请欣赏《小数的性质》教案(精选11篇),由笔构网整理,希望能够帮助到大家。
《小数的性质》教案 篇1
教学目标
1、通过教学、实践使学生自己发现并掌握小数的性质。
2、培养学生的抽象概括能力,动手能力。
3、培养学生善于探索的精神。
复习引入
1、准备题(1)1元=()角=()分
(2)在下面()里填适当的小数。
3角=()元
30分=()元
100毫米=()米
(3)0.4里面有()个0.1
0.40里面有()个0.01
2、引入:今天继续研究小数。
体验发现
1、课件出示例4:
(1)读题
(2)分组准备,讨论。
(3)说出结果。0.3元=0.30元
(4)为什么?
学生阐明自己的观点。
A、0.3元和0.30元都是3角,所以0.3元=0.30元。
B、画图理解。
C、从小数的意义解释。0.3是3个0.1,也就是30个0.01,0.30也是30个0.01,所以0.3=0.30.
(5)这两个相等的小数,小数部分有什么不同?
提问:小数部分末尾的0添上或去掉,什么变了,什么没变?
(小数变了,小数的大小没有变)。
2、课本试一试:先看图填一填,再比较0.100米、0.10米和0.1米的大小。
(1)学生自主填空。
(2)交流自己的看法,并阐明观点。
(3)汇报自己的结果。
由1分米=10厘米=100毫米,得到0.1=0.10=0.100.
(4)观察板书:
你得到什么结论?学生自由发言。
总结:小数的末尾填上“0”或去掉“0”,小数的大小不变。这是小数的性质。
理解内涵
1、课件出示例5:
学生自主填空。
提问:这些小数中,哪些0可以去掉?指名回答。
(着力于对小数“末尾”的理解。)
结论:根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。
学生尝试做“练一练”第1题。独立完成,集体订正。
2、试一试。
不改变数的大小,把下面各数改写成三位小数。
0.4=()3.16=()10=()
学生自主改写。
交流:(1)改写这三个数时应用了什么知识?
(2)为什么给三个数添上的“0”的个数不同?
(3)“10”是整数,怎样在小数的末尾添上“0”?
给学生充分的交流时间,进一步体验小数性质的应用。
3、练一练第2题。
学生自主比较,得到结果,并运用学过的小数的意义和性质进行阐明。
巩固练习
练习六的1—5题。
第1、2两题巩固并深化对小数性质的理解,突出去掉或添上“0”必须是小数末尾的0.
第3、4、5题都是应用小数的性质改写小数,其中有去掉末尾“0”化简小数,也有在末尾添“0”增加小数部分的位数;有改写小数,还有改写商品的单价。
这些练习题使学生在应用中掌握小数的性质。
教学后记
让学生自己发现,小数的末尾填上“0”或去掉“0”,小数的大小不变。这是小数的性质。发现小数的性质并对小数的性质作出抽象概括。
《小数的性质》教案(通用23篇)
作为一名为他人授业解惑的教育工作者,编写教案是必不可少的,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么写教案需要注意哪些问题呢?下面是小编帮大家整理的《小数的性质》教案,欢迎阅读与收藏。
《小数的性质》教案 篇2
教学目标
1.使学生对数的整除的有关概念掌握得更加系统、牢固.
2.进一步弄清各概念之间的联系与区别.
3.使学生对最大公约数和最小公倍数的求法掌握得更加熟练.
4.掌握分数、小数的基本性质.
教学重点
通过对主要概念进行整理和复习,深化理解,形成知识网络.
教学难点
弄清概念间的联系和区别,理解易混淆的概念.
教学步骤
一、铺垫孕伏.
教师谈话:同学们,昨天老师让大家在课下复习了第十册课本中约数和倍数一章的内容,
在这一章中我们学过了哪些概念呢?请同学们分组讨论,讨论时由一名同学做记录.(学生汇报讨论结果)
揭示课题:在数的整除这部分知识中,有这么多的概念,那么这些概念之间又有怎样的联系呢?这节课,我们就把这些概念进行整理和复习.
二、探究新知.
(一)建立知识网络.【演示课件“数的整除”】
1.思考:哪个概念是最基本的概念?并说一说概念的内容.
反馈练习:
在12÷3=4 4÷8=0.5 2÷0.l=20 3.2÷0.8=4中,被除数能除尽除数的有( )个;被除数能整除除数的有( )个.
教师提问:这四个算式中的被除数都能除尽除数,为什么只有这一个算式中的除数能整除被除数呢?整除与除尽到底有怎样的关系呢?
教师说明:能除尽的不一定都能整除,但能整除的一定能除尽.
2.说出与整除关系最密切的概念,并说一说概念的内容.
反馈练习:下面的说法对不对,为什么?
因为15÷5=3,所以15是倍数,5是约数. ( )
因为4.6÷2=2.3,所以4.6是2的倍数,2是4.6的约数. ( )
明确:约数和倍数是互相依存的,约数和倍数必须以整除为前提.
