《最大公因数》教学设计

笔构网

2025-09-08教案

请欣赏《最大公因数》教学设计(精选7篇),由笔构网整理,希望能够帮助到大家。

《最大公因数》教学设计 篇1

教学内容

《最大公因数》是人教版第十册第二单元第四节的内容,教材第80到81页的内容及第82页练习十五的第3题。

设计思路

这个内容被安排在人教版第十册“分数的意义和性质”这个单元内,是学生已经理解和掌握因数的含义初步学会找一个数的因数,知道一个数因数的特点的基础上进行教学的,这部分内容既是“数与代数”领域基础知识的重要组成部分,又是进一步学习约分和分数四则运算的基础,对于学生的后续学习和发展,具有举足轻重的用。

教学目标

1、使学生理解两个数的公因数和最大公因数的意义。

2、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。

3、培养学生独立思考及合作交流的能力,能用不同方法找两个数的最大公因数。

4、培养学生抽象、概括的能力。

重点难点

1、理解公因数和最大公因数的意义。

2、掌握求两个数的最大公因数的方法。

教具准备

多媒体课件、卡片

教学过程

一、导入

1、学校买回12棵风景树,现在要栽种起来,栽种时行数不限,但每行栽种的数目相等,可以怎么栽种?16棵呢?

2、分别写出16和12的所有因数。

二、教学实施

1、老师用多媒体课件演示集合图。

指出 :1,2,4是16 和12公有的因数,叫做他们的公因数。

其中,4是最大的公因数,叫做他们的最大公因数。

2、完成教材第80页的“做一做”

先让学生独立思考,再让拿卡片的同学快速站一站,那几个数站在左边,那几个数站在右边,那几个数站在中间,最后集体订正。

3、出示例2。怎样求18和27的最大公因数?

(1) 学生先独立思考,用自己想到的方法试着找出18和27的最大公因数。

(2) 小组讨论,互相启发,再在全班交流。

(3) 老师用多媒体课件和板书演示方法

方法一 :先分别写出18和27的因数,再圈出公有的因数,从中找到最大公因数。

方法二 :先找出18的'因数,再看18的因数中有哪些是27的因数,从中找最大。

18的因数有:① ,2 ,③ ,6 ,⑨ ,18

方法三 :先找出27的因数,再看27的因数中有哪些是18的因数,从中找最大。

27的因数有:①,③,⑨,27

方法四 :先写出18的因数1 ,2 ,3 ,6 ,9 ,18。然后从大到小依次看是不是27的因数 ,第一个数9是27的因数,所以9是18和27的最大公因数。

4、完成教材第81页的“做一做”。

学生先独立完成,独立观察,每组数有什么特点,再进行交流。

小结:求两个数最大公因数有哪些特殊情况?

⑴ 当两个数成倍数关系时,较小的数就是他们的最大公因数。

⑵ 当两个数只有公因数1时,他们的最大公因数是1.。

三、课堂练习设计(多媒体课件出示)

选出正确答案的编号填在括号里

1、9和16的最大公因数是( )

A . 1 B. 3 C . 4 D. 9

2、16和48的最大公因数是()

A . 4 B. 6 C . 8 D. 16

3、甲数是乙数的倍数,甲乙两数的最大公因数是( )

A .1 B. 甲数C . 乙数D. 甲、乙两数的积

四、课堂小结

通过本节课的学习,我们主要认识了公因数、最大公因数的意义;掌握了找两个数的最大公因数的方法:找两个数的最大公因数,可以先分别写出这两个数的因数,再圈出相同的因数,从中找出最大的公因数;也可以先找到一个数的因数,再从大到小看看那个数是另一个数的因数,从而找到最大公因数。

五、留下疑问

有三根小棒,分别长10㎝,16㎝,48㎝。要把他们都结成同样长的小棒,步许剩余,每根小棒最长能有多少厘米?

六、课堂作业设计

教材82页第2题、第5题

板书设计

最大公因数

例2:怎样求18和27的最大公因数?

18的因数有:1 ,2 ,3 ,6 ,9 ,18

27的因数有:1 ,3 , 9 ,27

18和27的公因数有:1 ,3 , 9

18和27的最大公因数是9

《最大公因数》教学设计 篇2

教学内容:

课本P81的学习内容和练习十五的练习。

教学目标:

1、使学生加深对公因数和最大公因数意义的理解,掌握求两个数最大公因数的方法。

2、能在练习的过程中发现求两数最大公因数的两种特殊情况。

3、体现算法的多样化和个性化,培养学生独立思考和合作学习的能力。

教学重点:

掌握找两个数的最大公因数的方法

教学难点:

掌握两种特殊情况下求两个数最大公因数的方法。

教学过程:

一、激趣引入

师:同学们还记得什么是公因数,什么是最大公因数吗?请你根据已知的信息,快速找出15和20的公因数与最大公因数。

15的因数:1,3,5,15

20的因数:1,2,4,5,10,20

15和20的公因数有( ),最大公因数是( )。

(指名口答加课件订正)

师:在接下来要学习的分数计算和一些解决实际问题中,我们经常要用到最大公因数的知识。所以今天我们就一起来学习怎样求最大公因数。

(板书:求最大公因数)。

二、交流展示

1、小组交流预习成果,初步归纳求最大公因数的方法。

师:昨天同学们都进行了预习,你们找到求最大公因数的方法了吗?请在小组内交流一下。

2、预习成果展示,掌握求最大公因数的方法。

师:请一位同学来汇报一下你是怎样求18和27的最大公因数的?

