《组合图形的面积》数学教案

笔构网

2025-08-11教案

请欣赏《组合图形的面积》数学教案(精选7篇),由笔构网整理,希望能够帮助到大家。

《组合图形的面积》数学教案 篇1

教学内容:

北师大版教科书第九册第75~76页的内容

教学目标:

1、在自主探索的活动中,理解计算组合图形面积的多种方法,并渗透转化的数学思想。

2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

3、能运用所学的知识,解决生活中组合图形的实际问题。

4、在有效的情境中激发学生学习的兴趣的主动性,培养热爱数学的思想感情。

重点、难点

重点:在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个小图形所需的条件。

难点:如何选择有效的计算方法解决问题。

教具准备:

多媒体课件和组合图形图片。

教学过程:

一.引出概念,揭示主题。

1.你能看出以下图形是由那些基本图形组成的吗?

2.像这样由两个或两个以上基本图形组合而成的图形我们把它称为组合图形(板书“组合图形”)画一画,分一分。

二.新授。

这是我家的客厅平面图!(课件出示客厅的平面图。)

1、估计地板的面积

师:请同学们先估一估这个地板的面积有多大呢?

2、探索不同方法。

师:同学们估的数据都不大一样,谁估得最接近呢?下面我们就一起来验证。请同学们观察这个图形,咱们学过怎样求它的面积?(停顿)那我们该怎么办?请把你的想法用虚线在图中表示出来。

生动手画图。

教师有选择的展示方法。

3.师总结分割法和添补法。

其实不管是用分割法还是添补法,我们都是为了一个共同的目的,那就是把这个组合图形转化成以学过的平面图形。

4.计算:

现在你会计算这个组合图形的面积吗?

要算每个小图形的面积分别需要哪些条件?请找一找,并标出来。

生独立计算。

5.汇报计算方法及结果。

6.辨析及总结。

(1)同学们为什么不选择分割五个或十个小图形的方法来计算面积呢?

分成的图形越少,计算面积时就越简便,所以我们以后在计算组合图形的面积时要学会选择简便的方法进行计算。

(2)刚才我们先用分割或添补的方法把组合图形转化成了以前学过的平面图形,然后找出计算每个小图形所需的条件,再计算出组合图形的面积。

三.巩固练习。

1.根据条件算一算引入中两个图形的面积。2.动手做。根据你的方法测量你需要的数据进行计算。

四.小结:谈谈你的收获!

五.板书:

组合图形面积

图11.转化

图22.找条件

图33.计算图

《组合图形的面积》数学教案 篇2

组合图形面积的计算在义务教育教材中是选学内容。现在放在多边形面积计算最后学习,有利于综合运用平面图形面积计算的知识,进一步发展学生的空间观念。

1. 识组合图形。

编写意图

由于实际生活中,我们见到的物体表面,许多是由我们已学过的正方形、长方形、平行四边形、三角形及梯形组合成的图形,所以教材紧密结合生活实际认识组合图形。

首先教材提供了几个生活中具体物品:中队旗、房屋的一面墙、风筝、由七巧板拼成的一个长方形,通过在这些物品的表面中找图形,使学生认识组合图形是由几个简单图形组合而成的。然后要求学生在自己的生活中找一找组合图形,以巩固对组合图形的认识。

教学建议

(1)教学中,可以使用教材中的实例,也可以应用学生身边的实例。有条件的地方可以做成幻灯片或多媒体课件,方便学生观察和讨论。着重让学生观察这些物品的表面有哪些我们学过的图形,建立组合图形的概念,同时为学习组合图形面积的计算打下基础。

(2)观察实物注意从易到难,例如教材中的房子和七巧板,比较容易找到组成它们的图形,而中队旗学生可能就会有不同的看法,可以看成有两个梯形,也可以看成有一个长方形和两个三角形,还可以看成有一个梯形和一个三角形。要鼓励学生发表不同的看法。

