比的意义教案

笔构网

2025-09-23教案

请欣赏比的意义教案(精选11篇),由笔构网整理,希望能够帮助到大家。

比的意义教案 篇1

教学内容:教科书第76页的例1、例2,第76页做一做中的题目和练习十八的第1-2题。

教学目的:

1、使学生理解小数加、减法的意义,初步掌握计算法则,能够比较熟练地笔算小数加、减法。

2、培养学生的迁移类推的能力。

教学重点:初步掌握计算法则,能够比较熟练地笔算小数加、减法。

教学难点:培养学生的迁移类推的能力。

教学过程

一、复习

1.少先队采集中草药。第一小队采集了1250克,第二小队采集了986克.两个小队一共采集了多少克?

让学生先解答,再说一说整数加法的意义和计算法则。

2.笔算。

4.67+2.5=6.03+8.47=8.41-0.75=

让学生列竖式计算,指名说一说自已是怎样算的,并注意检查学生竖式的书写格式是否正确。

二、学习新知

1、学习例1。

(1)通过旧知识引出新课.

教师再出示一次复习的第l题,把已知条件和问题稍作改动,变成例1让学生读题;理解题意。

(2)引导学生比较整数加法和小数加法的意义。

教师:例1与复习中的第1题有什么相同的地方?例1应该用什么方法计算?为什么要用加法算?

引导学生通过比较说出从复习的第1题可以看出整数加法的意义是把两个数合并成一个数的运算,从例1可以看出小数加法的意义和整数加法的意义相同,也是把两个数合并成一个数的运算。因为要把两个小队采集中草药的千克数合起来,所以要用加法计算.

(3)引导学生理解小数点对齐的道理。

教师板书横式以后,让学生说一说怎样写竖式,并提出以下问题进行讨论

(1)为什么要把小数点对齐?

(2)整数加法应该怎样算?

然后让学生计算,算完后接着讨论:

(3)得数7.810末尾的0怎样处理?能不能去掉?为什么能去掉?

2.让学生做第76页做一做中的题目。

让学生独立做,教师巡视,检查学生是否把小数点对齐了,最后集体订正。

3.引导学生比较小数加法和整数加法的计算法则。

教师:小数加法与整数加法在计算上有什么相同的地方?启发学生说出小数加法和整数加法都要把相同数位上的数对齐,小数加法只要把小数点对齐就能使相同数位对齐。

4.学习例2。

(1)引导学生通过比较得出小数减法的意义。

教师:例2的条件和问题与例1比有什么变化?例2的数量关系是什么?启发学生说出例2是已知两个小队采集中药材的总数和第一小队采集的千克数,求第二小队采集的千克数;

可以看出小数减法也是已知两个加数的和与其中的一个加数;求另一个加数的运算,所以它的意义与整数减法的意义是相同的。

(2)利用知识迁移使学生理解小数点对齐的算理。

让学生联系小数加法小数点对齐的算理,说一说小数减法小数点为什么要对齐。

然后教师把千克数改写成克数并列出竖式,提问:个位上是几减几?接着让学生看小数减法竖式,提问:被减数千分位上没有数计算时怎么办?利用小数的性质使学生理解被减数千分位上没有数可以添0再减,也可以不写0,把这一位看作0来计算,以后在计算时遇到这种情况也可以这样处理。接着让学生计算,教师巡视,检查学生小数点是否对齐,被减数千分位的处理是否正确,得数的小数点点得是否正确。

5.比较小数减法与整数减法的计算法则。

让学生讨论小数减法与整数减法在计算上有什么相同的.地方。使学生明确这和小数加法与整数加法在计算上的关系是一样的。

6、小结。

教师:通过学习上面的知识,小数加法和小数减法的计算法则有什么共同的地方?启发学生说出小数加减法计算时都要把小数点对齐(也就是相同数位上的数对齐),都要从最低位算起。然后教师把小数加减法的计算法则完整地说一说。并让学生看书上的法则,齐读一遍。

7、做第78页最上面做一做中的题目。

订正时,让学生说一说是怎样计算并验算的。

三、巩固练习

做练习十八的第1-2题。

1.做第1题,教师先说明题意,要根据加法算式来写减法算式的得数,不用再列式计算。学生做完之后,可以提问:你是根据什么来写减得的差的?使学生加深对小数减法的意义和加减法关系的认识。

2.做第2题,让学生独立做,可以要求学生验算。教师巡视,进行个别辅导。订正时,针对学生易出错的地方重点说一说。

板书设计:小数的加法和减法

例1:少先队采集中草药,第一小队采集了3.735千克,第二小队采集了

4.075千克,两个小队一共采集了多少千克?

