《组合图形的面积》教案

笔构网

2025-09-20教案

请欣赏《组合图形的面积》教案(精选11篇),由笔构网整理,希望能够帮助到大家。

《组合图形的面积》教案 篇1

教学背景:

组合图形面积的计算是平面图形知识在小学阶段的综合应用。计算一个组合图形的面积,有时可以有多种方法,为了提高学生的解题能力,除了让学生加强练习以外,还应教绐他们一定的解题技巧。经过多年的教学实践,我收集和整理了一些关于组合图形面积的计算方法和技巧。如割补法、平移法、等分法、等积变形法、翻折法、旋转法、重叠法等等。我们要根据图形的特征、已知条件,以及整体与部分的关系,选择最佳解法。

本节微课主要学习割补法、等积变形、旋转法等三种方法。

教学目标 :

1、 知道求组合图形的面积就是求几个图形面积的和(或差);能正确地进行组合图形面积计算,并能灵活思考解决实际问题。

2、 注重对组合图形的分析方法与计算技巧,有利于提高学生的识图能力、分析综合能力与空间想象能力。

教学方法:

讲解法、演示法

教学过程:

一 、割补法

这类方法一般是从组合图形中分割成几种不同的基本图形,这类图形的阴影部分面积就是求几个基本图形面积之和(或者差)。

Ppt演示变化过程,并出示解题过程。

二、等积变形法。

这类方法是将题中的`条件或问题替换成面积相等的另外的条件或问题,使原来复杂的图形变为简单明了的图形。

Ppt演示变化过程,并出示解题过程。

三、旋转法。

这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图。

Ppt演示变化过程,并出示解题过程。

四、小结方法

求组合图形面积可按以下步骤进行

1、弄清组合图形所求的是哪些部分的面积。

2、根据图中条件联想各种简单图形的特征,看组合图形可以分成几块什么样的图形,能否通过割补、等积变形、旋转等方法使图形化繁为简。

《组合图形的面积》教案 篇2

一、知识要点

在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。

二、精讲精练

【例题1】求图中阴影部分的面积(单位:厘米)。

【思路导航】如图所示的特点,阴影部分的面积可以拼成 圆的面积。

62×3.14× =28.26(平方厘米)

答:阴影部分的面积是28.26平方厘米。

练习1:

1.求下面各个图形中阴影部分的面积(单位:厘米)。

2.求下面各个图形中阴影部分的面积(单位:厘米)。

3.求下面各个图形中阴影部分的面积(单位:厘米)。

【例题2】求图中阴影部分的面积(单位:厘米)。

【思路导航】阴影部分通过翻折移动位置后,构成了一个新的图形(如图所示)。

从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积的一半。

3.14× -4×4÷2÷2=8.56(平方厘米)

答:阴影部分的面积是8.56平方厘米。

练习2:

1.计算下面图形中阴影部分的面积(单位:厘米)。

2.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。

3.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。

【例题3】如图19-10所示,两圆半径都是1厘米,且图中两个阴影部分的面积相等。求长方形ABO1O的面积。

【思路导航】因为两圆的半径相等,所以两个扇形中的空白部分相等。又因为图中两个阴影部分的面积相等,所以扇形的面积等于长方形面积的一半(如图19-10右图所示)。所以3.14×12×1/4×2=1.57(平方厘米)

答:长方形长方形ABO1O的面积是1.57平方厘米。

练习3:

1.如图所示,圆的周长为12.56厘米,AC两点把圆分成相等的两段弧,阴影部分(1)的面积与阴影部分(2)的面积相等,求平行四边形ABCD的面积。

2.如图所示,直径BC=8厘米,AB=AC,D为AC的中点,求阴影部分的面积。

3.如图所示,AB=BC=8厘米,求阴影部分的面积。

【例题4】如图19-14所示,求阴影部分的面积(单位:厘米)。

【思路导航】我们可以把三角形ABC看成是长方形的一部分,把它还原成长方形后(如图所示)。

I和II的面积相等。

因为原大三角形的面积与后加上的三角形面积相等,并且空白部分的两组三角形面积分别相等,所以

6×4=24(平方厘米)

答:阴影部分的面积是24平方厘米。

练习4:

1.如图所示,求四边形ABCD的面积。

2.如图所示,BE长5厘米,长方形AEFD面积是38平方厘米。求CD的长度。

3.图是两个完全一样的直角三角形重叠在一起,按照图中的已知条件求阴影部分的面积(单位:厘米)。

【例题5】如图所示,图中圆的直径AB是4厘米,平行四边形ABCD的面积是7平方厘米,∠ABC=30度,求阴影部分的面积(得数保留两位小数)。

【思路导航】阴影部分的面积等于平行四边形的面积减去扇形AOC的面积,再减去三角形BOC的面积。

半径:4÷2=2(厘米)

扇形的圆心角:180-(180-30×2)=60(度)

扇形的面积:2×2×3.14×60/360≈2.09(平方厘米)

三角形BOC的面积:7÷2÷2=1.75(平方厘米)

7-(2.09+1.75)=3.16(平方厘米)

答:阴影部分的面积是3.16平方厘米。

练习5:

1.如图所示,∠1=15度,圆的周长位62.8厘米,平行四边形的面积为100平方厘米。求阴影部分的面积(得数保留两位小数)。

2.如图所示,三角形ABC的面积是31.2平方厘米,圆的直径AC=6厘米,BD:DC=3:1。求阴影部分的面积。

3.如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。

4、如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。

组合图形面积计算(二)

一、知识要点

对于一些比较复杂的组合图形,有时直接分解有一定的困难,这时,可以通过把其中的部分图形进行平移、翻折或旋转,化难为易。有些图形可以根据“容斥问题“的原理来解答。在圆的半径r用小学知识无法求出时,可以把“r2”整体地代入面积公式求面积。

二、精讲精练

【例题1】如图所示,求图中阴影部分的面积。

【思路导航】解法一:阴影部分的一半,可以看做是扇形中减去一个等腰直角三角形(如图),等腰直角三角形的斜边等于圆的半径,斜边上的高等于斜边的一半,圆的半径为20÷2=10厘米

[3.14×102×1/4-10×(10÷2)]×2=107(平方厘米)

答:阴影部分的面积是107平方厘米。

解法二:以等腰三角形底的中点为中心点。把图的右半部分向下旋转90度后,阴影部分的面积就变为从半径为10厘米的半圆面积中,减去两直角边为10厘米的等腰直角三角形的面积所得的差。

(20÷2)2×1/2-(20÷2)2×1/2=107(平方厘米)

答:阴影部分的面积是107平方厘米。

练习1:

1.如图所示,求阴影部分的面积(单位:厘米)

2.如图所示,用一张斜边为29厘米的红色直角三角形纸片,一张斜边为49厘米的蓝色直角三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形。求红蓝两张三角形纸片面积之和是多少?

