们在讨论三角形知识的时候,三角形中的三个好朋友却吵了起来,想知道是怎么回事吗?让我们一起去看看吧!

教师放课件。

课件内容说明:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”,(它们在争论谁的内角和大。)

3、 到底谁说的对呢?今天我们就来研究有关三角形内角和的知识。

(板书课题:三角形内角和)

设计意图:一方面借助电教媒体,利用儿童喜闻乐见的故事创设情境,激发学生学习兴趣,另一方面,通过故事中的认知冲突,来激发学生的求知欲。

(二)自主探究,发现规律

1、认识什么是三角形的内角和三角形的内角和。

谈话:我们通常所说的三角尺的角是三角尺的内角,你知道什么是三角形的内角和吗?

通过学生讨论,得出三角形的内角和就是三角形三个内角的度数和。

2、探究三角形内角和的特点。

①让学生想一想、说一说怎样才能知道三角形的内角和?

学生会想到量一量每个三角形的内角,再相加的方法来得到三角形的内角和。(如果学生想到别的方法,只要合理的,教师就给予肯定,并鼓励他们对自己想到的方法进行验证。)

②小组合作。

通过小组合作后交流,汇报。(教师同时板书出几个小组汇报的结果)让学生们发现每个三角形的内角和都在180°左右。

引导学生推测出三角形的内角和可能都是180°。

3、 验证推测。

让学生动脑筋想一想,怎样才能验证自己的推想是否正确,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。

(小组合作验证,教师参与其中。)

4、全班交流,共同发现规律。

当学生汇报用折拼或剪拼的方法的时候,教师在电脑中根据学生的汇报,分别演示直角三角形、锐角三角形、钝角三角形的.折拼和剪拼的过程。

在学生交流、教师课件演示的过程中,师生共同总结出三角形的内角和等于180°。教师同时板书(三角形内角和等于180°。)

5、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180°做系统的整理。)

[设计意图:先提出疑问,再通过学生的动手实践、自主探索与合作交流的方式,一方面调动了学生思维的积极性,另一方面,通过课件的演示,在学生的充分感知的基础上发现三角形的内角和是180°]

(三)巩固练习,拓展应用

根据发现的三角形的新知识来解决问题。

1、教学“试一试”

出示“试一试”:三角形中,∠1=75°,∠2=39°,∠3=( )?

学生试做,指名板演。学生可能有下面两种算法:

①∠3=180°—75°—39°=66°

②∠3=180°—(75°+39)°=66°

评议板演,教师让学生说说是怎样想的,再让学生用量角器量一量教科书中的∠3。提问:与算出的结果相同吗?

2、 “想想做做”第1题

生独立完成,集体订正,并说说解题方法。

3、“想想做做”第2题

提问:为什么两个三角形拼成一个三角形后,内角和还是180度?

4、“想想做做”第3题

生动手折折看,填空。

提问:三角形的内角和与三角形的大小有关系吗?三角形越大,内角和也越大吗?

5、“想想做做”第6题

生说说自己的想法。

[设计意图:当学生获得“三角形的内角和是180°”的知识信息后,让学生通过算一算、量一量、拼一拼和折一折,巩固学生对三角形的内角和的认识。]

引导学生说出:首先要看三个内角的和是不是180°,其次看每个内角的度数是否符合这类三角形的特征。

[设计意图:开放题的设计,给学生广阔的思维空间,学生综合运用已学知识解决问题。]

(五)课堂作业

完成“想想做做”第4题和第5题。

(六)课堂总结

问:这节课你学到了哪些数学知识?这些知识你是怎样获得的?你还有什么疑问?

[设计意图:通过交流式的回顾,引导学生对本课学习知识和学习方法进行总结。]

(七)板书设计

三角形内角和等于180°

①∠3=180°—75°—39°=66°

②∠3=180°—(75°+39)°=66°

三角形的内角和的教学设计 篇10

【教材分析】

《三角形内角和》是北师大版《数学》四年级下册的内容。是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。教材还安排了“试一试”,“练一练”的内容。已知三角形两个内角的度数,求出第三个角的度数。

【学生分析】

经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。1。知识方面:学生已经掌握了三角形的概念、分类,熟悉了钝角、直角、锐角、平角这些角的知识。2.能力方面:已具备了初步的动手操作能力和探究能力,并且能够进行简单的微机操作。

【学习目标】

知识目标:掌握三角形内角和是180度这一规律,并能实际应用。

能力目标:培养学生主动探索、动手操作的能力。培养学生收集、整理、归纳信息的能力。使学生养成良好的合作习惯。

情感目标:让学生体会几何图形内在的结构美。

【教学过程】

一、情景激趣,质疑猜想。

播放动画片:在图形王国中,有一天三角形大家庭里为“三角形内角和的大小”爆发了一场激烈的争吵。

钝角三角形大声叫着:“我的钝角大,我的内角和一定比你们的内角和大。”锐角三角形也不示弱:“我的锐角虽然比钝角小,但我的内角和并不比你小。”直角三角形说:“别争了,三角形的内角和都是180°。我们的内角和是一样大的。”

师:想一想,什么是三角形的三个内角的和。

生:三角形的三个内角的度数和。

师:同学们刚才看了动画片你们知道谁说对了吗?不知道的话想一想,猜一猜谁说的对?