生:可以先分别找出18和27的因数,再找出它们的公因数,其中最大的就是最大公因数。

18的因数:1,2,3,6,9,18

27的因数:1,3,9,27

18和27的最大公因数是9。

师:这种方法先写出两个数的因数,再找出它们的公有因数,其中最大的就是最大公因数。所以我们在写出两个数的因数后,应该写上这样一句话:18和27最大公因数是9。

3、交流互动,感受求最大公因数方法的多样性。

除了这种方法,同学们还会其他方法吗?请同学拿着学案纸上台投影展示汇报。

预设

(1)课本第二种

18的因数:1,2,3,6,9,18

其中1、3、9也是27的因数,所以1、3、9是18和27的公因数,9是它们的最大公因数。

师:这种方法先找出18的因数,再看这些因数中谁是27的因数,那它们就是18和27的公因数,最大的一个自然就是最大公因数。能够先找18的因数,能不能先找27的因数呢?(能)

师:(指着这种方法)我们只是想找出它们的最大公因数,大家动脑筋思考一下,这种方法还能不能更简化和优化一些?(引导学生发现,写出18或27的因数后,从大到小看谁是另一个数的因数,满足的第一个就是最大公因数)

(2)其它的方法

分解质因数法和短除法根据实际情况灵活处理。

三、质疑点拨。

1、预习评价,纠错巩固。

师:通过刚才的学习,你掌握了求最公因数的.方法了吗?老师在课前收集了几份预习作业,你能发现这些练习的错误或做得不够好的地方吗?(投影展示典型错例。)

2、阅读课本,提出质疑。

师:现在请同学们再阅读课本和反思刚才的学习过程,还有什么疑问吗?(课前了解学案再做预设)

3、方法归纳,点拨提升。

其实两个数的公因数和它们的最大公因数之间也存在某种关系,你发现了吗?(多请几个学生来汇报他们的答案,并引导学生观察例2的板书,以及学案上多个例子,发现公因数是最大公因数的因数。)

师:所有公因数都是最大公因数的因数。我们可以利用这个发现快速地检验自己是否找对了公因数和最大公因数。(让学生用例题和学案上1,2个例子来试试怎样检验)

师:回顾刚才大家介绍的多种求最大公因数的方法,其中这种做法(指着黑板)直接根据最大公因数的定义来找,属于基本方法,每个同学都应该理解和掌握。在这种方法基础上,同学们可以选择自己喜欢和擅长的方法去求最大公因数。

四、练习提高。

师:现在老师马上考考大家,你有信心做对吗?

1、求下面每组数的最大公因数。

15和12 30和45

2、找有倍数关系的两个数、互质数关系两个数的最大公因数的规律。

师:看来大家掌握得都不错,都能做对。老师要提高难度,不仅要做对,还要找出规律。请完成课本P81做一做,完成后在小组里订正和说一说自己的发现。

4和8 16和32 1和7 8和9

(1)汇报最大公因数答案。

(2)说一说自己的发现。(多请几个学生说说发现,逐渐归纳成结论)

师:当两数成倍数关系时,较小的数就是它们的最大公因数。当两数只有公因数1时(也就是大家在预习时在你知道吗里面了解到的互质数),它们的最大公因数也是1。

(3)教师小结

师:像这样能够直接看出最大公因数的,就不用再从头去找公因数了,也就是不用写出计算过程,直接写出谁和谁的最大公因数是几就可以了。你们掌握了找最大公因数的两种特殊情况了吗?请迅速完成课本82页第3题,直接填写在书上。

3、选出正确答案的编号填在横线上。

(1)9和16的最大公因数是_____________。

A。1 B。3 C。4 D。9

(2)16和48的最大公因数是_____________。

A。4 B。6 C。8 D。16

(3)甲数是乙数的倍数,甲、乙两数的最大公因数是_____________。

A。1 B。甲数 C。乙数 D。甲、乙两数的积

师:看来直接找两个数的最大公因数并不能难倒大家,现在老师看看大家能不能运用知识来解决一些问题。

4、写出下列各分数分子和分母的最大公因数。

( ) ( ) ( ) ( )

《最大公因数》教学设计

作为一名教职工,时常需要编写教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。教学设计应该怎么写才好呢?下面是小编收集整理的《最大公因数》教学设计,欢迎阅读,希望大家能够喜欢。

