人教版数学说课稿

笔构网

2025-08-31教案

请欣赏人教版数学说课稿(精选11篇),由笔构网整理,希望能够帮助到大家。

人教版数学说课稿 篇1

各位老师:

大家好!我叫,来自湖南科技大学。我说课的题目是《辗转相除法与更相减损术》,内容选自于新课程人教A版必修3第一章第三节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、学法分析和教学过程分析等五大方面来阐述我对这节课的分析和设计:

一、教材分析

1.教材所处的地位和作用

在前面的两节里,我们已经学习了一些简单的算法,对算法已经有了一个初步的了解。

这节课的内容是继续加深对算法的认识,体会算法的思想。这节课所学习的辗转相除法与更相减损术是第三节我们所要学习的四种算法案例里的第一种。学生们通过本节课对中国古代数学中的算法案例——辗转相除法与更相减损术学习,体会中国古代数学对世界数学发展的贡献。

2.教学的重点和难点

重点:理解辗转相除法与更相减损术求最大公约数的方法。

难点:把辗转相除法与更相减损术的方法转换成程序框图与程序语言。

二、教学目标分析

1.知识与技能目标:

⑴理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析。 ⑵基本能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序。

2.过程与方法目标:

⑴对比用辗转相除法与更相减损术求两数的最大公约数的方法,比较它们在算法上的区别,并从程序的学习中体会数学的严谨。 ⑵领会数学算法与计算机处理的结合方式,初步掌握把数学算法转化成计算机语言的一般步骤。

3.情感,态度和价值观目标

⑴通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

⑵在学习古代数学家解决数学问题的方法的过程中培养严谨的逻辑思维能力,在利用算法解决数学问题的过程中培养理性的`精神和动手实践的能力。

⑶在合作学习的过程中体验合作的愉快和成功的喜悦。

三、教学方法与手段分析

1.教学方法:充分发挥学生的主体作用和教师的主导作用,采用启发式,并遵循循序渐进的教学原则。这有利于学生掌握从现象到本质,从已知到未知逐步形成概念的学习方法,有利于发展学生抽象思维能力和逻辑推理能力。

2.教学手段:通过各种教学媒体(计算机)调动学生参与课堂教学的主动性与积极性。

四、学法分析

在理解最大公约数的基础上去发现辗转相除法与更相减损术中的数学规律,并能模仿已经学过的程序框图与算法语句设计出辗转相除法与更相减损术的程序框图与算法程序。

五、教学过程分析

㈠复习引入

1. 首先要回顾一下前面我们已经学习过的算法的三种表示方法:自然语言、程序框图(三种逻辑结构)、程序语言(五种基本语句),这个是为了带领学生们对之前学过的内容熟悉一下,也为下面的学习打下基础。

2. 然后提出问题:在初中,我们已经学过求最大公约数的知识,你能求出18与30的公约数吗?

3. 接着教师进一步提出问题,我们都是利用找公约数的方法来求最大公约数,如果公约数比较大而且根据我们的观察又不能得到一些公约数,我们又应该怎样求它们的最大公约数?比如求8251与6105的最大公约数?由此就引出我们这一堂课所要探讨的内容。(板出课题)

㈡讲授新课

1.首先我们学习的是辗转相除法,为了更好地总结出辗转相除法求最大公约数的基本步骤,我先给出了一个例题。

例1求两个正数8251和6105的最大公约数。

在老师的引导下,师生一同完成整个解题过程,然后分析这些步骤,得出辗转相除法求最大公约数的基本步骤. 2.然后依照同样的方法学习更相减损术求最大公约数的基本步骤 (这样能够锻炼学生们的逻辑思维能力以及概括能力)

3.给出两道练习,以及时巩固刚刚学习的新知识。

练习 1利用辗转相除法求两数4081与20723的最大公约数(答案:53)

2 用更相减损术求两个正数84与72的最大公约数。(答案:12)

4.思考:你能利用辗转相除法和更相减损术试着设计程序求出上面两道练习的答案吗?然后

试着在计算机上运行程序。(这样可以激发学生们的学习兴趣,并且将学习的内容得到及时的应用)

㈢课堂小结

1.比较辗转相除法与更相减损术的区别

2.对比分析辗转相除法与更相减损术求最大公约数的计算方法及完整算法程序。

通过小结使学生们对知识有一个系统的认识,突出重点,抓住关键,培养概括能力。

㈣布置作业

习题1.3 A组 1

[设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。

人教版数学说课稿 篇2

关于人教版数学说课稿3篇

作为一位不辞辛劳的人民教师,就不得不需要编写说课稿,借助说课稿我们可以快速提升自己的教学能力。那么应当如何写说课稿呢?下面是小编为大家整理的人教版数学说课稿3篇,欢迎阅读,希望大家能够喜欢。

人教版数学说课稿 篇3

一、教材分析

说课内容:

《整式的乘除与因式分解》的《完全平方公式》。

教材的地位和作用:

完全平方公式是初中数学中的重要公式,在整个中学数学中有着广泛的应用,重要的数学方法“配方法”的基础也是依据完全平方公式的。而且它在整式乘法,因式分解,分式运算及其它代数式的变形中起作十分重要的作用。

本节内容共安排两个课时,这次说课是其中第一个课时。完全平方公式这一教学内容是学生在已经掌握单项式乘法、多项式乘法及平方差公式基础上的拓展,教材从具体到抽象,由直观图形引导学生观察、实验、猜测、进而论证,最后建立数学模型,逐步培养学生的.逻辑推理能力和建模思想。

教学目标和要求:

由课标要求以及学生的情况我将三维目标定义为以下三点:

知识与技能目标:了解公式的几何背景,理解并掌握公式的结构特征,能利用公式进行计算。

过程与方法目标:在学习的过程中使学生体会数、形结合的优势,进一步发展符号感和推理能力,培养学生数学建模的思想。

情感与态度目标:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立自信心。

教学的重点与难点:

根据对学生学习过程分析及课标要求我把重点定为:完全平方公式的结构特点及公式的直接运用。而难点应为完全平方公式的应用以及对公式中字母a、b的广泛含义的理解与正确应用。在教学过程中多处留有空白点以供学生独立研究思考。

二、教法与学法

(1)多媒体辅助教学,将知识形象化、生动化,激发学生的兴趣。

(2)教学中逐步设置疑问,引导学生动手、动脑、动口,积极参与知识全过程。

(3)由易到难安排例题、练习,符合八年级学生的认知结构特点。

(4)课堂中,对学生激励为主,表扬为辅,树立其学习的自信心。

三、教学过程

教师活动学生活动设计意图

一、创设情景,推导公式

计算

1、想一想(电脑演示)

一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种,(如图所示)

⑴、分别写出每块实验田的面积;

⑵、用不同的形式表示实验田的总面积,并进行比较,你发现了什么?