学生进行猜想,自由发言。

(设计意图:教师借助多媒体技术创设问题情境,架起数学学习与现实生活,抽象数学与具体问题之间的桥梁,激发了学生的学习兴趣。鼓励学生主动质疑猜想是培养学生学会学习的重要途径。)

二、自主探究,验证猜想

师:刚才大部分同学都猜直角三角形说的对。三角形的三个内角的和都是180°,你能设法验证这个猜想吗?

生1:能。我量出三角形的三个内角和度数,加起来是否接近180°(量的时候可能会有些误差)。

生2:我把三角形的三个角剪下来拼一拼是否能拼成一个平角。

生3:我把三角形的三个角撕下来,拼一拼是否180°。

生4:我把三角形的.三个角往里折,看一看这三个角是否折成一个平角。

……

师:上面你们说了不少的验证猜想的方法,请大家用准备好的材料用你喜欢的方法,动手验证自己的猜想吧!

学生边实验边整理信息,完成实验报告单后,学习小组内进行交流讨论。

三、交流评价,归纳结论。

学生操作验证,完成实验报告单后,利用投影仪展示学生填写的实验报告单。

学生在展示过程中,充分交流和讨论实验中各自使用的方法和发现,教师要对学生的闪光点及时进行表扬和鼓励。

师生共同归纳,得出结论:

三角形内角和等于180°

(设计意图:各学习小组汇报自己的验证过程,展示探究的成果。对学生探索发现的方法、策略进行总结归纳,集思广益,取长补短达到共识。在交流、归纳过程中,及时肯定其中的闪光点给予表扬和鼓励,使他们体验到成功的愉悦,促使他们获得更大的成功。)

四、分层练习,巩固创新。

①课件出示:

师:这个三角形是什么三角形?知道几个内角的度数?

生:直角三角形,知道一个角是30°,还有一个角是90°。∠A=90°-30°=60°。

师:根据今天所学的知识,谁能求出A的度数?大家自己试一试。

学生做完后反馈讲评时让学生说说自己的方法。

生1:用三角形内角的和(180°)减去30°再减去90°,算出∠A是60°。

∠A=180°-30°-90°=60°。

生2:先用30°加上90°得120°再用180°减去120°也可得∠A=60°。

②学生完成完成P29的第一题。

引导学生按照前面的方法独立完成,教师巡视,集体订正。

③猜一猜三角形的另外两个角可能各是多少度。

同桌同学互相说一说。(答案不唯一)

④小组操作探究活动。

让学生剪出几个不同的四边形,按表中所给的方法以做一做,并填一填。

方法

四边形内角和

用量角器量出每个内角的度数,并相加。

把四边形四个角剪下来,拼在一起。

把四边形分为两个三角形。

填表后让学生想一想、互相说一说,四边形内角和是多少度?

三角形的内角和的教学设计 篇11

教学内容:人教版小学数学第八册第85页例5及”做一做”

教学目标:

1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。

3、在探索中体验发现的乐趣,增强学好数学的信心。

教学重点

让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教学难点:

验证所有三角形的内角之和都是180°

教具准备:多媒体课件。

学具准备:量角器、正方形、剪刀、各类三角形。(包括直角三角形、锐角三角形、钝角三角形)

教学过程:

一、设疑引思

1、分小组分别量出直角三角形、锐角三角形、钝角三角形的三个内角的度数。

2、每小组请一位同学说出自已量的三角形中两个角的度数老师迅速”猜出”第三个角的度数。

3、设问:老师为什么能很快”猜”出第三个角的度数呢?

二、探索交流,获取新知

1、量一量:每个学生将自已刚才量出的三角形的内角和的度数相加,初步得出”三角形的内角和是180°”的结论。

2、折一折:将正方形纸沿对角线对折,使之变成两个完全重合的三角形,发现:一个三角形的内角和就是正方形4个角内角和的一半,也就是360的一半,即180度,初步验证”三角形的内角和是180°”的结论。

3、拼一拼:学生先动手剪拼所准备的三角形,进一步验证得出”三角形的内角和是180°”的结论。

4、师利用课件演示将一个三角形的三个角拼成一个平角的过程。

5、验证:FLASH演示三种三角形割补过程

发现1:通过把直角三角形割补后,内角∠2,∠3组成了一个()角,等于()度,∠1等于90度。所以直角三角形的内角和等于()度。

发现2:通过把钝角、锐角三角形割补后,三角组成了一个()角,而()角等于()度。所以锐角三角形和钝角三角形的内角和都是180度。

6、小结:刚才能过量一量折一折拼一拼,你发现了什么?