(3)找生活中的组合图形时,要强调从物体的表面上找,不要与立体组合图形混淆。

2.例4及“做一做”。

编写意图

例4是学习组合图形面积的计算,因为限于简单的组合图形,教材主要安排2~3个简单图形的组合。由于一个组合图形可以有不同的分解方法,教材展示了两种计算方法。

“做一做”主要巩固组合图形面积计算,图示已经把菜地分解成一个平行四边形和一个三角形,只需分别计算出它们的面积,再求和。

教学建议

(1)教学例4时,可先组织学生讨论:怎样才能计算出这面墙表面的面积?明确计算组合图形面积的基本思路,即可以把组合图形分成我们已经会计算面积的简单图形,分别计算出它们的面积,再求和。

(2)在讨论的基础上,让学生试做。鼓励学生用不同的方法去计算,然后交流各自的算法。还可以结合学生提出的方法,让学生比较一下,哪种方法比较简便。通过试做、交流、讨论,使学生进一步理解和掌握组合图形面积的计算方法,认识到要根据已知条件对图形进行分解,不是任意分解都能计算的;分解图形时要考虑尽量用简便的方法计算。

(3)“做一做”可由学生独立完成,再说说是怎样算的。同时可以检查学生对平行四边形和三角形面积计算公式掌握的情况。

3. 关于练习十八一些习题的说明和教学建议。

第1题和第2题图形形状是相同的,只是给出的条件不同,都可以用不同的`方法计算。第2题提出了“你能想出几种算法?”可以结合第2题进行讨论。一般有以下几种算法。

①求两个梯形面积的和(下左图)

[(80-20+80)×30÷2]×2

= (80-20+80)×30

= 4200(cm2)

②求一个长方形和两个三角形面积的和(下中图)

(80-20)×(30+30)+(30×20÷2)×2

=(80-20)×(30+30)+30×20

= 3600+600

= 4200(cm2)

③用一个长方形的面积减去一个三角形(下右图)

的面积

80×(30+30)-(30+30)×20÷2

=4200(cm2)

第3、4、5题的思考方法是一样的。通过这几题的练习,使学生知道计算组合图形的面积,不仅做加法,有时也要用一个图形面积减去另一个图形的面积。可以选一道题让学生讨论计算的方法,再独立完成其他几题。第5题要指导学生看图,它不是两幅图,而是一个组合图形的分解图。

第8*题是选作题。根据长方形的长与宽,可以求出它的面积。

18×12 = 216(m2)

红花、黄花和绿草的种植面积,可以根据它们各自占长方形面积的几分之几来计算。

从设计图可以得到:

绿草的面积占长方形面积的1/2,所以绿草种植面积是216÷2=108 (m2)。

红花和黄花的面积各占长方形面积的1/4,所以红花和黄花的种植面积各是216÷4 = 54(m2)。

《组合图形的面积》数学教案 篇3

教学目标:

1,认识组合图形,会把组合图形分解成已经学过的平面图形。

2,通过找一找,分一分,拼一拼,培养学生识图能力和综合运用知识的能力,能合理运用“割”“补”方法来计算组合图形的面积。

3,培养学生的观察能力和动手操作能力。

教学重点:探索并掌握组合图形的面积计算方法。

教学难点:理解并掌握组合图形的面积计算方法。

一,复习引入

1,师:大家知道哪些简单的平面图形?

生:长方形,正方形,平行四边形,三角形-------

师:今天老师是也带来了一些简单的平面图形,请看.

(课间出示长,正,平,三,梯)

师:大家知道他们的面积计算公式马吗?

生说公式,同时师课间出示.

师:老师把这些简单的平面图形组合在一起,拼成了生活中的美丽图形,请看!