3.735+4.075=7.81(千克)

答:一共采集了7.81千克。

例2:少先队采集中草药,两个小队一共采集了7.81千克。第一小队采集了3.735千克,第二小队采集多少千克?

7.81-3.735=4.075(千克)

答:第二小队采集了4.075千克。

比的意义教案 篇2

学情分析

在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。

教学目标

1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据判断两种量成不成反比例关系。

2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。

教学重点和难点

教学重点:认识反比例关系的意义。

教学难点 :掌握成反比例量的变化规律及其特征。

教学过程一、复习导入

1.正比例关系的意义是什么?怎样用字母表示这种关系?

判断两种相关联量成不成正比例的关键是什么?

2.下面哪两种量成正比例关系?为什么?

(1)时间一定,行驶的速度和路程。

(2)数量一定,单价和总价。

3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?

4.引入新课。

如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)

二、教学新课

1.教学例4。

出示例4。让学生计算,在课本上填表,并观察思考能发现什么?点名让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么?

点名学生口答讨论的结果,得出:

(1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。

(2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。

(3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是240。提问:这里的240是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(板书补充:运的总吨数一定时,每天运的吨数和天数的积一定)

2.教学例5。

出示例5。

按照刚才学习例4的方法,自己学习例5,仔细想想你发现了些什么?学生观察思考后,指名学生口答从表里发现了些什么?再提问:这两种相关联量变化的规律是什么?

(板书:每袋重量和袋数的积一定)

乘积8000是什么数量,这种数量关系用式子怎样表示?

[板书:每袋重量×袋数=糖果总重量(积一定)]这个式子表示什么意思?(把上面板书补充成:糖果总重量一定时,每袋重量和袋数的积一定)

3.概括。

(1)综合例4、例5的共同点。

提问:请你比较一下例4和例5,说一说,这两个例题有什么共同的地方?

(2)概括反比例意义。

例4、例5里两种相关联的.量,它们是什么关系的量呢?

像例4、例5里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。

问:两种相关联的量成不成反比例的关键是什么?

(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?【板书:x×y=k(一定)】指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用x×y=k(一定)来表示。

4.具体认识。

(1)提问:例4里有哪两种相关联的量?这两种量成反比例关系吗?为什么,

例5里的两种量成反比例关系吗?为什么?

(2)提问:看两种相关联的量成不成反比例,关键要看什么?

(3)做练习八第4题。

让学生读题思考。指名依次口答题里的问题。[结合板书;每天装配的台数×天数=一批计算机的总台数(一定)]

(4)判断。

现在回过来看开始写的关系式:工作效率×工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,它们就是成反比例的量,相互之间的关系就是反比例关系。

三、巩固练习

1. 做“练一练”第l,2,3,4,5题。

指名口答,说说理由。思考时可以引导看数量关系式,说明理由。

2.拓展应用。

3.综合练习

四、课堂小结

这节课学习的是什么内容?反比例关系的意义是什么?用怎样的式子表示x和y这两种相关联的量成反比例?判断两种量是不是成反比例,关键是什么?

五、课堂作业

比的意义教案 篇3

一、说教材

1、教材地位:加法是数学中最基本的运算之一。在前三年半学生已经学会加法的计算方法。本节课是在学生已经学过加法知识的基础上,明确概括出加法的意义,学生学会整数加法的意义,为以后学习小数、分数加法的意义打下基础。加法运算定律的学习,不仅有助于加深理解加法的一般计算方法,还能使一些计算简便。同时也为以后学习用字母表示数打下初步基础。

2、教学目标:

知识和技能方面:理解加法的意义。理解并掌握加法交换律。

能力方面:培养学生观察、比较、归纳、概括等初步的逻辑思维能力。培养学生应用所学知识解决实际问题的能力。

思想品德方面:通过概括加法的意义,初步渗透辩证唯物主义思想。通过变式练习,培养学生良好的学习习惯。

发展性方面:通过日常生活中的事例,将数学知识应用于生活中,用数学的思想、方法分析生活中遇到的问题。

3、教学重点:理解加法的意义,掌握加法交换律及其应用。

难点:加法交换律的应用。

二、说教法

本节课设计的基本思路是:观察——比较——讨论——概括——应用,教学中以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与学习的全过程。根据本节课教学目标和教材特点,我采用以下几种教法:

1、情境教学法。我们知道创设问题情境,能使学生的学习兴趣得到激发,使学生融入到数学情境中去,积极动脑思考,使学生认识到数学来源于生活,又服务于生活。如:通过教师左右手分别出示铅笔,导入问题,求一共有多少支铅笔?用什么方法解答,从而“引出什么叫加法”,激起同学们的学习兴趣。为后面学习加法的意义做好认知准备。

2、直观引导观察法。理解加法的意义是本课的重点。将例题以线段图的形式出现,唤起学生的感性认识。从线段图上学生直接感受到求花的朵数,北京到济南的路程,就是要把两个数合并成一个数,所以要用加法计算。让学生用自己的语言表述为什么用加法算,既讲清楚两例题目的算理,又为加法意义的概括奠定良好的认知基础。

3、小组讨论交流法。掌握加法交换律及应用是本课重点也是难点。学习加法交换律,用四组加法算式为观察点,让学生个人探索,小组交流讨论,通过计算、观察、比较、讨论等一系列实践活动,从几组算式间的联系去发现并总结规律,逐步概括出加法交换律。最后抽象出用字母表示的定律。它是学生自己探索得到的,有实感才能有认识,认识深刻才能理解透彻,理解透彻才能熟练地应用。这样的设计基本体现了学生学习的主体性、积极性、创造性。

4、分层练习法。学生在理解了加法交换律后,就要应用它,这是本课的重点也是难点。《数学课程标准》指出:能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务。根据教学目标,练习分为基本练习、巩固练习、深练习等,这样既有助于学生掌握知识,又利于满足不同层次学生的需求。贯彻全面发展与因材施教相结合的教学原则?/SPAN>

5、教具:小黑板两块,铅笔13支。

三、说学法

“教会学生如何学习”,是当前教改研究热点。学生掌握了学习方法,就等于拿到了打开知识宝库的金钥匙。在教学过程中,应重视学习方法的指导,主要学法有:

1、个人自学法。加法各部分名称比较容易懂,通过学生自己看书,明确加法的各部分名称,从而培养学生的学习能力。

2、观察比较法。概括加法的意义是学习的重点,通过线段图引导学生观察、比较,从感性认识上升到理性认识,使学生对加法的意义有深刻的认知。

3、交流讨论法。学生个人探索,同桌交流,小组讨论。通过计算、观察、比较、讨论等活动,去发现并总结出加法交换律。发挥学生的主体作用,让学生敢想、敢说、敢问,培养学生初步的归纳推理能力。

4、练习法。练习是为了使学生更好掌握新知,深化理解。学生掌握了加法交换律,应用加法交换律是本课的难点。练习上采用基本练习、巩固练习、深化练习等。通过练习加深学生对加法交换律的理解,初步培养学生演绎推理能力。

四、说教学程序

㈠创设情境,导入新课。

师双手分别出示铅笔,问:求一共多少支?学生列式解答后,提出问题:为什么用加法算?引出课题:加法的意义。(板书)

(意图:使学生初步感知加法的意义。)

㈡直观观察,抽象概括。

1、学习加法的意义。

⑴出示两个线段图,列式解答。

⑵根据列式,说说为什么要用加法算?把自己用加法算的理由告诉大家。

教师引导学生概括出加法的意义。(板书)把两个数合并成一个数的运算,叫做加法。找出关键字词。

(意图:通过两个线段图列式,并引导观察比较,概括出加法的意义。)

⑶应用加法的意义。

用小黑板出示练习十一第1题。先指名说,再同桌说。

(意图:加深巩固什么是加法?什么样的运算是加法。)

2、学生自学加法各部分的名称。

⑴看书P47自学后,师问生答师板书(加数、和)。

⑵观察比较讨论。

观察比较:加法算式中的和与其中一个加数比较,你发现了什么?

讨论:是不是任何一个加法算式中的和都比其中一个加数大呢?