2、算一算

①、=?你能用多项式乘法法则说明理由吗?(引导学生说理)

3、做一做

你能利用面积知识,仿照课本以及演示的动画,自己给出的示意图吗?

二、自主探究,合作交流

板书公式:

①②1、问题:

①这两个公式有何相同点与不同点?

②你能用自己的语言叙述这两个公式吗

人教版数学说课稿 篇4

一、说教材。

本节内容是义务教育课程标准实验教科书小学数学四年级上册第五单元第一课时的内容。在此之前,学生已学习掌握了一位数乘两位数乘法、除数是一位数除法的口算方法的基础上进行教学的,这为过渡到本节内容的学习起着铺垫作用。本节内容是除数是两位数除法的口算除法,由于口算在日常生活中有着广泛应用,同时又是学习除数是两位数笔算除法的基础,所以占据着非常重要的地位。

二、析学生。

四年级的学生已经具备一定的计算基础,所以本节的计算学生应该不难学会,主要是让学生明白算理,还有就是要联系生活实际,培养学生的估算意思,让教学为生活服务。

三、说目标。

基于以上认识,考虑到学生已有的认知结构和心理特征,制定了这样的教学目标:

知识目标:使学生理解和掌握整十数除整十数、几百几十数(商一位数)的口算方法以及相应的估算,并能正确地进行计算;

能力目标:使学生经历探索口算方法的过程,使学生领悟学习数学的方法,促进他们的迁移、有序思维能力。

情感目标:让学生感受数学与生活的联系,培养学生用数学知识解决实际问题的能力。 本课的教学重点是通过自主探究学会口算、估算的方法,能正确的进行口算、估算。教学难点是理解用整十数除的口算算理。

四、说教法和学法。

本节课是一堂计算教学课,我依据教学内容和学生的年龄特点以及他们的知识现状采用了多种方法,充分调动学生学习的积性和主动性。按照自主探究-讨论-归纳这样的思路,运用知识迁移让学生发现新知,掌握新知。在自主探究、讨论中让学生主动参与教学活动,并提供动口,动手、动脑的机会,让学生在体验,感知、讨论、合作、比较中灵活掌握本节教学重点,突破难点。

五、说教学过程。

课堂教学是学生学习数学知识的获得,能力发展的重要途径。基于些我设计了以下的教学设计。

(一)复习旧知,知识迁移。

1、口算。

20×430×780÷4210÷7

2、估算。

81÷8≈122÷4≈

由于知识之间是有联系的,通过复习为的是让学生会运用知识迁移的方法自己探究学习本节课的内容,为后面的学习做好铺垫。

(二)创设情境,引入新知。

1、先出示乐满地图片,问:这是什么地方?你想去玩吗?然后出示题目:现在学校购买了80张门票,每班需要20张门票,可以分给几个班?

如何让枯燥的口算内容变得丰富,让乏味的算理变得有情趣,教材中我创造性的使用教材,把教材提供的情境改成去乐满地玩如何分门票,以此为情境展开教学,我觉得这样更贴近学生的生活,能够激起学生学习的兴趣。

让学生根据问题列出算式。

观察这题有什么特点?揭示课题。

(三)自主探究,发现方法。

1、让学生尝试解答。(这时学生可能会出现几种情况。)

2、以小组为单位,动手操作探究计算方法。

每张准备了80张门票,让学生动手圈一圈。

3、整理思路,指明汇报。学生汇报老师电脑演示。

这样设计是先让学生凭着各自已有经验感知,再通过动手操作验证思路,形成表象,归纳抽象出算理。

4、板书学生口算想法,然后让同桌互相说一说。

5、巩固练习。

60÷20xx÷30

6、再次创设情境。咱们一共120人,每艘船限坐30人,运几次才能运完?

这题可以让学生独立完成。因为学生已有一定的基础,让学生尝试练习,学生会根据例1的口算方法想,这时老师应注意的是让学生多说算理,然后再通过电脑动画演示,帮助学生进一步理解。

7、巩固练习。

180÷30420÷60

学生已有表内除法与一位数乘整十、整百、整千数的乘法口算作为基础,学生对“除数是两位数”的除法口算应该不是很难,重要的是让学生理解它地算理,于是在课堂中我尽量让学生参与“探索、交流”地学习过程。学生利用已有知识独立思考得出不同的口算方法后,再让同桌交流口算方法、说算理,让每个学生有说话的机会。通过“说”提升学生对口算过程的认识,通过“说”培养学生的数学表达能力。

8、学习估算。把上面两题改一改。

现有83张门票,怎么办呢?让学生说一说。

再出示一共是119人,现在大约需要几条船?

通过创设问题,使学生在解决问题中体会到生活中有时不需要很精确的结果,这时就要用到估算的方法。把计算教学置于现实情境之中,把探讨计算方法的.活动与解决实际问题融为一体,这样的计算教学更有意义些。

(四)深化认识,实践应用。

练习是数学学习中巩固新知,形成技能、发展思维,提高学生分析、解答能力的有效手段,但学生年龄小,如果只是单一的让学生做口算练习,无法提高学生计算的兴趣。于是,我在教学中注意练习形式多样化,设计了如下练习:

1、猜一猜。题目的背景是一个风景地,学生解答正确后,就可以知道是什么地方了。

2、开启智慧门。

3、解决实际问题。

让学生在愉悦的氛围中进行学习,富有趣味性,做得寓学于乐。

(五)归纳总结,提高认识。

引导学生小结所学知识,并谈谈今天的学习收获。

通过这样的归纳与总结,让学生对本节课的知识再次进行系统地整理与巩固,突出本课的重点,构建了知识结构,培养了学生的能力,提高了认识。

纵观整节课的设计,突出了让学生用自主探究与合作交流的方式来学习,这样,既体现的新课程的理念,又充分发挥了学生的主体作用,密切了数学与生活的联系。

以上就是我对本节课粗浅的预设,还敬请各位老师提出宝贵意见。

人教版数学说课稿 篇5

说教材:

教材的内容:义务教育课程标准实验教科书人教版六年级上册《扇形》。这个内容是学习了圆的有关知识之后来进行教学的,是学习圆环的基础,也是今后学习立体几何的基础。

说教材的地位及作用:

这部分内容是在学生学习了圆的认识的基础上来进一步教学的。本课教学重点应放在让学生通过丢手绢游戏,自主探索对圆中的弧、扇形以及圆心角的认识,让学生经历整个探索新知的过程,并在探索的过程中不断产生认知冲突,激发学生的探究欲望以及激发学习数学的兴趣。学好这一部分的内容有利于提高学生的`动手操作能力,增强创新的意识,进一步发展学生对空间与图形的兴趣,并获得解决实际问题的方法有着重要的价值。

说教学目标:

通过指导学生做游戏、合作探究让学生认识扇形,理解弧、扇形、圆心角等概念。并理解在同一个圆中,扇形的大小与这个扇形的圆心角的大小关系。在知识的探究过程中培养学生观察比较、分析判断及动手操作的能力,从而发展学生的空间观念。在引导学生解决问题的过程中,使学生获得积极的价值体验,并激发学生学习数学的兴趣。

说教学重点、难点:

利用游戏活动使学生建立扇形的概念、认识弧、圆心角,从而突破其教学难点和重点。

说教法和学法:

根据本课内容特点,结合学生的年龄特点和认知水平,在教学过程中主要运用了以下几种教法和学法。

(一)教学中紧密联系学生的生活实际,结合学生知识水平,通过做游戏的方法以及借助实物演示,让学生独立探讨知识形成过程。

(二)本节课主要采用讨论法和观察、发现法教学,通过启发引导,让学生在实际游戏中发现问题再自主探究,积极参与猜想、讨论、验证,在合作与交流中分析和推理,从而解决问题,获取新知。

(三)本节课围绕重难点,将现实游戏操作与多媒体创设生动的问题情境相结合,把抽象的知识形象化、具体化、生动化,激发了学生学习的热情,培养愿意合作交流,探究知识的意识。

【热门】人教版数学说课稿4篇

作为一无名无私奉献的教育工作者,常常要根据教学需要编写说课稿,说课稿有助于学生理解并掌握系统的知识。如何把说课稿做到重点突出呢?以下是小编为大家整理的人教版数学说课稿4篇,欢迎大家分享。

人教版数学说课稿 篇6

今天,我说课的题目是《角的平分线的性质》第一课时,下面,我从教材分析、教学内容、教学目标、学情分析、教法与学法、教学过程的设计等六个方面对我的教学设计加以说明.

一、教材分析

本节课选自新人教版教材《数学》八年级上册第十一章第三节,是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的.角平分线的性质为证明线段或角相等开辟了新的途径,简化了证明过程,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础.因此,本节内容在数学知识体系中起到了承上启下的作用.同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律.

二.教学内容

本节课的教学内容包括角的平分线的作法、角的平分线的性质及初步应用.

内容解析:

教材通过充分利用现实生活中的实物原型,培养学生在实际问题中建立数学模型的能力.作角的平分线是几何作图中的基本作图.角的平分线的性质是全等三角形知识的延续,也是今后证明两个角相等或证明两条线段相等的重要依据.因此,本节内容在数学知识体系中起到了承上启下的`作用.

三、教学目标

1、基本知识:了解尺规作图的原理及角的平分线的性质.

2、基本技能

(1)会用尺规作图作角的平分线。

(2)会利用全等三角形证明角平分线的性质。

(3)能运用角的平分线性质定理解决简单的几何问题

3、数学思想方法:从特殊到一般

4、基本活动经验:体验从操作、测量、猜想、验证的过程,获得验证几何命题正确性的一般过程的活动经验

目标解析:

通过让学生经历动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力和数学建模能力了解角的平分线的性质在生产,生活中的应用培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,激发学生应用数学的热情.

四、学情分析

刚进入初二的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导.根据学生的认知特点和接受水平,我把第一课时的教学重点定为:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用,难点是角平分线的性质的探究

教学难点突破方法:

(1)利用多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理正确使用;(2)通过对比教学让学生选择简单的方法解决问题;(3)通过多媒体创设具有启发性的问题情境,使学生在积极的思维状态中进行学习.

五、教法和学法

本节课我坚持“教与学、知识与能力的辩证统一”和“使每个学生都得到充分发展”的原则,采用引导式探索发现法、主动式探究法、讲授教学法,引导学生自主学习、合作学习和探究学习,指导学生“动手操作,合作交流,自主探究”.鼓励学生多思、多说、多练,坚持师生间的多向交流,努力做到教法、学法的最优组合.

教学辅助手段:根据本节课的实际教学需要,我选择多媒体PPT课件,几何画板软件教学,将有关教学内容用动态的方式展示出来,让学生能够进行直观地观察,并留下清晰的印象,从而发现变化之中的不变.这样,吸引了学生的注意力,激发了学生学习数学的兴趣,有利于学生对知识点的理解和掌握.

六.教学过程的设计

活动1.创设情景

[教学内容1]

生活中有很多数学问题:

小明家居住在一栋居民楼的一楼,刚好位于一条暖气和天然气管道所成角的平分线上的P点,要从P点建两条管道,分别与暖气管道和天然气管道相连.

问题1:怎样修建管道最短?

问题2:新修的两条管道长度有什么关系,画来看一看.

[整合点1]利用多媒体渲染气氛,激发情感.

教师利用多媒体展示,引领学生进入实际问题情景中,利用信息技术既生动展示问题,同时又通过图片让学生身临其境般感受生活。学生动手画图,猜测并说出观察到的结论.引导学生了解角的平分线有很多未知的性质需我们来解开,并板书课题.

[设计意图]依据新课程理念,教师要创造性地使用教材,作为本课的第一个引例,从学生的生活出发,激发学生的学习兴趣,培养学生运用数学知识,解决实际问题的意识,复习了点到直线的距离这一概念,为后续的学习作好知识上的储备.

活动2.探究体验

[教学内容2]

要研究角的平分线的性质我们必须会画角的平分线,工人师傅常用如图所示的简易平分角的仪器来画角的平分线.出示仪器模型,介绍仪器特点(有两对边相等),将A点放在角的顶点处,AB和AD沿角的两边放下,过AC画一条射线AE,AE即为∠BAD的平分线.

教师继续引导,用多媒体展示实验过程,学生口述,用三角形全等的方法证明AE是∠BAD的平分线.