(课间出示;风筝房屋的侧面七巧板中队旗)

师:你能看到那些简单的平面图形?同桌之间说说看。

汇报:重点说中队旗分成两个梯形。

引出“组合图形”的定义,课件出示定义。

板书:组合图形

2,寻找身边的组合图形

师:其实我们身边还有很多这样的组合图形,大家找找看。

(教师窗户,防盗窗)

师:今天我们就来学习怎么计算组合图形的面积?

板书:的面积

二,探究新知

教学例4:房屋侧面

1,先出示没有数字的图形

师:可以直接利用我们学过的面积公式来计算吗?

生:不能

师:那可以怎样计算呢?同桌之间说说看?

汇报:可以分成两个梯形,可以分成一个三角形和一个长方形

师:同学们有这么多想法啊?作业纸上又提供的数据,大家在作业纸上分一分,画一画,算一算。

学生做,师巡视指导,搜集作品。,

2,投影展示学生作品:

方法一:转化成三角形+长方形

让学生说一说他的做法,重点问转化成了什么图形?

问:大家看懂了吗?每一步表示什么意思呢?

掌声送回学生一

方法二:转化成两个相同的梯形

(多让其他学生说一说分发)

3,比较两种方法

课件同时出示两种做法

师:刚才这一种是把组合图形转化成(三角形和长方形)这种是把组合图形转化成了(两个梯形),虽然方法不一样,但他们有什么共同点吗?

生:都是把组合图形分成成了已经学过的简单的平面图形。

师:像这种分发在数学上叫分割法。板书:分割法

分割

板书:组合图形简单的平面图形

求和

小结:在求组合图形的.面积时,我们可以把它利用分割法转化成已学过的简单平面图形的面积,再求和。

师:大家会求组合图形的面积了吗?那我们就去做一些练习吧。

三:练习

1,“做一做”

让学生独立完成,找一学生上黑板板演,找另一学生评价。

在图上加一条变成一个梯形和一个三角形能求出组合图形的面积吗?(发现条件不够)

教授:分割时不能随便分,要根据已知条件来分,这样才能求出组合图形的面积。

2,中队旗

先让同桌讨论方法,比一比谁找到的方法多,然后再作业纸上做一做。

先讲两种分割法,重点讲解“填补法”

师:刚才我们都是用的分割法来求得组合图形的面积,但这位同学的方法有的不一样了,你能说说你是怎么想的吗?

生:长方形的面积-三角形的面积=组合图形的面积

师:这位同学的想法真独特,想这种方法叫填补法。

板书:填补法

师:我们把组合图形通过填补法转化成简单的平面图形,然后再(求差),就求出了组合图形的面积。

板书:求和

小结:我们在怎么求出组合图形的面积的?

强调:转化优化

四:小结:这节课你有什么收获?

《组合图形的面积》数学教案 篇4

教学内容:教科书第6页

教学目标:

1、通过观察、分析,弄清图形的组合关系,利用割、补的方法,求组合图形的面积。

2、通过实践操作,培养学生观察、分析以及合理解决问题的能力。

3、在运用数学知识解决实际问题的过程中,让学生体验到成功的乐趣,体会数学的价值。

教学重难点:能正确合理地求组合图形的面积,弄清图形的组合关系,准确判断分割后图形的尺寸。

教学准备:简单图形的纸片、剪刀、多媒体课件

教学过程

一、复习引入

1、课件出示:长方形和正方形。

师:这是我们学过的长方形和正方形。

师:现在要求它们的面积必须知道什么呢?