引出:任何自然数相加的和都比一个加数大。

一个数加上0,还得原数。举例:0+7=7,7+0=7。

0和0相加得0。0+0=0。

㈢探索加法交换律。

1、(出示四组算式)计算各式,并根据结果探索加法交换律。

学生计算后,观察每组算式的结果,发现了什么?比较它们的相同点和不同点。引导得出结论:(板书)两个数相加,交换加数的位置,它们的和不变。学生举例。

2、用字母表示加法交换律。

a+b=b+a(板书),说说用字母表示加法交换律有什么好处?

㈣巩固练习,深化理解。

1、基本练习,体现知识的目的性。

(小黑板出示)填空:

⑴把两个数成一个数的运算。叫做加法。

⑵相加的两个数叫做,加得的数叫做。

⑶两个数相加,加数的位置。它们的不变。

⑷用字母表示加法交换律:。

2、巩固练习,体现知识的层次性。

用小黑板出示P48做一做的第1题。

3、深化练习,体现知识的灵活性。

用小黑板出示练习十一第3题。

㈤课堂小结。

今天学习了什么知识?你懂得了些什么?

㈥布置作业。

P48做一做的第2题,练习十一的第2、4题。

板书设计:

加法的意义和加法交换律

例⑴25+20=45(朵)⑴20 +30 =30+20

加数 加数和⑵125+243=243+125

⑵137+357=494(千米)⑶14 +80 =80+14

把两个数合并成一个数⑷23 +505=505+23

的运算,叫做加法 。a+b=b+a

两个数相加,交换加数的位置,它们的和不变。

这叫做加法交换律

比的意义教案15篇

在教学工作者实际的教学活动中,有必要进行细致的教案准备工作,教案是教材及大纲与课堂教学的纽带和桥梁。那要怎么写好教案呢?下面是小编整理的比的意义教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

比的意义教案 篇4

教学准备:

教学目标:

1、复习、本单元的基本概念,在练习中进一步理解分数的意义。

2、通过输理、比较,建立相关概念的关系。

3、在实践应用中体验数学的趣味性。

基本教学过程:

一、一、基本练习

1、分数的意义。

练习第一、二题。

学生填写后,说说思考方法。巩固对分数意义的理解。其中第二题的2/3,可以让学生说说还可以用什么分数表示。

2、分数的大小比较:

第3题。

先让学生独立填一填,再说一说比较分数大小时是怎样思考的?注意,本题是让学生用分数表示没有涂色的部分。

3、假分数、带分数的互化:

第5题。

说一说假分数、带分数互化的方法:

4、填符号:

第6题。

说一说你是怎么想的?

二、运用知识模型:

1、第7题。

按要求在圈内填上适当的分数。

2、第4题。

先引导学生解决第1问题,学生根据题意收集有关信息,再根据分数的意义或分数与除法的关系解决问题。

然后引导学生说说“还能用分数表示什么?”如站着的人数占这群学生数的几分之几,男生的.人数占这群学生数的几分之几等。第3个问题,主要用分数进行交流,感受分数与生活的联系,教师组织学生展开充分交流。

3、第8题

教师可以引导学生观察年历卡片,可以让学生根据年历自己数一数,再得出结论,加深对分数的理解。在完成教材的前两个问题后,教师要充分利用年历卡片这个学习材料引导学生用分数进行交流。

三、实践活动:

课前可以组织学生简要设计一张数学报,自己想一想各栏目所占幅约占这张报的几分之几,再在课堂上进行交流,培养学生的数感,体会分数的应用。

四、:

教学反思:

比的意义教案(15篇)

作为一位优秀的人民教师,常常要根据教学需要编写教案,教案是实施教学的主要依据,有着至关重要的作用。那么什么样的教案才是好的呢?以下是小编整理的比的意义教案,仅供参考,欢迎大家阅读。

比的意义教案 篇5

教学目标

1、使学生在初步认识分数的基础上,理解分数的意义,掌握分子、分母和分数单位的含义。

2、通过分数的学习,培养学生动手操作,观察、思考、抽象概括的能力。

3、使学生体会到分数就在我们身边,运用分数可以解决生活中的实际问题,从而增强学生学习数学的兴趣。

教学重难点

教学重点:理解分数的意义

教学难点:认识单位“1”和概括分数的意义

教学工具

ppt

教学过程

一、温故知新:

师:三年级上学期我们已初步学习了分数,谁能说出几个分数哪?