生说,师板书:三角形的`内角和———180°

三、应用练习,拓展提高

1、书例5后”做一做”

思考:为什么不能画出一个有两个直角的三角形?(两个钝角、一个直角和一个钝角的三角形?)

2、下面哪三个角会在同一个三角形中。

(1)30、60、45、90

(2)52、46、54、80

(3)61、38、44、98

3、走向生活:

(1)那天,老师去买了一块三角形的玻璃,我拿着玻璃,刚到校门,一不小心,碰在门上了,摔成这几块(撕),哎,只有再去买一块,但尺寸我记不得了,该怎么办,你们能不能帮老师想想办法?我凭哪块碎片能再去配一块和原来一样的三角形玻璃吗?

(结合学生回答进行演示:延长两条边,交于一点,形成原来的三角形。所以:两个角确定了,三角形玻璃形状和大小也就确定了。)

四、作业:作业本

五、全课总结

总结:今天这节课我们研究了三角形的内角和,你们学到了哪些知识,有什么收获?

板书设计:三角形的内角和

三角形的内角和———180°

三角形的内角和的教学设计 篇12

背景分析:

在学习“三角形的内角和”之前,学生已经学习了三角形的特性和分类,知道平角的度数是180°,并且能够用量角器测量角的大小。“三角形的内角和是180°”是三角形的一个基本特征,也是“空间与图形”领域中的重要内容之一,学好它有助于学生理解三角形三个内角之间的关系,也为以后进一步学习几何知识打下良好的学习基础。

教学目标:

1、通过测量、剪拼、折拼等活动让学生全面经历探索和发现“三角形的内角和等于180°”的过程。

2、会用“三角形的内角和等于180°”这个结论进行一些简单的计算和推理。

3、体会数学学习的魅力,体验探究学习的乐趣。

教学重难点:

探索和发现三角形的内角和等于180°。

教具准备:

多媒体课件、一副三角板、量角器、三角形纸片。

学具准备:

每个小组准备4个量角器、4把剪刀、两副三角板、两个学具袋,两个学具袋中各装有2个完全相同的锐角三角形、1个直角三角形、一个钝角三角形。其中1号学具袋中,还装有表格纸一张。

教学过程:

一、导入课题

1、故事引入,激发兴趣

同学们,今天,老师给大家带来一个小故事,想听吗?

课件显示数学家——帕斯卡的图片

师:孩子们,你们认识他吗?这可是位了不起的人物,他的名字叫帕斯卡。他可是位数学奇人,从小就痴迷于数学,可帕斯卡的父亲却不支持他学习数学,因为,他从小就体弱多病,然而,这并不能阻挡帕斯卡对数学的热爱,一个个数学问题就像磁石一样深深地吸引着帕斯卡。他常常背着父亲一个人偷偷琢磨。12岁那年,他发现了一个改变他一生的数学问题,当父亲知道后激动的热泪盈眶。从此以后,父亲不仅支持他学习数学,而且还尽全力帮助他。在父亲的帮助下,帕斯卡成为了世界著名的数学家、物理学家。

师:究竟是什么发现让父亲的态度发了180°的大转弯呢,想知道吗?

揭示并板书课题:三角形的内角和。生齐读课题。

2、明确目标

学贵有疑,看到这个课题,你想知道些什么?或者你有什么疑问?(什么是三角形的内角和?三角形的内角和是多少度?)

3、效果预期

带着这些问题,我们一起走进今天的探究之旅,老师期待大家的精彩表现,大家准备好了吗?。

〖评析〗教师用数学家生动的励志故事导入新课,从情绪上深深感染了学生,激发了学生的学习兴趣,唤起了学生的求知欲望,同时,也为数学文化的引入作了必要的铺垫。

二、民主导学

1、任务呈现

(1)认识内角、内角和

师:同学们还认识这些三角形宝宝吗?三角形按角分,能分为锐角三角形、钝角三角形、直角三角形。

师:老师手里拿的是?(三角板)它是什么三角形?(直角三角形)老师把它打在白板上。

师:每个三角形的里面都有3个角,我们把它们称之为三角形的内角,为了方便,我们给他们分别编上编号∠1、∠2、∠3,

师:请同学们拿出2号袋中的三角形,快速找出三角形的三个内角,然后像老师这样给他们分别标上∠1、∠2、∠3

师:这个三角板上的三个内角分别是多少度呢?现在我们把这三个内角的度数加起来是(180°),算得真快,也就是说这个三角形的内角和180°这个三角形的内角和呢?也是180°也就是这两个三角形的内角和都是180°。

师:请大家看这里,如果把这个三角形的三个内角搬个家,都搬到一起,能拼成我们学过的什么叫?(平角)平角是多少度?(180°)

师:这是我们学过的特殊三角形,对吧,那么像黑板上这些一般的三角形内角和会是多少度呢?我们先来猜想一下好不好?谁来猜?同学们都认为三角形的内角和是180°,但口说无凭呀,到底是不是180°我们应该验证一下,对吧?