生:要知道长方形的长和宽,以及正方形的边长。

2、标上相应尺寸。

师:求图形的面积必须要有相应的尺寸,请看!课件出示:

师:现在能算了吗?左右同学各口算一题。

生汇报:长方形的面积=长×宽

=10×5

=50(dm2)

正方形的面积=边长×边长

=4×4

=16(dm2)

[复习长方形、正方形的面积的计算公式,为求组合图形的面积作铺垫,同时让学生体会求图形的面积必须知道相应的尺寸。]

二、新知探究

1、把引入部分的长方形和正方形合二为一

课件出示:

师:这个图形是由我们学过的图形组合而成的,这样的图形叫组合图形。(出示部分课题:组合图形)

2、课件出示一些组合图形。

让学生仔细观察图形的特点后,以小组为单位互相说说它们是由哪些图形组合而成的,然后汇报。

图①

图②

图③

学生可能有其它想法,教师根据学生汇报后小结。

3.小结:①组合图形的组合关系,可以是几个图形的“和”(一般用“割”的方法)。也可以是几个图形的“差”(一般用“补”的方法)。②图形的组合关系,由于观察、分析思考的方法不同,可以有不同的组合关系。

[这一层次设计,让学生弄清图形的组合关系,学会一般的“割”“补”方法,为后一层次找相应尺寸,计算面积作铺垫。]

4、组合图形的面积计算

(1)师:刚才,我们尝试着弄请组合图形的组合关系,下面我们来探究求组合

图形的面积。(将课题补充完整)组合图形的面积 课件出示:

瞧!这是小胖家小区游乐场的平面图,它有多大呢?我们和小胖一起来算一算。你们桌上都有一张按比例缩小的游乐场平面图,想一想该怎么算,小组里可以讨论讨论。

(2)小组合作、动手操作、并汇报

师:(学生若出现第三种割法教师应予以肯定。)如果分割出的简单图形个数越多,计算时的步骤就越多,反而显得麻烦。因此在进行分割的时候,分成两个简单图形就能解决的问题不要分成三个简单图形去解决。

*第五种

移:S=长×宽 用移的方法,移过去边和边拼合部分必须数据

=(8+2)×3 相等。也就是说通过“移”的方法能将原来的

=10×3 图形转化成我们学过的简单图形。

=30(m2)

* 第六种

分割成5块长为3cm,宽为2cm的长方形。

3×2×5

=6×5

=30(m2)

(第五、第六种可视班级情况进行教学。重在培养学生的数感。)

(3)小结:

①求组合图形面积的基本方法是通过“割”、“补”、转化成我们学过的图形

来计算,先割后加,先补后减。

②分割的图形尽量要少。

③我们无论用“割”或“补”的方法,关键必须找到相应的.尺寸。

[通过学生动手操作,探究求组合图形面积的多种方法。此环节关键引导学生合理进行“割”或“补”,必须找到相应的尺寸,计算各个简单图形的面积。]

三、及时练习

1、课件出示小胖家的平面图:

小胖想在他家客厅铺木地板,需要买多少平方米的木料?(单位:米)选你喜欢的方法算。

2、课件出示花园放大图:小胖想把花园布置成一个阳光休闲区,请问需要铺多少面积的草地?(单位:米)

[除了常用的割、补方法,同时也可引导学生分割成3个同样的长为6m,宽为2m的小长方形。]

[让学生体会到虽然3个被挖去的图形所占的位置不同,但最后剩余面积是相同的,从中渗透“变”与“不变”的辨证关系。]

四、总结

师:通过今天的学习,你有什么收获呢?

五、作业设计

求下面组合图形的面积

六、教后反思

《组合图形的面积》数学教案 篇5

【教材简析】

本课是五年级上册第五单元内容,是在学生学习了长方形与正方形、平行四边形、三角形与梯形的面积计算的基础上学习的,一方面可以巩固已经学过的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生的综合能力。

【学情分析】

《组合图形的面积》是学生在已经学习了长方形、正方形、平行四边形、三角形与梯形面积计算的基础上进行教学的。学生已初步具备了一定的空间思维能力,但只局限于对单一图形进行简单分析。本节课可以巩固已有知识,提高学生综合实践能力,有利于进一步发展学生的空间观念,同时让学生在数学思想方法及解决问题的思考策略方面有所发展。本课让学生在自主观察思考的前提下,通过小组合作学习、汇报交流来进一步拓宽学生的思维空间,通过与他人的交流与合作,获取更多的方法,提升学生的学习能力。