生:

师:谁能说出分数各部分的名称:生说师板书。

师总结引入新课:从以上看来同学们对分数已经有了初步的认识,但是关于分数的知识还有很多,这节课我们一起进一步研究分数。

二、探究新知

(一)分数的产生

1、出示米尺:同学们这是什么?(生:米尺)知道干什么用的吗?(生:测量用的)好我们一起测量我们的'黑板(或人的身高),老师量时要认真观察,看会遇到什么问题,想一想应如何解决?(生:最后测量时不够一米了)

师:(出示情景图)其实古人也发现类似的情况:他们用打了结的绳子来测量石头的长度,每两个结之间表示一个单位长度。发现这块石头长3段多一点。这时旁边记录人提出疑问:剩下的不足一段怎么记哪?

2、(出示一个西红柿图:)同学们,把1个西红柿平均分给2个同学,每人能分得一个完整的西红柿吗?

3、教师小结:生活中在进行测量、分物或计算时,往往不能正好得到整数的结果,要想准确表示结果,这时常用分数来表示,这样分数就产生了。(出示并板书:分数的产生)

T:小结:我们通过把一个物体、一个计量单位、或是一些物体等都可以平均分成4份,取其中一份得

3、教师总结:课件出示图,像这样一个物体、一个计量单位、或是一些物体等都可以看作一个整体,像这样的一个个整体都可以用自然数1来表示,这个1在数学上通常叫做单位“1”。

板书:一个整体可以用自然数1来表示,我们通常把它叫做单位“1”(齐读)

谁能说说自然数1与单位“1”有什么不同吗?生:………

我们把这个整体平均分成若干分,就是把单位“1”平均分成若干分,所以分数的意义是:

把单位“1”平均分成若干分,表示其中一份或几份的数就叫分数,齐读一遍

(同学们表现得非常棒,同学们看看看生活中的单位“1”。出示图)

四、巩固训练大闯关(看谁反应快、回答得对):

(出示练习题见课件)

1、填空:

2、学生独立完成书上练习十一1、2、3题。

五、总结:通过学习你学到了什么,有哪些收获?

通过这节课的学习,我们知道分数是怎样产生的,什么叫分数也就是分数的意义,还知道分数单位及单位“1”的概念,整节课同学们表现的都非常太棒,就请大家为自己的精彩表现鼓鼓掌!关于分数还有很多很多的知识呢!今后我们进一步进行探究。这节课就上到这儿,同学们再见!

比的意义教案 篇6

教学目标:

使学生进一步理解百分数的意义,体会百分数与分数与分数、比的联系和区别,积累数学活动经验,进一步发展数感。

教学重点:

使学生更加准确把握用百分数表示数量的关系,进一步体会百分数与生活的联系。

教学过程:

一、基本练习

1.什么叫百分数?

2.说出下面百分数的`实际意义

地球上陆地面积大约占29%,海洋面积大约占71%。

完成书上练习十九第4题的填空。

3.完成练习十九第5题:启发学生利用比所表示的份数关系进行思考,沟通比与百分数之间的关系。

4.完成练习十九第6题。

(1)说一说题中5%和60%的具体意义。

(2)独立完成书中的填空。

(3)交流自己的想法。

二、综合练习

1.完成练习十九第7题。

(1)出示题目,说说题目中百分数的实际意义。题目中的百分数有什么特点?

(2)讨论:

在这几种食物中,蛋白质含量最高的是哪一种?最低的呢?脂肪含量最高和最低的呢?

100克黄豆中大约含蛋白质和脂肪各是多少克?其他食物呢?

2.完成练习十九第8题。

(1)出示示意图,理解图意。

(2)讨论:图中的65%表示什么?还有多少没有完成?如果把已经完成的和没有完成的相加,结果是多少?