《最大公因数》教学设计 篇3

一、教学目标:

1、理解两个数的公因数和最大公因数的意义。

2、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。

3、培养学生抽象、概括的能力。

二、教学重难点:

理解公因数和最大公因数的意义。

三、教具准备:

多媒体课件,方格纸(每人一张)。

四、教学过程:

(一)复习导入

1.复习。

教师出示一组卡片,让学生说一说卡片上各数的倍数有哪些。

教师再出示一组卡片,让学生说一说卡片上各数的因数有哪些。

2.导入。

师:我们学会了求一个数的因数,想不想学习怎样求两个数或三个数公有的.因数呢?今天我们就通过游戏来学习公因数和最大公因数。

(二)创设情境,引出问题

今天我们来玩一个找伙伴的游戏。(课件出示游戏规则:学号是12的因数的同学站到讲台左边,学号是16的因数的同学站到讲台右边)同学们想好了吗?1~16号同学现在开始找伙伴。

学生开始找伙伴,站好后发现问题,有三个同学不知道该站在哪边才好。

师:你们3个为什么没有找到伙伴?

生1:我的学号是1,既是12的因数,又是16的因数,不知道该站在哪边才好。

生2:我的学号是2,既是12的因数,又是16的因数,不知道该站在哪边才好。

生3:我的学号是4,既是12的因数,又是16的因数,不知道该站在哪边才好。

师揭示概念:1,2,4是12和16公有的因数,叫做它们的公因数。其中,4是最大的公因数,叫做它们的最大公因数。

设计意图:游戏环节的设计在教学中能为学生营造一个轻松、愉悦的学习氛围,学生们在这样的氛围中积极地参与数学活动,既体验了成功的快乐,又提高了自己的判断能力。

(三)求两个数的最大公因数

1.明确方法,提出要求。

师:先找两个数的因数,然后圈出两个数的公因数,再找出最大公因数,这就是我们求最大公因数的一般方法。那么你会求下面两个数的最大公因数吗?

课件出示教材60页例2:怎样求18和27的最大公因数?

2.学生试做后,组内交流。

3.讨论:如果只找出一个数的因数,你能找出两个数的最大公因数吗?

(先找较小的数18的因数,再看因数中哪些是27的因数,最后找出最大的一个)

4.反馈练习。

教师巡视,了解学生的做题情况。学生做完后,指名汇报,集体订正。

师:做完这道题,大家发现了什么?

(学生讨论后汇报)

(四)课堂小结通过本节课的学习,我们主要认识了公因数、最大公因数的意义。

公因数和最大公因数在现实生活中有着广泛的应用,我们初步了解了它的应用价值。

(五)谈谈这节课你有什么收获?

《最大公因数》教学设计 篇4

教学内容:

人教版五年级第十册66-69页最大公因数。

教学目标:

1、理解公因数,最大公因数和互质数的概念。

2、初步掌握求最大公因数的一般方法。

3、培养学生思维的有序性和条理性。

4、感受数学价值并体验数学与生活实际的联系,培养学生热爱生活的情感。

教学重,难点:

1、理解公因数,最大公因数,互质数的概念。

2、求最大公因数的一般方法。

教具准备:

多媒体教学课件。

教学过程:

一,师生共研,学习新知:

我们已经会求一个数的因数,那么今天我们来看两个数的因数又该怎样来求呢?

出示课件:

16的因数有:1、2、4、8、16

12的因数:1、2、3、4、6、12

那么既是16又是12的因数是:1、2、4

16和12的公有因数中最大的一个是:4

出示课件:

16的因数:1、2、4、8、16

12的因数:1、2、3、4、6、12

8的因数:1、2、4、8

师:我们就把1、2、4叫做16、12和8的什么呢?

生:公因数

师:4就是16、12和8的什么呢?

生:最大公因数。

师:请同学用自己的话说一说公因数是什么意思?

生:几个数公有的因数,就叫公因数。

生:就是几个数都有的因数,就叫公因数。

师:同学谁能说一下什么又是最大公因数呢?

生:几个数公因数里面最大的一个,就叫最大公因数。

师生共同总结概念:

公因数:几个数公有的因数,叫做这几个数的公因数。

最大公因数:几个数公因数里最大的一个,叫做这几个数的最大公因数

二、巩固练习,加深理解:

出示课件:

同学们能不能找出15和18的公因数,再找出它们的最大公因呢?

15的因数18的因数15的因数18的因数

不清

15和18的公因数

三、合作探究,认识互质数

1、5和7的公因数和最大公因数各是多少?

5的因数:1、5.7的因数:1、7.

5和7的公因数有:1.5和7的最大公因数是:1.

2、7和9呢?

7的因数:1,7.9的因数:1,3,9.

