《分数与除法》教学设计

笔构网

2025-09-21教案

请欣赏《分数与除法》教学设计(精选21篇),由笔构网整理,希望能够帮助到大家。

《分数与除法》教学设计 篇1

教学内容:

教材第65、66页例1和例2

教学目标:

1、使学生理解两个整数相除的商可以用分数来表示。

2、使学生掌握分数与除法的关系。

教学重难点:

1、理解、归纳分数与除法的关系。

2、用除法的意义理解分数的意义。

3、理解分数的两种意义。

教具准备:圆片。

教学过程:

一、旧知铺垫。

1、表求什么意思?它的分数单位是什么?它有几个这样的分数单位?

2、 7个是()是()个

3个是()是()个

3、把6块饼平均分给3人,每人得多少块?师:怎样列式?

板书:每份数=总数÷总份数

二、教学实施

1.学习教材第65页的例1 。

把练习3改成“把1块饼平均分给3人,每人得多少块?”就成课本的例1。

(l)请学生读题。列式。

师:为什么用除法?结果是多少?

(2)分组操作、讨论、汇报。

生1:就是把1个蛋糕看成单位“1 ",把单位“1 ”平均分成三份,表示这样一份的数,可以用分数来表示,1块的就是块。

根据学生回答。(板书:1 ÷ 3 =)

师:从图中可以看出1 ÷ 3和都表示阴影部分这一块,所以1÷3=

2、学习例2 。

(1)板书例题:“把3块饼平均分给4人,每人得多少块?”

(2)指名读题,理解题意并列出算式。板书:3 ÷ 4

师:3 ÷ 4的计算结果用分数表示是多少?

请同学们用圆片分一分。

师:根据题意,我们可以把什么看作单位“1 "?(把3块月饼看作单位“1 ”。)把它平均分成4份,每份是多少,你想怎样分?

请同学到演示分的过程。

学生有两种分法。

方法一:可以1个1个地分,先把1块月饼平均分成4份,得到4个,3块月饼共得到,12个,平均分给4个学生。每个学生分得3个,合在一起是块月饼。

师根据学生回答板书:3块月饼的就是块。

方法二:可以把3块月饼叠在一起,再平均分成4份,拿出其中的一份,拼在一起就得到块月饼,所以两人分得块。

师相应板书:1块月饼的.就是块。

(3)理解。

师:块饼表示什么意思?

(4)练习。

说说下面分数的两种意义。

3、归纳分数与除法的关系。

(l)观察讨论。

请学生观察:1 ÷ 3 = 3 ÷ 4 =

讨论除法和分数有怎样的关系?

学生充分讨论后,老师引导学生归纳出:

被除数相当于分子,除数相当于分母,除号相当于分数中的分数线。

用文字表示是:被除数÷除数=

师讲述:分数是一种数,除法是一种运算。

《分数与除法》教学设计 篇2

【教学目标】

1、 结合具体的情景,巩固、掌握有余数除法的计算方法;

2、 通过小组合作探究,理解余数一定比除数小的道理;

3、 初步养成用数学解决实际问题的意识和能力。

【教学重难点】

在巩固、掌握有余数除法的计算方法的基础上理解余数一定小于除数。

【教学过程】

一、 情景感知,适时提问。

1、用竖式计算

(1)57÷9(2)40÷8(3)38÷7(4)24÷6

(请学生独立完成,及时校对)

[设计意图:及时巩固学生已学知识,为这节新课的学习打下基础。]

2、课件出示例1,进入情境:用15盆鲜花来装饰联欢会的.会场,以每5盆为一组,可以摆几组呢?

T:同学们,你们还记得这道题目吗?谁会列算式?(板书:15÷5=3(组))

二、探究发现,试作体验。

1、出示例题3:如果上一例中一共有16盆花,还是每5盆一组,最多可以分几组?多几盆呢?

T:如果现在变成了16盆花,条件没变,你还会算吗?这道题该怎样列算式呢?谁会算?(板书:16÷5=3(组)??1(盆))

2、改变条件,花盆的总数变成了17、18、19、20盆,请学生分别再来列算式算一算(写在自己的本子上)。

T:如果是17、18、19、20盆,还是每5盆一组,那最多可以分几组?还剩几盆呢?你会算吗?怎么列算式?

三 合作交流,试说分享。

1、请学生以小组分工合作的形式,先列式算一算,再讨论观察余数与除数,说说你们发现了什么?

T:前后4人为一小组,分工合作,每人做一题,并相互检查,看看有没有漏算,有没有算错,看哪一小组最先得出答案。(学生动手写一写)

T:现在哪一小组愿意将你们的计算成果和我们大家分享一下呢?(学生汇报,并板书) 17÷5=3(组)??2(人)

18÷5=3(组)??3(人)

19÷5=3(组)??4(人)

20÷5=4(组)

T:看来同学们的计算能力越来越好了。那现在我们来看看黑板上这几条算式的除数和余数,谁能来说说你发现了什么?细心的孩子一定发现了。

预设:除数比余数大;除数是5,余数可以是0、1、2、3、4.(真棒,你们观察得真仔细) T:可是,有人不服气了,我们一起去看看。(出示小精灵的话——不对不对,这只是个巧合,

如果数大一点,结果肯定就不一样了。)你们觉得是巧合吗?好,那现在我们就去验证一下,让它输的心服口服,怎样?有信心吗?

(增加花盆的总数,分别是21、22、23、24、25盆,让学生将课本上相应的算式补充完整。——开火车汇报答案。)

21÷5=

22÷5=

23÷5=

24÷5=

25÷5=

2、课件出示所有算式,再来看看除数和余数,说一说余数为什么不能是“5”。(提示:被除数逐渐变大,除数不变,那余数呢?除数是“5”,余数可能有几种情况呢?)

3、归纳总结:(1)余数要小于除数;(2)知道除数是几,就能知道余数可能是几。

4、改变除数,不改变被除数,让学生试着做一做。(加深余数和商之间的密切联系,尤其让学生明白,当知道除数时,便可以知道余数可能是几)

16÷4=

17÷4=

18÷4=

19÷4=

四、知识梳理,适时拓展。

1、判断题:第52页的做一做,让学生判断,进一步明确“余数要比除数小”,并列出正确的竖式。

2、先做第一小题,并请学生说说自己判断的理由,引导学生理解:被除数=除数×商+余数。

3、解决问题:十月份有31天,十月份有几个星期?多几天?

4、拓展延伸,完成填一填。

5、同学们,这节课你有什么收获:你体验最深的是什么?

板书设计:

有余数的除法

17÷5=3(组)??2(人)

18÷5=3(组)??3(人)

19÷5=3(组)??4(人)

20÷5=4(组)

余数一定要比除数小。

《分数与除法》教学设计 篇3

教学内容:

教学目标:

1、使学生理解、掌握分数与除法的关系,并能用分数表示两个整数相除的商。

2、运用分数与除法的关系,探索假分数与带分数的互化方法。

3、培养学生动手操作、观察、比较和归纳的能力。

4、培养学生团结合作、关心他人、先人后己等优良品质。

教学重点:理解、掌握分数与除法的关系。

教学难点:理解分数商a/b(b≠0)的意义。

教学具准备:教学课件及3张完全相同的圆和剪刀。

教学过程:

一、设置疑问,揭示课题

1、请同学们计算下面各题,你能把商分为哪几类?

36÷6=64÷5=0。880÷5=16

3÷7=5÷10=0。54÷9=

然后引导学生归纳分类:

36÷6=6和80÷5=16的商为整数;

4÷5=0。8和5÷10=0。5的商为有限小数;

3÷7=和4÷9=的商为循环小数。

2、师指出:两个自然数相除,不能整除的时候,它们的商可以用分数来表示。今天我们就来学习这部分内容:分数与除法(板书:分数与除法)

二、创设情境,引导探索

1、创设情境,引入关系

师:“六一”儿童节就要到了,今年的儿童节,学校要组织全校师生开展野游活动,到了野外,还要以班级为单位开展联欢活动,前几天我同班主任刘老师对想

要买的食品做了一些粗略的计划,知道买哪些东西了,具体怎么分还没有计算,

大家愿意和老师一起做一下详细的计划吗?

生:愿意!

师:好!那我们大家就一起来吧!

师:请看我们班级为这次活动准备的食品:

食品名称食品数量班级人数平均每人分的数量

苹果40个4740÷47

饮料39瓶4739÷47

花生8千克478÷47

上面表格里的商都不能用整数的.商来表示,除了可以用小数来表示,能否用

其它的形式,比如分数来表示呢?等我们学完了这节课,同学们自然会找到答案的。

2、层层深入,感知关系

师:我想调查一下,最近谁要过生日?指一名同学说说你过生日的时候必须要买什么食品?(生:蛋糕)买了蛋糕是自己吃,还是同爸爸妈妈一起吃?

师:同学们愿意帮xx同学分一分蛋糕吗?

生:愿意!

师:出示例题:把一个蛋糕平均分给3个人,平均每人能分得多少?师:这时,应该把什么看作单位“1”?

要把蛋糕平均分成几份?

怎样列式?(指名口述算式)

1÷3=

师:大家拿出练习本来计算这个商是多少?(用小数表示)

生:0。333…或

课件显示:1÷3=0。333…或

师:这个商用小数表示太麻烦了,能不能用分数来表示呢?

请大家看大屏幕大家看,每人得到这个蛋糕的几分之几?

生:

师:对了!那么上面的算式1÷3的商可以用分数表示了,

即:1÷3=(个)

(2)现在小组讨论:1÷3=中,你发现整数除法中被除数和除数与得数中的分子、分母存在着什么样的关系?

(3)讨论完毕后,指几名同学代表自己的小组总结:学生口述的过程中,教师

出示课件:被除数÷除数=

(4)师:现在大家会用分数表示整数除法的商了,那么,大家能把前面表格中的得数用分数表示吗?

生:会!

师出示:40÷47=?39÷47=?8÷47=?

3、巩固关系

师:“六一”联欢的时候,我打算买3张非常好吃的比萨饼,想和班主任刘老师、还有两名在这学期进步最大的同学A和B共同分享,大家能帮我们合理的分一下吗?

生:想!