【例题2】如图所示,求图中阴影部分的面积(单位:厘米)。

【思路导航】解法一:先用长方形的面积减去小扇形的面积,得空白部分(a)的面积,再用大扇形的面积减去空白部分(a)的面积。如图所示。

3.14×62×1/4-(6×4-3.14×42×1/4)=16.82(平方厘米)

解法二:把阴影部分看作(1)和(2)两部分如图20-8所示。把大、小两个扇形面积相加,刚好多计算了空白部分和阴影(1)的面积,即长方形的面积。

3.14×42×1/4+3.14×62×1/4-4×6=16.28(平方厘米)

答:阴影部分的面积是16.82平方厘米。

练习2:

1.如图所示,△ABC是等腰直角三角形,求阴影部分的面积(单位:厘米)。

2.如图所示,三角形ABC是直角三角形,AC长4厘米,BC长2厘米。以AC、BC为直径画半圆,两个半圆的交点在AB边上。求图中阴影部分的面积。

3.如图所示,图中平行四边形的一个角为600,两条边的长分别为6厘米和8厘米,高为5.2厘米。求图中阴影部分的面积。

【例题3】在图中,正方形的边长是10厘米,求图中阴影部分的面积。

【思路导航】解法一:先用正方形的面积减去一个整圆的面积,得空部分的一半(如图所示),再用正方形的面积减去全部空白部分。

空白部分的一半:10×10-(10÷2)2×3.14=21.5(平方厘米)

阴影部分的面积:10×10-21.5×2=57(平方厘米)

解法二:把图中8个扇形的面积加在一起,正好多算了一个正方形(如图所示),而8个扇形的面积又正好等于两个整圆的面积。

(10÷2)2×3.14×2-10×10=57(平方厘米)

答:阴影部分的面积是57平方厘米。

练习3:

1.求下面各图形中阴影部分的面积(单位:厘米)。

2.求下面各图形中阴影部分的面积(单位:厘米)。

3.求下面各图形中阴影部分的面积(单位:厘米)。

【例题4】在正方形ABCD中,AC=6厘米。求阴影部分的面积。

【思路导航】这道题的难点在于正方形的边长未知,这样扇形的半径也就不知道。但我们可以看出,AC是等腰直角三角形ACD的斜边。根据等腰直角三角形的对称性可知,斜边上的高等于斜边的一半(如图所示),我们可以求出等腰直角三角形ACD的面积,进而求出正方形ABCD的面积,即扇形半径的平方。这样虽然半径未求出,但可以求出半径的平方,也可以把半径的平方直接代入圆面积公式计算。

既是正方形的'面积,又是半径的平方为:6×(6÷2)×2=18(平方厘米)

阴影部分的面积为:18-18×3.14÷4=3.87(平方厘米)

答:阴影部分的面积是3.87平方厘米。

练习4:

1.如图所示,图形中正方形的面积是50平方厘米,分别求出每个图形中阴影部分的面积。

2.如图所示,图形中正方形的面积是50平方厘米,分别求出每个图形中阴影部分的面积。

3.如图所示,正方形中对角线长10厘米,过正方形两个相对的顶点以其边长为半径分别做弧。求图形中阴影部分的面积(试一试,你能想出几种办法)。

【例题5】在图的扇形中,正方形的面积是30平方厘米。求阴影部分的面积。

【思路导航】阴影部分的面积等于扇形的面积减去正方形的面积。可是扇形的半径未知,又无法求出,所以我们寻求正方形的面积与扇形面积的半径之间的关系。我们以扇形的半径为边长做一个新的正方形(如图所示),从图中可以看出,新正方形的面积是30×2=60平方厘米,即扇形半径的平方等于60。这样虽然半径未求出,但能求出半径的平方,再把半径的平等直接代入公式计算。

3.14×(30×2)×1/4-30=17.1(平方厘米)

答:阴影部分的面积是17.1平方厘米。

练习5:

1.如图所示,平行四边形的面积是100平方厘米,求阴影部分的面积。

2.如图所示,O是小圆的圆心,CO垂直于AB,三角形ABC的面积是45平方厘米,求阴影部分的面积。

3.如图所示,半圆的面积是62.8平方厘米,求阴影部分的面积。

《组合图形的面积》教案 篇3

教学内容:

《义务教育课程标准实验教科书数学》(人教版)五年级上册 “组合图形的面积”

教学目标:

1、明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。

2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

3、渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。

教学重点:

在探索活动中,理解组合图形面积计算的多种方法,会利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。

教学难点:

根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。

教学准备:

课件、图片等。

教学过程:

一、 创设情境,引导探索

师:大家搜集了许多有关生活中的组合图形的图片,谁来给大家展示并汇报一下。 (指名回答)

生1:这枝铅笔的面是由一个长方形和一个三角形组成的。

生2:这条小鱼的面是由两个三角形组成的。……

师:同桌的同学互相看一看,说一说,你们搜集的组合图形分别是由哪些图形组成的?

【设计意图:根据学生已有的知识经验和生活经验,让学生在课前进行搜集生活中的组合图形的图片,学生热情高涨、兴趣盎然。通过学生查、拼、摆、画、剪、找等活动,使学生在头脑中对组合图形产生感性认识。】

二、探索活动,寻求新知

师:生活中有许多组合图形,老师准备了3幅,大家观察一下,这些组合组图形是由哪些简单图形组成的?如果求它们的面积可以怎样求?

图一 图二 图三 课件逐一出示图一、图二、图三,让学生发表意见。

生1:小房子的表面是由一个三角形和一个正方形组成的。

生2:风筝的面是由四个小三角形组成的。

生3:队旗的面是由一个梯形和一个三角形组成的。……

师:这几个都是组合图形,通过大家的介绍,你觉得什么样的图形是组合图形? 生1:由两个或两个以上的图形组成的是组合图形。

生2:有几个平面图形组成的图形是组合图形。……

师小结:组合图形是由几个简单的图形组合而成的。

图一:是由三角形、长方形、加上长方形中间的正方形组成的,

面积 = 三角形面积+长方形面积-正方形面积

图二:是由两个三角形组成的。

面积 = 三角形面积+ 三角形面积

图三:作辅助线使它分成一个大梯形和一个三角形。

方法一:是由两个梯形组成的。

师:为什么要分成两个梯形?怎样分成两个梯形?