[设计意图]帮助学生体验从生产生活中分离,抽象出数学模型,并主动运用所学知识来解决问题.

从上面的探究中可以得到作已知角的平分线的方法.

[教学内容3]

把简易平分角的仪器放在角的两边时,平分角的仪器两边相等,从几何作图角度怎么画?BC=DC,从几何作图角度怎么画?

教师提问,学生分组交流,归纳角的平分线的作法,口述证明角平分线的过程.

[设计意图]根据画图过程,从实验操作中获得启示,明确几何作图的基本思路和方法,师生交流并归纳.

教师先在黑板上示范作图,再利用多媒体演示作图过程及画法,加深印象,并强调尺规作图的规范性.

利用三角形全等证明角平分线,进一步明确命题的题设与结论,熟悉几何证明过程.

[教学内容4]

作一个平角∠AOB的平分线OC,反向延长OC得到直线CD,请学生说出直线CD与AB的位置关系.并在此基础上再作出一个45的角.

学生独立作图思考,发现直线AB与CD垂直.

[设计意图]通过作特殊角的平分线,让学生掌握过直线上一点作已知直线的垂线及特殊角的方法,达到培养学生的发散思维的目的.

人教版数学说课稿 篇7

说教材:

教材的内容:义务教育课程标准实验教科书人教版六年级上册《扇形》。这个内容是学习了圆的有关知识之后来进行教学的,是学习圆环的基础,也是今后学习立体几何的基础。

说教材的地位及作用:

这部分内容是在学生学习了圆的认识的基础上来进一步教学的。本课教学重点应放在让学生通过丢手绢游戏,自主探索对圆中的弧、扇形以及圆心角的认识,让学生经历整个探索新知的过程,并在探索的过程中不断产生认知冲突,激发学生的探究欲望以及激发学习数学的兴趣。学好这一部分的内容有利于提高学生的动手操作能力,增强创新的意识,进一步发展学生对空间与图形的`兴趣,并获得解决实际问题的方法有着重要的价值。

说教学目标:

通过指导学生做游戏、合作探究让学生认识扇形,理解弧、扇形、圆心角等概念。并理解在同一个圆中,扇形的大小与这个扇形的圆心角的大小关系。在知识的探究过程中培养学生观察比较、分析判断及动手操作的能力,从而发展学生的空间观念。在引导学生解决问题的过程中,使学生获得积极的价值体验,并激发学生学习数学的兴趣。

说教学重点、难点:

利用游戏活动使学生建立扇形的概念、认识弧、圆心角,从而突破其教学难点和重点。

说教法和学法:

根据本课内容特点,结合学生的年龄特点和认知水平,在教学过程中主要运用了以下几种教法和学法。

(一)教学中紧密联系学生的生活实际,结合学生知识水平,通过做游戏的方法以及借助实物演示,让学生独立探讨知识形成过程。

(二)本节课主要采用讨论法和观察、发现法教学,通过启发引导,让学生在实际游戏中发现问题再自主探究,积极参与猜想、讨论、验证,在合作与交流中分析和推理,从而解决问题,获取新知。

(三)本节课围绕重难点,将现实游戏操作与多媒体创设生动的问题情境相结合,把抽象的知识形象化、具体化、生动化,激发了学生学习的热情,培养愿意合作交流,探究知识的意识。

人教版数学说课稿 篇8

1.教材说明

教材将加法的初步认识和5以内的加法安排在一起进行教学。让学生结合具体情境,初步认识把两个数合起来是多少用加法计算,并会用适合自己的算法正确计算5以内的加法,同时使学生初步认识到应用前面所学的数的组成的知识来计算,比较简便。

教材分为四个板块:第一块为加法的初步认识,主题图是一个变化过程,让学生在此变化中理解加法的含义,就是表示合起来,在教材中的主题图里渗透了三个具体问题的含义,都可以用1+2=3这个算式来表示,渗透了不同的含义的事情可用一个抽象的算式来表达的数学思想,使学生初步感受、体会数学抽象的作用及数学的简洁美。接着,教材安排了一个变化的情境图,小丑合气球,来进一步直观形象地表达、说明加法的含义,让学生通过看图、理解图意,明确求一共有多少用加法计算,说出加法算式,从而来帮助学生对加法的含义有更深一层的理解;第二块做一做是一个让学生自己动手摆学具的活动,如摆一个圆片,再摆一个,一共是几个?摆两个圆片,再摆两个,一共是几个?让学生在操作中巩固对加法含义的理解,并能说出加法算式;第三块为15的加法,在学生掌握了5以内数的顺序及各数的组成,并初步知道加法含义的基础上进行教学的`。本块根据儿童不同的思维方式和思维水平初步体现算法多样化的思想。通过三个小朋友计算4+1=?的思考过程,鼓励学生说出自己计算的过程,尊重学生的想法,同时,引导学生使其初步认识到应用前面所学的数的组成的知识来计算比较简便;第四块教材安排了做一做练习。通过学生自己看图计算3+2=5和2+3=5,3+1=4和1+3=4两组算式,来进一步巩固算理和初步感知交换两个加数的位置和不变的道理。

2.学情分析

一年级的学生对加法含义已经有了一定的感性认识,由于在进行加法教学前,学生已掌握了5以内数的顺序和各数的组成,能够自觉的运用加法进行计算,但不知道为什么要用加法进行计算以及我们是如何用加法进行计算的。因此,再进行加法的教学时,重点是帮助学生理解加法的含义,鼓励学生用自己喜欢的方式进行计算的同时感知用数的组成计算的简便。将他们对加法的感性认识提高到理性认识。

其次,学生已具备一定的语言表达能力、动手操作能力和小组合作意识,因此,在本节课教学过程中也着重培养学生发展其动手操作、语言表达的能力和初步的数学交流意识,让学生感受到与同伴交流的乐趣,也培养学生积极思考、认真倾听他人想法的习惯。

3.教学目标

(1)通过操作、演示,使学生知道加法的含义;能正确读出加法算式;使学生经历与同伴交流5以内加法的算法过程,会用适合自己的算法正确计算5以内的加法;使学生初步体会生活中有许多问题要用加法来解决。

(2)通过学生操作、表述,培养学生动手操作能力、语言表达能力;培养学生初步的数学交流意识,并感受与同伴交流的乐趣。

(3)培养学生积极思考、认真倾听他人想法的习惯。

(4)使学生积极主动地参与数学活动,获得成功的体验,增强自信心。

4.教学重点

(1)知道加法的含义

(2)激励学生说出自己计算4+1=5的过程

5.教学难点

(1)知道加法的含义

(2)使学生会用数的组成知识来计算5以内的加法

二、教学过程

教学过程

设计意图

学生预设

(一)激趣导入

1、今天老师给小朋友们带来了礼物,我的礼物将奖励给坐姿最漂亮,回答问题声音最响亮的小朋友。

2、教师演示:左手3支铅笔,右手2支铅笔,合在一起一共有几支铅笔?