7和9的公因数有:1.7和9的最大公因数是:1

指名回答:并让学生说出自己的看法和理由。

师总结:公因数只有1的两个数,叫做互质数。

同学们认识了公因数和最大公因数?同学们想不想去求两个数的最大公因数呢?

四、深化练习、掌握方法:

那么大家想一想18和30的最大公因数怎么去求呢?

小组讨论方法:小组代表发言汇报讨论结果。

师引导出用分解质因数的方法,

18=2×3×330=2×3×5

归纳出:18和30的公有的质因数是2和3,

那么最大公因数就是2×3=6

能不能用更简便的方法呢?

把两个短除法合并成一个短除法

21830→用公有的质因数2除

3915→用公有的质因数3除

35→除到两个商是互质数为止

把所有的除数乘起来,得到18和30的最大公因数是

2×3=6

学生总结短除法求最大公因数的方法。

求两个数的最大公因数,一般先用这两个数公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来.

鼓励学生用不同的方法去完成练习。

求12和20的最大公因数

学生动手练习,师巡视指导,学生上黑板演示过程。

五、小小能手、我来闯关:

第一关:填一填

1.15的因数有(),20的因数有()它们的公因数有(),最大公因数是().

2.8和9的公因数有(),最大公因数是()

第二关:判一判

1.公因数有1的`两个数是互质数().

2.12的因数只有2、3、4、6、12。()

3.成为互质数的两个数一定都是质数.()

第三关:做一做

木材市场运来一批长12米,16米和20米的木材,把这三种长度的木材截成同样长,最长可以截成每根是多少米?

六、全课小节、畅谈收获:

学生谈本节课上的收获。师总结本节课主要内容并指出我国古代的《九章算术》已经有求两个数最大公因数的方法了对学生进行德育教育,激发学生的民族自豪感。

七、板书设计:

最大公因数

公因数:几个数公有的因数。

最大公因数:公因数里最大的一个。

互质数:公因数只有1的两个数。

把18和30分别分解质因数

218230

39315

35

18=2×3×3

30=2×3×5

18和30的公有质因数是2和3,因此:

18和30的最大公因数是2×3=6

合并两个短除法

21830→用公有的质因数2除

3915→用公有的质因数3除

35→除到两个商是互质数为止

把所有的除数乘起来,得出18和30的最大公因数是2×3=6

教学反思

教材对求最大公因数的编排,只是让学生用边长是整分米数的正方形地砖把贮藏室的地面铺满(使用的地砖都是整块),可以选择边长是几分米的地砖?边长最大的是几分米?由此引出最大公因数,教学中根据学生年龄特征,让学生用不同的小正方形摆拼、观察、思考,重视知识形成过程,同时,渗透由特殊到一般的不完全归纳法的数学思想。在摆拼过程中教师和学生一起操作,引发学生强烈的兴奋感和新切感,拉近了师生间的距离,营造了和谐、活跃、向上的学习氛围。

1.借助操作活动,经历概念的形成过程。

本节课以直观的操作活动,让学生经历公因数和最大公因数概念的形成过程。这样安排有两点好处:一是学生通过操作活动,能体会公因数的实际背景,加深对抽象概念的理解;二是有利于改善学习方式,便于学生通过操作和交流经历学习过程。学生通过操作,发现用边长1厘米、2厘米、4厘米的正方形都正好铺满长16厘米,宽12厘米的长方形。在此基础上,引导学生思考1、2、4这些数和16、12有什么关系。这时揭示公因数和最大公因数的概念,突出概念的内涵是“既是……又是……”即“公有”。并在此基础上,借助直观的集合图显示公因数的意义。实实在在让学生经历了概念的形成过程,效果较好。

2.预设探究过程,增强学生主体意识。

为了解决问题,学生充分调动了已有知识经验、方法、技能,找出了各种求“18和27的公因数和最大公因数”的方法。在这个过程中,由学生自己建构了公因数和最大公因数的概念,是真正主动探索知识的建构者,而不是模仿者,充分的发掘了学生的自主意识,也充分体现了教师驾驭教材,调控学生的能力。

3.提倡思考方法的多样化。

在教学中,我把重点放在找两个数的公因数的方法上,鼓励学生找最大公因数方法的多样化。学生可能想到三种方法,通过讨论,引导学生对方法进行优化,我认为用短除法求最大公因数是一个很有效、很简便的方法,应该让学生掌握。在这中间教师应注意引导、小结、鼓励,重视方法和策略的渗透,以提高学生的学习能力

《最大公因数》教学设计 篇5

【 教学内容】

《义务教育课程标准实验教科书数学》(人教版)五(下)第79 —81 页。

【设计理念】

小学数学课堂教学,应立志于让学生“研究学习”、“自主探索”,学生不应是被动接受知识的容器,而应是在学习过程中主动积极的参与者,是认知过程的探索者,是学习活动的主体,通过学生自身的活动,所“发现”和“创造”的知识较之教师硬塞给学生的知识理解得深刻,掌握得牢固,应用得灵活,同时也培养了学生发现问题、解决问题的能力。