引导学生说出将它转化成以学过的简单图形以及在图中作辅助线。

师:是的,可以用作辅助线的方法将它转化成以前学过的简单图形来计

(板书:转化)。大家想想,用辅助线的方法还有不同的作法吗?

方法二:作辅助线补成一个长方形,使它变成一个大长方形减去一个三角形。

方法三:作辅助线使它分成一个大梯形和一个三角形。

(课件分别演示这三种方法)

分割法 添补法

师:数学中我们习惯用分割法或添补法,用辅助线来把一个复杂的组合图形转

变成比较简单的图形,为计算带来简便。画辅助线时要注意画虚线,以及用铅笔和直尺作图。

板书:分割法或添补法(转化):分解成简单图形。

师:请你找一找生活中哪些地方的表面有组合图形呢?(学生自由回答,对学生们正确的回答要给予好的评价,特别是要鼓励不爱举手的学生讲一讲。注意座在后排的学生表现)

师:同学们认识组合图形了,那么大家还想了解有关组合图形的哪些知识? 生1:我想了解组合图形的周长。

生2:我想知道组合图形的面积怎样计算。……

这节课我们重点学习组合图形的面积。

【设计意图:“方法是数学的行为、思想是数学的灵魂”, 既然它们是由几个简单图形组合而成的,那么分解它们的组成,就可以来个“原路返回”——分解成几个简单图形的和或差。培养学生灵活的分析问题解决问题的能力,帮助学生独立分析问题。潜意识的教学思想中既重“方法”又重“思想”。 体现数学知识从“行为”到“灵魂”的内化过程。同时形成强烈的求知欲。】

三、探讨例题,学习新知

师:同学们的表现真了不起。老师家这几天装修房子,要刷新墙体。刷新墙体的工人工资是平方米来计算的,请你们帮我算一算。(课件出示例4)

例4:右图表示的是一间房子侧面墙的.形状。它的面积是多少平方米?

师:怎样才能计算出这个组合图形的面积呢?

先让学生思考,再动手计算。

交流汇报

方法一:把这个组合图形一分为二,一个是正方形,另一个是三角再分别算出正方形和三角形的面积,最后算出它们的面积和,就可以求出这个图形的面积。

师:这是一个不错的想法。要算每个简单图形的面积分别需要哪些条件?请找一找,并标出来。

指名学生找相应的条件。

在实物投影仪上展出示学生的答案

①5×5=25 (平方米)

②5×2÷2=5(平方米)

③25+5=30 (平方米)

答:房子侧面墙的面积是30平方米。

(注意检查做错的同学,找出错的原因。)

师:除了这种方法,还有同学用别的方法吗?

方法二:先把这个图形补上两个三角形,看作一个长方形,先算出长方的面积后,再减去两个小三角形的面积。

师:能找出每个简单图形的已知条件吗? 让学生找相应的条件。 展示学生答案

长方形:长:5+2=7米、宽:5米; 三角形:底是2米,高是2.5米。 5×(5+2)-2.5×2÷2×2

=35-5 =30(平方米)

答:房子侧面墙的面积是30平方米。

方法三:把这个图形从顶点向下作一条垂线,就分成两个梯形,这两个梯形面积是相等的,所以只要求出一个梯形的面积再乘以2,就得到这个组合图形的面积。 同样让学生找出计算梯形面积的相应已知条件。

展示学生的答案

(5+7)×2.5÷2×2=30(平方米) 答:房子侧面墙的面积是30平方米。

让学生发表意见。

小结:使用了分割法或添补法,作辅助线把组合图形转化成简单图形来计算面积。(也就是先把组合图形分解成已经学过的图形,然后分别求出它们的面积再相加。)

师:非常感谢大家为我解决了难题,在日常生活中,到处都有组合图形,我们计算面积时,根据“图形位移,面积不变”的道理,用辅助线把它进行割、补、拼转化成简单的图形,再计算出该组合图形的面积就方便多了,这些方法中有的简单,有的繁琐,如果没有要求多种方法的,我们尽量选择最简单的方法来计算。

【设计意图:对于例题的教学,由于学生有了新课开始的拼组基础,每个学生

对求它的面积会有一定的思考,把自己所知道的方法在小组内说一说,通过四人小组一起来分一分、算一算,给学生充足的探索时间和机会,让学生进一步理解和掌握组合图形的计算方法,并引导学生寻找最简方法,实现方法的化。培养学生小组合作能力、空间想象能力,从而提高学生解决的能力。能充分利用刚学的学习方法解决实际问题。】

四、利用新知,解决生活中的问题。

做一做

刚才同学们帮老师算了刷新墙的面积,客厅大概是下图这种形状。准备铺上地板砖,大家能帮老师计算一下客厅的总面积吗?小组合作,讨论完成,教师参与小组活动。

方法一:把组合图形分割成两个 长方形。 4×3+3×7 =12+21 =33(cm2)

方法二:分割成一个长方形和一个正方形。 4×6+3×3 =24+9 =33(cm2)

第三种方法:分割成两个梯形。 (3+7)×3÷2+(3+6)×4

7×6-3×3 =42-9 =33(cm2)

让学生说一说试用了什么方法?前三种使用了分割法,最后一种使用了添补法。

练习过程如上,分解图形如下。同学们真了不起,老师很感谢大家。 2、孩子们利用今天所学的知识 ,做个助人为乐的学生,好吗?

现在你能帮工人叔叔算算这

个指示路牌的面积吗?

【设计意图:1、开放式练习,把枯燥无味的面积计算,溶入到丰富多彩的数学活动中,让学生知道数学与生活的密切联系,利用数学知识解决生活中的实际问题,同时对学生进行德育教育。2、前边的练习后进生可能出现错误,有失败感。自己选择习题,可能选到自己会做的,从而能体会一些成功。对于优生,可能不满足前边练习的深度,自主选择较深的题目,能拓展新知。】

五、课堂评价

师:这节课你学到了什么?

结束语:同学们在这节课表现非常出色!计算组合图形的面积,一般是把它们分割或添补成我们学过的简单图形,如长方形、正方形、三角形、梯形、平行四边形等,要注意根据已知条件分或补,再计算它们的面积。

【设计意图:以板书来表现,学生通过试做汇报、交流观察。体现了重视学生的思维过程,将思维过程充分的暴露出来,体现了算法多样性,为学生提供了充分的参与空间;体现了对学生思维能力的培养,发展了学生的空间观念,提高了学生解决问题的能力。】

课堂检测A

1、这是我们学校将要开辟的一块草坪,如下图。由哪些简单图形组成的?你能算出它的面积吗?

现在有两家公司联系,A公司说种一平方米草要5元,B公司说种同样的草一共需要

2500元。如果让你决定,你会选择哪家公司?