师:大家看问题:我想把这3张饼平均分给我们4个人,每人分得这3张饼的几分之几呢?

①议一议:讨论如何分,有哪些分法?(让同学们充分考虑好后,说说自己的想法)

②剪一剪:想好后各小组可以行动了,请同学们以小组为单位拿出我们事先准备的三个完全一样的圆形和剪刀剪一剪,并把分好的四份摆在桌子上。

③拼一拼:分好后,请同学们每人取一份拼在一起,看看是一个“饼”的几分之几?

④列一列:怎样用算式表示自己分饼的数量关系?谁会列式?

⑤算一算:师指一名同学板演算式:3÷4=(张)

答:每人分得张。

《分数与除法》教学设计 篇4

教学内容:整数除以分数和平共处分数除以分数.教科书第30页例3第31的做一做,练习八的第4和5题。

教学目标:

1.通过具体的问题情境,探索并理解分数除法的计算方法。

2.确地进行分数除法的计算。

3.培养学生分析、推理能力。

教学过程:

一、复习引入

1.列式,说说数量关系。

小明2小时走了6km,平均每小时走多少千米?

速度=路程÷时间

2.填空。

2/3小时有()个1/3小时,1小时有()个1/3小时。

3.口算,说说分数除以整数的计算方法。

(1/6)÷3(4/5)÷2(3/8)÷6(6/7)÷2

(分数除以整数等于用分数乘这个整数的倒数,或者除以几等于乘几分之一)

4.引入课题。

我们已经学习了分数除以整数的分数除法,想一想,接下去应该学习什么?

今天这节课我们就来学习研究“一个数除以分数”的`计算方法,看谁最先学会。

板书课题:一个数除以分数。

二、解决问题,发现算法

1.理解题意,列出算式。

(1)出示例3。

(2)学生读题,理解题意。

(3)列出算式,说出列式根据什么数量关系。

板书:2÷(2/3)(5/6)÷(5/12)

2.探索整数除以分数的计算方法。

(1)2÷(2/3)如何计算呢?让我们画出线段图看看。

(2)先画一条线段表示1小时走的路程(边说边板书),怎样表示2/3小时走了2km这个条件?

(将线段平均分成3份,其中2份表示的就是2/3小时走的路程。)

(3)指着图启发:已知2/3小时走了2km,要求1小时走了多少千米?可以先算什么,再算什么?把你的想法与小组成员交流讨论一下。

(4)根据学生的回答把线段图补充完整,板书计算思路。

先求1/3小时走了多少千米,也就是求2的1/2,算式:2×1/2

再求3个1/3小时走了多少千米,算式:2×(1/2)×3

(5)找出计算方法。

板书:(乘法结合律)

现在会算了吗?说说2×1/2是图上的哪一段,表示什么?(1/3小时走了1km)再乘3,得到的结果是图上的哪一段,表示什么?(1小时走了3km)

启发:刚才我们用2÷2/3求1小时走的路程,现在我们又发现,2×3/2也可以求1小时走的路程,所以

观察:除法转化成了什么运算?什么没有变?什么变了?是怎样变的?

强调:被除数没有变,除号变乘号,除数变成了它的倒数。

(6)小结:从上面这个推算过程中我们找到了整数除以分数的计算方法是:整数除以分数等于用整数乘这个分数的倒数。

板书,学生齐读。

3.探索分数除以分数的计算方法。

(1)让学生尝试计算5/6÷5/12。

我们已经通过2÷2/3找到了整数除以分数的计算方法,分数除以分数的计算请你们自己试试看。

(2)学生汇报,教师板书:

(3)为什么写成×(12/5)?

(4)怎样验证这种计算结果是正确的?

学生可能回答:

①先求1/12小时走了多少千米,也就是求5/6的1/5,算式是5/6×1/5

再求12个1/12小时走了多少千米,算式是5/6×1/5×12

②用乘法验算。

(5)回答“谁走得快些”。

(6)小结:现在我们发现,无论是整数除以分数,还是分数除以分数,都是转化为什么运算,怎样用一句话来叙述这个计算方法?

让同桌学生相互议一议,再指名回答。

(7)看书质疑:看看书上是怎样总结的,和你们的叙述有什么不同?

强调:除以一个不等于0的数。

齐读法则。

三、巩固练习

1.口算。(采用口算对折卡片)

(1)不能约分的2÷3/5=1/3÷2/5=

(2)能约分的3÷3/4=2/7÷6/7=

2.完成课本第31页“做一做”第1题,填在书上。

第2题,写在课堂练习本上,写出过程。

3.直接写出得数。

1/3÷1/3=1÷1/3=5/6÷3=3/7÷6/7=3/7×7/9=

四、师生共同小结

1.这节课我们学习了哪些知识?

2.一个数除以分数的计算方法是什么?

五、布置作业(略)

《分数与除法》教学设计 篇5

教学内容:教材第65、66页例1和例2

教学目标:

1.使学生理解两个整数相除的商可以用分数来表示。

2.使学生掌握分数与除法的关系。

教学重难点:

1.理解、归纳分数与除法的关系。

2.用除法的意义理解分数的意义。

3.理解分数的两种意义。

教具准备:圆片。

教学过程:

一、旧知铺垫。

1.表求什么意思?它的分数单位是什么?它有几个这样的分数单位?

2. 7个是( ) 是( )个

3个是( ) 是( )个

3. 把6块饼平均分给3人,每人得多少块?师:怎样列式?

板书:每份数=总数÷总份数

二、教学实施

1 .学习教材第65 页的例1 。

把练习3改成“把1块饼平均分给3人,每人得多少块?”就成课本的例1。

(l)请学生读题。列式。

师:为什么用除法?结果是多少?

(2)分组操作、讨论、汇报。

生1:就是把1 个蛋糕看成单位“1 " ,把单位“1 ”平均分成三份,表示这样一份的数,可以用分数来表示, 1 块的就是块。

根据学生回答。(板书:1 ÷ 3 = )

师:从图中可以看出1 ÷ 3 和都表示阴影部分这一块,所以1÷3=

2.学习例2 。

(1)板书例题:“把3块饼平均分给4人,每人得多少块?”

(2)指名读题,理解题意并列出算式。板书:3 ÷ 4

师:3 ÷ 4 的计算结果用分数表示是多少?

请同学们用圆片分一分。

师:根据题意,我们可以把什么看作单位“1 " ? (把3 块月饼看作单位“1 ”。)把它平均分成4 份,每份是多少,你想怎样分?

请同学到演示分的过程。

学生有两种分法。

方法一:可以1 个1 个地分,先把1 块月饼平均分成4 份,得到4 个,3 块月饼共得到,12个, 平均分给4 个学生。每个学生分得3个,合在一起是块月饼。

师根据学生回答板书:3块月饼的就是块。

方法二:可以把3 块月饼叠在一起,再平均分成4 份,拿出其中的`一份,拼在一起就得到块月饼,所以两人分得块。

师相应板书:1块月饼的就是块。

(3)理解。

师:块饼表示什么意思?

(4)练习。

说说下面分数的两种意义。

3. 归纳分数与除法的关系。

(l)观察讨论。

请学生观察 :1 ÷ 3 = 3 ÷ 4 =

讨论除法和分数有怎样的关系?

学生充分讨论后,老师引导学生归纳出:

被除数相当于分子,除数相当于分母,除号相当于分数中的分数线。

用文字表示是:被除数÷除数=

师讲述:分数是一种数,除法是一种运算。

《分数与除法》教学设计 篇6

【学习目标】

1、掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。

2、培养并提高分析、判断、探索能力及初步的逻辑思维能力。

3、提高解答应用题的能力。

【学习重难点】

1、重点是弄清单位“1”的量,会分析题中的数量关系。

2、难点是分析题中的.数量关系。

【学习过程】

一、复习题:

小红家买来一袋大米,重40千克,吃了5,还剩多少千克?

1、分析题目的条件和问题,画出线段图。

2、交流讨论并解答。组内检查核对,提出质疑。

比如如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

二、探索新知

1、补充例题:

(1)小红家买来一袋大米,吃了5千克,还剩15千克。买来大米多少千克?

(2)理解题意,画出线段图。

(3)根据线段图,分析数量关系式:____________________________

(4)根据等量关系式解答问题。___________________________

2、学习例2

(1)阅读例5的主题图及题目,用自己的话表述题意,说一说“美术小组的人数比航模小组多“1”的含义,把谁看作单位“1”?_________________________________

(2)自己动手,画线段图表示两个小组的人数,将已知条件和问题标注在线段图上,图中的未知数可以用X表示。

(3)结合线段图,写出等量关系________________________________________________

(4)列出方程式并解答,算完后梳理一下自己整道题的解题思路?(注意解题格式)

三、知识应用:

独立完成P40练习十第4题,组长检查核对,提出质疑。

四、层级训练:

1、巩固训练:完成练习十第10——13题

2、拓展提高:练习十第14题以及P42最后一题“思考练习”。

五、总结梳理:回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a、我很棒,成功了; b、我的收获很大,但仍需努力。)

自我展示台:(写出你的发现或见解)

《分数与除法》教学设计 篇7

教学设想:

1、注重考虑学生的知识起点,引发学生的认知冲突,让学生感知“用分数表示除法的商”的产生与发展的过程。

2、充分利用学习材料,引导学生自主探索、交流合作、解决问题,从而实现数学的再创造,突出学习的自主性(感知→猜想→验证→概括→巩固),真正理解分数商的由来和所表示的意义。

3、创设有效的问题情境,通过的学生猜想、说理、比较、概括等途径,突出教学重点,训练学生思维。

教学目标:

1、理解分数与除法的关系,知道如何用分数表示除法算式的商。

2、培养学生动手操作、合作交流和灵活运用知识的能力。

3、通过学习,培养学生转化的数学思想和勇于探索的精神。

教学重点:

理解分数与除法的关系。

教学难点:

具体体会每一个商的`由来和表示的含义。

教学过程:

一、感知关系

1、问题:把6米长的绳子平均分成3段。每段长多少米?

把1米长的绳子平均分成3段。每段长多少米?

提问:怎样计算每一段的长度?商是多少?为什么?(画线段图)

2、揭题、猜想关系:你能猜想一下分数与除法有着怎样的关系呢?