师:我们现在开始验证好吗?动手之前,请听好活动要求

屏幕出示要求,指名学生读:

想一想,你打算怎样验证,在小组内交流你的.想法,共同确定一种验证方法;

想用量的方法验证的小组,请取出1号袋中的表格和三角形,根据表格上的内容完成相应的测量、计算,并向小组长汇报,小组长负责填空汇总;

想用其它方法验证的小组,请取出2号袋中的三角形,小组长做好分工,每两个同学用一个三角形进行验证或一人单独验证,动手前,先讨论讨论该怎么做,然后试着拼一拼;

验证结束后,小组内交流你们的发现,回忆验证过程,做好汇报准备。

2、自主学习

学生分组活动,教师巡视指导。(用量的方法的要填写学具袋中的表格)

3、展示交流(提示:汇报时,要说清楚你研究的三角形的类型)

师:来吧孩子们,该到全班交流的时候了。哪个小组愿意先把你们的成果与大家一起分享。

A、剪拼法(撕拼法)

这个小组通过剪拼得出三角形的内角和是180

B、折拼法

刚才拼的过程中,老师发现有个孩子特别的难过,因为他觉得这些三角形宝宝太可怜了,我们把这些三角形宝宝都大卸三块儿了,的确是这样,现在动脑筋想想,在不破坏三角形的情况下,能不能想办法把三角形的三个内角弄成一个平角?(折)那你们就试试,(行,不行)到底行不行,老师给大家演示一下,先标出三个内角,把∠1折下来,把∠2、∠3分别靠过来,现在观察一下,这三个角通过折的方法拼成平角了吗?行还是不行,刚才说不行的孩子一定没按这种方法折,下面请按老师的方法试试

C、测量法

用量的方法的小组,你们得出的三角形的内角和都是180°,不是180°的请举手,一样的三角形为何测量得出的结果不一样,是什么原因呢?(误差)由于测量工具测量方法等原因,会难免会有误差,正因为这些误差,导致测量结果五花八门,各不相同,现在你们的疑惑解开了吗?

刚才我们猜想三角形的内角和可能是180°,现在你想说什么?(一定、肯定、绝对、百分之百)

小结:通过刚才同学们的验证,得出了什么结论(板书:结论)三角形的内角和是180°。大家发现了吗?无论是撕一撕、折一折、还是拼一拼,这些方法都有异曲同工之妙,都把本不在一起的三个角,通过移动位置,把它转化成一个平角来验证,都用了转化的策略(板书:转化)。希望大家能把转化的方法运用到今后的学习中去,去解决更多的数学问题。

〖评析〗探索三角形内角和的过程,既是解决数学问题的过程,也是培养学生动手实践能力和科学精神的过程。在这一过程中,学生既经历了新知的形成过程,又获得了成功的体验。

4、数学文化介绍

你们想知道12岁的帕斯卡是用什么方法研究的吗?谁来猜一猜?

生:

师:(边演示边介绍)他把长方形分成两个完全相同的直角三角形,其中一个直角三角形的内角和就是180°

师:接下来,他就想其他三角形的内角和是不是180°呢?于是,他任意画了一个三角形并做高,谁看懂他的意思了?

生:分成了两个直角三角形。

师:你真会观察,请大家看,∠1+∠2=

生:90°

师:∠3+∠4=

师:那么这个三角形的内角和就是

生:180°

师:由此说明任意三角形的内角和都是180°。你们觉得帕斯卡的方法怎么样?

生:巧妙!

师:是的,他的方法太巧妙了。今天同学们用自己的聪明才智也研究出了三角形的内角和是180°,老师相信你们的父亲也会为你们感到骄傲!下面,我们就用这个结论,来解决一些数学问题。

〖评析〗通过对数学文化的介绍,让学生了解帕斯卡的证明过程,既开阔了学生的知识视野,要引导学生的思维由具体到抽象,培养了思维的严谨性,同时激发了学生对数学家的崇敬之情,让学生体验到数学逻辑的论证之美,进而产生了对数学的热爱。

5、练习

(1)猜一猜:在一个三角形中,∠1=30°,∠2=50°,∠3等于多少度?师:让学生回答:说说怎么想的?

(2)2、算一算:三角形每个内角是多少度?师:课件出示后,请大家拿出答题纸快速解答下面的问题:

求出等边三角形每个角的度数?

等腰三角形顶角96°,底角是多少度?

直角三角形的一个锐角是40°,另一个锐角是多少度?