3.教师提问:
由一个数的倍数,一个数的约数你又想到什么概念?并说一说这些概念的内容.
根据一个数所含约数的个数的不同,还可以得到什么概念?
互质数这个概念与哪个概念有关系?它们之间有怎样的关系呢?
互质数这个概念与公约数有关系,公约数只有1的两个数叫做互质数.
4.讨论互质数与质数之间有什么区别?
互质数讲的是两个数的关系,这两个数的公约数只有1,质数是对一个自然数而言的,它只有1和它本身两个约数.
5.教师提问:
如果我们把24写成几个质数相乘的`形式,那么这几个质数叫做24的什么数?
只有什么数才能做质因数?
什么叫做分解质因数?
只有什么数才能分解质因数?
6.教师提问:
谁还记得,能被2、5、3整除的数各有什么特征?
由一个数能不能被2整除,又可以得到什么概念?
(二)比较方法.
1.练习:求16和24的最大公约数和最小公倍数.
2.思考:求最大公约数和最小公倍数有什么联系和区别?
(三)分数、小数的基本性质.
1.教师提问:
分数的基本性质是什么?
小数的基本性质是什么?
2.练习.
(1)想一想,小数点移动位置,小数大小会发生什么变化?
(2)
(3)下面这组数有什么特点?它们之间有什么规律?
0.108 1.08 10.8 108 1080
三、全课小结.
这节课我们把数的整除的有关知识进行了整理和复习,进一步弄清了各概念之间的
联系和区别,并且强化了对知识的运用.
四、随堂练习
1.判断下面的说法是不是正确,并说明理由.
(1)一个数的约数都比这个数的倍数小.
(2)1是所有自然数的公约数.
(3)所有的自然数不是质数就是合数.
(4)所有的自然数不是偶数就是奇数.
(5)含有约数2的数一定是偶数.
(6)所有的奇数都是质数,所有的偶数都是合数.
(7)有公约数1的两个数叫做互质数.
2.下面的数哪些含有约数2?哪些是3的倍数?哪些能同时被2、3整除?哪些能同时被2、5整除?哪些能同时被3、5整除?哪些能同时被2、3、5整除?
18 30 45 70 75 84 124 140 420
3.填空.
在1到20中,奇数有( );偶数有( );质数有( );合数有( );
既是质数又是偶数的数是( ).
4.按要求写出两个互质的数.
(1)两个数都是质数.
(2)两个数都是合数.
(3)一个数是质数,一个数是合数.
5.说出下面每组数的最大公约数和最小公倍数.
42和14 36和9
13和5 6和11
6.0.75=12÷( )=( ) :12=
五、布置作业
1.把下面各数分解质因数.
24 45 65 84 102 475
2.求下面每组数的最大公约数和最小公倍数.
36和48 16、32和24 15、30和90
六、板书设计
数的整除分数、小数的基本性质
数学教案-数的整除 分数、小数的基本性质
《小数的性质》教案 篇3
教学内容
人教课标版小学四年级下册第38、39页的内容:小数的性质
学情分析
小数的性质是任教版义务教育教科书四年级下册第38、39页的内容。是在学生学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且为后面的小数的大小比较、小数四则计算打下坚实的基础。学生对于整数的知识已经有了较多的了解,对于整数的末尾添上“0”或者去掉“0”,会引起整数大小的变化有了一定的认识。但小数的性质却与整数不一样,在小数的末尾添上0或者去掉“0”,小数的大小不变,因此,整数的这部分知识,会对小数性质的学习产生负面的影响。
教学目标
知识与技能:让学生在自主探究、合作交流中理解和掌握小数的性质。
过程与方法:培养学生观察、比较、抽象和归纳概括的能力。
情感态度与价值观:激发学生积极主动的合作意识和探索精神,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,积极主动的参与数学活动。
教学重难点
重点:理解和掌握小数性质的含义。
难点:小数基本性质归纳的过程。
教法与学法
1、利用迁移规律,让学生从形象思维逐步过渡到抽象思维,通过直观推理、自主探究、合作交流让学生理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。
2、让学生体验数学问题的探究性和挑战性,激发学习数学的兴趣,主动参与教学活动。
3、培养学生共同合作,相互交流的学习方法。
教学准备
多媒体课件
教学过程
一、复习旧知,导入新课
1、师:同学们,上节课我们学习了什么?(小数的意义)那么在学习新知识之前,让我们一起来复习一下上节课的内容吧!