【 教学目标】

1 、通过自学和反馈交流,理解公因数和最大公因数的意义,沟通因数、公因数和最大公因数的区别和联系。

2 、掌握求两个数最大公因数的方法,会选择合适的方法正确的求两个数的最大公因数。能初步应用求最大公因数的方法解决生活中的简单实际问题。

3 、经历探究求两个数最大公因数方法的过程,培养学生分析、归纳等思维能力。激发学生自主学习、积极探索和合作交流的良好习惯。

【 教学重点】

理解公因数和最大公因数的意义,会正确的求两个数的最大公因数。

【 教学难点】

初步应用求两个数最大公因数的方法解决生活中的简单实际问题。

【 教学准备】

多媒体课件

【 自学内容】

见预习作业

【 教学过程】

一、自学反馈

1 、通过自学你已经知道了什么?

(1 )书上介绍了( )和( )两个数学概念。

(2 )问:你认为公因数和最大公因数与什么知识有关?

生:公因数和最大公因数都与因数有关?

(3 )追问:那你认为可以怎样求两个数的公因数和最大公因数?

生:先分别列举出两个数的因数,然后找出它们的公因数和最大公因数。

(4)你会求18 和24 的公因数和最大公因数吗?请大家试一试。

二、关键点拨

1 、列举法求两个数的最大公因数及公因数和最大公因数的意义。

(1 )你是怎样求18 和24 的最大公因数的,谁来说说?

(2 )学生反馈:

18 的因数有1 ,2 ,3 ,6 ,9 ,18 。

24 的因数有1 ,2 ,3 ,4 ,6 ,8 ,12 ,24 。

18 和24 的公因数有1 ,2 ,3 ,6 。

18 和24 的最大公因数是6 。

师:18 和24 公有的因数,叫做它们的公因数。公因数中最大的一个因数,叫做它们的最大公因数。

【设计意图 :在教学中,不仅要求学生掌握抽象的数学结论,更应注意学生的“发现“意识,引导学生参与探讨知识的形成过程,尽可能挖掘学生潜能,能让学生通过努力,自己解决问题,形成概念。】

2 、求两个数最大公因数的其他方法

师:你还有不同方法求两个数的最大公因数吗?

生1 :筛选法

先写出较大数的因数,24 的因数有1 ,2 ,3 ,4 ,6 ,8 ,12 ,24 。

从大到小找24 的因数中谁是18 的因数就是它们的最大公因数,24 、12 、8 都不是18 的因数,6 是18 的因数。

所以,18 和24 的最大公因数是6 。

生2 :分解质因数法

18 =2 ×3 ×3

24 =2 ×2 ×2 ×3 ,把18 和24 的相同质因数相乘的积就是它们的最大公因数,18 和24 的最大公因数=2 ×3 =6 。

师问:你在哪里见到过这样的方法?

生介绍书上81 页小知识:分解质因数法求两个数的最大公因数。

师:还有不同方法吗?(学生沉默)你们看看我的方法可以吗?

师介绍缩倍法:把24 缩小到它的2 倍是12 ,12 不是18 的因数;把24 缩小到它的3 倍是8 ,8 也不是18 的因数;把24 缩小到它的4 倍是6 ,6 是18 的因数。所以,18 和24 的最大公因数是6 。

3 、沟通因数、公因数和最大公因数的区别和联系

仔细观察,静静思考,因数、公因数和最大公因数到底有什么关系?

生1 :公因数和最大公因数都是因数中的一部分。

生2 :公因数都是最大公因数的因数,最大公因数是公因数的倍数。

4 、优化方法

仔细观察,静静思考,你更喜欢上面的哪种方法,为什么?

生1 :我更喜欢列举法,因为列举法简单易懂,不仅可以求出两个数的最大公因数,还可以求出它们的所有公因数。

生2 :我更喜欢筛选法,因为筛选法能更简洁、更快的求出两个数的最大公因数,也可以很快求出它们的公因数,只要再写出最大公因数的因数就是它们的公因数了。

生3 :我更喜欢分解质因数法,……

5 、集合表示法介绍

师:还可以用下面的图来表示:

【设计意图:德国教育家第斯多惠指出:“一个坏的教师奉送真理,一个好的教师则教人发现真理。”教学中,在引导学生探索问题的过程中,利用观察、发现、设问步步深入地引导学生逼近结论、求索方法。通过说思考过程、师生讨论,让学生的推理才能得以充分发挥,真正驾驭学习,成为学习的主人,为学生的自主探索发现、创新增添活力。】

三、巩固练习

1 、请选择你喜欢的方法求出下面每组数的最大公因数。

4 和8 18 和54 1 和7 8 和9

(1 )学生独立求最大公因数,教师巡视指导。

(2 )反馈交流:4 和8 的最大公因数是4 ,18 和54 的最大公因数是18 ,1 和7 的最大公因数是1 ,8 和9 的最大公因数是1 。

(3 )问:你能根据最大公因数的特点把上面4 组数分成两类吗?