【教学目标】

1、使学生结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积

2、能运用所学知识解决生活中组合图形的实际问题。

3、自主探索,合作交流。培养学生认真思考,团结协作的能力。

4、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。

【教学重点】

探索并掌握组合图形的面积计算方法。

【教学难点】

理解并掌握组合图形的组合及分解方法。

【学具准备】

前置性作业

【教学设想】

在本课的学习中,我让学生小组合作学习、汇报交流创设一个广阔的学习空间,探索空间。通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。让学生在自主探索、合作交流的学习氛围中最大限度的参与到探索求组合图形的面积全过程,具体设计如下:

【教学过程】

一、创设情境,激趣导入。

1.同学们,我们已经学习了哪些多平面图形?(生回答)

2.请同学们看大屏幕,认识组合图形。像这样由几种简单图形组合而成的图形,我们就把它们叫做组合图形。

3.组合图形在我们生活中的应用很广泛(生举例),今天,我们就结合一个生活中的例子来学习组合图形的面积。(板书:组合图形的面积)

【设计意图】:根据学生已有经验,观察生活中的组合图形,让学生体会由几个简单的图形组合而成是组合图形,它们的面积怎么求。使学生逐步熟悉组合图形,调动学生的学习兴趣。

二、小组合作探究

1. 出示前置性作业小组交流

复习

1、说说你学过哪些平面图形 ?

2、说说这些图形的面积计算公式?

1)分割法:

将整体分成几个基本图形,求出它们的面积和。

2)添补法:

用一个大图形减去一个小图形求出组合图形的面积。

师:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的理由。

师生小结:从例题中我们可以看出,同一个组合图形,由于分解的方法不同,解法也就不同。所以请同学们想想,求组合图形面积时关键是做什么?

【设计意图】:学生通过小组合作交流解决组合图形的面积时,重视把学生的思维过程充分暴露出来,让学生认真观察、独立尝试、合作交流。为每个学生提供参与数学活动的空间和时间,鼓励学生用不同的方法进行计算,开拓思维,并引导学生寻找最简方法。

5.学生举例并解答(前置作业 我的例子)

结合学生自己举的例子解答讲解

【设计意图】:让学生举出自己能够解决的例子,增强他们解决问题的自信心。

6.练一练(前置作业我能行)。

⑴生独立计算。

⑵生展示思路。

【设计意图】:学生已经自己举例练习组合图形的面积了,教师再出不同形式的练习,既巩固了本课所学的知识,又培养了学生解决实际问题的能力。体现了数学来源于生活,应用于生活的教育理念。

三、应用新知,解决问题:

师: 同学们不仅合作做得好,独立解题也很棒。下面我们就用今天所学到的知识解决生活中的问题。

师: 通过刚才的练习,你认为该怎样求组合图形的面积?(生自由发言)

师小结: 可见求组合图形的面积可以用相加的方法,也可以用相减的方法。

【设计意图】:练习的设计是加深学生对本节课知识的巩固,因此在设计上,我由浅入深,遵循学生的思维潜能。

四、总结:(前置作业我的收获)

通过这一节课的学习,同学们有什么收获?你认为自己的表现怎样?哪位同学表现的最好?有哪些不明白的地方?

【设计意图】:通过本节课的学习,学生学会了求组合图形的面积,把自己的收获讲给大家听,也是对新知记忆和理解的又一次升华。

《组合图形的面积》数学教案 篇6

教学内容:教科书第6页

教学目标:

1、通过观察、分析,弄清图形的组合关系,利用割、补的方法,求组合图形的面积。

2、通过实践操作,培养学生观察、分析以及合理解决问题的能力。

3、在运用数学知识解决实际问题的过程中,让学生体验到成功的乐趣,体会数学的价值。

教学重难点:能正确合理地求组合图形的面积,弄清图形的组合关系,准确判断分割后图形的尺寸。

教学准备:简单图形的纸片、剪刀、多媒体课件

教学过程

一、复习引入

1、课件出示:长方形和正方形。

师:这是我们学过的长方形和正方形。

师:现在要求它们的面积必须知道什么呢?