2、《西游记》同学们都看过没有,那么你们知道《西游记》中都有那些人物(学生自由回答)。
课件展示:有一天,他们口渴了,唐僧要把三根甘蔗分给三个徒弟吃,事先他把甘蔗分别装进三个袋子里,上面标注着长度:0.l米、0.10米、0.100米,馋嘴的八戒抢先一步说:“我的肚子大,我吃长的。”说着拿回了标有“0.100米”的袋子。沙和尚好不服气,上前对师傅说:“八戒好吃懒做,长的应该让给大师兄悟空吃。”悟空笑了笑说:“两位师弟别吵了,无论哪个袋子都一样呀!”唐僧听了悟空的话微笑着点了点头。
师:你知道唐僧听了悟空的话为什么会微笑着点了点头?学了今天的知识你就知道为什么了。
板书课题:小数的性质
设计意图:联系生活实际,达到知识的迁移。
二、提出问题、探索新知
1.出示例1:
⑴师:同学们,这把尺子多长呢?(10厘米)你们还能不能用不同的长度单位来表达出它的长度呢?老师点名提问个别学生来回答。
学:1分米、100毫米。
⑵师;请同学们运用所学有关“小数的意义”的知识,把它们改写成用“米”作单位的小数。
学生独立完成,教师巡视指导个别不会的学生。
⑶教师指名个别学生回答,并对个别表现好的学生给予表扬。
生1:0.1米是1/10米,就是1分米
生2:0.10米是10/100米,就是10厘米
生3:0.100米就是100/1000米,就是100毫米
师:现在老师有个问题请大家帮忙解决一下,0.1米、0.10米和0.100米的大小如何呢?
学生回答,教师总结。
板书:1分米=10厘米=100毫米
0. l米=0.10米=0.100米
设计意图:学生根据小数的意义,从“0.l米、0.10米、0.100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。
⑷观察比较:教师指着“0.l米=0.10米=0.100米”这个等式,标出思考箭头先让学生从左往右观察、比较,你们发现了什么?
根据学生的回答板书:在小数的末尾添上0,小数的大小不变。再标出思考箭头,让学生从右往左观察,又发现什么规律,补充板书:小数的末尾去掉“0”。
教师强调:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简.小数中间的0不能去掉.
师质疑:那整数有这个性质吗?
学生分小组讨论,并举例证明得出结论。
(师强调出小数与整数的区别)
设计意图:把静态的知识结论转化为动态的求知过程,让学生真正成为学习的主人,对所学的`内容理解深刻,记忆牢固,不但知其然,而且知其所以然。同时,还培养了学生归纳概括的能力。
2、教学例2
(1)多媒体出示38页例2:比较0.30与0.3的大小
师:任写一个数,在它的末尾添上一个‘0’或者两个‘0’,用自己的方法验证他们的关系是否相等。
(2)师:刚才同学们用自己的方法证明了我们的发现,想不想知道老师是如何验证的?
①老师将两个同样大小的正方形平均分成了10份和100份,把其中的30份写成小数就是0.30,另一个正方形取其中的3份就是0.3,将两个正方形移动,重合比较,会是什么结果?
②请大家闭上眼睛想象一下,再睁开眼睛观察屏幕,和你想象的一样吗?可以写一个怎样的等式?
汇报结论:0.3=0.30
(3)师质疑:小数由0.3到0.30,你看出什么变了?什么没变?你从中发现了什么?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0.3=0.30。)
设计意图:学生的思维从形象思维逐步过渡到抽象思维,达到突破难点的目的。放手让学生探索、验证,适时引导学生提出问题,并解决问题。
三、课堂检测
1、运用小数的性质时应注意什么?
0.70(去掉末尾的0,大小会变化吗),2.07(去掉中间的0会怎样),0.7(末尾加个0会怎样)?
提示:根据小数的性质,只有小数末尾的“0”去掉之后,才不会改变数的大小。小数中间的“0”和整数部分的“0”不能去掉,因为那样小数其他数位上的数就发生了变化。
2、判断
(1)小数的末尾添上“0”或去掉“0”,小数的大小不变,意义也不变。 ( )
(2) 0.508去掉小数部分的0,这个小数的大小不发生变化。 ( )
(3)因为2和2.0相等,所以它们都是整数。 ( )
(4) 0.8与0.80大小一样,计数单位也一样。 ( )
3、下面哪些小数中的“0”去掉后,小数的大小没有发生变化?
7.03、4.90、8.10、0.02、3.70
4、按要求说出一个数。
①所有“0”都不能去掉。
②所有“0”都能去掉。
③既有能去掉的“0”,又有不能去掉的“0”。
5、谁能只动两笔就可以在5、50、 500之间画上等号?
5=50=500
四、本课小结
通过这节课的学习,你有哪些收获?