4 和8 ,18 和54 分成一类;1 和7 ,8 和9 分成一类。

(4 )问:你为什么这样分?说说你的理由。

生1 :4 是8 的.因数,8 是4 的倍数,它们的最大公因数是较小数4 ;18 是54 的因数,54 是18 的倍数,它们的最大公因数是较小数18 。1 和7 ,8 和9 的最大公因数都是1 。

生2 :我知道1 和7 是互质数,8 和9 也是互质数,所以它们的最大公因数是1 。

(5 )追问:你是怎么知道互质数这个数学概念的?

生:我是从书上83 页的小知识中看过来的。(生介绍书上83 的小知识:互质数——公因数只有1 的两个数叫做互质数。)

(6 )你能很快说出下列各组数的最大公因数吗?

45 和15 51 和17 13 和39

1 和15 45 和46 2 和9 13 和18 3 和11

生报答案,教师板书。

(7 )仔细观察,你认为什么样的两个数会是互质数,它们的最大公因数是1 。

生1 :1 和任何一个大于1 的自然数都是互质数。

生2 :相邻的两个自然数(0 除外)是互质数。

生3 :任意两个质数都是互质数。

生4 :一个质数和一个合数,只要没有倍数关系就是互质数。

……

(8 )你能很快抱出54 和48 的最大公因数吗?你认为求两个数的最大公因数要注意什么?

2 、电脑显示:小红家卫生间是长方形,如右图,小红爸爸准备装修卫生间,要在地面上铺正方形地面砖,要选边长为几分米(整数)的地面砖,才能不用锯分就能整齐地铺满地面砖呢?地板砖的边长最大是几分米?

3 、提高练习:

(1 )综合题:两个自然数的和是52 ,它们的最大公因数是4 ,最小公倍数是144 ,这两个数各是多少?

(2 )开放题:有两个50 以内的两位数,这两个两位数的最大公因数是6 这两个两位数分别是多少?

【设计意图:练习形式多样,层次分明,让学生体会数学的综合性和应用性,注重认知结构的深化和发展,能有效地培养学生的创新思维。】

四、全课总结

这节课你们学了哪些知识?有什么收获?

附:预习作业

1 、内容:课本第79 至81 页例1 和例2 及做一做。

2 、方法:一边看书一边画出你认为重要的信息,并理解。

3 、解决问题:

(1 )书上介绍了( )和( )两个数学概念。

(2 )既是18 的因数又是24 的因数的有( ),其中最大的一个因数是( )。

《最大公因数》教学设计 篇6

教学目标:

1、通过游戏和动手操作理解两个数的公因数与最大公因数的意义,并能用集合图表示两个数的因数和公因数。

2、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。

3、渗透集合思想,培养学生的分析,归纳能力和解决问题能力。

教学重点:理解公因数和最大公因数的意义。

教学难点:灵活找两个数的公因数的方法。

教具准备:课件、实物展示台

教学过程:

一、复习旧知,导入新课

师:同学们,我们已经学过找一个数的因数的方法,如果老师现在给你一个数(12),你能很快找出它的因数吗?(生回答师板书)

师:你们真棒!照这样的方法,你能很快说出18的全部因数吗?(生回答师板书)

师:哪几个数既是12的因数又是18的因数?

生:1、2、3、6

师:能不能简单的说说它们是12和18的什么数吗?

生:公因数

师:在这些公因数里面,哪个数最大?

生:6最大

师:6就是12和18的最大公因数。

这就是我们这节课要学习的内容———找最大公因数(师板书课题)

二、探究新知:

1、学生当裁判,玩游戏:

(1)请学号是12因数的同学到前面来。(左)

(2)请学号是18因数的同学到前面来。(右)

(个别同学站位出现问题,请全体同学做裁判,1、2、3、6号应该站在什么位置?为什么?)

2、学习集合图:

生:让1、2、3、6号站在中间。因为1、2、3、6既是12的因数又是18的因数,它们是12和18的公因数。可以用集合圈来表示。(课件出示)

(1)师:两个集合圈交叉重合的部分表示什么?填什么数?(生:填公因数)

(2)师:那圈里的左边、右边填什么数?(同桌交流,汇报结果)

3、得出结论:1、2、3、6既是12的因数又是18的因数,它们是12和18的公因数。在这些公因数里面,哪个数最大?(生:6最大)6就是12和18的最大公因数。

4、师:找两个数的公因数,除了上面的方法,谁还有不同的方法?