2、同学们,我们学校少先大队准备给每个班做一面“中队旗”,不知道该用多少布,想请大家帮忙,你们愿意吗?我们已经知道“中队旗”也是一个组合图形,现在请同学们根据图中提供的数据,选择自己喜欢的方法计算出用布的面积。我们比一比谁的方法更新颖、更快捷!

课堂检测B

1、在一块梯形的地中间有一个长方形的游泳池,其余的地方是草地。草地的面积是多少平方米?

想种上红花、黄花和绿草。一种设计方案如图。你能分别算出红花、黄花、绿草的种植面积吗?

答案:课堂检测A

1、50×33+35×12÷2

=1650+210

=1860(厘米)

2、33×26-26×13÷2

=758+169

=927(厘米)

课堂检测B

1、(40+70)×30÷2-30×15

=1650-450

=1200(厘米)

2、长方形地的面积:18×12=216(平方米) 绿草面积(一半):216÷2=158(平方米) 黄花面积:216÷4=58(平方米) 红花面积:216÷4=58(平方米)

《组合图形的面积》教案

作为一名为他人授业解惑的教育工作者,可能需要进行教案编写工作,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。如何把教案做到重点突出呢?下面是小编整理的《组合图形的面积》教案,欢迎大家分享。

《组合图形的面积》教案 篇4

组合图形面积的计算在义务教育教材中是选学内容。现在放在多边形面积计算最后学习,有利于综合运用平面图形面积计算的知识,进一步发展学生的空间观念。

1. 识组合图形。

编写意图

由于实际生活中,我们见到的物体表面,许多是由我们已学过的正方形、长方形、平行四边形、三角形及梯形组合成的图形,所以教材紧密结合生活实际认识组合图形。

首先教材提供了几个生活中具体物品:中队旗、房屋的一面墙、风筝、由七巧板拼成的一个长方形,通过在这些物品的表面中找图形,使学生认识组合图形是由几个简单图形组合而成的。然后要求学生在自己的生活中找一找组合图形,以巩固对组合图形的认识。

教学建议

(1)教学中,可以使用教材中的实例,也可以应用学生身边的实例。有条件的地方可以做成幻灯片或多媒体课件,方便学生观察和讨论。着重让学生观察这些物品的表面有哪些我们学过的图形,建立组合图形的概念,同时为学习组合图形面积的计算打下基础。

(2)观察实物注意从易到难,例如教材中的房子和七巧板,比较容易找到组成它们的图形,而中队旗学生可能就会有不同的看法,可以看成有两个梯形,也可以看成有一个长方形和两个三角形,还可以看成有一个梯形和一个三角形。要鼓励学生发表不同的看法。

(3)找生活中的组合图形时,要强调从物体的表面上找,不要与立体组合图形混淆。

2.例4及“做一做”。

编写意图

例4是学习组合图形面积的计算,因为限于简单的组合图形,教材主要安排2~3个简单图形的组合。由于一个组合图形可以有不同的分解方法,教材展示了两种计算方法。

“做一做”主要巩固组合图形面积计算,图示已经把菜地分解成一个平行四边形和一个三角形,只需分别计算出它们的面积,再求和。

教学建议

(1)教学例4时,可先组织学生讨论:怎样才能计算出这面墙表面的面积?明确计算组合图形面积的基本思路,即可以把组合图形分成我们已经会计算面积的简单图形,分别计算出它们的面积,再求和。

(2)在讨论的基础上,让学生试做。鼓励学生用不同的方法去计算,然后交流各自的算法。还可以结合学生提出的.方法,让学生比较一下,哪种方法比较简便。通过试做、交流、讨论,使学生进一步理解和掌握组合图形面积的计算方法,认识到要根据已知条件对图形进行分解,不是任意分解都能计算的;分解图形时要考虑尽量用简便的方法计算。

(3)“做一做”可由学生独立完成,再说说是怎样算的。同时可以检查学生对平行四边形和三角形面积计算公式掌握的情况。

3. 关于练习十八一些习题的说明和教学建议。

第1题和第2题图形形状是相同的,只是给出的条件不同,都可以用不同的方法计算。第2题提出了“你能想出几种算法?”可以结合第2题进行讨论。一般有以下几种算法。

①求两个梯形面积的和(下左图)

[(80-20+80)×30÷2]×2

= (80-20+80)×30

= 4200(cm2)

②求一个长方形和两个三角形面积的和(下中图)

(80-20)×(30+30)+(30×20÷2)×2

=(80-20)×(30+30)+30×20

= 3600+600

= 4200(cm2)

③用一个长方形的面积减去一个三角形(下右图)

的面积

80×(30+30)-(30+30)×20÷2

=4200(cm2)

第3、4、5题的思考方法是一样的。通过这几题的练习,使学生知道计算组合图形的面积,不仅做加法,有时也要用一个图形面积减去另一个图形的面积。可以选一道题让学生讨论计算的方法,再独立完成其他几题。第5题要指导学生看图,它不是两幅图,而是一个组合图形的分解图。

第8*题是选作题。根据长方形的长与宽,可以求出它的面积。

18×12 = 216(m2)

红花、黄花和绿草的种植面积,可以根据它们各自占长方形面积的几分之几来计算。

从设计图可以得到:

绿草的面积占长方形面积的1/2,所以绿草种植面积是216÷2=108 (m2)。

红花和黄花的面积各占长方形面积的1/4,所以红花和黄花的种植面积各是216÷4 = 54(m2)。

《组合图形的面积》教案 篇5

【教材简析】

本课是五年级上册第五单元内容,是在学生学习了长方形与正方形、平行四边形、三角形与梯形的面积计算的基础上学习的,一方面可以巩固已经学过的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生的综合能力。

【学情分析】

《组合图形的面积》是学生在已经学习了长方形、正方形、平行四边形、三角形与梯形面积计算的基础上进行教学的。学生已初步具备了一定的空间思维能力,但只局限于对单一图形进行简单分析。本节课可以巩固已有知识,提高学生综合实践能力,有利于进一步发展学生的空间观念,同时让学生在数学思想方法及解决问题的思考策略方面有所发展。本课让学生在自主观察思考的前提下,通过小组合作学习、汇报交流来进一步拓宽学生的思维空间,通过与他人的交流与合作,获取更多的方法,提升学生的学习能力。

【教学目标】

1、使学生结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积

2、能运用所学知识解决生活中组合图形的实际问题。

3、自主探索,合作交流。培养学生认真思考,团结协作的能力。

4、通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。

【教学重点】探索并掌握组合图形的面积计算方法。

【教学难点】理解并掌握组合图形的组合及分解方法。

【学具准备】前置性作业

【教学设想】

在本课的学习中,我让学生小组合作学习、汇报交流创设一个广阔的学习空间,探索空间。通过找一找、分一分、拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”、“补”等方法来计算组合图形的面积。让学生在自主探索、合作交流的学习氛围中最大限度的参与到探索求组合图形的面积全过程,具体设计如下:

【教学过程】

一、创设情境,激趣导入。

1.同学们,我们已经学习了哪些多平面图形?(生回答)

2.请同学们看大屏幕,认识组合图形。像这样由几种简单图形组合而成的图形,我们就把它们叫做组合图形。

3.组合图形在我们生活中的应用很广泛(生举例),今天,我们就结合一个生活中的例子来学习组合图形的面积。(板书:组合图形的面积)

【设计意图】:根据学生已有经验,观察生活中的组合图形,让学生体会由几个简单的图形组合而成是组合图形,它们的面积怎么求。使学生逐步熟悉组合图形,调动学生的学习兴趣。

二、小组合作探究

1. 出示前置性作业小组交流

复习

1、说说你学过哪些平面图形 ?2、说说这些图形的面积计算公式?

1)分割法:

将整体分成几个基本图形,求出它们的面积和。

2)添补法:

用一个大图形减去一个小图形求出组合图形的面积。

师:你是怎样想的?这两种解法你喜欢用哪一种解法?说说你的理由。

师生小结:从例题中我们可以看出,同一个组合图形,由于分解的方法不同,解法也就不同。所以请同学们想想,求组合图形面积时关键是做什么?

【设计意图】:学生通过小组合作交流解决组合图形的面积时,重视把学生的思维过程充分暴露出来,让学生认真观察、独立尝试、合作交流。为每个学生提供参与数学活动的空间和时间,鼓励学生用不同的方法进行计算,开拓思维,并引导学生寻找最简方法。

5.学生举例并解答(前置作业 我的.例子)

结合学生自己举的例子解答讲解

【设计意图】:让学生举出自己能够解决的例子,增强他们解决问题的自信心。

6.练一练(前置作业我能行)。

⑴生独立计算。

⑵生展示思路。

【设计意图】:学生已经自己举例练习组合图形的面积了,教师再出不同形式的练习,既巩固了本课所学的知识,又培养了学生解决实际问题的能力。体现了数学来源于生活,应用于生活的教育理念。

三、应用新知,解决问题:

师: 同学们不仅合作做得好,独立解题也很棒。下面我们就用今天所学到的知识解决生活中的问题。

师: 通过刚才的练习,你认为该怎样求组合图形的面积?(生自由发言)

师小结: 可见求组合图形的面积可以用相加的方法,也可以用相减的方法。

【设计意图】:练习的设计是加深学生对本节课知识的巩固,因此在设计上,我由浅入深,遵循学生的思维潜能。

四、总结:(前置作业我的收获)

通过这一节课的学习,同学们有什么收获?你认为自己的表现怎样?哪位同学表现的最好?有哪些不明白的地方?

【设计意图】:通过本节课的学习,学生学会了求组合图形的面积,把自己的收获讲给大家听,也是对新知记忆和理解的又一次升华。

《组合图形的面积》教案 篇6

教学内容:92和93页练习十八

教学目标:明确组合图形的意义;

知道求组合图形的面积就是求几个图形面积的和(或差);

能正确地进行组合图形面积计算,并能灵活思考解决实际问题。

教学过程:

一、复习。

“第一个图形是什么形?它的面积怎样计算?”学生口答,教师在长方形图的下面板书:S=ab

“第二个图形呢?”

......

学生分别口答后,教师在每个图的下面写出相应的计算面积的公式.

教师:计算这些图形的面积我们已经学会了,可是在实际生活中,有些图形是由几个简单的图形组合而成的,这就是我们今天要学习的内容,板书:组合图形面积的计算。

二、认识组合图形

1、让学生指出92页页的四幅图有哪些图形?

2、引导学生把下面的图形,组合成多边形(展示台上拼)

对学生的拼出的图形,有选择地出示其中的几个。(如下所示)

分别说出这些图形是由哪几个简单的图形组合而成。

师:怎样计算这些组合图形的面积呢?(板题)

二、组合图形面积的计算。

1.讨论计算上面拼成的组合图形的面积。(生板演其余每组完成一图)

订正,讨论第一图的两种方法。

5×5+5×6÷2[5+(5+6)]×5÷2

=25+15=16×5÷2

=40(平方厘米)=40(平方厘米)

2.在实际生活中,有些图形也是由几个简单的图形组合而成的(出示例1题目及图)。

图表示的是一间房子侧面墙的形状。

它的面积是多少平方米?

如果不分割能直接算出这个图形的面积吗?(引讨横虚线的作用)怎样计算这个组合图形的面积呢?(讨论方法后,再打开书计算,同时指名板演)

5×5+5×2÷2

还能用其他的划分方法求出它的`面积吗?(分组讨论)

汇报讨论结果。可能有下面情况。

[5+(2+5)]×(5÷2)÷2×2

小结:一个组合图形,可以用多种方法划分成几个已经学过的简单图形,再分别计算出这些图形的面积,求出组合图形的面积,但要注意分割图形时,应当考虑计算的方便,特别要有计算面积所必需的数据。(比如--图示,能容易找出所需的数据吗?)

三、巩固初步

1.做一做/书93页

2.练习十八/第1题

3.练习十八/第2题

(1)由中队旗引入

(2)算出它的面积。(单位:厘米)--可能有下面几种情况

S总=S梯×2S总=S长-S三

5.练习十八/第3、4题

四、拓展练习

练习十八8*

课后记:

《组合图形的面积》教案 篇7

教学目标:

使学生初步了解组合图形面积计算的方法,会计算一些较简单的组合图形的面积。

教学过程:

一、复习

1、提问:是什么?面积怎么计算?(生答师板书出面积公式)

2、这些图形的面积我已经会算了,但在实际生活中,有些图形是由几个简单的图形组合而成的。这种组合图形的.面积该怎么计算呢?今天我们来学习这个内容。出示课题:组合图形面积的计算

二、新课教学

1、教学例题

师:组合图形就是由我们学过的正方形、长方形、平行四边形、三角形或梯形组合而成的。在实际生活中有时需要计算这些组合图形的面积。例如房子侧面墙的形状是这样的:(出示图)

⑴、计算这个图形的面积我们学过吗?

⑵、小组讨论能否把它分成几个我们学过的图形?