五、作业布置
课本41页练习十:1、2、3
板书设计
小数的性质
1分米=10厘米=100毫米
0.1米=0.10米=0.100米
小数的末尾添上或去掉“0”,小数的大小不变。
《小数的性质》教案 篇4
设计说明
快乐教育理论认为人类的需要得到满足就是快乐。而快乐常常与兴趣联系在一起,兴趣使人产生钻研、探索、创新的愿望,从而激发快乐。基于此,本节课的教学设计突出以下几点:
1.创设情境,激发兴趣。
通过创设一个完整的故事情境,激发学生的学习兴趣,继而引出本节课所要探究的问题——小数的末尾添上“0”或去掉“0”,大小有变化吗?鼓励学生大胆猜想,并用多种方法进行验证,引导学生自主探究,培养学生发现问题、分析问题、解决问题的能力。
2.关注学生个体,自主获取新知。
《新课程标准》强调:学生是学习的主体。本节课的教学充分发挥学生的主体作用,让学生通过对比,自己得出0.1 m=0.10 m=0.100 m,并通过观察归纳出小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。引导学生自学例3、例4,养成自主学习的良好习惯。
3.巩固应用,练习形式多样。
练习是巩固新知、形成能力、发展思维的重要手段。基于以上认识,本节课的练习题设置形式多样,梯度合理,既有基础练习,又有生活中的运用,使学生在轻松愉快的氛围中既巩固了基础知识,又深化了所学知识。
课前准备
教师准备 多媒体课件 正方形纸片 数位顺序表
学生准备 水彩笔 米尺
教学过程
⊙创设情境,课前质疑
师:小明的爸爸最近开了一家文化用品商店,想请大家帮忙设计价签,大家愿意帮这个忙吗?(出示中性笔和笔袋)每支中性笔2元5角,每个笔袋8元,价签该怎么写呢?(出示几种写法:2.5元、2.50元、8元、8.00元,引起争论)
师:我们在商店里看到的价签一般是这样的:2.50元,8.00元。2.5元和2.50元都表示2元5角吗?8元和8.00元相等吗?
生:2.5元和2.50元都表示2元5角,8元和8.00元相等。
师:为什么会相等呢?上完今天这节课你就明白了。(板书课题:小数的性质)
设计意图:给学生提供熟悉的生活情境,使学生产生亲切感,为构建新的认知结构打开切入口,同时引导学生针对生活化的问题情境做出数学猜想,以此猜想引领全课。
⊙探究新知
1.探究小数的性质。
(1)在括号里填上合适的单位名称,使等式成立。
1( )=10( )=100( )
①学生先在小组内讨论、交流,然后教师指名汇报。
预设
生1:1元=10角=100分。
生2:1 m=10 dm=100 cm。
生3:1 dm=10 cm=100 mm。
②出示课件,一边讲解一边动画演示。
因为1 dm=10 cm=100 mm,所以0.1 m=0.10 m=0.100 m。(板书:0.1 m=0.10 m=0.100 m)
(2)提问:根据0.1 m=0.10 m=0.100 m,你发现了什么?通过小组活动进行探究。(出示课堂活动卡)
《小数的性质》教案 篇5
教学目标
1、通过教学、实践使学生自己发现并掌握小数的性质。
2、培养学生的抽象概括能力,动手能力。
3、培养学生善于探索的精神。
复习引入
1、准备题(1)1元=()角=()分
(2)在下面()里填适当的小数。
3角=()元
30分=()元
100毫米=()米
(3)0.4里面有()个0.1
0.40里面有()个0.01
2、引入:今天继续研究小数。
体验发现
1、课件出示例4:
(1)读题
(2)分组准备,讨论。
(3)说出结果。0.3元=0.30元
(4)为什么?
学生阐明自己的观点。
A、0.3元和0.30元都是3角,所以0.3元=0.30元。
B、画图理解。
C、从小数的意义解释。0.3是3个0.1,也就是30个0.01,0.30也是30个0.01,所以0.3=0.30。
(5)这两个相等的小数,小数部分有什么不同?
提问:小数部分末尾的0添上或去掉,什么变了,什么没变?
(小数变了,小数的大小没有变)。
2、课本试一试:先看图填一填,再比较0.100米、0.10米和0.1米的大小。
(1)学生自主填空。
(2)交流自己的看法,并阐明观点。
(3)汇报自己的结果。
由1分米=10厘米=100毫米,得到0.1=0.10=0.100。
(4)观察板书:
你得到什么结论?学生自由发言。
总结:小数的末尾填上“0”或去掉“0”,小数的大小不变。这是小数的性质。
理解内涵
1、课件出示例5:
学生自主填空。
提问:这些小数中,哪些0可以去掉?指名回答。
(着力于对小数“末尾”的理解。)
结论:根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。
学生尝试做“练一练”第1题。独立完成,集体订正。
2、试一试。
不改变数的大小,把下面各数改写成三位小数。
0.4=()3.16=()10=()
学生自主改写。
交流:(1)改写这三个数时应用了什么知识?
(2)为什么给三个数添上的“0”的个数不同?
(3)“10”是整数,怎样在小数的末尾添上“0”?