生:我先找出12的全部因数,再在12的因数中圈出和18相同的因数。

5、小结:

找两个数的公因数的方法:①先找出各个数的因数②找出两个数公有的因数③确定最大公因数

三、小组合作,解决问题。

小组合作完成下面各题:

找每组数的最大公因数:

(1)、4和86和125和1021和7

观察每组数,我们发现:(上面的每组数都是倍数关系,它们的最大公因数是较小的数)

(2)、3和52和711和1913和23

观察每组数,我们发现:(上面的每组数都是不相同的.质数,它们的最大公因数是1)

(3)、8和911和125和614和15

观察每组数,我们发现:(上面的每组数都是相邻的自然数(0除外),它们的最大公因数是1)

总结:我们今天学习了找两个数的最大公因数的方法有:

1、列举法

①先找出各个数的因数

②找出两个数公有的因数

③确定最大公因数

2、画集合图的方法

3、特殊数的方法:

(1)如果两数是倍数关系,那么它们的最大公因数是较小的数。

(2)如果两数是不相同的质数,那么它们的最大公因数是1。

(3)如果两数是相邻的自然数(0除外),那么它们的最大公因数是1。

四、巩固拓展:

1、我是小法官,对错我来判:

(1)两个数的公因数的个数是无限的。()

(2)两个数的公因数一定小于这两个数。()

(3)最大公因数是1的两个数一定都是质数。()

2、学校组织了男生30人,女生20人的合唱队,男女生分别排队,要使每排人数相同,每排最多有多少人?

3、写出下列分数分子和分母的最大公因数:

8/12()5/7()9/10()6/18()

五、总结回顾:

通过这节课的学习,你有什么收获?

板书设计:

找最大公因数

12的因数有:1、2、3、4、6、12

18的因数有:1、2、3、6、9、18

1、2、3、6是12和18的公因数

6是它们的最大公因数

两个数公有的因数叫作这两个数的公因数

公因数中最大的一个叫作它们的最大公因数

《最大公因数》教学设计 篇7

【 教学内容】

《义务教育课程标准实验教科书数学》(人教版)五(下)第79 —81 页。

【设计理念】

小学数学课堂教学,应立志于让学生“研究学习”、“自主探索”,学生不应是被动接受知识的容器,而应是在学习过程中主动积极的参与者,是认知过程的探索者,是学习活动的主体,通过学生自身的活动,所“发现”和“创造”的知识较之教师硬塞给学生的知识理解得深刻,掌握得牢固,应用得灵活,同时也培养了学生发现问题、解决问题的能力。

【 教学目标】

1 、通过自学和反馈交流,理解公因数和最大公因数的意义,沟通因数、公因数和最大公因数的区别和联系。

2 、掌握求两个数最大公因数的方法,会选择合适的方法正确的求两个数的最大公因数。能初步应用求最大公因数的方法解决生活中的简单实际问题。

3 、经历探究求两个数最大公因数方法的过程,培养学生分析、归纳等思维能力。激发学生自主学习、积极探索和合作交流的良好习惯。

【 教学重点】

理解公因数和最大公因数的意义,会正确的求两个数的最大公因数。

【 教学难点】

初步应用求两个数最大公因数的方法解决生活中的简单实际问题。

【 教学准备】

多媒体课件

【 自学内容】

见预习作业

【 教学过程】

一、自学反馈

1 、通过自学你已经知道了什么?

(1 )书上介绍了( )和( )两个数学概念。

(2 )问:你认为公因数和最大公因数与什么知识有关?

生:公因数和最大公因数都与因数有关?

(3 )追问:那你认为可以怎样求两个数的公因数和最大公因数?

生:先分别列举出两个数的因数,然后找出它们的公因数和最大公因数。

(4)你会求18 和24 的公因数和最大公因数吗?请大家试一试。

二、关键点拨

1 、列举法求两个数的最大公因数及公因数和最大公因数的意义。

(1 )你是怎样求18 和24 的最大公因数的,谁来说说?

(2 )学生反馈:

18 的因数有1 ,2 ,3 ,6 ,9 ,18 。

24 的'因数有1 ,2 ,3 ,4 ,6 ,8 ,12 ,24 。

18 和24 的公因数有1 ,2 ,3 ,6 。

18 和24 的最大公因数是6 。

师:18 和24 公有的因数,叫做它们的公因数。公因数中最大的一个因数,叫做它们的最大公因数。

【设计意图 :在教学中,不仅要求学生掌握抽象的数学结论,更应注意学生的“发现“意识,引导学生参与探讨知识的形成过程,尽可能挖掘学生潜能,能让学生通过努力,自己解决问题,形成概念。】

2 、求两个数最大公因数的其他方法

师:你还有不同方法求两个数的最大公因数吗?

生1 :筛选法

先写出较大数的因数,24 的因数有1 ,2 ,3 ,4 ,6 ,8 ,12 ,24 。

从大到小找24 的因数中谁是18 的因数就是它们的最大公因数,24 、12 、8 都不是18 的因数,6 是18 的因数。

所以,18 和24 的最大公因数是6 。

生2 :分解质因数法

18 =2 ×3 ×3

24 =2 ×2 ×2 ×3 ,把18 和24 的相同质因数相乘的积就是它们的最大公因数,18 和24 的最大公因数=2 ×3 =6 。

师问:你在哪里见到过这样的方法?