〖评析〗练习设计科学合理,层次清晰,针对性强,让学生较好地巩固了所学知识;拓展性练习不仅加深了学生对新知识的理解和掌握,而且要满足了不同层次学生的认知需要,同时培养了学生思维的灵活性,促进了思维的发展。

三、检测导结(下面进入检测环节,大家愿意接受挑战吗?)

1、目标检测(见检测卡)

2、结果反馈

集体订正

课外作业:那么四边形、五边形、六边形的内角和分别是多少呢?作为课后作业,课后探究。

3、反思总结

回顾一下今天学的内容,你有什么收获?

大家真的非常了不起,不仅学到了数学知识,更重要的是经历了猜想、验证、得出结论、应用的科学探究的过程,老师送给大家一句话:“在数学的天地里,重要的不是我们知道什么,而是我们怎么知道的。——毕达哥拉斯”

其实在历史上有许多数学家都曾经研究过三角形的内角和,最早研究的谁,你们知道吗?

生:帕斯卡

师:NO,另有其人,如果大家感兴趣,课后可以去查一查。

〖评析〗引导学生回顾本节课所学知识,有助于对所学内容的内化和提升。同时,将数学文化自然延伸到到课外,使数学文化贯穿整节课的始终。

三角形的内角和的教学设计 篇13

三角形内角和教学设计

一、教学目标

1、通过小组猜想、探索、验证三角形的内角和等于180°,并能运用知识解决简单问题。

2、经历三角形内角和的探究过程,体验“猜想——验证——应用”的学习模式。

3、通过各种实践活动,激发学习兴趣,体验学习成功感,并在教学中,感受数学与生活的密切联系。

二、教学重难点

教学重点:学生运用各种方法,探索三角形的内角和是180度这一知识的全过程

教学难点:运用三角形的内角和解决实际问题。

三、教具、学具准备:

课件、一副三角尺、几个三角形。学生准备一副三角尺。

四、教学过程:

一、创设情境揭示课题。

师:猜谜语形状似座山,稳定性能坚;三竿首尾连,学问不简单。(打一几何图形)生:三角形

师:前面我们已经认识三角形,谁能给大家介绍一下?学生讲学过的三角形知识。分类

师:我们在讨论三角形知识的时候,三角形中的三个兄弟却吵了起来,想知道怎么回事吗?让我们一起去看看吧!

师:呦,瞧,三个兄弟在争论呢。(播放课件)它们在争论什么呀?生:它们在争论谁的内角和大。

师:哦,原来如此。那么,你们知道什么是三角形的内角?三角形的内角和又是指什么吗?(生:三角形的内角就是三角形里面的三个角。内角和就是三个内角的度数和。)

师:这个同学说得真好,(课件)我们把三角形里面的这三个角,就叫做三角形的内角,而这三个角的度数和,我们就称为三角形的内角和。

今天我们就来研究有关三角形内角和的知识。(板书课题)

二、探索交流,解决问

(一)、大胆猜想,产生分歧

师:理解了三角形的内角和,那请你们给评评理:这三个大小不一样的三角形,到底是谁的内角和大啊?(这位同学手举得最高,请你来说。)

生1:我认为是这样的,因为大三角形大,所以它的内角和更大。(哦,你是这样认为的,请坐。还有不同意见吗?这位同学很着急,好,你来。)

生2:我不同意,我认为两个三角形内角和的度数都是一样的。(很好,这是你的想法。还有同学想说,你来。)

生3:当然是大三角形的内角和大了。(你回答的声音真响亮。请坐)生4:我同意第二个同学的意见,两个三角形的内角和一样大。

师:现在出现了两种不同的'意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?

(二)验证猜想,解决问题

师拿出两个三角尺,问:它们是什么三角形?生:直角三角形。

师:请大家拿出自己的两个三角尺,同桌之间说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。(学生们能够很快求出每块三角尺的3个角的和都是180°)

师:你们算出来,这两个三角尺的内角和是多少度啊?生齐:180°。

师:那??其他三角形的内角和也是180°吗?(这位同学手举得真端正,你来说。)生1:其他三角形的内角和也是180°(好,还有谁想说?)生2:其他三角形的内角和不是180°

师:看来呀,大家都有不同的看法。我们学过三角形的分类,知道直角、锐角、钝角三角形可以代表所有的三角形。那下面就请同学们小组合作,从组里找出这

三类三角形,量一量每个三角形内角的度数,并求出它们的内角和,把结果填在表格里。(板书:测量)师:你们发现了什么?

生1:通过测量我们发现每个三角形的内角和都是180°。生2:不对,应该是180°左右,因为我们组算出来也有175°的。

师:噢!是呀,因为我们在测量时可能会出现一些误差,所以测量出的结果不是很准确,因此我们只能猜测三角形的内角和可能是180°。

师:那么,同学们能发挥你们的聪明才智,通过动手操作,想办法来验证自己的猜想吗?请同学们先独立思考一下,再在小组内把你的想法与同伴进行交流,然后每组选一种方法进行验证,看哪组最先发现其中的“奥秘”。(1)小组合作,讨论验证方法(2)汇报验证方法、结果。

师:谁愿意第一个向大家介绍你们组的验证方法?