给学生充分的交流时间,进一步体验小数性质的应用。
3、练一练第2题。
学生自主比较,得到结果,并运用学过的小数的意义和性质进行阐明。
巩固练习
练习六的1—5题。
第1、2两题巩固并深化对小数性质的理解,突出去掉或添上“0”必须是小数末尾的'0。
第3、4、5题都是应用小数的性质改写小数,其中有去掉末尾“0”化简小数,也有在末尾添“0”增加小数部分的位数;有改写小数,还有改写商品的单价。
这些练习题使学生在应用中掌握小数的性质。
教学后记
让学生自己发现,小数的末尾填上“0”或去掉“0”,小数的大小不变。这是小数的性质。发现小数的性质并对小数的性质作出抽象概括。
《小数的性质》教案 篇6
课题:比大小(二)
内容:小数的性质
课时:1
教学准备:
教学目标:1、通过“在方格纸上涂一涂,比较两个小数的大小”的活动,经历用几何模型研究小数的过程。
2、用直观的方式体会小数的末尾添上0或去掉0,小数的.大小不变的规律。
3、在寻找小数大小的比较方法中,培养数感,获取数学学习方法。
基本教学过程:
一、 一、创设问题情境
1、比较大小。1.26( )2.03 0.23( )0.31
2、0.2( )0.20
二、自主探究,创建数学模型
1、思考一下,0.2和0.20谁大?你是怎样想的?
2、我们一起验证一下,在图上涂一涂,再来比一比。学生在书上涂一涂,比一比,再说一说。
3、0.2和0.20怎么会相等呢?这是不是一种巧合?
4、在下面两幅图中涂出相等的两部分,并写出相应的分数和小数。
在小组内交流你的涂法和想法。你发现了什么?
三、巩固与应用
1、第10页试一试1、2。
2、第11页练一练1。
3、第2、3题。
4、阅读。《你知道吗?》
四、总结。
这节课你发现了什么?
教学反思:学生通过图一图、比一比,发现小数的末尾添上0或去掉0,小数的大小不变这一规律。并能熟练的应用这一规律。
《小数的性质》教案 篇7
教学内容:
四年级下册教材第38、39页的内容及练习十第1、2、3、4题。
教学目的:
1. 引导学生知道、掌握小数的性质,能利用小数的性质进行小数的化简和改写.
2. 培养学生的动手操作能力以及观察、比较、抽象和归纳概括的能力.
3. 培养学生初步的数学意识和数学思想,使学生感悟到数学知识的内在联系,同时渗透事物在一定情况下可以相互转化的观点.
教学重点:
让学生理解并掌握小数的性质.
教学难点:
能应用小数的性质解决实际问题.
教学步骤:
一、创设情境,导入新课。
创设情境:夏天的时候同学们都爱吃冷饮,老师了解到校门口左边的商店里一种雪糕标价是2.5元,右边一家则是2.50元,那你们去买的时候会选择哪一家呢?为什么?
为什么2.5元末尾添个0价钱不变呢?究竟可以添几个零呢?这节课我们就来研究这一方面的知识。
二、出示课题,提出目标。
1.知道、掌握小数的性质,能利用小数的性质进行小数的化简和改写.
2.培养动手操作能力以及观察、比较、抽象和归纳概括的能力.
3.培养初步的数学意识和数学思想,感悟到数学知识的内在联系.
三、自学尝试,探究新知。
1.出示尝试题
(1)1、10、100这三个数相等吗?你能想办法使它们相等吗?
(2)你能把1分米、10厘米、100毫米改用米作单位表示吗?
(3)改写成用米作单位表示后,实际长度有没有变化?说明什么?
(4)0.1米= 0.10米=0.100米这个等式从左往右看,小数末尾有什么变化?小数大小有什么变化?从右往左看又怎样呢?你发现了什么规律?
2.学生自学课本38页后尝试练习并讨论。(5分钟后全班交流)。
3.根据自学情况引导讲解。
四、拓展练习, 验证结论。
为了验证我们的这个结论,我们再来做一个实验。
出示做一做:比较0.30与0.3的大小
你认为这两个数的大小怎样?(让学生先应用结论猜一猜)
《小数的性质》教案 篇8
教学目标
1、引导学生知道、掌握小数的性质,能利用小数的性质进行小数的化简和改写。
2、培养学生的动手操作能力以及观察、比较、抽象和归纳概括的能力。
3、培养学生初步的数学意识和数学思想,使学生感悟到数学知识的内在联系,同时渗透事物在一定情况下可以相互转化的观点。
教学重点
让学生理解并掌握小数的性质。
教学难点
能应用小数的性质解决实际问题。
教学过程
一、激趣导入
1、小组交流“商品标价记录单”,请两名学生上来展示。
2、电脑出示1:某超市手套、毛巾的标价,导入新课。
(在某超市商店里,老师看到:手套每双2.50元,毛巾每条2.5元。这里的2.50元、2.5元分别是( )元( )角,它们的价钱相同,为什么写法可以不同呢?这是小数的一个重要性质,是我们今天要学习的内容,并板书“小数的性质”。)
3、揭示学习目标。
问:看到“小数的性质”这个课题,你认为这节课我们要学习什么内容?(结合学生回答,板书“性质”、“应用”)
二、探究新知
(一)理解小数的性质
1、做一做 做一做 1,得出 0.30=0.3
做一做 2,得出0.6=0.60=0.600
2、引导观察(思考讨论)0.6=0.60=0.600
(1)从左往右看,小数末尾有什么变化?小数大小有什么变化? (2)从右往左看,小数末尾有什么变化?小数大小有什么变化?你能得出什么结论?