3、小组合作:和你的同桌说一说,你是怎么知道合在一起一共有几支铅笔的。

4、汇报结果

5、当我们把事物合在一起求一共有多少时可以用加法计算,今天,我们就来学习加法。(板书课题)

用贴近学生生活的物品铅笔,激发起学生学习的兴趣,让学生之间相互交流,初步感知加法的含义,就是把两个数合起来,从而导入今天的教学内容。

1、点数

2、数的顺序

3、列加法算式

(二)理解加法的含义

1、课件动态展示23页主题图

2、引导学生观察提出数学问题,并解决问题(板书在小黑板上)

3、以上三个问题都能用加法来计算,那你能总结出什么情况下我们用加法计算吗?

4、小结:把两个数合在一起求一共有多少,我们就用加法计算。(教师边说边用手势表示合起来)

5、学习加法算式

(1)由数量抽象出数字

(2)认识+:把1和2合起来在数学上我们用符号+来表示(板书+)

(3)合在一起是多少,用数字几表示?(板书=3)

(4)读加法算式(板书读法)

通过课件主题图的动态变化让学生进一步感知并理解,加法就是把两个数合起来,求一共有多少。同时,培养学生的语言表达能力和思维训练能力。

让学生在具体的情境中抽象出数字,渗透给学生,抽象的数字可以表示不同的含义。

1、1个粉纸鹤和2个蓝纸鹤,合在一起一共有几个纸鹤?用加法计算,列式为1+2=3。

2、左边1位小朋友,右边2位小朋友,合在一起一共有几位小朋友?用加法计算,列式为1+2=3。

3、1位小女孩,2位小男孩,合在一起一共有几位小朋友?用加法计算,列式为1+2=3。

(三)进一步巩固、理解加法的含义

活动一:

1、课件展示小丑合气球

2、小组合作:你能用今天学过的知识说一说这个图是什么意思吗?快和你的伙伴说一说,并在你说的时候,像老师一样加上动作。

3、检验合作效果

活动二:

1、教师边板演边表述含义:摆1个圆片,再摆1个圆片,合起来一共是几个圆片,用加法计算,列式为1+1=2。

2、学生边板演边表述含义

3、小组合作:2+2=4

4、检验小组合作

活动三:

1、用5个圆片摆出不同的加法算式

2、学生独立操作,全班汇报交流

帮助学生进一步理解加法的含义,并说出加法算式,同时,训练其语言表达能力和培养小组合作意识,让学生感受到与同伴交流的乐趣,也培养学生积极思考、认真倾听他人想法的习惯。

让学生在操作中逐步理解并巩固加法的含义,并说出加法算式。同时,训练学生的动手操作能力、语言表达能力和培养小组合作意识,让学生感受到与同伴交流的乐趣,也培养学生积极思考、认真倾听他人想法的习惯。

4+13+22+31+4

(四)5以内的加法教学

1、创设情境

(1)课件播放:学校的操场上有4位同学做游戏,又来了一位同学

(2)你能从刚才的图象中提出数学问题吗?(将图像复制到黑板)

(3)解决问题(板书4+1=5)

2、交流算法

(1)谁能说说你是怎么算的得数是5呢?

(2)全班交流,可适时引导学生不看图,你会计算4+1=5吗?

(3)引导学生讨论:这些算法中哪些比较简便。

3、小结:我们在计算5以内的加法时可以用前面所学的数的组成的知识来计算比较简便。

用贴近学生校园生活的情境,使学生初步体会生活中有许多问题要用加法来解决,让学生积极主动地参与数学活动,并培养学生的语言表达能力和思维训练能力。

1、点数

2、根据数的顺序

3、根据数的组成

(五)巩固练习

1、课件播放:24页小猫图动态的活动情境

(1)让学生说题意、列式(板书)

(2)独立计算得数并填在方框里

(3)点名汇报并说算理

(4)引导学生观察并使学生初步感知交换两个加数的位置和不变的道理

2、摆一摆

(1)学生独立操作,边摆边表述加法含义,并独立完成填空

(2)点名汇报,说算理

通过读懂题意,进一步理解加法的含义,知道用自己理解的算法进行计算,能从多样化的算法中认识到用数的组成的知识来计算比较简便,并使学生直观感知到交换两个加数的位置和不变的道理。同时,培养学生的动手操作能力和语言表达能力。

人教版数学说课稿 篇9

各位评委、老师大家好:

我说课的题目是《三角形内角和》,内容选自人教版九年义务教育七年级下册第七章第二节第一课时。

一、本节课在新一轮课程改革下的设计理念:

数学是人与人之间精神层面上进行的交往。课堂教学中的交往主要是教师与学生、学生与学生之间的交往。它需要运用"对话式"的学习方式,采取多种教学策略,使学生在合作、探索、交流中发展能力。新课程中对学生的情感、体验、价值观,以及获取知识的渠道都有悖于传统的教学模式,这正是教师在新课程中寻找新的教学方式的着眼点。应该说,新的教学方式将伴随着教师对新课程的逐渐透视而形成新的路径。要破除原有教学活动的框架,建立适应师生相互交流的教学活动体系;满足学生的心理需求,实现教者与学者感情上的融洽和情感上的共鸣;给学生体验成功的机会,把"要我学"变成"我要学".我认为教师角色的转变一定会促进学生的发展、促进教育的长足发展,在未来的教学过程里,教师要做的是:帮助学生决定适当的学习目标,并确认和协调达到目标的最佳途径;指导学生形成良好的学习习惯,掌握学习策略;创造丰富的教学情境,培养学生的学习兴趣,充分调动学生的学习积极性;为学生提供各种便利,为学生的学习服务;建立一个接纳的、支持性的、宽容的课堂气氛;作为学习的参与者,与学生分享自己的感情和想法;和学生一道寻找真理,能够承认自己的过失和错误。教学情境的营造是教师走进新课程中所面临的挑战,适应新一轮基础教育课程改革的教学情境不是文本中的约定,也不是现成的拿来就能用的,需要我们在教学活动的全过程中去探索、研究、发现、形成。