组1:我们小组是用剪拼的方法(板书:剪拼),将三角形的三个角剪下来,拼成一个平角,得到三角形的内角和是180度。

师:上来展示给大家瞧一瞧。(投影仪)你们看这位同学多细心呀,为了方便、不混淆,在剪之前,他先给3个角标上了符号。

师:现在请同学们看大屏幕,老师在电脑里把刚才剪拼的过程重播一遍。你们看,成功了,3个角拼成了一个平角。可是,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢,它们能不能拼成一个平角啊?生齐:能!

师:好。那就是说,刚才这种剪拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是180°了。你们觉得这种方法好不好啊?那我们把掌声送给刚才这个小组。还有其他方法吗?

组2:我们小组是用折的方法(板书:折图),同样得到三角形的内角和是180度。(这个小组真了不起,竟能想出如此独特的方法,很有新意,非常好!)师:听起来有点抽象,请这位同学上来折给大家看看好不好呀?(投影仪展示)

(展示:3个角折成了一个平角。)

师:真是个手巧的孩子。不过呢,他刚才折的是一个直角三角形,那其他两类三角形呢,是不是也能折出平角呢,谁来告诉大家?

组3:可以,这三类三角形都能折出平角。(这一组探索数学的能力也真棒!)师小结:刚才同学们用量、剪、拼、折等方法证明了,无论是什么样的三角形,内角和都是1800,(板书:三角形的内角和是180°)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是1800”。师:(出示一个大三角形)它的内角和是多少度?生:180 °

师:(出示一个很小的三角形)它呢?生:180 °

师:一个三角形的内角和是180°,那两个同样的三角形拼成一个大三角形,它的内角和又是多少呢?

(生有的答360°,有的180 °。)

师:咦?有两种不同的声音哦。那到底哪一种是正确的呢?

师:(学生个个脸上露出疑问)大家可以在小组内拼一拼,并讨论讨论。(经过一翻激烈的讨论探究后,学生开始举手回答。)

生1:180°,因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。(想一想,做一做,数学之门就被这组同学打开了,真棒!哈,还有同学要说,好,你再说。)

生2:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,就比原来两个三角形少180 °,所以大三角形的内角和还是180°,不是360°。

师:你分析问题这么透彻,老师真希望每节课都能听到你的发言。现在,老师把刚才这位同学说的用课件演示一遍,注意看哦。(课件演示)

师:好,这个问题解决了。那么,把大三角形平均分成两份。它的(指均分后的一个小三角形)内角和是多少度?生齐:180°。

师:哈,看来已经骗不倒我们班的同学勒。答案还是180°,不是90°哦。师总结:所以说,三角形不论位置、大小、形状如何,它的内角和总是180°

三、巩固应用,内化提高

1、解决问题:

学会了知识,我们就要懂得去运用。下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件演示练习题)(1)在能组成三角形的三个角后面画“√”(2)判断下列说法对吗?(3)你能求出被遮住的角吗?(4)67页的做一做。(5)你会求下面图形的角吗?

四、回顾整理,反思提升

通过今天的学习,大家有什么收获?

拓展创新

小明不小心将镜框上的一块三角形玻璃摔成了两半,玻璃裂成了两块。一块只有原来的一个角,另一块有原来的两个角。他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?

三角形的内角和的教学设计 篇14

教学目标:

1、通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的度数和等于180度。

2、已知三角形两个角的度数,会求第三个角的度数。

3、培养学生合作交流的能力,体验学习数学的快乐。

教学过程:

教学设想

学生活动

备注

一、 创设情境

1、故事导入

有一天,两个三角形吵了起来,大三角形说自己的个头大,所以内角比小三角形大。可小三角形说别看自己个头小,但角却不小。他们争得不可开交,始终争论不出结果。到底谁的内角大,谁的内角小,请大家帮忙想个办法,好吗?

生:可以用三角板量一量每个内角的度数,也就求出三角形内角的和,就知道谁大谁小了。

这节课,我们就来研究三角形的内角和。

二、合作交流

量一量

(1)师:同学们,你们的书上有许多三角形,现在就请你们选择喜欢的三角形,到小组里量出每个角的度数。再计算出三角形内角的和,并填好小组活动记录表。

(2)各小组汇报记录结果,并说说有什么发现?

生:每个三角形的三个内角和接近180度。

师:三角形的内角和就是180度。接近180度的是在测量过程中出现了一点小的误差。

(3)除了用测量的方法能计算出三角形的内角和等于180度外,还有许多好的方法呢!