(启发学生归纳出:在小数的末尾填上“0”,小数的大小不变;在小数的末尾去掉“0”,小数的大小不变。)
3、归纳小数的性质:
通过研究,你能把上面的两个结论归纳成为一句话吗?
教师概括:在小数的末尾添上“0”或者去掉“0”,小数的大小不变。这叫做小数的性质。
(在整数的末尾添上或去掉“0”,整数的大小会有什么变化?)
4、辨别:下面各数中的“
0”,哪些“0”是属 于小数末尾 的“0”。
(电脑显示)
(二)小数的性质应用
(1)教学例1。
①设问导入。问:你认为小数的'性质有什么作用?学生很容易回答出小数性质的第一个作用。教师强调,根据这个性质,遇到小数末尾有0的时候,一般地可以去掉末尾的0,把小数化简。 (板书“化简”)
②投影出示例1,让学生尝试练习。
把0.90和205.0800化简
思考:哪些“0”可以去掉,哪些“0”不能去掉?
205.0800中“8”前面的“0”为什么不能去掉?
(0.90=0.9;205.0800=205.08 )
完成“练一练” 第1题
(2)教学例2。
①让学生解答导入新课中提出的问题,结合学生回答,教师说明:利用小数的性质,根据需要可以“把一个数改写成具有指定小数位数的小数”。(板书“改写”)
②投影出示例2,学生尝试练习。
不改变数的大小,把0.3、4.06、8改写成小数部分是三位的小数。
(0.3=0.300; 4.06=4.060; 8=8.000)
思考:“8”的后面不加小数点行吗?为什么?
完成“练一练” 第2题
③ 讨论:改写小数时一定要注意什么?
改写小数时一定要注意下面三点: A.不改变原数的大小; B.只能在小数的末尾添上0; C.把整数改写成小数时,一定要先在整数个位右下角点上小数点后再添0 。
(三)学生看书质疑。
三、巩固练习
1、练习十七 第1题
重点指导学生说一说为什么有些“0”不能去掉的。
2、练习十七 第2题
重点指导学生说一说为什么有些数的末尾添上“0”,原数就发生了变化。
3、综合练习 (电脑显示)
四、课末回顾、反思
《小数的性质》教案 篇9
教学目标:
1、初步理解小数的基本性质,并应用性质化简和改写小数。
2、运用猜测、操作、检验、观察、对比等方法,探索并发现小数的性质,养成探求新知的良好品质。
3、感受透过现象看本质的过程以及数学在实际生活中的重要作用,体验问题解决的情趣。
教学重点:
让学生理解并掌握小数的性质。
教学难点:
能应用小数的性质解决实际问题.
教学过程:
一、创设情境,引导探索
1师:夏天的天气非常炎热,孩子们你们爱吃雪糕吗?老师对学校附近雪糕的价格做了一个小调查,你们想了解一下吗?老师了解到校门口左边的商店雪糕的价格是0.5元,右边一家则是0.50元,那你们去买的时候会选择哪一家呢?为什么?
师:为什么0.5元末尾添个0大小不变呢?究竟可以添几个零呢?这节课我们就来学习小数的性质。(板书课题:小数的性质)
二、探究新知、课中释疑
1.教学例1
比较0.1m 0.10m 0.100m的大小
师:想一想括号里填上什么单位,才能使等式成立?
1()=10()=100()
生汇报(重点讲解:1分米=10厘米=100毫米)
你能把它们改写成用米做单位的小数的形式吗?
根据学生回答归纳演示:1分米是1/10米,写成0.1米
10厘米是10个1/100米,写成0.10米
100毫米是100个1/1000米,写成0.100米
并板书:01米0.10米0.100米
那0.1米、0.10米、0.100米之间大小有什么关系呢?
3)指导看黑板:
1分米= 10厘米= 100毫米
0.1米= 0.10米= 0.100米
4)观察比较:教师指着“0.l米=0.10米=0.100米”这个等式,标出思考箭头先让学生从左往右观察、比较,你们发现了什么?
5)根据学生的回答板书:在小数的末尾添上0,小数的大小不变。再标出思考箭头,让学生从右往左观察,又发现什么规律,补充板书:小数的末尾去掉“0”,小数的大小不变。
是不是所有的小数都有这个性质呢?这是不是一个特例?我们还需再验证一下。
2.教学例2
比较0.3和0.30的大小
1)师:你认为这两个数的大小怎样?(让学生先应用结论猜一猜)
2)师:想一下你用什么办法来比较这两个数的大小呢?(利用学具,小组讨论合作)
3)在两个大小一样的正方形里涂色比较。
汇报结论:0.3=0.30
4)师质疑:小数由0.3到0.30,你看出什么变了?什么没变?你从中发现了什么?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0.3=0.30。)
5)师:同学们,你们真了不起,通过动手操作验证得出了这个性质,这就是我们今天学习的内容-小数的性质(课件出示)
小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
6)认真读这句话,你认为那些字是非常关键或者必不可少的?为什么?