3.完成练习十九第9题。

(1)独自看图填空。

(2)汇报交流,并使学生意识到:百分号前面的数可以小于或等于100,也可以大于100。

4.讨论练习十九第10题和11题。

(1)第10题,先说出男生占40%是实际意义。

(2)第12题,让学生说一说什么情况下两个学校的女生人数相同,什么情况下不同。

三、全课。

比的意义教案 篇7

教学目标

1.结合具体情境,通过观察、操作等活动掌握小数的读写法,理解小数的意义;

2.在合作探索中,掌握小数各部分的名称和小数的数位顺序、小数的计数单位。

3.培养学生的观察能力、分析能力、抽象概括能力和迁移能力,使学生在合作与交流过程中,获得积极的情感体验。

教学过程

第1课时

一、创设情境,复习引入

1.谈话:同学们,在我们的数学王国里,除了整数外,你还知道哪些数?你能举一个我们学过的小数的例子,并说出它表示的意义吗?

(学生举例回答,师订正。)

(根据学生的回答,教师板书一组一位小数:0.1 1/10;0.4 4/10……)

教师引导学生观察这组数据,这些小数有哪些共同特征?(小组内交流)

学生小组交流后,再集体交流。教师引导归纳:一位小数表示十分之几。

2.谈话:看来同学们前面的知识掌握的不错,作为奖励,老师带来一组美丽的图片,请同学们看大屏幕。(伴随音乐,出示情境图。)

[设计意图]本课是在学习了一位小数和初步认识分数的基础上进行的,所以,先带领学生回顾一下前面所学的有关知识,为学习新知做铺垫。再带领学生欣赏信息窗1,引入新知,培养情感,激发兴趣。

二、结合情境,探究新知

1.学习小数的读写。

谈话:从图中你都看到了什么?了解到哪些数学信息?(学生交流。)

(1)根据以前的知识,请你从中任选两种蛋的数据试着把它们读或写在练习本上。

(2)全班交流订正。

(3)教师根据学生的读、写情况引导学生概括小数读、写的基本方法。

谈话:对于这些小数,你还想了解它们哪些知识?(学生自由提问。)

下面我们先来研究一下0.25千克中的0.25表示什么意思?

2.学习两位小数的意义。

谈话:0.25千克中的0.25表示什么,首先要弄清0.01表示什么。(板书:0.25 0.01)

(1)出示一张正方形纸片。

谈话:如果正方形纸片用“1”表示,那么把它平均分成10份,每份可以怎样表示?如果把它平均分成100份。每份可以怎样表示?(学生发言。)

(师板书:0.1——1/10 0.01——1/100)

(2)在正方形纸片上表示出0.25。

谈话:我们知道了0.01就是1/100,那么你能在这张正方形纸片上表示出0.25吗?它表示什么?

(小组合作完成,全班交流,师引导学生明确0.25就是25/100,也就是25个1/100。)

板书:0.25 25/100

(3)教师多媒体出示0.05、0.10的方格图,阴影部分表示什么?

板书:0.05 5/100

0.10 10/100

(4)小组讨论:这些小数有什么共同特点?

(全班交流。教师引导学生概括出两位小数表示的意义)

3.学习三位小数的意义。

(1)谈话:我们已经知道了两位小数表示的意义,猜想:那么0.001表示什么?0.365表示什么?(学生口答。学生在两位小数的启发下,可以自然迁移)

(2)教师多媒体出示大正方体塑料块动态平均分产生0.365的过程(教材51的图),引导学生理解0.365就是365个1/1000,也就是365/1000。)

(3)多媒体出示0.305、0.360的阴影方块图,阴影部分表示什么?

(4)引导学生概括出三位小数表示的意义

4.总结小数的意义和计数单位。

(1)谈话:今天我们认识了0.25和0.365这样的小数,你在生活中见过这样的小数吗?

(学生寻找生活中的小数,并结合实际说出它们的意义。)

(2)小组讨论:你认为小数是用来表示什么的数?它的计数单位是什么?

(集体交流,师引导学生总结出小数的意义。)

[设计意图]通过对正方形纸片和正方体塑料块的观察、涂色、操作等活动,以及学生对日常生活中存在的小数的寻找和理解,使学生积累了丰富的感性认识,为学生顺利抽象概括小数的意义奠定了坚实的基础,同时感受小数应用于生活的广泛性。

三、情境练习,巩固提高

1.出示自主练习第一题。

学生分别用分数和小数表示图中的.阴影部分。

2.自主练习第3题。

学生独立读题,再说一说小数和分数之间的联系。

[设计意图]练习重点是小数和分数的联系,注重培养学生系统归纳知识的能力,也让学生在练习中进一步理解小数的意义。

四、课堂总结

谈话:今天我们进一步认识了小数,你有什么收获,能和大家分享吗?