撕一撕

引导学生把一个三角形的三个角撕一下,拼一拼。

折一折

自己试着折一折,也会发现利用折一折,可以知道三角形内角和是180度。

师小结:刚才,同学们用量、撕、折的方法知道了三角形内角和是180度,现在你们可以告诉这两个三角形不要吵了,它们的`内角是一样大的。

算一算

这两个三角形很感谢同学们,你们看,它们的好朋友也来了,它们只知道自己两个角的度数,你们能帮它们算出另外一个角的度数吗?

尝试:阅读与思考第1、2题

反馈交流

三、巩固练习

完成练习与应用第1、2题

小组活动开始

小组活动记录表第()组

三角形的内角和的教学设计 篇15

教学内容:

人教版四年级下册第85面——87面。

教学目标:

1、让学生亲自动手,通过量、剪、拼等活动发现三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2、让学生在动手获取知识的过程中,渗透“转化”数学思想,掌握简单的数学推理方法,培养学生的创新意识、探索精神和实践能力。

3、让学生感受到数学的价值,体会成功的喜悦,激发学生主动学习数学的兴趣。

教学重点:

让学生经历“三角形内角和是180°”这一知识的发现过程。

教学准备:

教具:多媒体课件、三角板一个、两个完全一样的直角三角形。

学具:锐角三角形、直角三角形、钝角三角形各一个。

教学过程:

(一)创设情境,提出问题。

师:同学们的歌声真嘹亮,老师站在这里和大家一起学习感到很高兴,今天老师还给大家带来了一个老朋友,请看,是什么?

生:三角形!

师:前面我们已经认识了三角形,谁能给大家介绍一下?

学生讲学过的三角形知识。

(学生叙述到部分主要内容即可)

师:看来大家对三角形已经非常熟悉了,老师还为大家带来了两个特殊的三角形,请看,它们是什么三角形?(点击FLASH出示直角三角形实物图)

师:(师指第一个三角形)谁知道这个直角三角形每个角的度数吗?

师:答的真准确,(FLASH:生说完后师边说边点出度数)30度、60度、90度都在这个三角形的内部,我们把这样的角叫做三角形的内角。

师:有谁知道这个三角形三个内角的度数?

(FLASH:生说完后师点击出第二个三角形,边说边点出度数)

[U1]试一试,看谁算得快。

师:谁来说说自己的计算过程?

[U2]角的和叫做三角形的内角和。(板书课题)下面请大家认真观察这两个算式,从结果上看,你发现了什么?

生:它们的内角和都是180度。

师:观察的真仔细!(点击课件,出示多种多样的三角形后提问)同学们,咱们都知道,这两个三角形是特殊三角形,在我们的生活中还有许许多多不是这个样子的三角形,请看大屏幕,这些任意三角形,它们的内角和是不是都是180度呢?

[回答可能有二]:

(一种全部说是:)

师:请问,你们是怎么想的,为什么这么认为?

生:……

师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)

(一种有一部分同学说是,有一部分同学说不是:)

师:看来,大家的意见不一致,想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)

(二)动手操作,探究新知

[U3]

师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?

生:我准备用量的方法。

师:然后呢?

生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?

师:说的真不错,还有没有其它的方法?

生:我是把三角形的三个角剪下来,拼在一起(师鼓励:你的想法很有创意,等一会儿用你的行动来验证你的猜想吧!)

生:……

(如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)

师:好啦,老师相信咱们班的同学个个都是小数学家,一定能找出更多的方法的,请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!

[U4]开始吧!(学生研究,师巡回指导)预设时间:5分钟

师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?

师:请你告诉大家,你是怎么研究的,最后发现了什么结果?

(预设:如果第一类同学说的是量的方法)

师:你是用什么来研究的?

生:量角器。

师:那请你说一下你度量的结果好吗?

(生汇报度量结果)

师:刚才有的同学测量的结果是180度,有的同学测量的结果是179度,有的同学测量的结果是182度,各不相同,但是这些结果都比较接近于多少?

生:180度。

师:那到底三角形的内角和是不是180度呢?还有哪位同学有其它的方法进行验证吗?

生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。

师:他演示的真好,你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。

(师边讲解边点击FLASH:把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的.过程,你有什么发现?)

师:好极了,刚才这个小组的同学用拼的方法得到XX三角形的内角和是180度,你们还有别的方法吗?

生:我们还用了折的方法(生介绍方法)

师:你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。

(师边讲解边点击FLASH:先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)

生:是个平角。180度。

师:除了用了量、拼、折的方法来研究以外,刚才在操作的过程中老师还发现了一个同学用了一种方法来进行研究,大家想知道吗?

师:请这位同学来说给大家听听吧!

生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360度,那么一个三角形的内角和就是180度。

师:刚才我们用量、拼、折、推理的方法都得到了三角形的内角和是180度,同学们,现在我们回想一下,刚才测量的不同结果是一个准确数还是一个近似数?为什么会出现这种情况呢?