板书:被除数÷除数=被除数/除数

二、探究关系

1、、验证关系

(1)通过动手操作验证

出示实例:把3块饼平均分给4个小朋友,每人分得多少块?

列式质疑:3÷4=(师:商可能是几?为什么?你能否验证一下呢?)

动手操作:剪拼纸圆,研究3÷4的商的由来和表示的含义。

同桌交流:结合操作,请跟你的同桌说说3÷4的商是多少及其由来。

反馈验证

引导总结:把3块饼平均分成4份,每份是3块饼的1/4→1块饼的3/4,即3/4块。

板书:3÷4=3/4

(2)运用分数意义验证

师:刚才是通过操作验证了3÷4=3/4,我们还能否通过其他途径来验证分数与除法的关系吗?

出示例[2]:17分是几分之几小时?

引导列式,借助钟面图,结合分数的意义求商(师:17÷60=?你是怎样想的?)

1÷60=1/60 17÷60=17/60(小时)

引导小结:分数与除法之间的关系,还可以用来转化名数。

2、揭示关系

师:通过刚才的验证,你得出了哪些结论?

①两个数相除,当商不是整数时,可以用分数来表示。

②被除数÷除数=被除数/除数。

师:我们已经通过实例验证了分数与除法的关系,你能结合具体算式将“分数与除法关系表”填写完整吗?

联系

区别

除法

被除数

除号

除数

是一种运算

分数

师:如果用字母a、b分别表示被除数和除数,那么你能不能用字母关系式清楚地表示除法与分数的关系呢?根据学生回答板书:a÷b=a/b

引导推理:除法里有什么具体要求?为什么?那分数有没有要求呢?(引导从分数所表示的意义说明没有意义)板书:b≠0

三、巩固关系

1、强化分数与除法的关系。

① P.82 2 ②(P.82 4)

③填上合适的分数8cm=( )m 13g=( )kg 15dm2=( )m2 29分=( )小时

④在括号里填上合适的数

( )÷( )= 5/8, 3/5=( )÷( ),( )/( )=( )÷( )

2、比较练习,完成P.82 3

①学生选择条件,列式解答。

②引导比较:联系—都占总数的1/3,区别—能否用整数表示商

四、总结提升

师:分数与除法有些什么关系呢?我们一起来回顾一下。(生:……)

质疑: 5/8这个分数表示的意义是什么?还可以怎样理解?

《分数与除法》教学设计 篇8

一、教学内容

分数与除法,教材第65、66页例1和例2

二、教学目标

1.使学生理解两个整数相除的商可以用分数来表示。

2.使学生掌握分数与除法的关系。

三、重点难点

1.理解、归纳分数与除法的关系。

2.用除法的意义理解分数的意义。

四、教具准备

圆片、多媒体课件。

五、教学过程

(一)复习

把6块饼平均分给2个同学,每人几块?板书:6÷2=3(块)

(二)导入

(2)把1块饼平均分给2个同学,每人几块?板书:1÷2=0.5(块)

(三)教学实施

1.学习教材第65页的例1。

(1)如果把1块饼平均分给3个同学,每人又该得到几块呢?1÷3=0.3(块)

(2)1除以3除不尽,结果除了用循环小数,还可以用什么表示?

通过练习,激活了学生原有的知识经验,(即两个数相除的商有可能是整数)也有可能是小数。进而提出当1÷3得不到一个有限的小数时,又该如何表示?这一问题激发了学生探索的积极性,创设解决问题的情境,研究分数与除法的关系。

(3)指名让学生把思路告诉大家。

就是把1块饼看成单位“1”,把单位“1”平均分成三份,表示这样一份的数,可以用分数来表示,这一份就是块。

老师根据学生回答。(板书:1÷3=块)

(4)如果取了其中的两份,就是拿了多少块?(块)怎样看出来的?

通过这样的练习,为下面的操作打下基础。

2.观察上面三道算式结果得出:两数相除,结果不仅可以用整数、小数来表示,还可以用分数来表示。引出课题:分数与除法

3.学习例2。

(1)如果把3块饼平均分给4个同学,每人分得多少块?(板书:3÷4)

(2)3÷4的计算结果用分数表示是多少?请同学们用圆片分一分。

老师:根据题意,我们可以把什么看作单位“1"?(把3块饼看作单位“1”。)把它平均分成4份,每份是多少,你想怎样分?请同学到投影前演示分的过程。

通过演示发现学生有两种分法。

方法一:可以1个1个地分,先把1块饼平均分成4份,得到4个,3个饼共得到12个,平均分给4个学生。每个学生分得3个,合在一起是块饼。

方法二:可以把3块饼叠在一起,再平均分成4份,拿出其中的一份,拼在一起就得到块饼,所以每人分得块。

讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)

两种分法都强调分得了多少块饼,让学生初步体会了分数的另一种含义,即表示具体的数量。借助学具,深化研究。

(3)加深理解。(课件演示)

老师:块饼表示什么意思:

①把3块饼一块一块的分,每人每次分得块,分了3次,共分得了3个块,就是块。

②把3块饼叠在一块分,分了一次,每人分得3块,就是块。

现在不看单位名称,再来说说表示什么意思?(表示把单位“1“平均分成4份,表示这样3份的数;还可以表示把3平均分成4份,表示这样一份的数。)

(4)巩固理解

①如果把2块饼平均分给3个人,每人应该分得多少块?2÷3=(块)

②刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5块饼平均分给8个人,每人分多少块吗?(生说数理)

③从刚才的研究分析,你能直接计算7÷9的结果吗?()

借助学具分饼、想象分的过程、抛开情境给出除法算式三个环节的呈现层次清楚,逻辑性强,为学生概括分数与除法的关系提供了足够的操作经验。

4.归纳分数与除法的关系。

(1)观察讨论。

请学生观察1÷3=(块)3÷4=(块)讨论除法和分数有怎样的关系?

学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的分数线。(课件出示表格)

用文字表示是:被除数÷除数=

老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。

(2)思考。

在被除数÷除数=这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)

(3)用字母表示分数与除法的关系。

老师:如果用字母a、b分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?

老师依据学生的总结板书:a÷b=(b≠0)

明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除法,分母相当于除数。)

5.巩固练习:

(1)口答:

①7÷13==()÷()()÷24=9÷9=0.5÷3=n÷m=(m≠0)

②1米的等于3米的()

③把2米的绳子平均分3段,每段占全长的(),每段长()米。

解释0.5÷3=是可以用分数形式表示出来的,但这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数。

(2)明辨是非

①一堆苹果分成10份,每份是这堆苹果的()

②1米的与3米的一样长。()

③一根木料平均锯成3段,平均每锯一次的时间是所用的总时间的。()

④把45个作业本平均分给15个同学,每个同学分得45本的。()

(3)动脑筋想一想

①把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?

(用分数表示)

②小明用45分钟走了3千米,平均每分钟走了多少千米?每千米需要多少时间?

教学反思:

教材分析:本节课是在学生学习了分数的产生和意义的基础上教学的,教学分数的产生时,平均分的过程往往不能得到整数的结果,要用分数来表示,已初步涉及到分数与除法的关系;教学分数的意义时,把一个物体或一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确提出来,在学生理解了分数的意义之后,教学分数与除法的`关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲假分数与分数的基本性质打下基础。

设计意图:

1.直观演示是学生理解分数与除法的关系的前提:由于学生在学习分数的意义时已经对把一个物体平均分比较熟悉,所以本节课教学把一张饼平均分给3个人时并没有让学生操作,而是计算机演示分的过程,让学生理解1张饼的就是张。3张饼平均分给4个人,每人分多少张饼,是本节课教学的重点,也是难点。教师提供学具让学生充分操作,体验两种分法的含义,重点在如何理解3张饼的就是张。把2张饼平均分给3个人,每人应该分得多少张?继续让学生操作,丰富对2张饼的就是张饼的理解。学生操作经验的积累有效地突破了本节课的难点。

2.培养学生提出问题的意识与能力是培养学生创新精神:本节课围绕两种分法精心设计了具有思考性的、合乎逻辑的问题串,“逼”学生进行有序的思考,从而进一步提出有价值的问题。

3.注重了知识的系统性:数学知识不是孤立的,而是密切联系的,只有把知识放在一个完整的系统中,学生的研究才是有意义的。比如学生在应用分数与除法的关系练习时对0.5÷3=,部分学生会觉着的=表示方法是不行的,教师解释:这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数形式。

《分数与除法》教学设计 篇9

单元教材分析

本单元是在学生学习了整数乘除法以及解简易方程,学习了分数乘法知识的基础上,学习分数除法和比的初步知识.这些知识为学生学习分数除法打下了基础,学习本单元的知识对加深学生对计算方法的理解和提高学生的计算能力有很好的作用.教材内容包括:分数除法,解决问题,比和比的应用.这些知识都是学生进一步学习的重要基础,通过本单元的学习,学生一方面基本上完成了分数加,减,除的学习任务,比较系统地掌握了分数四则运算;另一方面又开始了比的初步知识的学习,为后面学习百分数和比例提供了基础.两方面的收获,都将在进一步的学习中发挥重要的作用.

单元教学目标

1、使学生在具体情景中,感知分数除法的意义,掌握分数除法的计算方法,能正确地用口算或笔算的方法进行分数除法的计算.

2、使学生学分用分数除法来解决已知一个数的几分之几是多少,求这个数的实际问题.

3、理解比的意义和比的基本性质,知道比与分数,除法之间的关系,能正确地求比值和化简比,能运用比的有关知识解决实际问题.

4、让学生在具体生动的情景中感受学习数学的价值.

单元教学重点

1、分数除法的计算;

2、分数除法问题的解答;

3、比的意义和基本性质的理解与运用.