二、教材分析与处理:

三角形的内角和定理揭示了组成三角形的三个角的数量关系,此外,它的证明中引入了辅助线,这些都为后继学习奠定了基础,三角形的内角和定理也是几何问题代数化的体现。

三、学生分析

处于这个年龄阶段的学生有能力自己动手,在自己的视野范围内因地制宜地收集、编制、改造适合自身使用,贴近生活实际的数学建模问题,他们乐于尝试、探索、思考、交流与合作,具有分析、归纳、总结的'能力,他们渴望体验成功感和自豪感。因而老师有必要给学生充分的自由和空间,同时注意问题的开放性与可扩展性。

四、教学目标:

1.知识目标:在情境教学中,通过探索与交流,逐步发现"三角形内角和定理",使学生亲身经历知识的发生过程,并能进行简单应用。能够探索具体问题中的数量关系和变化规律,体会方程的思想。通过开放式命题,尝试从不同角度寻求解决问题的方法。教学中,通过有效措施让学生在对解决问题过程的反思中,获得解决问题的经验,进行富有个性的学习。

2.能力目标:通过拼图实践、问题思考、合作探索、组内及组间交流,培养学生的的逻辑推理、大胆猜想、动手实践等能力。

3.德育目标:通过添置辅助线教学,渗透美的思想和方法教育。

4.情感、态度、价值观:在良好的师生关系下,建立轻松的学习氛围,使学生乐于学数学,遇到困难不避让,在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。

五、重难点的确立:

1.重点:三角形的内角和定理探究与证明。

2.难点:三角形的内角和定理的证明方法(添加辅助线)的讨论六、教法、学法和教学手段:

采用"问题情境-建立模型-解释、应用与拓展"的模式展开教学。

采用对话式、尝试教学、问题教学、分层教学等多种教学方法,以达到教学目的。

教学过程设计:

一、创设情境,悬念引入

一堂新课的引入是老师与学生交往活动的开始,是学生学习新知识的心理铺垫,是拉近师生之间的距离,破除疑难心理、乏味心理的关键。一个成功的引入,是让学生感觉到他熟知的生活,可使学生迅速投入到课堂中来,对知识在最短的时间内产生极大的兴趣和求知欲,接下来教学活动将成为他们乐此不疲的快事了。

具体做法:抛出问题:"学校后勤部折叠长梯(电脑显示图形)打开时顶端的角是多少度呢?一名学生测出了两个梯腿与地面的成角后,立即说出了答案,你知道其中的道理吗?"待学生思考片刻后,我因势利导,指出学习了本节课你便能够回答这个问题了。从而引入新课。

二、探索新知

1.动手实践,尝试发现:要求学生将事先准备好的三角形纸板按线剪开,然后用剪下的∠A、∠B与完整的三角形纸板中的∠C拼图,使三者顶点重合,问能发现怎样的现象?有的学生会发现,三者拼成一个平角。此时让学生互相观察拼图,验证结果。从观察交流中,互学方法,达到生生互动。待交流充分,分小组张贴所拼图形,教师点评,总结分类,将所拼图形分为∠A、∠B分别在∠C同侧和两侧两种情况。对有合作精神的小组给与表扬。

(将拼图展示在黑板上)

2.尝试猜想:教师提问,从活动中你有怎样的发现?采取组内交流的方式,产生思维碰撞。此时我走到学生中去,对有困难的小组给与适当的引导。之后由学生汇报组内的发现。即三角形三个内角的和等于180度。

3.证明猜想:先帮助学生回忆命题证明的基本步骤,然后让学生独立完成画图、写出已知、求证的步骤,其他同学补充完善。下面让学生对照刚才的动手实践,分小组探求证明方法。此环节应留给学生充分的思考、讨论、发现、体验的时间,让学生在交流中互取所长,合作探索,找到证明的切入点,体验成功。对有困难的学生要多加关注和指导,不放弃任何一个学生,借此增进教师与学有困难学生之间的关系,为继续学习奠定基础。合作探究后,汇报证明方法,注意规范证明格式。此处自然的引入辅助线的概念。但要说明,添加辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的。

4.学以致用,反馈练习

(1)在△ABC中,已知∠A=80°,能否知∠B+∠C的度数?

解:∵∠A+∠B+∠C=180°(三角形内角和定理)∴∠B+∠C=100°在△ABC中,

(2)已知:∠A=80°,∠B=52°,则∠C=?

解:∵∠A+∠B+∠C=180°(三角形内角和定理)又∵∠A=80°∠B=52°(已知)

∴∠C=48°

(3)在△ABC中,已知∠A=80°,∠B-∠C=40°,则∠C=?

(4)已知∠A+∠B=100°,∠C=2∠A,能否求出∠A、∠B、∠C的度数?

(5)在△ABC中,已知∠A:∠B:∠C=1:3:5,能否求出∠A、∠B、∠C的度数?

解:设∠A=x°,则∠B=3x°,∠C=5x°

由三角形内角和定理得,x+3x+5x=180

解得,x=20

∴∠A=20°∠B=60°∠C=100°

(6)已知在△ABC中,∠C=∠ABC=2∠A,求(1)∠B的度数?(2)若BD是AC边上的高,∠DBC的度数?

第(6)题是书中例题的改用,此题由辅助线辅助课件打出,给学生以图形由简单到繁的直观演示。

通过这组练习渗透把图形简单化的思想,继续渗透统一思想,用代数方法解决几何问题。

5.巩固提高,以生为本

(1)如图:B、C、D在一条直线上,∠ACD=105°,且∠A=∠ACB,则∠B=——度。

(2)如图AD是△ABC的角平分线,且∠B=70°,∠C=25°,则∠ADB=——度,∠ADC=——度。

本组练习是三角形内角和定理与平角定义及角平分线等知识的综合应用。能较好的培养学生的分析问题、解决问题的能力,有助于获得一些经验。

6.思维拓展,开放发散

如图,已知△PAD中,∠APD=120°,B、C为AD上的点,△PBC为等边三角形。试尽可能多地找出各几何量之间的相互关系。

本题旨在激发学生独立思考和创新意识,培养创新精神和实践能力,发展个性思维。

三、归纳总结,同化顺应

1.学生谈体会

2.教师总结,出示本节知识要点

3.教师点评,对学生在课堂上的积极合作,大胆思考给与肯定,提出希望。

四、作业:

1.必做题:习题3.1第10、11、12题

2.选做题:习题3.1第13、14题

五、板书设计

三角形内角和

学生拼图展示 已知: 求证:

证明: 开放题:

人教版数学说课稿 篇10

一、说教材

1、教学内容

九年义务教育六年制小学数学课程标准实验教科书(人教版)一年级下册第88和89页,《找规律》的例1~例3及“做一做。”

2、教材简析

“探索规律”是《数学课程标准》中“数与代数”领域内容的一部分,在第一学段和第二学段都规定了这部分内容。传统教材中没有单独编排数字和图形的排列规律,只是在练习中有少量的习题;有关探索规律的内容是新编实验教材新增设的内容之一,也是数学课程教材改革的一个新变化。

“找规律”在新教材中是一个独立的单元,本节课的3“找规律”作为新单元的第一课,非常重要。本单元是从形象的图形排列规律,颜色交替规律慢慢过渡到抽象的数列规律,如果这节课没有把握好,那么对学生后面的继续学习将会造成阻碍。

3、教学目标

知识目标:学生能够通过物品的有序排列,初步认识简单的排列规律,会根据规律知道下一个物体。

过程与方法:通过“猜一猜”,舞蹈动作等初步感知生活中的规律现象,通过观察主题图,认识规律同时掌握寻找规律的方法,通过涂色与摆学具等活动培养学生的动手能力,激发创新意识。

情感态度与价值观:通过创设情境,学生能够感知数学与生活的紧密联系,感受数学的美。

4、教学重点、难点

通过图形或物体的有序排列,初步认识简单的排列规律,并会知道下一个图形或物体,培养学生的逻辑推理能力和创新意识。

5、教具、学具准备

课件、彩笔、涂色卡等。

二、说教法、学法

在教学思想上努力体现以学生为学习的主人,教师只是学习的组织者、引导者和合作者,让学生始终参与教学活动中。在教学方法上,采用直观演示、动手操作、引导探究等教学方法,从扶到放,让学生在尝试、探索、练习、实践操作过程中悟出找规律和创造规律的方法。

在教学设计上,注意重点内容的处理,使学生在主动获取知识的同时,提高学生的观察能力、逻辑推理能力、动手能力和解决问题的能力,培养学生的创新意识。在教学手段上,采用多媒体辅助教学增强了教学的效果。

有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式,也是本节课中学生学习找规律、创造规律的主要方法。

三、说教学过程

(一)创设情境,揭示课题

1、师故做神秘:你们想知道这袋子里装的是什么吗?这里面装着小圆片,只有两种颜色,一种是红色的,一种是绿色的。下面我们来做个猜一猜小游戏,好不好?(老师第一次拿出的小圆片是什么颜色)

2、师从袋子里拿出一个红色的小圆片。

3、老师第二次拿出的小圆片是什么颜色?(绿色)再问第三次呢?再拿一次呢?。。。。。。(共6个)

4、哇,猜得真准,你们怎么猜得这么准?

5、原来你们是根据这样的规律猜的。那么后面的.排列你们知道了吗?[出示省略号]

6、小朋友们观察得真仔细。在我们日常生活中,也有像这样按一定的顺序进行有规律的排列,今天我们一起来学习找规律。

设计意图:兴趣是最好的老师,课初能否激发学生的学习兴趣将直接影响课堂教学效率。让学生猜一猜圆片颜色的游戏,有意识地按规律呈现,让学生在猜测中意会,积累感性经验,从而初步感知规律。这一环节以学生喜爱的游戏形式激发学生参与,同时仅要求猜一猜结果,学生凭直觉做出判断,人人能够参与,有利于面向全体学生。给学生的学习提供了思考、尝试的机会,在猜想中感知到规律的存在,帮助理解知识。

(二)自主探索,寻找规律

课件出示主题图:

1、仔细观察这幅图,你看到了什么?

2、这些彩旗、灯笼、和花朵是不是乱摆乱放的? 你发现它们有什么规律吗?把你发现的规律悄悄地告诉给你身边的小伙伴好吗?

3、我们先来看看小旗的规律。

4、小旗的规律找到,下面看看花儿的规律

5、再来看看灯笼和小朋友的排列规律

6、小朋友们,你们知道吗?今年是我们巴马瑶族自治县成立50周年,寿乡的美化绿化真的很不错,看多美的小花园。(课件出示)

7、新建的广场地板砖快铺完了,大家能帮忙吗?(课件出示)

设计意图:数学来源于生活,又高于生活,应用于生活,因此,数学教学要紧密联系学生的生活实际。本环节从主学生熟悉的联欢会及县庆美化寿乡的具体情境引入,让学生体会到现实生活中的有规律的排列原来包含有数学问题,有利于产生学习和探索数学的动机,同时也让学生在解决实际问题中体会到成功的喜悦,并渗透热爱家乡的教育。

(三)模仿中理解规律

1、刚才我们应用规律解决了生活中的一些问题,你们能不能按规律来摆图形呢?

2、好!老师给每个小组准备好了,请大家4人一组把信封里的东西全倒出来,看看老师给你们准备了什么?

3、小组里的同学商量一下你们想按什么规律摆,商量好了大家才动手摆。

4、那一组愿意把你们摆的规律拿上来展示给大家看?

5、你能向大家介绍你是按什么规律摆的吗?

6、还有哪一组愿意拿上来?(你想让他们说说你们组是按什么规律摆的吗?那你怎样问他们呢?)

7、还有哪一组想拿上来?(你能象他刚才那样也提出一个问题吗?)谁可以回答这个问题?

8、指其中一张:我也想提出一个问题可以吗?

按照这样的规律排列下去,第12个应该是什么图形呢?请你独立想一想(谁来说一说)

9、到底是什么图形呢?请你拿出桌面上的这张学具卡片,接着画一画,看第12个是什么图形?

10、画好了吗?谁来说说你画到第12个是什么图形?