[设计意图]让学生分享学习成功的喜悦,激发学生的积极性和求知欲,同时也为学生的后续学习总结了经验和方法。

课后反思

兴趣是儿童最活跃的心理成分,当学生对某种事物产生兴趣时,他们就会主动、执着地探索。因此本课开始,就利用出示情景窗一,吸引了学生的兴趣,激发了学生探究的欲望,为小数意义地学习做了准备。

同时,本节课以学生的生活经验和知识背景为切入点,引导学生进行积极的操作和体验。在这个过程中,教师引导学生感知、感受、感悟知识,围绕着学生这个主体,利用现代化教学手段与常规教学手段互相结合的方式,直观展现了知识的形成过程,启迪学生思维,提高了课堂效率。

数学思想方法是数学知识的灵魂,是最有价值的数学知识。因此,数学课堂既要注重学生知识的获取和能力的培养,更应注重数学思想方法的渗透。在本课中,鼓励学生从一位小数迁移类推得到两位小数;在概括出两位小数的意义的基础,再对三位小数的意义进行猜测和验证,从而有效地渗透数学抽象化方法,进一步促进学生的数学思维能力。

比的意义教案

作为一名人民教师,就难以避免地要准备教案,借助教案可以让教学工作更科学化。怎样写教案才更能起到其作用呢?以下是小编为大家整理的比的意义教案,欢迎大家借鉴与参考,希望对大家有所帮助。

比的意义教案 篇8

一、教学目标

1.使学生理解并掌握反比例函数的概念

2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式

3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想

二、重、难点

1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式

2.难点:理解反比例函数的概念

3.难点的突破方法:

(1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解

(2)注意引导学生对反比例函数概念的理解,看形式,等号左边是函数y,等号右边是一个分式,自变量x在分母上,且x的'指数是1,分子是不为0的常数k;看自变量x的取值范围,由于x在分母上,故取x≠0的一切实数;看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。讲解时可对照正比例函数y=kx(k≠0),比较二者解析式的相同点和不同点。

(3)(k≠0)还可以写成(k≠0)或xy=k(k≠0)的形式

三、例题的意图分析

教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。

教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。

补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。

四、课堂引入

1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?

2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?

五、例习题分析

例1.见教材P47

分析:因为y是x的反比例函数,所以先设,再把x=2和y=6代入上式求出常数k,即利用了待定系数法确定函数解析式。

例1.(补充)下列等式中,哪些是反比例函数

(1)(2)(3)xy=21(4)(5)(6)(7)y=x-4

分析:根据反比例函数的定义,关键看上面各式能否改写成(k为常数,k≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x,(6)改写后是,分子不是常数,只有(2)、(3)、(5)能写成定义的形式

例2.(补充)当m取什么值时,函数是反比例函数?

分析:反比例函数(k≠0)的另一种表达式是(k≠0),后一种写法中x的次数是-1,因此m的取值必须满足两个条件,即m-2≠0且3-m2=-1,特别注意不要遗漏k≠0这一条件,也要防止出现3-m2=1的错误

比的意义教案 篇9

教学内容

1.充分利用学生已学过的减法知识,概括出减法的意义.

2.使学生理解并掌握加减法之间的关系,并会在实际计算中应用.

3.通过学习减法意义及有关知识,逐步培养学生的逻辑推理能力及运用知识解决实际问题的能力.

教学重点

理解减法的意义,掌握加法、减法各部分之间的关系及其应用.

教学难点

理解“减法是加法的逆运算”.

教具学具准备

投影仪、投影片、小黑板(转板).

教学步骤

(一)铺垫孕伏

1.口算:(投影出示)

45+16 61-45 35+20 55-30

73-50 23+50 24+19 43-24 43-19

2.加法的意义是什么?

(二)探求新知

l.导入:小明遇到这样一题,根据741-87=654要求用最快的方法说出741-654=?.小明想求助于同学们,老师知道你们很想帮助他,那好首先我们来学习减法的意义一起帮助小明解决这个问题.演示课件“减法的意义”,出示课题 下载

2.教学减法意义:演示课件“减法的意义”,出示问题 下载

(1)出示第(1)题,启发学生读题,分析数量关系,并列式计算(1人板演),解答后,提问:①这道题为什么用加法计算?