生:末尾,因为中间的0是不能随意去掉的,去掉后就改变了小数的大小。
3.小数的化简
师:根据小数的性质,当遇到小数末尾有0时,一般可以去掉末尾的0,这就是小数的化简,你想试试看看吗?(课件出示例3)
把0.70和105.0900化简.
105.0900中“9”前面的“0”为什么不能去掉?
(0.70=0.7;105.0900=105.09)
教师强调:末尾和后面不同。
师:完成教材39页“做一做”的第1题(学生独立完成,全班订正)
4.小数的应用
1)师:利用小数的性质不仅可以化简小数,有时根据需要,可以在小数的末尾添上0;还可以在整数的个位右下角点上小数点,再添上0,把整数改写成小数的形式,这就是小数的改写,下面我们学习例4
2)不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数.学生独立完成,全班共同订正。
(0.2=0.200;4.08=4.080;3=3.000)
思考:“3”的后面不加小数点行吗?为什么?
3)师:完成教材39页“做一做”的第1题(学生独立完成,全班订正)
三、巩固深化,拓展思维
师:同学们的表现真棒,为了加大难度,老师设计了闯关游戏,你们有信心接受老师的挑战吗?
挑战一:判断
挑战二:连线
挑战三:智力大比拼
四、课堂小结
这节课你有哪些收获?
五、布置作业
完成练习十1-3题。
《小数的性质》教案 篇10
教学目标:
1、初步理解小数的基本性质,并应用性质化简和改写小数。
2、运用猜测、操作、检验、观察、对比等方法,探索并发现小数的性质,养成探求新知的良好品质。
3、感受透过现象看本质的过程以及数学在实际生活中的重要作用,体验问题解决的情趣。
教学重点:让学生理解并掌握小数的性质。
教学难点:能应用小数的性质解决实际问题.
教学过程:
(一)、创设情境,引导探索
1师:夏天的天气非常炎热,孩子们你们爱吃雪糕吗?老师对学校附近雪糕的价格做了一个小调查,你们想了解一下吗?老师了解到校门口左边的商店雪糕的价格是0.5元,右边一家则是0.50元,那你们去买的时候会选择哪一家呢?为什么?
师:为什么0.5元末尾添个0大小不变呢?究竟可以添几个零呢?这节课我们就来学习小数的性质。(板书课题:小数的性质)
二、探究新知、课中释疑
1.教学例1
比较0.1m 0.10m 0.100m的大小
师:想一想括号里填上什么单位,才能使等式成立?
1( )=10( )=100( )
生汇报(重点讲解:1分米=10厘米=100毫米)
你能把它们改写成用米做单位的小数的形式吗?
根据学生回答归纳演示: 1分米是1/10米,写成0.1米
10厘米是10个1/100米,写成0.10米
100毫米是100个1/1000米,写成0.100米
并板书:01米 0.10米 0.100米
那0.1米、0.10米、0.100米之间大小有什么关系呢?
3)指导看黑板:
1分米 = 10厘米 = 100毫米
0.1米 = 0.10米 = 0.100米
4)观察比较:教师指着“0.l米=0.10米=0.100米”这个等式,标出思考箭头先让学生从左往右观察、比较,你们发现了什么?
5)根据学生的回答板书:在小数的末尾添上0,小数的大小不变。再标出思考箭头,让学生从右往左观察,又发现什么规律,补充板书:小数的末尾去掉“0”,小数的大小不变。
是不是所有的小数都有这个性质呢?这是不是一个特例?我们还需再验证一下。
2.教学例2
比较0.3和0.30的大小
1)师:你认为这两个数的大小怎样?(让学生先应用结论猜一猜)
2)师:想一下你用什么办法来比较这两个数的大小呢?(利用学具,小组讨论合作)
3)在两个大小一样的正方形里涂色比较。
汇报结论:0.3=0.30
4)师质疑:小数由0.3到0.30,你看出什么变了?什么没变?你从中发现了什么?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0.3=0.30。)
5)师:同学们,你们真了不起,通过动手操作验证得出了这个性质,这就是我们今天学习的内容-小数的性质(课件出示)
小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
6)认真读这句话,你认为那些字是非常关键或者必不可少的?为什么?
生:末尾,因为中间的0是不能随意去掉的,去掉后就改变了小数的大小。
3.小数的化简
师:根据小数的性质,当遇到小数末尾有0时,一般可以去掉末尾的0,这就是小数的化简,你想试试看看吗?(课件出示例3)
把0.70和105.0900化简.
105.0900中“9”前面的.“0”为什么不能去掉?