单元教学难点

1、理解分数除法计算法则的算理;

2、比的应用

3、分数除法

教学目标

1、理解分数除法的意义,指导并初步掌握分数除以整数的计算法则,能正确地计算分数除以整数。

2、使学生理解整数除以分数的算理,掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算,并培养学生的推理归纳能力。

教学重点

1、理解分数除法的意义与整数除法的意义相同。

2、学会分数除以整数的计算法则,并能应用法则正确计算。

3、一个数除以分数的算理。

4、掌握分数除法的统一法则。

教学难点

1、学会分数除以整数的计算法则,并能应用法则正确计算。

2、引导学生推导出整数除以分数的方法。

3、对于一个数除以分数的`算理的理解。

第一课时

分数除法的意义和分数除以整数

教学过程:

一、创设情景导入:

同学们,前面我们学习了分数乘法,掌握了它的意义和计算法则,并用它解决了相应的实际问题。这节课开始老师将和你们一起去逐步探究分数除法的意义和计算法则,还要解决相应的实际问题。本节课我们先探究分数除法的意义和分数除以整数。

二、新知探究:

(一)分数除法的意义

1、出示例1的教学挂图,让学生看图观察图意,指名口答图意和应该怎样列式.

2、你能把上面的问题改编成用除法计算的问题吗?(学生独立思考,口答问题和列式)

3、100g=1/10kg,你能将上面的问题改成用kg作单位的吗(引导学生将整数乘除法应用题改变成分数乘除法应用题)

4、引导学生观察比较整数乘除法的问题和改写后的问题,分析得出整数除法和分数除法的联系以及分数除法的意义.

5、练习:课本28页做一做.学生独立练习,订正时让学生说明为什么这样填.

(二)分数除以整数

1、小组学习活动:

问题⑴把一张纸的4/5平均分成2份,每份是这张长方形纸的几分之几?

问题⑵把一张纸的4/5平均分成3份,每份是这张长方形纸的几分之几?

[活动要求]

①先独立动手操作,再在组内交流,

②讨论:通过折纸操作和计算,你发现了几种折纸方式,每种方式应怎样列式计算?你发现了什么规律?

2、汇报学习结果:

3、学生独立阅读教材

4、归纳总结:这节课你们学会了什么?

指导学生归纳出:分数除以一个不等于0的整数,等于分数乘以这个整数的倒数.

三、巩固与提高

①把7/8平均分成4份,每份是多少?什么数乘6等于3/17?

②如果a是一个不等于0的自然数,1/3÷a等于多少?1/a÷3等于多少?你能用一个具体的数检验上面的结果吗

四、课后作业

练习八第1、2、3题

五、板书设计:

分数除法的意义和分数除以整数

例1.100×3=300(ɡ)1/10×3=3/10(㎏)

300÷3=100(ɡ)3/10÷3=1/10(㎏)

300÷100=3(盒)3/10÷1/10=3(盒)

例2.4/5÷2=4÷2/5=2/54/5÷2=4/5×1/2=2/5

4/5÷3=4/5×1/3=4/15

《分数与除法》教学设计 篇10

教学目标:

1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。

2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的.商。

3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。

教学重难点:

重点:掌握分数与除法的关系,会用分数表示两个数相除的商。

难点:理解可以用分数表示两个数相除的商。

教学过程:

一、导入揭题。

1、复习:76是()数,它表示()。10/7的分数单位是(),它有()个这样的分数单位。

2、观察:5÷8=4÷9=这两道题能得到整数商吗?

3、谈话:同学们,在计算整数除法时经常会遇到除不尽或得不到整数商,有了分数就可以解决这个问题了,这是什么原因呢?这节课就让我们一起来探究分数与除法的关系。板书课题:《分数与除法》。

二、探索新知

1、教学例1

(1)课件出示例1

把一个蛋糕平均分给3人,每人分得多少个?

(2)同桌讨论交流:根据分数的意义怎样解决“把一个蛋糕平均分给3人,每人分得多少个?”这个问题。

(3)汇报讨论结果

(4)观察这两种解法有什么联系?

2、教学例2、

把3个饼平均分给4个孩子,每个孩子分得多少个?

(1)平均分同样可以列式为:3÷4。

(2)小组合作探究:3÷4的商能不能用分数表示呢?

(3)通过进一步探究,你发现分数与除法有什么关系了吗?

师生共同小结:被除数÷除数=除数被除数,被除数相当于分数的(分子),除数相当于分数的(分母),a÷b=ba(b≠0)想一想:为什么要注明b≠0?

三、拓展应用

一个正方形的周长是64cm,它的边长是周长的几分之几?

四、总结

通过这节课的学习,你有什么收获?

五、作业布置

完成教材第50页"做一做"

《分数与除法》教学设计 篇11

【教学目标】

1、 结合具体的情景,巩固、掌握有余数除法的计算方法;

2、 通过小组合作探究,理解余数一定比除数小的道理;

3、 初步养成用数学解决实际问题的意识和能力。

【教学重难点】

在巩固、掌握有余数除法的计算方法的基础上理解余数一定小于除数。

【教学过程】

一、 情景感知,适时提问。

1、用竖式计算

(1)57÷9(2)40÷8(3)38÷7(4)24÷6

(请学生独立完成,及时校对)

[设计意图:及时巩固学生已学知识,为这节新课的学习打下基础。]

2、课件出示例1,进入情境:用15盆鲜花来装饰联欢会的会场,以每5盆为一组,可以摆几组呢?

T:同学们,你们还记得这道题目吗?谁会列算式?(板书:15÷5=3(组))

二、探究发现,试作体验。

1、出示例题3:如果上一例中一共有16盆花,还是每5盆一组,最多可以分几组?多几盆呢?

T:如果现在变成了16盆花,条件没变,你还会算吗?这道题该怎样列算式呢?谁会算?(板书:16÷5=3(组)??1(盆))

2、改变条件,花盆的总数变成了17、18、19、20盆,请学生分别再来列算式算一算(写在自己的本子上)。

T:如果是17、18、19、20盆,还是每5盆一组,那最多可以分几组?还剩几盆呢?你会算吗?怎么列算式?

三 合作交流,试说分享。

1、请学生以小组分工合作的形式,先列式算一算,再讨论观察余数与除数,说说你们发现了什么?

T:前后4人为一小组,分工合作,每人做一题,并相互检查,看看有没有漏算,有没有算错,看哪一小组最先得出答案。(学生动手写一写)

T:现在哪一小组愿意将你们的.计算成果和我们大家分享一下呢?(学生汇报,并板书) 17÷5=3(组)??2(人)

18÷5=3(组)??3(人)

19÷5=3(组)??4(人)

20÷5=4(组)

T:看来同学们的计算能力越来越好了。那现在我们来看看黑板上这几条算式的除数和余数,谁能来说说你发现了什么?细心的孩子一定发现了。

预设:除数比余数大;除数是5,余数可以是0、1、2、3、4.(真棒,你们观察得真仔细) T:可是,有人不服气了,我们一起去看看。(出示小精灵的话——不对不对,这只是个巧合,

如果数大一点,结果肯定就不一样了。)你们觉得是巧合吗?好,那现在我们就去验证一下,让它输的心服口服,怎样?有信心吗?

(增加花盆的总数,分别是21、22、23、24、25盆,让学生将课本上相应的算式补充完整。——开火车汇报答案。)

21÷5=

22÷5=

23÷5=

24÷5=

25÷5=

2、课件出示所有算式,再来看看除数和余数,说一说余数为什么不能是“5”。(提示:被除数逐渐变大,除数不变,那余数呢?除数是“5”,余数可能有几种情况呢?)

3、归纳总结:(1)余数要小于除数;(2)知道除数是几,就能知道余数可能是几。

4、改变除数,不改变被除数,让学生试着做一做。(加深余数和商之间的密切联系,尤其让学生明白,当知道除数时,便可以知道余数可能是几)

16÷4=

17÷4=

18÷4=

19÷4=

四、知识梳理,适时拓展。

1、判断题:第52页的做一做,让学生判断,进一步明确“余数要比除数小”,并列出正确的竖式。

2、先做第一小题,并请学生说说自己判断的理由,引导学生理解:被除数=除数×商+余数。

3、解决问题:十月份有31天,十月份有几个星期?多几天?

4、拓展延伸,完成填一填。

5、同学们,这节课你有什么收获:你体验最深的是什么?

板书设计:

有余数的除法

17÷5=3(组)??2(人)

18÷5=3(组)??3(人)

19÷5=3(组)??4(人)

20÷5=4(组)

余数一定要比除数小。

《分数与除法》教学设计 篇12

【教学目标】

1、 结合具体的情景,巩固、掌握有余数除法的计算方法;

2、 通过小组合作探究,理解余数一定比除数小的道理;

3、 初步养成用数学解决实际问题的意识和能力。

【教学重难点】

在巩固、掌握有余数除法的计算方法的基础上理解余数一定小于除数。

【教学过程】

一、 情景感知,适时提问。

1、用竖式计算

(1)57÷9(2)40÷8(3)38÷7(4)24÷6

(请学生独立完成,及时校对)

[设计意图:及时巩固学生已学知识,为这节新课的学习打下基础。]

2、课件出示例1,进入情境:用15盆鲜花来装饰联欢会的会场,以每5盆为一组,可以摆几组呢?

T:同学们,你们还记得这道题目吗?谁会列算式?(板书:15÷5=3(组))

二、探究发现,试作体验。

1、出示例题3:如果上一例中一共有16盆花,还是每5盆一组,最多可以分几组?多几盆呢?

T:如果现在变成了16盆花,条件没变,你还会算吗?这道题该怎样列算式呢?谁会算?(板书:16÷5=3(组)??1(盆))

2、改变条件,花盆的总数变成了17、18、19、20盆,请学生分别再来列算式算一算(写在自己的本子上)。

T:如果是17、18、19、20盆,还是每5盆一组,那最多可以分几组?还剩几盆呢?你会算吗?怎么列算式?

三 合作交流,试说分享。

1、请学生以小组分工合作的形式,先列式算一算,再讨论观察余数与除数,说说你们发现了什么?

T:前后4人为一小组,分工合作,每人做一题,并相互检查,看看有没有漏算,有没有算错,看哪一小组最先得出答案。(学生动手写一写)

T:现在哪一小组愿意将你们的.计算成果和我们大家分享一下呢?(学生汇报,并板书) 17÷5=3(组)??2(人)

18÷5=3(组)??3(人)

19÷5=3(组)??4(人)

20÷5=4(组)

T:看来同学们的计算能力越来越好了。那现在我们来看看黑板上这几条算式的除数和余数,谁能来说说你发现了什么?细心的孩子一定发现了。

预设:除数比余数大;除数是5,余数可以是0、1、2、3、4.(真棒,你们观察得真仔细) T:可是,有人不服气了,我们一起去看看。(出示小精灵的话——不对不对,这只是个巧合,如果数大一点,结果肯定就不一样了。)你们觉得是巧合吗?好,那现在我们就去验证一下,让它输的心服口服,怎样?有信心吗?