生:要知道长方形的长和宽,以及正方形的边长。

2、标上相应尺寸。

师:求图形的面积必须要有相应的尺寸,请看!课件出示:

师:现在能算了吗?左右同学各口算一题。

生汇报:长方形的面积=长×宽

=10×5

=50(dm2)

正方形的面积=边长×边长

=4×4

=16(dm2)

[复习长方形、正方形的面积的计算公式,为求组合图形的面积作铺垫,同时让学生体会求图形的面积必须知道相应的尺寸。]

二、新知探究

1、把引入部分的长方形和正方形合二为一

课件出示:

师:这个图形是由我们学过的图形组合而成的,这样的图形叫组合图形。(出示部分课题:组合图形)

2、课件出示一些组合图形。

让学生仔细观察图形的特点后,以小组为单位互相说说它们是由哪些图形组合而成的,然后汇报。

图①

图②

图③

学生可能有其它想法,教师根据学生汇报后小结。

3.小结:①组合图形的组合关系,可以是几个图形的“和”(一般用“割”的方法)。也可以是几个图形的“差”(一般用“补”的方法)。②图形的组合关系,由于观察、分析思考的方法不同,可以有不同的组合关系。

[这一层次设计,让学生弄清图形的组合关系,学会一般的“割”“补”方法,为后一层次找相应尺寸,计算面积作铺垫。]

4、组合图形的面积计算

(1)师:刚才,我们尝试着弄请组合图形的组合关系,下面我们来探究求组合

图形的面积。(将课题补充完整)组合图形的面积 课件出示:

瞧!这是小胖家小区游乐场的平面图,它有多大呢?我们和小胖一起来算一算。你们桌上都有一张按比例缩小的游乐场平面图,想一想该怎么算,小组里可以讨论讨论。

(2)小组合作、动手操作、并汇报

师:(学生若出现第三种割法教师应予以肯定。)如果分割出的简单图形个数越多,计算时的步骤就越多,反而显得麻烦。因此在进行分割的时候,分成两个简单图形就能解决的问题不要分成三个简单图形去解决。

*第五种

移:S=长×宽 用移的方法,移过去边和边拼合部分必须数据

=(8+2)×3 相等。也就是说通过“移”的方法能将原来的

=10×3 图形转化成我们学过的简单图形。

=30(m2)

* 第六种

分割成5块长为3cm,宽为2cm的长方形。

3×2×5

=6×5

=30(m2)

(第五、第六种可视班级情况进行教学。重在培养学生的数感。)

(3)小结:

①求组合图形面积的基本方法是通过“割”、“补”、转化成我们学过的图形

来计算,先割后加,先补后减。

②分割的图形尽量要少。

③我们无论用“割”或“补”的方法,关键必须找到相应的.尺寸。

[通过学生动手操作,探究求组合图形面积的多种方法。此环节关键引导学生合理进行“割”或“补”,必须找到相应的尺寸,计算各个简单图形的面积。]

三、及时练习

1、课件出示小胖家的平面图:

小胖想在他家客厅铺木地板,需要买多少平方米的木料?(单位:米)选你喜欢的方法算。

2、课件出示花园放大图:小胖想把花园布置成一个阳光休闲区,请问需要铺多少面积的草地?(单位:米)

[除了常用的割、补方法,同时也可引导学生分割成3个同样的长为6m,宽为2m的小长方形。]

[让学生体会到虽然3个被挖去的图形所占的位置不同,但最后剩余面积是相同的,从中渗透“变”与“不变”的辨证关系。]

四、总结

师:通过今天的学习,你有什么收获呢?