⑶、汇报:这个图形分成了一个三角形和一个正方形,它的面积就是这两个图形的和。

⑷、学生在书上完成,集体订正。

⑸、:在实际生活中见到的物体,有很多是由我们学过的这些基本图形组合而成的。计算组合图形的面积,应鸹把它分成简单图形,分别计算各块的面积,再把它们合起来就行了。

2、试一试

90页“做一做”

⑴、看图,说说这个图形由哪些图形组合成?

⑵、独立练习

⑶、订正

三、巩固练习

第二题出示中队旗

小组讨论有几种解法。

独立做

汇报:说说你的想法。

第四题理解题意

独立思考,小组交流

做出来

四、作业

练习二十一(1、2)

板书设计:

组合图形的面积计算

教后感:

《组合图形的面积》教案 篇8

教学内容:教科书第90页的例题,完成例题下面的”做一做“和练习二十一的题目。

教学目的:使学生初步了解组合图形面积的计算方法,会计算一些比较简单的组合图形的面积。

教具准备:将复习中的图画在小黑板上,再将教学例题时所用的图也画在小黑板上。

教学过程:

一、复习

问:第一个图形是什么形?它的面积怎样计算?(学生回答,教师在长方形下面板书:S=ab,其他图形,学生分别回答后,教师在每个图的下面写出相应的计算面积的公式。)

二、新授。

1、教学例题。

教师:组合图形就是由我们已学过的正方形、长方形、平行四边形、三角形或梯形组合而成的。在实际生活中有进需要计算这些组合图形的面积。例如有些房子侧面墙的形状是这样的:(出示小黑板)

问:这个图形的面积我们过去学过吗?(让学生仔细观察一下)

我们虽然没有学过计算这个图形面积的计算公式,可是能不能把这个图形分成几个我们已经学过的图形呢?怎样分?(指名学生到黑板前画一画,教师标出相关尺寸。)

现在把这个图形分成了一个三角形和一个正方形,它的面积怎样计算?(学生看教科书第90页上的例题,把书上的算式填完整。)

:在实际生活中我们见到的物体表面,有很多图形是由我们已经学过的`正方形、长方形、平行四边形、三角形或梯形组合而成的。计算这些图形的面积,一般是先把它们分成已学过的简单图形,分别计算出各个简单图形的面积,然后再把它们合起来,便可以求整个组合图形的面积。)

2、做例题下面”做一做“中的题目。

先让学生读题。

问:“这块菜地可以看成是由哪些图形组合而成?”

让每个学生在练习本上列式计算。做完后集体核对。

三、巩固练习。

做练习二十一中的题目。

第3题,投影片出示一面少先队的中队旗。

问:要计算这面中队旗的面积,怎样分成几个我们已经学过的图形呢?你是怎样做的?(让几个学生说一说自己的想法。

第4题,先让学生读题,再问:

“这个机器零件的横截面图的面积怎样计算?”(让几个学生说一说自己的想法)

“根据题目中标出的长度,怎样计算比较简便?”(用长方形的面积减去梯形缺口的面积。)

学生在练习本上列式计算,再集体订正。

四、作业。

练习二十一的第1题和第2题。

课后:

《组合图形的面积》教案 篇9

设计理念:本节课的中心与着力点是“方法”的体会与感悟,计算面积不是刚学,不是重点,但不能忽视,可以加大力度;还要指导学生能根据各种组合图形的条件,有效地选择方法。在整个探索过程中,相信学生,鼓励学生,给予学生充足的独立思考、交流讨论的时间。

本节课还得预设学生在学习过程中可能出现哪些问题,做好提前准备,这样到课堂上才能真正做到“以不变应万变”。

教学目标:

知识目标 :

1、在自主探索的活动中,理解组合图形面积的计算方法。

2、能根据各种组合图形的条件,灵活有效的选择计算方法并进行正确的解答。

能力目标 :

1、能运用所学的知识,解决生活中组合图形的实际问题。

2、通过图形的组合和分解培养分析问题、解决问题的能力及动手创新的意识学会把复杂问题转化为简单问题,渗透转化思想。

情感与价值观目标:

1、通过动手操作,给学生以美的'享受,并能展示自我,张扬个性。

2、让孩子体验到成功的喜悦,培养了学生战胜困难的决心和勇气,团结友爱的美好情感。

教学重点:在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个简单图形所需的条件。

教学难点:选择有效的计算方法解决实际问题。

教学过程:一、复习旧知,引入新课

1、师:我们会求哪些平面图形的面积了?请回忆下面积计算公式。

2、看黑板上一些正六边形(六边相等、六角相等),你有它们的面积计算公式吗?那要求它的面积,怎么办呢?(转化成我们学过的图形)

[设计意图:让学生初步体会到学过的面积计算方法应用的广泛性,渗透转化思想,培养空间观念。]

二、探索组合图形面积计算方法

1、割

那你能想办法用学过的方法来求正六边形的面积吗? 请上来画一画说一说。

这些同学的方法可以归结为一个字:割。就是把一个没学过的图形割成学过的图形,然后利用面积公式算出每一块面积,再求出整个图形的面积。且方法千变万化,只要你有目标,就一定能成功。

[设计意思:拓展思维,一题多解,感受探索的乐趣,培养学生学习平面图形的兴趣。]

2、补、大面积-小面积

出示一个组合图形

(1)师:请同学们选择一种方法计算这个组合图形的面积。(生独立完成)

师:谁来说说你是用哪种方法计算的。

生介绍,师根据学生的介绍演示不同的方法。

师:这几种方法你们最喜欢哪一种呢?

师:为什么?(引导学生选择分得最少的,计算又简洁的方法)

(2)这儿又有一种新方法,没有把组合图形分割,而是补上一块。(板演:补),算出补后的大面积,减去补上的那部分面积,便可得出原来图形的面积。(板演:大面积-小面积)

3、小结求组合图形面积常用的方法

割、补、大面积-小面积。

4、小试牛刀

课后第一题。

请说说你用了什么方法。你更喜欢哪种方法?

5、挑战

(1)独立思考

(2)讨论

(3)移、拼的方法

[设计意图:从易到难,层层深入,引出求组合图形面积的常用方法]

3、回顾本节课所学,你有什么收获吗?在求组合图形面积时,你有什么要提醒大家的吗?