(增加花盆的总数,分别是21、22、23、24、25盆,让学生将课本上相应的算式补充完整。——开火车汇报答案。)

21÷5=

22÷5=

23÷5=

24÷5=

25÷5=

2、课件出示所有算式,再来看看除数和余数,说一说余数为什么不能是“5”。(提示:被除数逐渐变大,除数不变,那余数呢?除数是“5”,余数可能有几种情况呢?)

3、归纳总结:(1)余数要小于除数;(2)知道除数是几,就能知道余数可能是几。

4、改变除数,不改变被除数,让学生试着做一做。(加深余数和商之间的密切联系,尤其让学生明白,当知道除数时,便可以知道余数可能是几)

16÷4=

17÷4=

18÷4=

19÷4=

四、知识梳理,适时拓展。

1、判断题:第52页的做一做,让学生判断,进一步明确“余数要比除数小”,并列出正确的竖式。

2、先做第一小题,并请学生说说自己判断的理由,引导学生理解:被除数=除数×商+余数。

3、解决问题:十月份有31天,十月份有几个星期?多几天?

4、拓展延伸,完成填一填。

5、同学们,这节课你有什么收获:你体验最深的是什么?

板书设计:

有余数的除法

17÷5=3(组)??2(人)

18÷5=3(组)??3(人)

19÷5=3(组)??4(人)

20÷5=4(组)

余数一定要比除数小。

《分数与除法》教学设计 篇13

复习激趣《分数与除法》教学设计目标导学《分数与除法》教学设计自主合作《分数与除法》教学设计汇报交流《分数与除法》教学设计变式训练创境激疑

一、导入揭题。

1、复习:76是()数,它表示()。107的分数单位是(),它有()个这样的分数单位。

2、观察:5÷8=4÷9=这两道题能得到整数商吗?

3、谈话:同学们,在计算整数除法时经常会遇到除不尽或得不到整数商,有了分数就可以解决这个问题了,这是什么原因呢?这节课就让我们一起来探究分数与除法的关系。板书课题:《分数与除法》。

合作探究

二、明确学习目标。(在此处明确)

1、通过观察、探究,理解分数与除法的关系。

2、通过练习,会用分数表示两个数相除的商。

三、指导学生自主学习标杆素材、展示、反思、训练、点拨。通过观察、操作,自主探究分数与除法的关系。

例1、把一个蛋糕平均分给3人,每人分得多少个?

学习要求:

1、平均分怎样列式?

2、同桌讨论交流:根据分数的意义怎样解决“把一个蛋糕平均分给3人,每人分得多少个?”这个问题。

3、观察这两种解法有什么联系?

例2、把3个饼平均分给4个孩子,每个孩子分得多少个?

1、平均分同样可以列式为:3÷4。

2、小组合作探究:3÷4的商能不能用分数表示呢?【练后反思】通过进一步探究,你发现分数与除法有什么关系了吗?

【被除数÷除数=除数被除数,被除数相当于分数的(分子),除数相当于分数的(分母),a÷b=ba(b≠0)想一想:为什么要注明b≠0?】

拓展应用

一个正方形的周长是64cm,它的边长是周长的`几分之几?

总结

通过这节课的学习,你有什么收获?

作业布置

在括号里填上适当的数。5÷8=12÷17=()÷()=m÷n(n≠0)=

板书设计

分数与除法

例2、把3个饼平均分给4个孩子,每个孩子分得多少个?

被除数÷除数=除数被除数,被除数相当于分数的(分子),除数相当于分数的(分母),a÷b=ba(b≠0)

《分数与除法》教学设计 篇14

【教学目标】

1、 结合具体的情景,巩固、掌握有余数除法的计算方法;

2、 通过小组合作探究,理解余数一定比除数小的道理;

3、 初步养成用数学解决实际问题的意识和能力。

【教学重难点】

在巩固、掌握有余数除法的计算方法的基础上理解余数一定小于除数。

【教学过程】

一、 情景感知,适时提问。

1、用竖式计算

(1)57÷9(2)40÷8(3)38÷7(4)24÷6

(请学生独立完成,及时校对)

[设计意图:及时巩固学生已学知识,为这节新课的学习打下基础。]

2、课件出示例1,进入情境:用15盆鲜花来装饰联欢会的'会场,以每5盆为一组,可以摆几组呢?

T:同学们,你们还记得这道题目吗?谁会列算式?(板书:15÷5=3(组))

二、探究发现,试作体验。

1、出示例题3:如果上一例中一共有16盆花,还是每5盆一组,最多可以分几组?多几盆呢?

T:如果现在变成了16盆花,条件没变,你还会算吗?这道题该怎样列算式呢?谁会算?(板书:16÷5=3(组)??1(盆))

2、改变条件,花盆的总数变成了17、18、19、20盆,请学生分别再来列算式算一算(写在自己的本子上)。

T:如果是17、18、19、20盆,还是每5盆一组,那最多可以分几组?还剩几盆呢?你会算吗?怎么列算式?

三 合作交流,试说分享。

1、请学生以小组分工合作的形式,先列式算一算,再讨论观察余数与除数,说说你们发现了什么?

T:前后4人为一小组,分工合作,每人做一题,并相互检查,看看有没有漏算,有没有算错,看哪一小组最先得出答案。(学生动手写一写)

T:现在哪一小组愿意将你们的计算成果和我们大家分享一下呢?(学生汇报,并板书) 17÷5=3(组)??2(人)

18÷5=3(组)??3(人)

19÷5=3(组)??4(人)

20÷5=4(组)

T:看来同学们的计算能力越来越好了。那现在我们来看看黑板上这几条算式的除数和余数,谁能来说说你发现了什么?细心的孩子一定发现了。

预设:除数比余数大;除数是5,余数可以是0、1、2、3、4.(真棒,你们观察得真仔细) T:可是,有人不服气了,我们一起去看看。(出示小精灵的话——不对不对,这只是个巧合,

如果数大一点,结果肯定就不一样了。)你们觉得是巧合吗?好,那现在我们就去验证一下,让它输的心服口服,怎样?有信心吗?

(增加花盆的总数,分别是21、22、23、24、25盆,让学生将课本上相应的算式补充完整。——开火车汇报答案。)

21÷5=

22÷5=

23÷5=

24÷5=

25÷5=

2、课件出示所有算式,再来看看除数和余数,说一说余数为什么不能是“5”。(提示:被除数逐渐变大,除数不变,那余数呢?除数是“5”,余数可能有几种情况呢?)

3、归纳总结:(1)余数要小于除数;(2)知道除数是几,就能知道余数可能是几。

4、改变除数,不改变被除数,让学生试着做一做。(加深余数和商之间的密切联系,尤其让学生明白,当知道除数时,便可以知道余数可能是几)

16÷4=

17÷4=

18÷4=

19÷4=

四、知识梳理,适时拓展。

1、判断题:第52页的做一做,让学生判断,进一步明确“余数要比除数小”,并列出正确的竖式。

2、先做第一小题,并请学生说说自己判断的理由,引导学生理解:被除数=除数×商+余数。

3、解决问题:十月份有31天,十月份有几个星期?多几天?

4、拓展延伸,完成填一填。

5、同学们,这节课你有什么收获:你体验最深的是什么?

板书设计:

有余数的除法

17÷5=3(组)??2(人)

18÷5=3(组)??3(人)

19÷5=3(组)??4(人)

20÷5=4(组)

余数一定要比除数小。

《分数与除法》教学设计(精选25篇)

作为一名专为他人授业解惑的人民教师,常常要根据教学需要编写教学设计,借助教学设计可以让教学工作更加有效地进行。我们该怎么去写教学设计呢?以下是小编帮大家整理的《分数与除法》教学设计,希望对大家有所帮助。

《分数与除法》教学设计 篇15

教学目标

1.使学生掌握列方程解答已知一个数的几分之几是多少,求这个数的应用题的解答方法

2.培养学生分析问题、解答问题能力,以及认真审题的良好习惯.

教学重点

找准单位1,找出等量关系.

教学难点

能正确的分析数量关系并列方程解答应用题.

教学过程

一、复习、引新

(一)确定单位1

1.铅笔的支数是钢笔的 倍. 2.杨树的棵数是柳树的 .

3.白兔只数的 是黑兔. 4.红花朵数的 相当于黄花.

(二)小营村全村有耕地75公顷,其中棉田占 .小营村的棉田有多少公顷?

1.找出题目中的已知条件和未知条件.

2.分析题意并列式解答.

二、讲授新课

(一)将复习题改成例1

例1.小营村有棉田45公顷,占全村耕地面积的 ,全村的耕地面积是多少公顷?

1.找出已知条件和问题

2.抓住哪句话来分析?

3.引导学生用线段图来表示题目中的数量关系.

4.比较复习题与例1的相同点与不同点.

5.教师提问:

(1)棉田面积占全村耕地面积的 ,谁是单位1?

(2)如果要求全村耕地面积的 是多少,应该怎样列式?(全村耕地面积 ).

(3)全村耕地面积的 就是谁的面积?(就是棉田的面积)

解:设全村耕地面积是 公顷.

答:全村耕地面积是75公顷.

6.教师提问:应怎样进行检验?你还能用别的方法来解答吗?

(1)把 代入原方程,左边 ,右边是45,左边=右边,所以 是原方程的解.)

(公顷)

(根据棉田面积和 是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算.)

(二)练习

果园里有桃树560棵,占果树总数的. .果园里一共有果树多少棵?

1.找出已知条件和问题

2.画图并分析数量关系

3.列式解答

解1:设一共有果树 棵.

答:一共有果树640棵.

解1: (棵)

(三)教学例2

例2.一条裤子75元,是一件上衣价格的 .一件上衣多少钱?

1.教师提问

(1)题中的已知条件和问题有什么?

(2)有几个量相比较,应把哪个数量作为单位1?