生介绍书上81 页小知识:分解质因数法求两个数的最大公因数。

师:还有不同方法吗?(学生沉默)你们看看我的方法可以吗?

师介绍缩倍法:把24 缩小到它的2 倍是12 ,12 不是18 的因数;把24 缩小到它的3 倍是8 ,8 也不是18 的因数;把24 缩小到它的4 倍是6 ,6 是18 的因数。所以,18 和24 的最大公因数是6 。

3 、沟通因数、公因数和最大公因数的区别和联系

仔细观察,静静思考,因数、公因数和最大公因数到底有什么关系?

生1 :公因数和最大公因数都是因数中的一部分。

生2 :公因数都是最大公因数的因数,最大公因数是公因数的倍数。

4 、优化方法

仔细观察,静静思考,你更喜欢上面的哪种方法,为什么?

生1 :我更喜欢列举法,因为列举法简单易懂,不仅可以求出两个数的最大公因数,还可以求出它们的所有公因数。

生2 :我更喜欢筛选法,因为筛选法能更简洁、更快的求出两个数的最大公因数,也可以很快求出它们的公因数,只要再写出最大公因数的因数就是它们的公因数了。

生3 :我更喜欢分解质因数法,……

5 、集合表示法介绍

师:还可以用下面的图来表示:

【设计意图:德国教育家第斯多惠指出:“一个坏的教师奉送真理,一个好的教师则教人发现真理。”教学中,在引导学生探索问题的过程中,利用观察、发现、设问步步深入地引导学生逼近结论、求索方法。通过说思考过程、师生讨论,让学生的推理才能得以充分发挥,真正驾驭学习,成为学习的主人,为学生的自主探索发现、创新增添活力。】

三、巩固练习

1 、请选择你喜欢的方法求出下面每组数的最大公因数。

4 和8 18 和54 1 和7 8 和9

(1 )学生独立求最大公因数,教师巡视指导。

(2 )反馈交流:4 和8 的最大公因数是4 ,18 和54 的最大公因数是18 ,1 和7 的最大公因数是1 ,8 和9 的最大公因数是1 。

(3 )问:你能根据最大公因数的特点把上面4 组数分成两类吗?

4 和8 ,18 和54 分成一类;1 和7 ,8 和9 分成一类。

(4 )问:你为什么这样分?说说你的理由。

生1 :4 是8 的因数,8 是4 的倍数,它们的最大公因数是较小数4 ;18 是54 的因数,54 是18 的倍数,它们的最大公因数是较小数18 。1 和7 ,8 和9 的最大公因数都是1 。

生2 :我知道1 和7 是互质数,8 和9 也是互质数,所以它们的最大公因数是1 。

(5 )追问:你是怎么知道互质数这个数学概念的?

生:我是从书上83 页的小知识中看过来的。(生介绍书上83 的小知识:互质数——公因数只有1 的两个数叫做互质数。)

(6 )你能很快说出下列各组数的最大公因数吗?

45 和15 51 和17 13 和39

1 和15 45 和46 2 和9 13 和18 3 和11

生报答案,教师板书。

(7 )仔细观察,你认为什么样的两个数会是互质数,它们的最大公因数是1 。

生1 :1 和任何一个大于1 的自然数都是互质数。

生2 :相邻的两个自然数(0 除外)是互质数。

生3 :任意两个质数都是互质数。

生4 :一个质数和一个合数,只要没有倍数关系就是互质数。

……

(8 )你能很快抱出54 和48 的最大公因数吗?你认为求两个数的最大公因数要注意什么?

2 、电脑显示:小红家卫生间是长方形,如右图,小红爸爸准备装修卫生间,要在地面上铺正方形地面砖,要选边长为几分米(整数)的地面砖,才能不用锯分就能整齐地铺满地面砖呢?地板砖的边长最大是几分米?

3 、提高练习:

(1 )综合题:两个自然数的和是52 ,它们的最大公因数是4 ,最小公倍数是144 ,这两个数各是多少?

(2 )开放题:有两个50 以内的两位数,这两个两位数的最大公因数是6 这两个两位数分别是多少?

【设计意图:练习形式多样,层次分明,让学生体会数学的综合性和应用性,注重认知结构的深化和发展,能有效地培养学生的创新思维。】

四、全课总结

这节课你们学了哪些知识?有什么收获?

附:预习作业

1 、内容:课本第79 至81 页例1 和例2 及做一做。

2 、方法:一边看书一边画出你认为重要的信息,并理解。

3 、解决问题:

(1 )书上介绍了( )和( )两个数学概念。

(2 )既是18 的因数又是24 的因数的有( ),其中最大的一个因数是( )。

大家都在看