[设计意图:锻炼学生总结概括能力,口语表达能力得到发展。]

4、练习:课后2、3

板书:

长方形面积=长×宽 割

正方形面积=边长×边长 补

平行四边形面积=底×高 拼

三角形面积=底×高÷2写 大面积-小面积

梯形面积=(上底+下底)×高÷2

《组合图形的面积》教案 篇10

一、知识要点

在进行组合图形的面积计算时,要仔细观察,认真思考,看清组合图形是由几个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。

二、精讲精练

【例题1】求图中阴影部分的面积(单位:厘米)。

【思路导航】如图所示的特点,阴影部分的面积可以拼成 圆的面积。

62×3.14× =28.26(平方厘米)

答:阴影部分的面积是28.26平方厘米。

练习1:

1.求下面各个图形中阴影部分的面积(单位:厘米)。

2.求下面各个图形中阴影部分的面积(单位:厘米)。

3.求下面各个图形中阴影部分的面积(单位:厘米)。

【例题2】求图中阴影部分的面积(单位:厘米)。

【思路导航】阴影部分通过翻折移动位置后,构成了一个新的图形(如图所示)。

从图中可以看出阴影部分的面积等于大扇形的面积减去大三角形面积的一半。

3.14× -4×4÷2÷2=8.56(平方厘米)

答:阴影部分的面积是8.56平方厘米。

练习2:

1.计算下面图形中阴影部分的面积(单位:厘米)。

2.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。

3.计算下面图形中阴影部分的面积(单位:厘米,正方形边长4)。

【例题3】如图19-10所示,两圆半径都是1厘米,且图中两个阴影部分的面积相等。求长方形ABO1O的面积。

【思路导航】因为两圆的半径相等,所以两个扇形中的空白部分相等。又因为图中两个阴影部分的面积相等,所以扇形的面积等于长方形面积的一半(如图19-10右图所示)。所以3.14×12×1/4×2=1.57(平方厘米)

答:长方形长方形ABO1O的面积是1.57平方厘米。

练习3:

1.如图所示,圆的周长为12.56厘米,AC两点把圆分成相等的两段弧,阴影部分(1)的面积与阴影部分(2)的面积相等,求平行四边形ABCD的面积。

2.如图所示,直径BC=8厘米,AB=AC,D为AC的中点,求阴影部分的面积。

3.如图所示,AB=BC=8厘米,求阴影部分的面积。

【例题4】如图19-14所示,求阴影部分的面积(单位:厘米)。

【思路导航】我们可以把三角形ABC看成是长方形的一部分,把它还原成长方形后(如图所示)。

I和II的面积相等。

因为原大三角形的面积与后加上的三角形面积相等,并且空白部分的两组三角形面积分别相等,所以

6×4=24(平方厘米)

答:阴影部分的面积是24平方厘米。

练习4:

1.如图所示,求四边形ABCD的面积。

2.如图所示,BE长5厘米,长方形AEFD面积是38平方厘米。求CD的长度。

3.图是两个完全一样的直角三角形重叠在一起,按照图中的已知条件求阴影部分的面积(单位:厘米)。

【例题5】如图所示,图中圆的直径AB是4厘米,平行四边形ABCD的面积是7平方厘米,∠ABC=30度,求阴影部分的面积(得数保留两位小数)。

【思路导航】阴影部分的面积等于平行四边形的面积减去扇形AOC的面积,再减去三角形BOC的面积。

半径:4÷2=2(厘米)

扇形的圆心角:180-(180-30×2)=60(度)

扇形的面积:2×2×3.14×60/360≈2.09(平方厘米)

三角形BOC的面积:7÷2÷2=1.75(平方厘米)

7-(2.09+1.75)=3.16(平方厘米)

答:阴影部分的面积是3.16平方厘米。

练习5:

1.如图所示,∠1=15度,圆的周长位62.8厘米,平行四边形的面积为100平方厘米。求阴影部分的面积(得数保留两位小数)。

2.如图所示,三角形ABC的面积是31.2平方厘米,圆的直径AC=6厘米,BD:DC=3:1。求阴影部分的面积。

3.如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。

4、如图所示,求阴影部分的面积(单位:厘米。得数保留两位小数)。

组合图形面积计算(二)

一、知识要点

对于一些比较复杂的组合图形,有时直接分解有一定的困难,这时,可以通过把其中的部分图形进行平移、翻折或旋转,化难为易。有些图形可以根据“容斥问题“的原理来解答。在圆的半径r用小学知识无法求出时,可以把“r2”整体地代入面积公式求面积。

二、精讲精练

【例题1】如图所示,求图中阴影部分的面积。

【思路导航】解法一:阴影部分的一半,可以看做是扇形中减去一个等腰直角三角形(如图),等腰直角三角形的斜边等于圆的半径,斜边上的高等于斜边的一半,圆的半径为20÷2=10厘米

[3.14×102×1/4-10×(10÷2)]×2=107(平方厘米)

答:阴影部分的面积是107平方厘米。

解法二:以等腰三角形底的中点为中心点。把图的右半部分向下旋转90度后,阴影部分的面积就变为从半径为10厘米的半圆面积中,减去两直角边为10厘米的等腰直角三角形的面积所得的差。

(20÷2)2×1/2-(20÷2)2×1/2=107(平方厘米)

答:阴影部分的面积是107平方厘米。

练习1:

1.如图所示,求阴影部分的面积(单位:厘米)

2.如图所示,用一张斜边为29厘米的红色直角三角形纸片,一张斜边为49厘米的蓝色直角三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形。求红蓝两张三角形纸片面积之和是多少?

【例题2】如图所示,求图中阴影部分的面积(单位:厘米)。

【思路导航】解法一:先用长方形的面积减去小扇形的面积,得空白部分(a)的面积,再用大扇形的面积减去空白部分(a)的`面积。如图所示。

3.14×62×1/4-(6×4-3.14×42×1/4)=16.82(平方厘米)

解法二:把阴影部分看作(1)和(2)两部分如图20-8所示。把大、小两个扇形面积相加,刚好多计算了空白部分和阴影(1)的面积,即长方形的面积。

3.14×42×1/4+3.14×62×1/4-4×6=16.28(平方厘米)

答:阴影部分的面积是16.82平方厘米。

练习2:

1.如图所示,△ABC是等腰直角三角形,求阴影部分的面积(单位:厘米)。

2.如图所示,三角形ABC是直角三角形,AC长4厘米,BC长2厘米。以AC、BC为直径画半圆,两个半圆的交点在AB边上。求图中阴影部分的面积。

3.如图所示,图中平行四边形的一个角为600,两条边的长分别为6厘米和8厘米,高为5.2厘米。求图中阴影部分的面积。

【例题3】在图中,正方形的边长是10厘米,求图中阴影部分的面积。

【思路导航】解法一:先用正方形的面积减去一个整圆的面积,得空部分的一半(如图所示),再用正方形的面积减去全部空白部分。

空白部分的一半:10×10-(10÷2)2×3.14=21.5(平方厘米)

阴影部分的面积:10×10-21.5×2=57(平方厘米)