生1:量的不准。

生2:有的量角器有误差。

师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是180度。

师:同学们,我们刚才用不同的方法,不同的三角形研究了三角形的内角和,得到了一个相同的发现,这个发现就是?

生:三角形的内角和是180度。(师板书)

师:把你们伟大的发现读一读吧!

(三)拓展应用,深化认识

师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生:180度)右边呢(生:也是180度)

师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?

(生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是180度。)

师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)

师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!

师:真不错,你们当了一回小法官,帮助三角形兄弟解决了问题,它俩很感谢你们,三角形王国中还有很多生活中的问题,小博士们,你们愿意解答吗?

师:好,请看大屏幕!

(出示基础练习)在一个三角形中角一是140度,角三是25度,求角二的度数。

生答后,师提问:你是怎样想的?

生陈述后,师鼓励:说的真好!

出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。

(出示)小红的爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70度,它的顶角是多少度?

师:看来啊,三角形的知识在咱们生活中还有着这么广泛的运用呢!昨天,我们班发生了一件事情,小明不小心将镜框上的一块三角形玻璃摔破了,(课件呈现情境)他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?

(预设:师:根据三角形的内角和是180度,你能求出下面四边形、五边形、六边形的内角和吗?

师:太棒了,这位同学把这个四边形分割成了二个三角形求出了它的内角和,你能像他一样棒求出五边形和六边形的内角和吗?

师:同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?

师:嗯,真不错,你们知道吗?三角形的内角和等于180度是法国著名的数学家帕斯卡在1635年他12岁时独自发现的,今天凭着同学们的聪明智慧也研究出了三角形的内角和是180度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!

师:好,下课!同学们再见!

(必备)三角形的内角和的教学设计

在教学工作者实际的教学活动中,时常要开展教学设计的准备工作,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。那要怎么写好教学设计呢?下面是小编为大家收集的三角形的内角和的教学设计,欢迎阅读,希望大家能够喜欢。

三角形的内角和的教学设计 篇16

教学目标:

1、通过“算一算,拼一拼,折一折”等操作活动探索发现和验证“三角形的内角和是180度”的规律。

2、在操作活动中,培养学生的合作能力、动手实践能力,发展学生的空间观念。并运用新知识解决问题。

3、使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。

教学重点:

探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

教学难点:

对不同探究方法的指导和学生对规律的灵活应用。

教具学具准备:

课件、学生准备不同类型的三角形各一个,量角器。

教学过程:

一、创设情景,引出问题

1、课件出示三角形的争吵画面

锐角三角形:我的内角和度数最大。

直角三角形:不对,是我们直角三角形的内角和最大。

钝角三角形:你们别吵了,还是钝角三角形的内角和最大。

师:此时,你想对它们说点什么呢?

2、引出课题。

师:看来三角形里角一定藏有一些奥秘,这节课我们就来研究有关三角形角的知识“三角形内角和”。(板书课题)

二、探究新知

1、三角形的内角、内角和

(1)什么是三角形内角(课件)

三角形里面的三个角都是三角形的内角。为了方便研究,我们把每个三角形的3个内角分别标上∠1、∠2、∠3。

(2)三角形内角和(课件)

师:内角和指的是什么?

生:三角形的三个内角的度数的和,就是三角形的内角和。

2、看一看,算一算。

师:算一算两个三角尺的内角和是多少度?(课件)

学生计算

师:是不是所有的三角形的内角和都是180°呢?你能肯定吗?

(预设)师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?

3、操作验证:小组合作。

选1个自己喜欢的`三角形,选喜欢的方法进行验证。

(老师首先为学生提供充分的研究材料,如三种类型的三角形若干个(小组之间的三角形大小都不相同),剪刀,量角器,白纸,直尺等,以及充裕的时间,保证学生能真正地试验,操作和探索,通过量一量、折一折、拼一拼、画一画等方式去探究问题。)

4、学生汇报。

(1)教师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种情况?

师:有没有别的方法验证。

(2)剪拼

a、学生上台演示。

B、请大家四人小组合作,用他的方法验证其它三角形。

C、展示学生作品。

D、师展示。

(3)折拼

师:有没有别的验证方法?

师:我在电脑里收索到拼和折的方法,请同学们看一看他是怎么拼,怎么折的(课件演示)。

(鼓励学生积极开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理能力。)

师:此时,你想对争论的三个三角形说些什么呢?

5、小结。

三角形的内角和是180度。

三、解决相关问题

1、在能组成三角形的三个角后面画“√”(课件)

2、在一个三角形中,∠1=140°,∠3=25°,求∠2的度数。(课件)

3、一个等腰三角形的风筝,它的一个底角是70°,他的顶角是多少度?(课件)

四、练习巩固

1、看图,求三角形中未知角的度数。(课件)

2、求三角形各个角的度数。(课件)

五、总结。

师:这节课你有什么收获?

六、板书设计:

三角形的内角和是180°

大家都在看