2.引导学生说出线段图应怎样画?上衣价格的

3.分析:上衣价格的 就是谁的价钱?(是裤子的价钱)谁能找出数量间相等的关系?(上衣的单价 =裤子的单价)

4.让学生独立用列方程的方法解答,并加强个别辅导.

解:设一件上衣 元.

答:一件上衣 元.

5.怎样直接用算术方法求出上衣的单价?

(元)

6.比较一下算术解法和方程解法的相同之处与不同之处.

相同点:都要根据数量间相等的关系式来列式.

不同点:算术解法是按照分数除法的意义直接列出除法算式;而方程解法则要先设未知数,再按照等量关系式列出方程.

三、巩固练习

(一)一个修路队修一条路,第一天修了全长 ,正好是160米,这条路全长是多少米?

提问:谁是单位1?数量间相等的关系式是什么?怎样列式?

(米)

(二)幼儿园买来 千克水果糖,是买来的牛奶糖的 ,买来牛奶糖多少千克?

(三)新风小学去年植树320棵,相当于今年植树棵数的 .今年、去年共植树多少棵?

1.课件演示:

2.列式解答

四、课堂小结

这节课我们学习了列方程解答的方法.这类题有什么特点?解题时分几步?

五、课后作业

(一)一桶水,用去它的 ,正好是15千克.这桶水重多少千克?

(二)王新买了一本书和一枝钢笔.书的价格是4元,正好是钢笔价格的 .钢笔价格是多少元?

(三)一种小汽车的最快速度是每小时行140千米,相当于一种超音速飞机速度的 .这种超音速飞机每小时飞行多少千米?

六、板书设计

《分数与除法》教学设计 篇16

教材分析:分数连除和乘除复合应用题”这节课的教学是在前面学过的分数乘除一步应用题的基础上发展起来的分数连除应用题和乘除复合应用题,所以在设计复习导入部分作了全面的练习和知识点的概括。本节课的重点是:找准题中的单位“1”和数量关系。难点是:掌握两类应用题的结构特点,明确数量关系。

在设计“授新课”部分,为了避免学生觉得枯燥,我谈话引入本校情况,并对两道例题做了更改。在实施教学过程中,注意到适当的“引”和“放”,以培养学生分析问题和解答问题的能力。

本节课计算是次,分析列式是主,所以在设计“练兵场1、2”时,我做了明确要求,男生做1题,女生做2题,这样学生实际完成了1道题,但在同桌互查和集体订正的过程中就自然列出了另一题的算式。

巩固练习阶段,我分成了两个层次,一是基础练习。设计时题目要求只列式不计算,是为了达到节时高效的目的。二是变式和拓展练习。题目中只有1个单位“1”,目的在于和前面的题目和解法形成对比,使学生养成认真分析数量关系的好习惯。

小结时,师引导学生说内容,说方法,并强调喜欢哪种用哪种,目的在于让学生在课后“优化算法”。当然在教学的实施过程中还有许多不足,还望各位老师批评指正,以提高我的教学水平。

教学目标:1、掌握分数连除应用题和乘除复合应用题的结构特点与数量关系,学会分析解答相关应用题。

2、培养学生分析问题和解答问题的能力。

教学重点:找准每一步的单位“1”和数量关系。

教学难点:掌握两类应用题的结构特点,找准数量关系。

教学过程:

一、复习导入

1、口算天天练。(课件示题,指名口答)

渗透个别算式的知识点。

2、“看谁先找到题中的单位‘‘1‘‘。”指名口答

3、分析分率句,口头列式解答。

教师小结:题目中已知了分率和单位“1”的量,求分率的对应量要用乘法计算;题目中已知了分率和分率的对应量,求单位“1”的量,要用除法计算。

4、谈话引入新课。

东华小学的校园文化生活是丰富的,我们学校也不错。课前老师还对我校部分兴趣小组的人数情况作了了解,来一起看。(指名读题)

问:在这道题中,有几个单位“1”?这两个单位“1”的量是已知还是未知?

这就是今天我们要学习的分数乘除法应用题的其中一个类型。(板书课题)

二、新授课

1、教学例4。

1.)师引导学生分析题目中的数量关系。

2.)我们还可以用线段图来表示题中的数量关系,生说画法,师画线段图。

3.)师引导,学生确定每一步的算法。

师小结:刚才我们用连除的方法解答了题目中有两个单位“1”并且都未知时,求其中一个单位“1”的量的这类问题。

4.)你愿意根据题中的数量关系用列方程的方法解答这道题吗?(指名板演)

2、完成“练兵场1”中的题目。(要求男生做第1题,女生做第2题,然后同桌交换检查,最后集体订正。)

更让老师感兴趣的`是:我校舞蹈队人数、英语组人数及我班学生总数三者有个巧合。想知道吗?

3、教学例5。

1.)出示例题,齐读题目。

2.)师引导学生分析题目中的数量关系。

3.)我们怎样用线段图来表示题中的数量关系呢?师引导学生完成线段图。

4.)师引导,学生确定每一步的算法。

师小结:刚才我们用乘除混合计算的方法解答了题目中有两个单位“1”并且一个已知,一个未知时,求其中未知的一个单位“1”的量的这类问题。

5.)谁还会用列方程的方法解答这道题?(指名板演)

4、完成“练兵场1”中的题目。集体订正。

三、巩固练习

1、基本练习。只列式,不计算

要求先独立做,然后集体订正。

下面几道题和前面的稍稍有点不同,敢挑战吗?

2、变式练习。

3、拓展练习。

四、小结

今天我们学习了题目中含有两个单位“1”的应用题,解答这类题我们可以借助线段图分析题中的数量关系,可以用算术方法的连除或乘除混合运算的方法计算,还可以用列方程的方法解答。你喜欢哪种就用哪种。

五、布置作业

练习十一的2、3、6题。

《分数与除法》教学设计 篇17

教材分析:

本节课是在学生已掌握分数除法的意义,分数乘法应用题以及用方程解已知一个数的几分之几是多少,求这个数的文字题的基础上进行教学的,通过教学使学生理解已知一个数的几分之几是多少,求这个数的应用题是求一个数的几分之几是多少的应用题的逆解题,从而认识到乘、除法之间的内在联系,也突出了分数除法的意义,本课教学的重点是数量关系的分析,判断哪个量是单位“1”,难点是用解方程的方法解答分数除法应用题.

教学要求:

1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。

2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

教学重难点:

分数除法应用题的特点及解题思路和解题方法。

教学过程:

一、 谈话激趣,复习辅垫

1. 师生交流

师:同学们,你们知道在我们体内含量最好多的物质是什么吗?(水)

对,水是我们体内含量最多的物质,它对我们人体是至关重要的,是构成我们人体组织的主要成分。那么你们了解体内水分占体重的几分之几吗?

师:老师查到了一些资料,我们一起来看一下。(课件出示)

2.复习旧知

师:现在你们知道了吧!同学们如果告诉你们,我的体重是50千克,你们能很快算出我体内水分的质量吗?

学生回答后说明理由。

师:算一算你们自己体内水分的质量吧!

生答

师:一儿童的体重是35千克,你们能帮他算出他体内水分的质量吗?你们都是怎么算出来的呢?

生回答后出示:儿童的体重× 5 (4 )=儿童体内水分的重量

35× 5 (4 )=28(千克)

师:谁还能根据另一个信息写出等量关系式?

成人的体重× 3 (2 )=成人体内的水分的重量

2. 揭示课题

师:同学们以前的知识学得可真好,如果老师告诉你们小朋友们体内有28千克水分,你们能算出他的体重吗?这就是我们今天要来研究的分数除法应用题。

二、 引导探究,解决问题

1. 课件出示例题。

2. 合作探究

师:同桌互相商量一下,要解决这个问题,数量关系是怎样的?用自己喜欢的方式把它表示出来并解答出来。

3. 学生汇报

生1:根据数量关系式:儿童的体重× 5 (4 )=儿童体内水分的重量,再根据关系式列出方程进行解答。(师随着学生的发言随机出示课件)

生2:直接用算术方法解决的,知道体重的 5 (4 )是28千克,就可以直接用除法来做。

28÷ 5 (4 )=35(千克)

4. 比较算法

比较算术做法与方程做法的优缺点?

(让学生进行何去讨论,通过比较使学生看到列方程解,思路统一,便于理解。)

5. 对比小结

和前面复习题进行比较一下,看看这题和复习题有什么异同?

(1) 看作单位“1”的数量相同,数量关系式相同。

(2) 复习题单位“1”的量已知,用乘法计算;

例1单位“1”的量未知, 可以用方程解答。

(3) 因为它们的'数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位“1”,根据单位“1”是已知还是未知,再确定是用乘法解还是方程解。

6.试一试: 一条裤子的价格是75元,是一件上衣的 3 (2 )。一件上衣多少元?

问:这道题已知什么?求什么?谁和谁在比?哪个量是单位“1”?

单位“1”是已知还是未知的?

根据学生回答画线段图。

根据题中的数量关系找学生列出等量关系式。

学生根据等量关系式列方程解答(找学习板演,其它学生在练习本上做)。

师:这道题你还能用其它方法解答吗?

(根据分数除法的意义,已知两个因数的只与其中一个因数,求另一个因为用除法计算。)

三、 联系实际,巩固提高

1. (投影)看图口头列式,并用一句话概括题中的等量关系。

(1)

(2)

2.练一练:

(1)、小明体重24千克,是爸爸体重的3/8 ,爸爸体重是多少千克?

(2)、一个修路队修一条路,第一天修了全长的 5 (2 ),正好是160米,这条路全长是多少米?

3.对比练习

(1)一条路50千米,修了 5 (2 ),修了多少千米?

(2) 一条路修了50千米,修了 5 (2 ),这条路全长是多少千米?

(3)一条路50千米,修了 5 (2 )千米,还剩多少千米?