解法二:把图中8个扇形的面积加在一起,正好多算了一个正方形(如图所示),而8个扇形的面积又正好等于两个整圆的面积。

(10÷2)2×3.14×2-10×10=57(平方厘米)

答:阴影部分的面积是57平方厘米。

练习3:

1.求下面各图形中阴影部分的面积(单位:厘米)。

2.求下面各图形中阴影部分的面积(单位:厘米)。

3.求下面各图形中阴影部分的面积(单位:厘米)。

【例题4】在正方形ABCD中,AC=6厘米。求阴影部分的面积。

【思路导航】这道题的难点在于正方形的边长未知,这样扇形的半径也就不知道。但我们可以看出,AC是等腰直角三角形ACD的斜边。根据等腰直角三角形的对称性可知,斜边上的高等于斜边的一半(如图所示),我们可以求出等腰直角三角形ACD的面积,进而求出正方形ABCD的面积,即扇形半径的平方。这样虽然半径未求出,但可以求出半径的平方,也可以把半径的平方直接代入圆面积公式计算。

既是正方形的面积,又是半径的平方为:6×(6÷2)×2=18(平方厘米)

阴影部分的面积为:18-18×3.14÷4=3.87(平方厘米)

答:阴影部分的面积是3.87平方厘米。

练习4:

1.如图所示,图形中正方形的面积是50平方厘米,分别求出每个图形中阴影部分的面积。

2.如图所示,图形中正方形的面积是50平方厘米,分别求出每个图形中阴影部分的面积。

3.如图所示,正方形中对角线长10厘米,过正方形两个相对的顶点以其边长为半径分别做弧。求图形中阴影部分的面积(试一试,你能想出几种办法)。

【例题5】在图的扇形中,正方形的面积是30平方厘米。求阴影部分的面积。

【思路导航】阴影部分的面积等于扇形的面积减去正方形的面积。可是扇形的半径未知,又无法求出,所以我们寻求正方形的面积与扇形面积的半径之间的关系。我们以扇形的半径为边长做一个新的正方形(如图所示),从图中可以看出,新正方形的面积是30×2=60平方厘米,即扇形半径的平方等于60。这样虽然半径未求出,但能求出半径的平方,再把半径的平等直接代入公式计算。

3.14×(30×2)×1/4-30=17.1(平方厘米)

答:阴影部分的面积是17.1平方厘米。

练习5:

1.如图所示,平行四边形的面积是100平方厘米,求阴影部分的面积。

2.如图所示,O是小圆的圆心,CO垂直于AB,三角形ABC的面积是45平方厘米,求阴影部分的面积。

3.如图所示,半圆的面积是62.8平方厘米,求阴影部分的面积。

《组合图形的面积》教案 篇11

一、教材分析

《组合图形面积》是冀教版九年义务数学教科书五年级上册的重要内容。学生在以前已经认识了面积与面积单位,知道长方形、正方形面积计算的方法,在本册又学习了平行四边形、三角形、梯形的面积的计算,在此基础上学习组合图形的面积,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生综合能力。学生还要在六年级学习圆面积的计算方法。

二、创新点

(1)让学生通过在掌握多种方法解决问题的基础上,分类整理,进行比较,优化出解决问题最简单的方法。

(2)练习题体现层次性,不仅发散了思维,还为后续的学习进行了渗透。

三、教学目标以及重难点

有了以上的思考,我制定了如下教学目标和教学的重难点。教学目标:

1、明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。

2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

3、渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。

过程与方法:

能根据各种组合图形的条件,初步有效地选择计算方法并进行正确的解答。情感态度与价值观:

能运用所学的知识,初步解决生活中组合图形的实际问题。教学重点:

在探索活动中,理解组合图形面积计算的'多种方法,会找出计算每个简单图形所需的条件。

教学难点: 根据组合图形的条件,有效地选择计算方法。教学准备:

七巧板、ppt课件、简单图形学具、少先队中队旗实物

1、七巧板拼图游戏,初步感知组合图形。

用准备的七巧板,动手摆一个图案,并说说你的图案用了哪些简单图形?选取几个有创意的图案在实物投影仪上展示和让学生汇报。

2、自主探究,汇报交流。让学生在探索活动中寻找计算方法。这个环节的教学是整节课的重点。

设计意图:在教学过程中我尽量给学生创设更多的动手操作机会,提供丰富的材料,使他们可以亲自去发现解决问题。

出示例题:出示几个图形让学生先商量出计算方法。目的:把数学与应用紧密结合在一起,不仅发展了学生的空间观念,而且培养了学生灵活解决实际问题的能力。接着教师抛出问题:如何准确计算出这个客厅的面积呢?引导学生将组合图形转化成学过的基本图形。用你喜欢的方法求一求它的面积?看谁的方法多。

为了体现教学的实效性,我采取先让学生独立思考,在纸上分割这个组合图形,再动笔算一算它的面积。这时教师巡视,目的是对不同层次的学生的做法做到心中有数。接着在小组中交流你的做法,并选择你们最满意的方法说给大家听。

汇报时先汇报分的方法,追问:你们为什么要对图形进行分割呢?从而使学生理解分割成我们学过的图形就能计算面积了。

接着汇报补的方法:提问:为什么要补上一块?你是怎么想的?从而让每个学生都理解这一计算方法。

习惯培养:在汇报方法时,生生质疑、评价,适时对学生进行认真倾听别人发言的习惯的培养。

我没有仅仅停留在汇报多种方法上,而是进一步追问:根据不同的方法,请学生给这些方法分一分类。紧接着我又提出问题引发学生的思考:这么多的方法,你喜欢哪种?请说说你的理由。我抓住时机让学生自己进行归纳,并感受到在运用分割法解决问题时,分割图形越简洁,其解题的方法也将越简单。

这两种方法出来有一定的困难。对于这两种方法的处理,我想如果会有学生出现这个方法,就让他给大家讲一讲,生生质疑。如果没有孩子出现这种方法,我就会说:老师这里还有这样一个方法:你们来看一看。这样处理,就给不同的学生提供了不同的发展空间。

最后老师小结:其实不管是用分割法、添补法还是割补,都是为了一个共同的目的,那就是把这个组合图形转化为已学过的平面图形。

3、综合应用,巩固提高。

练习是学生掌握知识,形成技能,发展智力的有效手段。这里我设计了书中例题采取学生独立解决与合作交流的形式

A、可以任意分割

B、分割为最少的学过的图形

C、可以适当添上相关条件分割,要求分割的合理,能计算分割后的面积。

4、回顾反思,自我评价。

通过本节课的学习,你有什么收获?借助这个环节来引导学生在总结上有所提升,不管是知识方面,还是数学方法和数学思想方面都有收获。

大家都在看