五、作业设计

求下面组合图形的面积

六、教后反思

《组合图形的面积》数学教案 篇7

设计理念:本节课的中心与着力点是“方法”的体会与感悟,计算面积不是刚学,不是重点,但不能忽视,可以加大力度;还要指导学生能根据各种组合图形的条件,有效地选择方法。在整个探索过程中,相信学生,鼓励学生,给予学生充足的独立思考、交流讨论的时间。

本节课还得预设学生在学习过程中可能出现哪些问题,做好提前准备,这样到课堂上才能真正做到“以不变应万变”。

教学目标:

知识目标:

1、在自主探索的活动中,理解组合图形面积的计算方法。

2、能根据各种组合图形的条件,灵活有效的选择计算方法并进行正确的解答。

能力目标:

1、能运用所学的知识,解决生活中组合图形的实际问题。

2、通过图形的组合和分解培养分析问题、解决问题的能力及动手创新的意识学会把复杂问题转化为简单问题,渗透转化思想。

情感与价值观目标:

1、通过动手操作,给学生以美的享受,并能展示自我,张扬个性。

2、让孩子体验到成功的喜悦,培养了学生战胜困难的决心和勇气,团结友爱的美好情感。

教学重点:在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个简单图形所需的条件。

教学难点:选择有效的计算方法解决实际问题。

教学过程:

一、复习旧知,引入新课

1、师:我们会求哪些平面图形的面积了?请回忆下面积计算公式。

2、看黑板上一些正六边形(六边相等、六角相等),你有它们的面积计算公式吗?那要求它的面积,怎么办呢?(转化成我们学过的图形)

[设计意图:让学生初步体会到学过的面积计算方法应用的广泛性,渗透转化思想,培养空间观念。]

二、探索组合图形面积计算方法

1、割

那你能想办法用学过的方法来求正六边形的面积吗?请上来画一画说一说。

这些同学的方法可以归结为一个字:割。就是把一个没学过的图形割成学过的图形,然后利用面积公式算出每一块面积,再求出整个图形的面积。且方法千变万化,只要你有目标,就一定能成功。

[设计意思:拓展思维,一题多解,感受探索的乐趣,培养学生学习平面图形的兴趣。]

2、补、大面积-小面积

出示一个组合图形

(1)师:请同学们选择一种方法计算这个组合图形的面积。(生独立完成)

师:谁来说说你是用哪种方法计算的。

生介绍,师根据学生的介绍演示不同的方法。

师:这几种方法你们最喜欢哪一种呢?

师:为什么?(引导学生选择分得最少的,计算又简洁的方法)

(2)这儿又有一种新方法,没有把组合图形分割,而是补上一块。(板演:补),算出补后的大面积,减去补上的那部分面积,便可得出原来图形的面积。(板演:大面积-小面积)

3、小结求组合图形面积常用的方法

割、补、大面积-小面积。

4、小试牛刀

课后第一题。

请说说你用了什么方法。你更喜欢哪种方法?

5、挑战

(1)独立思考

(2)讨论

(3)移、拼的方法

[设计意图:从易到难,层层深入,引出求组合图形面积的常用方法]

3、回顾本节课所学,你有什么收获吗?在求组合图形面积时,你有什么要提醒大家的吗?

[设计意图:锻炼学生总结概括能力,口语表达能力得到发展。]

4、练习:课后2、3

板书:

长方形面积=长×宽割

正方形面积=边长×边长补

平行四边形面积=底×高拼

三角形面积=底×高÷2写大面积-小面积

梯形面积=(上底+下底)×高÷2

《组合图形的面积》数学教案(精选5篇)

作为一位杰出的教职工,时常要开展教案准备工作,借助教案可以更好地组织教学活动。那么问题来了,教案应该怎么写?以下是小编为大家整理的《组合图形的面积》数学教案(精选5篇),仅供参考,大家一起来看看吧。

大家都在看