四、全课小结畅谈收获

①今天这节课我们研究了什么问题?②解答分数除法应用题的关键是什么?③单位“1”是已知的用什么方法解答?单位“1”是未知的可以用什么方法解答。

教师强调:分析应用题数量关系比较复杂,因此在解答分数应用题时要注意借助线段图来分析题中的数量关系,解答后要注意检验。

设计意图:

一、从生活入手学数学。

《国家数学课程标准》指出:“数学教学要从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”教学一开始教师就改变由复习旧知引入新知的传统做法,直接取材于学生的生活实际,用介绍该班的情况引发学生参与的积极性,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学。

二、关注过程,让学生获得亲身体验。

教学中,为让学生认识解答分数乘法应用题的关键是什么时,我故意不作任何说明,通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。

在教学中体现了“自主、合作、探究”的教学方式。以往分数除法应用题教学效率并不高,究其原因,主要是教师教学存在偏差。教师喜欢重关键词语琐碎地分析,喜欢用严密的语言进行严谨地逻辑推理,虽分析得头头是道,但容易走两个极端,或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的,仍做深入的、细碎的剖析,这样就浪费了宝贵的课堂时间。教学中我把分数除法应用题与引入的分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。在教学中准确把握自己的地位。我想真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显学生的主体地位,体现了生本主义教育思想。

三、多角度分析问题,提高能力。

在计算应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,改变以往只从例题中草草抽象概括数量关系,而让学生死记硬背,如“是、占、比、相当于后面就是单位1”;“知1求几用乘法,知几求1用除法”等等的做法,充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。

四、 有破度有层次地设计练习,提高学生的思维能力。

教案还精心设计了练习题,通过看图,找等量关系,巩固了学生的分析思路;通过三类题的对比练习,使学生掌握了三类题的异同点,增强了学生的辨析能力,对于学生分析和解题起到了很好的推动作用,使学生无论遇到什么题,都会做到:抓住特点,学而不乱。

《分数与除法》教学设计 篇18

一、说教材:

1、掌握一个数除以分数的方法,并能正确计算。

2、经历猜测、验证和归纳的过程,利用通分法计算的结果来推理出倒数法计算的过程。

3、利用数形结合的方式,体会“转化”的数学思维方法。

本课时的教学重点是运用计算方法正确进行计算,教学难点是理解一个数除以分数的计算方法。

二、说教法和学法:

本课时教师在教学中引导学生多看图观察,让学生经历猜测、验证和归纳的学习过程,使他们通过小组合作理解计算法则。

三、教、学具准备。

老师准备平均分成2份、3份和4份的圆纸片各4张,为学生准备一张练习纸,练习纸上画好三组没有平均分的圆纸片和书第27页上画一画的题目,把书中已画出的部分隐去,让学生亲自去画。

四、说教学过程:

1、复习铺垫,提供猜测基础。

数学的学习离不开学生的经验基础和认知水平,为了让学生能正确理解本课时内容,我首先出示复习题1:“把1/2张饼平均分给4个小朋友,每个小朋友能分到几张饼?”学生根据前一课时所学方法分别用倒数法:1/2÷4=1/2×1/4=1/8(张)或者用通分法:1/2÷4=1×4/2×4÷4=1/8(张)通过列式计算。然后让学生说一说计算法则。

接着出示题2:有4张同样大的饼,每2张一份,可分成多少份?

在解答这两题的基础上,我提出问题:猜一猜4÷1/2等于几?由于受到上一课时的负迁移,部分学生仍然会用一个分数乘整数的倒数,算成:1/4×1/2=1/8,当然也可能会正确计算出结果。这时教师适时引导学生明白:判断一个猜想是否正确,需要通过科学地验证。

这样的'设计既为学生提供了学习新知识的经验基础,又能激起学生学习新知识的兴趣。

2、验证猜想,理解计算过程。

为了让学生更易理解题意,我把书中情境图改成具有生活气息的题目:有4张同样大的饼。每个小朋友吃1/2张,可分给几个小朋友吃?

学生在练习纸上画出平均分的过程,并通过小组合作形式理解计算的过程。反馈时,教师引导学生用自己的话说清计算的思路,大部分学生会认为1张饼里有2个1/2,可以分给2个小朋友吃,4张饼就能分别8个小朋友吃,列式为:4÷1/2=4×2=8(个)。但这个过程并不能使学生自然过渡到对倒数法解题的理解,也就是说,学生通过4÷1/2=4×2=8(个)并不能理解4÷1/2可以用4×1/2的倒数来计算。这时我引进了通分法来计算:让学生观察示意图,理解4÷1/2就是求4里面含有几个1/2。而4就是8/2,根据学生以前知识结构,学生易于知道里有8个,最后根据学生的回答板书计算方法,4÷1/2=8÷1/2=8;追问:8是怎样算出来的?学生再次从计算的角度去思考:当两个分数的分母相同时,只需要用被除数的分子除以除数的分子就能求出商。

由于通分法计算遵从了学生的认知水平,易于被学生尤其是学困生理解,而倒数法的意义很难被学生理解,但它简洁的计算过程又是今后学习不可或缺的。所以在教学中我把两种计算方法同时渗透,力求使让通分法成为理解倒数法的基石。

这个教学过程完成了教学目标中的“让学生经历猜测、验证和归纳的过程,利用数形结合的方式,体会“转化”的数学思维方法。”

3、大量练习,使用计算方法。

数学的归纳过程不是把一个单一的数学现象,而是把一系列有相同特点的数学现象抽象成具有代表意义的符号特征,这就是建模过程。

为了让学生能充分感知一个数除以分数的计算过程,我先出示了两道变式题:每个小朋友吃1/3张、1/4张饼,可分给几个小朋友吃?让学生模仿前面的例题进行实际操作,独立完成计算,教师巡视中加强学困生的辅导。

由于前面几个除数的分子都是1,学生还不会去有意识地总结计算方法,仍会去想:只要看看一张饼里有几个这个分数,然后再用4去乘个数就行了。所以此时让学生归纳倒数法计算的方法还为时过早,为了使学生摆脱这种思维的束缚,真正从倒数的角度去观察和体会除数的变化,我又引进了变式题:每个小朋友吃2/3张饼,可分给几个小朋友吃?

这时学生通过画图不再能看出一张饼可以分给几个小朋友吃了,引起学生认知经验的冲突。教师要求学生以合作的形式根据黑板上的板书去解答,并说一说:你是怎样思考的?由于倒数法计算很难说清算理,反馈时学生大多会借用通分法来说明:4÷2/3=12/3÷2/3=6。根据教学目标对通分法运用的定位(是为了使学生相信倒数法计算结果是正确的。),此时一定要让学生再次进行尝试:你们能用倒数法进行计算吗?边计算边观察:什么在变?什么不变?让学生独立计算,如果他们把被除数变成了倒数,肯定与通分法计算的结果不同,这时会自行修正,并体会老师提出的问题:什么在变?什么不变?

接着出示书中“画一画”的练习,以同桌合作的方式,再次让学生体会借用图形来理解计算的优势,认识数形结合对数学解题的帮助,从而完成这三个教学目标。

在大量计算的基础上,引导学生观察这些算式,然后用自己的话归纳出一个数除以分数的计算方法。

4、观察比较,选择计算方法。

让学生观察用通分法与倒数法的计算过程,体会倒数法在计算中简洁优美。但让学生体会:如果觉得通分法更适合,也可以使用通分法进行计算。

《数学课程标准》提倡让不同的人在数学上得到不同的发展,对于数学认知水平较低的学生,允许他选择并不优化的方法,等知识水平有了进步再来运用其他更有利的方法进行学习。

5、归纳总结,完善计算法则。

通过前面多次的叙述和大量的计算,计算法则已是呼之欲出了,但学生的语言不够简洁扼要。这时我提出:看谁说的计算方法与数学家说的方法最接近?并说出前一部分:“一个数除以分数等于——”。让学生接着完成后面的部分。最后出示书中的计算方法,并对学生的归纳总结提出鼓励性评价——太棒了,你们大多数都有数学家的天份。

五、说板书:

板书内容较多,从学生的猜测到验证过程,一步步引导学生体会数学的学习方法,为学生选择自己喜欢的计算方法提供了直观可靠的依据。

《分数与除法》教学设计 篇19

教学目标

1.进一步加深对分数乘、除法应用题的数量关系和内在联系的认识.明确它们的相同点和不同点.

2.掌握分数乘、除法应用题的分析、解答方法.

教学重点

训练学生分析分数应用题的数量关系,明确分数乘除法应用题的相同点和不同点.

教学难点

准确判断单位1,正确地解答分数应用题.

教学步骤

一、铺垫孕伏

(一)导入:我们已经学过了三种分数乘、除法应用题(板书:分数乘、除法应用题),请同学们想一想都是哪三种?解答分数乘、除法应用题的关键是什么?

(二)判断单位1.

1.鹅的只数是鸭的 .

2.甲的 是乙.

3.乙是甲的 .

4.男生人数的 相当于女生.

5.小齿轮的齿数占大齿轮的 .

(三)列式计算.

1.4是12的几分之几?

2.12的 是多少?

3.一个数的 是4,求这个数.

二、探究新知

(一)教学例3第(1)题

池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

1.读题并找出已知条件和问题

2.提问:应把谁看作单位1?是根据题中哪句话判断的?

3.画图.

4.列式解答

答:鹅的只数是鸭的 .

(二)教学例3第(2)、(3)题.

池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?

池塘里有4只鹅,正好是鸭的只数的 ,池塘里有多少只鸭?

1.画图理解题意

2.列式解答

3.集体订正

(三)小结

这三道题有什么相同点和不同点?解题关键是什么?

1.结构上

相同点:都有3个数量,即鸭的只数,鹅的只数,鹅是鸭的几分之几;

不同点:已知和未知不一样.

2.解题思路上

相同点:都要首先弄清谁作标准,把谁看作单位1;

不同点:根据已知、未知的变化,确定不同的解答方法.

解题关键是:正确分析题中的数量关系,明确谁作单位1.

教师:分数乘除法应用题,在结构、解题思路及方法上,既有联系又有区别.我们在解

答这类应用题时,一定要认真正确分析题中的数量关系,准确判断谁作单位1.这样才能提高解答分数应用题的能力.

三、全课小结

这节课我们进一步学习了分数乘、除法应用题,并进行了比较.解答时,要正确地判断单位1,从而确定解答方法.

四、巩固练习

(一)商店运来红毛衣25包,蓝毛衣15包,蓝毛衣的包数是红毛衣的几分之几?

(二)商店运来红毛衣25包,运来蓝毛衣的包数是红毛衣的 .商店运来蓝毛衣多少包?