(0.70=0.7;105.0900=105.09)
教师强调:末尾和后面不同。
师:完成教材39页“做一做”的第1题(学生独立完成,全班订正)
4.小数的应用
1)师:利用小数的性质不仅可以化简小数,有时根据需要,可以在小数的末尾添上0;还可以在整数的个位右下角点上小数点,再添上0,把整数改写成小数的形式,这就是小数的改写,下面我们学习例4
2)不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数.学生独立完成,全班共同订正。
(0.2=0.200;4.08=4.080;3=3.000)
思考:“3”的后面不加小数点行吗?为什么?
3)师:完成教材39页“做一做”的第1题(学生独立完成,全班订正)
三、巩固深化,拓展思维
师:同学们的表现真棒,为了加大难度,老师设计了闯关游戏,你们有信心接受老师的挑战吗?
挑战一:判断
挑战二:连线
挑战三:智力大比拼
四、课堂小结
这节课你有哪些收获?
五、布置作业.
完成练习十1-3题。
板书设计:
小数的性质
0.1米 = 0.10米 = 0.100米
0.3= 0.30
小数的性质:小数的末尾添上0或者去掉0,小数的大小不变 。
《小数的性质》教案 篇11
教学内容:
教科书第58-59页例1—例3,及“做一做”。
教学目标:
1.初步理解小数的基本性质,会运用小数的基本性质进行小数的化简和改写。
2.运用猜测、检验、观察、对比等方法,探索并发现小数的性质。
3.培养学生动手操作的能力。
教学重点、难点:
1.教学重点:让学生理解和掌握小数的性质。
2.教学难点:让学生抽象概括小数的性质。
教学过程:
一、创设问题情境,鼓励大胆猜测。
1.通过商品标价2.50元和3.00元这两个小数尾末有零来引起思考,自然地引出两个问题:0.1米、0.10米、0.100米,它们大小相等吗?0.30和0.3呢?
2.猜一猜。
二、利用工具,检验猜测。
师:老师给每个学习小组准备了一些工具(一把米尺,一张数位顺序表,两张方格纸),请你们利用这些工具来检验刚才的猜测是对还是不对。先请你们四人一组,选一选、议一议:你们选择哪种工具,准备怎样来验证?
学生动手操作、检验:
⑴ 学生利用直尺验证:0.1米是1分米,0.10米是10厘米,0.100米是100毫米,他们在尺子上所表示的长度都是相等的,所以0.1米=0.10米=0.100米。
⑵ 学生利用数位顺序表验证:把0.30和0.3写在数位顺序表中,从数位顺序表中看出,它们的位数虽然不同,“3”所处的位置相同,所以0.30=0.3。
⑶ 学生利用正方形图验证:0.30是百分之三十,0.3是十分之三。从平均分成100份的正方形图中取其中的30份,就表示0.30。从平均分成10份的正方形图中其中3份,就表示0.3。从图中很明显的看出0.30=0.3。启发学生想一想:十个百分之一是一个十分之一,三十个百分之一是三个十分之一,所以0.30=0.3。
三、观察比较,探究规律。
从刚才的操作中,我们已经知道:0.1米=0.10米=0.100米,0.30=0.3。下面请大家观察这两个等式,什么不变,什么变了?为什么数变了后数的大小不变?
四、概括总结,揭示性质。
⑴ 谁能用一句话归纳出这个规律?这个规律就叫做“小数的性质”。
⑵ 请大家一起读“小数的性质”
五、学生质疑。
六、运用性质,化简改写。
⑴ 学了小数的基本性质有什么用呢?请大家自学课本例3。想一想:什么叫化简?什么叫改写?它们的根据分别是小数性质中的哪一句?并举例说明。
⑵ 教学例4
出示例4:不改变数的大小,把0.2、4.08、3改成小数部分是三位的小数。
①问:0.2和4.08各是几位小数,要把它们改成三位小数应在小数的哪部分添上“0”?各应添上几个“0”?为什么?
②问:整数3改写三位小数,在3的后面添上三个“0”写作3000,对吗?为什么?那么应该怎样写?
③学生汇报结果,师板书:0.2=0.200,4.08=4.080,3=3.000。
七、巩固提高,升华知识。
⑴ 完成课本“做一做”的题目。
⑵摆数游戏:每个小组利用老师发给的五张数字卡片,按要求摆数:
①用五张卡片摆一个数,这个数中的两个“0”都能去掉。
②用五张卡片摆一个数,这个数中的两个“0”一个能去掉,一个不能去掉。
想一想:怎样摆才能既不重复又不遗漏。
八、交流收获,反思评价。
通过这节课的学习,你有什么收获?学会了哪些解决问题的方法?这些方法对今后的学习有什么帮助?
九、布置作业:
练习二十一的第1—6题。
十、板书设计:
小数的性质
例1:比较0.1米、0.10米、0.100米的大小
1分米=10厘米=100毫米
0.1米=0.10米=0.100米
例2:0.70=0.7 105.0900=105.09
例3:0.2=0.200 4.08=4.080 3=3.000