11、拿出你的彩色笔按规律涂一涂。

设计意图:有效的学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索、合作交流是学生学习数学的重要方式。找规律内容具活动性和探究性,既具有挑战性,又具有趣味性,“找规律”的内容不能用“对或错”来简单的判断其正确与否,而是要听学生介绍“摆的规律”有无道理,这样就要求学生在自主探索的基础上,充分与同学展开交流活动,注意倾听同学讲的有无道理,联系原有的数学知识结构做出判断,不断地及时地优化自已的数学知识,在合作交流中获得了发展。

新课标明确指出:“要注意培养学生的问题意识,使学生具有初步的发现问题、提出问题、分析解决问题的能力。”本环节设计注重培养学生提出问题的能力以及渗透猜想、验证的学习方法。

(四)生活中寻找规律

1、在我们的生活中,你还发现了哪些东西也是有规律的?(一周的星期一到星期天、街上的红绿灯、人行道的斑马线等)

2、你真会说,大家表扬他。(啪啪 啪啪啪 啪啪 啪啪啪)

3、刚才的表扬声,有规律吗?你还能接着往下拍吗?

4、用有规律的动作跳舞。(《春天在哪里》)

5、你也能自己创造一些规律吗?(每个小组的同学讨论讨论)

设计意图:在学生掌握初步的规律之后,从自己的身边着手,寻找生活中的规律现象,让学生在举例和发现中感受到数学的奇妙和无所不在,从而对数学产生亲切感。同时注意培养学生的创造能力,发展学生的思维。

(五)欣赏规律,感受数学美

1、课堂小结:生活中还有许多有规律的现象:例如春夏秋冬、白天黑夜、日出日落,时间就这样年复一年、日复一日。小朋友们要珍惜时间,勇于探索生活中的规律,做生活的小主人。

2、课件播放生活中的一些规律等,让学生进一步感受到生活中处处有数学,感悟规律所带来的数学美。(插入轻音乐)

(1)白天、黑夜、白天、黑夜。

(2)一年春、夏、秋、冬依次不断的反复出现。

(3)太阳总是从东方升起,从西边下山。

设计意图:让学生进一步感受到生活中处处有数学,感悟规律所带来的数学美,拓展学生的思维空间,让学生对规律美产生无限的遐想,使知识得到延伸。

四、说板书设计

板书作为课堂教学语言的另一种表现形式,它具有启发性、艺术性、指导性、应用性,并应发挥引、导功能,引学生之思,导学生之路。本节课的板书为了突出学生的主体地位,突出学习重点,解决知识难点,整个黑板主要用于展示学生涂画规律的作品。这样安排既便于学生观察,又有利于调动学生学习的积极性,培养学生的创新意识和创造能力,提高教学效率。

人教版数学说课稿 篇11

各位老师:

大家好!我叫,来自湖南科技大学。我说课的题目是《辗转相除法与更相减损术》,内容选自于新课程人教A版必修3第一章第三节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、学法分析和教学过程分析等五大方面来阐述我对这节课的分析和设计:

一、教材分析

1.教材所处的地位和作用

在前面的两节里,我们已经学习了一些简单的算法,对算法已经有了一个初步的了解。

这节课的内容是继续加深对算法的认识,体会算法的思想。这节课所学习的辗转相除法与更相减损术是第三节我们所要学习的四种算法案例里的第一种。学生们通过本节课对中国古代数学中的算法案例——辗转相除法与更相减损术学习,体会中国古代数学对世界数学发展的贡献。

2.教学的重点和难点

重点:理解辗转相除法与更相减损术求最大公约数的方法。

难点:把辗转相除法与更相减损术的方法转换成程序框图与程序语言。

二、教学目标分析

1.知识与技能目标:

⑴理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析。 ⑵基本能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序。

2.过程与方法目标:

⑴对比用辗转相除法与更相减损术求两数的最大公约数的方法,比较它们在算法上的区别,并从程序的学习中体会数学的严谨。 ⑵领会数学算法与计算机处理的结合方式,初步掌握把数学算法转化成计算机语言的一般步骤。

3.情感,态度和价值观目标

⑴通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

⑵在学习古代数学家解决数学问题的方法的.过程中培养严谨的逻辑思维能力,在利用算法解决数学问题的过程中培养理性的精神和动手实践的能力。

⑶在合作学习的过程中体验合作的愉快和成功的喜悦。

三、教学方法与手段分析

1.教学方法:充分发挥学生的主体作用和教师的主导作用,采用启发式,并遵循循序渐进的教学原则。这有利于学生掌握从现象到本质,从已知到未知逐步形成概念的学习方法,有利于发展学生抽象思维能力和逻辑推理能力。

2.教学手段:通过各种教学媒体(计算机)调动学生参与课堂教学的主动性与积极性。

四、学法分析

在理解最大公约数的基础上去发现辗转相除法与更相减损术中的数学规律,并能模仿已经学过的程序框图与算法语句设计出辗转相除法与更相减损术的程序框图与算法程序。

五、教学过程分析

㈠复习引入

1. 首先要回顾一下前面我们已经学习过的算法的三种表示方法:自然语言、程序框图(三种逻辑结构)、程序语言(五种基本语句),这个是为了带领学生们对之前学过的内容熟悉一下,也为下面的学习打下基础。

2. 然后提出问题:在初中,我们已经学过求最大公约数的知识,你能求出18与30的公约数吗?

3. 接着教师进一步提出问题,我们都是利用找公约数的方法来求最大公约数,如果公约数比较大而且根据我们的观察又不能得到一些公约数,我们又应该怎样求它们的最大公约数?比如求8251与6105的最大公约数?由此就引出我们这一堂课所要探讨的内容。(板出课题)

㈡讲授新课

1.首先我们学习的是辗转相除法,为了更好地总结出辗转相除法求最大公约数的基本步骤,我先给出了一个例题。

例1求两个正数8251和6105的最大公约数。

在老师的引导下,师生一同完成整个解题过程,然后分析这些步骤,得出辗转相除法求最大公约数的基本步骤. 2.然后依照同样的方法学习更相减损术求最大公约数的基本步骤 (这样能够锻炼学生们的逻辑思维能力以及概括能力)

3.给出两道练习,以及时巩固刚刚学习的新知识。

练习 1利用辗转相除法求两数4081与20723的最大公约数(答案:53)

2 用更相减损术求两个正数84与72的最大公约数。(答案:12)

4.思考:你能利用辗转相除法和更相减损术试着设计程序求出上面两道练习的答案吗?然后

试着在计算机上运行程序。(这样可以激发学生们的学习兴趣,并且将学习的内容得到及时的应用)

㈢课堂小结

1.比较辗转相除法与更相减损术的区别

2.对比分析辗转相除法与更相减损术求最大公约数的计算方法及完整算法程序。

通过小结使学生们对知识有一个系统的认识,突出重点,抓住关键,培养概括能力。

㈣布置作业

习题1.3 A组 1

[设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。

大家都在看