(三)商店运来蓝毛衣15包,正好是运来红毛衣包数的 .商店运来红毛衣多少包?

五、课后作业

(一)校园里栽了杨树144棵,栽的.松树的棵数是杨树的 ,校园里栽了松树多少棵?

(二)学校买了蓝墨水30瓶,红墨水24瓶.蓝墨水是红墨水的几倍?

(三)农场有小牛40头,是大牛头数的 .农场有大牛多少头?

六、板书设计

分数乘、除法应用题对比

1.池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

412=

答:鹅的只数是鸭的 .

2.池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?

12 =4(只)

答:池塘里有4只鹅.

3.池塘里有4只鹅,正好是鸭的只数的 .池塘里有多少只鸭?

4 =12(只)

答:池塘里有12只鸭.

《分数与除法》教学设计 篇20

教学目标:

1、使学生充分理解分数混合运算的运算顺序,明确分数混合运算与整数混合运算的关系,并能正确、熟练地进行计算。

2、能运用所学的有关分数混合运算的知识解决生活中的实际问题,感受解决问题方法的多样性与灵活性,提高计算能力和解决问题的能力。

教学重点:

能用所学知识解决生活中的实际问题。教学难点:能运用多种方法解决生活中的实际问题。教具准备:多媒体,小黑板。

教学过程:

(一)情境引入,回顾再现。

陈爷爷每天绕操场跑6圈,2分钟可以跑半圈。照这个速度,陈爷爷每天跑步要用多少时间?

学生解答:6÷(1/2÷2)=6÷1/4=24(分)

师:这就是我们学过的有关分数混合运算的知识,这节课,我们就来进行相应的练习。

(二)分层练习,强化提高。

1、练习九的第1题,。提示:对于三步计算的题来说,如果选择比较合理的算法,也只要两步就能完成计算。

2、计算下面各题

2/9x0.375÷6/7

4÷ 8/3 – 0.6

引导学生注意:遇到小数计算,要先化成分数再进行计算。

3、解下列方程

5X=15/19

2/3X÷1/4=12

4、这篇文章太长了,3小时才录入了1/3。照这样的速度,李叔叔工作8小时,可以录入这篇文章的几分之几?还剩几分之几没有完成?

(对于本题来说,如果学生列成8÷3×1/3也是对的。)

5、练习九的第10题。

要求学生按照指定的'程序计算,再通过比较,有所发现并作出解释。如果计算正确,就能发现得数等于原来的数。其原因是2/

3、3/4的倒数与1/2的积正好是1。

(三)自主检测,评价完善

出示检测题卡,让学生独立完成后,集体交流纠正。

(四)归纳小结,课外延伸

1、通过这节课的练习,你掌握了哪些知识?

2、把你的感受写一写,写成一篇周记的形式。

《分数与除法》教学设计 篇21

教学内容:

苏教版六年级上册第三单元整理与练习2

教学目标:

1.使学生通过整理与练习,巩固解含有分数的方程的方法,进一步掌握本单元分数实际问题的数量关系和解题思路,并能正确解答;进一步认识比的实际问题数量之间的联系,能运用比的知识解决实际问题。

2.使学生在解决相关实际问题及探索实践的过程中,进一步发展分析、推理等思维能力,体会对应的思想,培养动手实践、合作交流和自我反思的能力。

3.使学生在探索与实践中,感受分数除法、比在实际生活中的广泛运用,体会数学学习的价值;获得探索实践的成功体验,并能对自己的学习表现作出客观的评价。

教学重点:

解答分数和比的实际问题。

教学难点:

理解不同实际问题的数量关系。

教学过程

一、揭示课题谈话:

同学们回忆一下,上节课我们复习了分数除法这一单元的哪些内容?

今天我们继续复习这一单元的内容,主要整理与练习分数和比的实际问题。

(板书课题)通过复习,进一步理解它们的数量关系,提高运用分数、比的相关知识解决实际问题的能力;同时还要运用分数与比的知识,开展相关探索实践活动,加深相关知识的理解,提高探索实践的能力。

二、反复读关系句,找出单位"1"的.数量,说出数量关系式。

1.黑兔只数的2/7是白兔的只数

2.一批水泥,用去了2/5。

3.五年级期末跳高测验有3/4的同学及格

4.男生人数比女生人数多2/9

5.女生人数比男生人数少1/6

三、对比练习

第一组

1.常青湖小学修建一条塑胶跑道,计划造价30万元,实际造价是原计划的9/10,实际造价多少万元?

2.常青湖小学修建一条塑胶跑道,实际造价27万元,是原计划的9/10,原计划造价多少万元?

学生自己独立完成

指名说出思考过程

引导学生说出单位1的量已知与未知分别怎样列式计算。

第二组

1.芳芳有卡片56张,明明的卡片张数比芳芳少2/7,明明比芳芳少多少张?

2.明明的卡片张数比芳芳少2/7,正好少了16张,芳芳有卡片多少张?

学生自己独立完成

指名说出思考过程

找出相同点和不同点

第三组

1.某工厂有一堆煤,重4/5吨,用去2/3,用去了多少吨?

2.某工厂有一堆煤,用去2/3,正好是4/5吨,这堆煤原有多少吨?

3.某工厂有一堆煤,用去2/3吨,还剩4/5吨,这堆煤原有多少吨?

指名读题后学生独立完成。(只列算式不计算)

集体校对,让学生说说解题思路。

提问:解答过程有什么不同的地方?

把第一题的问题改成还剩几分之几,指名口答

以上练习一方面可以使学生进一步认识不同实际问题的特点,加深对分数乘、除法实际问题数量关系的理解,有利于知识内化,形成解题技巧;另一方面可以培养学生比软、分析、推理等思维能力。

第四组

1.甲农场在一块36公顷的土地上种植大豆和玉米,大豆和玉米种植面积的比是4:5,分别求大豆和玉米的种植面积。

2.乙农场大豆的种植面积是36公顷。大豆和玉米种植面积的比是4:5,求玉米的种植面积。

指名读题后学生独立完成。

集体校对,让学生说说解题思路。

提问:这两题有什么相同和不同之处?解答过程有什么不同的地方?

引导学生比较:这两道题都是已知两个部分的比是4:5,但第(1)题己知大豆和玉米总面积36公顷,对应比里两部分的和,是按比例分配的实际问题,要按每个部分的数量是总数量的几分之几来计算;第(2)题已知数量对应的只是比的一个部分"4",求另一个部分"5"

对应的数量是多少的实际问题,要根据所求的这个数量是已知数量的几分之几是多少,用乘法计算这组对比练习,主要是让学生掌握比的两类实际问题的特点,以及数量关系和解题方法,提高解决问题的能力。这里虽然都是依据比的意义来解答,但第(1)题是典型的按比例分配一实际问题,第(2)题可以把比转化成所求数量是已知数量的几分之几再解答,也可以根据每个数一量所占的份数进行思考。

四、提高练习

少先队员收集植物标本和昆虫标本共60件,植物标本的件数是昆虫标本的1/2。两种标本各收集了多少件?

引导学生转化成植物标本的件数与昆虫标本的比是1:2来计算

五、综合实践

画一个长方形,周长是32厘米,长与宽的比是5:3

画一个长方形,面积是12平方厘米,长与宽的比是1:3。

学生自由读题,并指名说出每题中的条件。

提问:根据两题中的条件,解决问题可以怎样思考?

结合学生的回答,引导理解:

第(1)题中面积是24平方厘米,可以列举出长和宽有几种可能,根据化简后长与宽的比是3:2,确定长和宽各是多少,再画图。

第(2)题中周长是16厘米,找出长和宽的和是8厘米,再按长与宽的比是5:3,计算出长和宽各是多少,再画图。

学生解答,得出结论:

第(1)题中的长和宽分别是6厘米、4厘米;

第(2)题中的长和宽分别是5厘米、3厘米。学生根据长和宽的`厘米数,在方格图中分别画出两个长方形。

集体校对,让画错的学生说说错误原因,并改正。

六、总结

教学反思:

(一)注重复习方法的引导

数学的复习过程,其实就是学生的认知结构不断重组,并形成良好的认知结构的过程,从而形成一个知识的网络体系。在此过程中,学生的自主整理和构建知识网络的能力就显得特别重要。理清知识体系要充分调动学生的主动性和积极性,要让学生自己动手动脑,教师的作用主要是引导、帮助、点拨和补充。我力图通过对比不同的实际问题,让学生找到它们内在的联系,从而归纳出解决问题的一般方法。我认为数学教学给学生数学思想和方法,这才是学生一生都受用的。学生经过自己的练习而整理归纳出来的知识,学生理解会更深刻,记得特别牢固,而且能有效地锻炼和培养学生的自学能力

(二)重点引导学生用代数思维解题,与初中接轨。

分数除法应用题老教材在解题方法上是以算术方法为主,侧重于让学生找单位"1",分析"1"的量是否已知,然后根据"1"的量知道与否决定是用乘法还是除法。在列算式的时候,注重量、率对应分析,即用公式模式:"1"的量×分率=对应的量,或部分量÷对应分率="1"的量。而新教材中的解题方法则淡化了这种用算术解题的要求。更侧重于与初中知识的衔接,侧重于用代数思想解题。注重让学生分析题中的意思,用代数思维解题即让学生根据题中的等量关系和分数乘法的意义列出方程,这样思路达到了统一。

新老教材的这种不同让我觉得,教师必须适应新的变化,不能强化学生的算术方法解题思维习惯,而应及早的引导学生叩开代数思维解题的思维大门,让学生的的思维更加开阔,更灵活,让他们的想象飞的更高更远。

(三)注重学生综合能力的培养

宽松和谐的教学氛围可以畅所欲言。复习中我充分信任学生,放手让学生自己开放思路,充分讨论交流。展示时只要学生有一点进步都加以鼓励,因为每一位学生得到老师的肯定或鼓励都特有成就感,以后做什么练习都会乐此不彼地去完成。学生发言越来越大胆,奇思妙想不断涌现。

这一节课我由于设计问题偏多,学生交流时浪费了一定时间,达标测评由于时间不够没做,对学案要进一步的整理,合理安排问题,进一步提高课堂效率。

大家都在看