②引导学生说一说这个加法等式中各部分的名称.(板书;加数、加数、“和”)

(2)出示第(2)题,启发学生列式解答,(指名板演)并说一说为什么用减法计算?

引导学生明确:从全班人数里去掉男生人数就得女生人数,去掉女生人数就得男生人数.

(3)请同学们观察,比较一下,第(2)、(3)题与第(1)题有什么联系,各用什么方法计算?

引导学生明确:第(1)题已知男生、女生人数,求全班人数;

第(2)题是已知全班人数和男生人数,求女生人数;

第(3)题是已知全班人数和女生人数,求男生人数.

启发学生:第(1)题是已知两个加数,求它们的和,用加法;

第(2)、(3)题都是已知和与其中一个加数,求另一个加数,用减法

(板书:“和”、“加数”、“另一个加数”)

想一想:减法是什么样的.运算呢? 继续演示课件“减法的意义” 下载

教师强调说明:减法是已知两个数的和与其中的一个加数,求另一个加数的运算.

(4) 分组讨论.引导学生结合生活举出具体实例,再进一步理解减法的意义.

(5)教学各部分名称

教师提问:在减法等式中,已知的和叫什么?减去的已知加数叫做什么?求出的未知数叫什么?

引导学生明确:被减数、减数、差数各是哪些数。

教师提问:减法与加法又有什么关系呢?

(减法中的已知条件和问题与加法中的已知条件和问题正好是相反的,在加法中是已知的,在减法中就变成了未知,而加法中未知的,在减法中则变成了已知.因此说减法中是加法的“逆运算”.)

(6)完成第54页上的“做一做”.

根据2468+575=3043,直接写出下面两道题的得数.

3043-2468= □ 3043-575=□

(7)教学0在减法计算中的特性:

教师提问:举例说明0在加法计算中有几种情况?那么有关0的减法又有哪几种情况呢?(同桌讨论)

教师举例写出三种情况:

5-0=5 5-5=0 0-0=0

教师强调:一个数减0,还得原数;

被减数等于减数,差是0.

3.教学加、减法各部分间的关系

(1)加法各部分间的关系:演示课件“减法的意义”,出示各部分间的关系式 下载

教师:①加法各部分间最基本的关系是什么?

学生:和=加数+加数 (板书)

教师:②如果知道和与其中一个加数,求另一个加数应该利用哪一个关系式呢?

学生:加数=和-另一个加数(板书)

(2)减法各部分间的关系:

减法中各部分间的最基本的关系是:差=被减数-减数(板书)

如果知道被减数和差,求减数是:减数=被减数-差(板书)

如果知道减数和差,求被减数是:被减数=减数+差(板书)

(3)反馈练习:

练习十二第2、3题,两道题可根据减法各部分间的关系说明,也可用其意义说明.

2题;根据2100-695=1405写出一道加法算式和一道减法算式

3题:根据3427-428=2999,直接说出下面两道题的得数.

4.加减法各部分间关系的应用。

运用加减法各部分间的关系还可以解决哪些问题呢?

教师说明:可以对加减法的计算进行验算.

(1) 加法的验算:

出示1234+845,指2名学生板演

学生讨论:用什么方法来验算?你的根据是什么?

教师提示:要注意,因为加数有两个,验算时用和减去哪一个加数都可以,所以验算此题时出现两种竖式解答,在以后的验其中,可任选一个加数作减数来进行验算.

(2) 减法的验算:

出示1234-987,指名板演

教师提问:加法可用减法来验算,那么减法可用什么方法来验算呢?你的根据是什么?

(3)教师:应用加、减法各部分间的关系可以进行验算,这样可以检查同学们在计算中出现的差错.

(三)巩固发展 演示课件“减法的意义”,出示练习1

1.填空:

(1)已知两个数的( )与其中的一个( ),求另一个( )的运算叫减法.

(2)在120-90=30算式中,被减数是( ),90是( ),30是( ).

(3)一个数减0还得( ).被减数与减数相等,差是( ).

(4)根据3600-784=2816写成加法算式是( ),另一个减法等式是( ).

2.判断:演示课件“减法的意义”,出示练习2

(1)对减法的验算有两种方法:一是用差加减数看是否等于被减数,另一种是用被减数减去差.( )

3.教材第56页练习十二第6题

在下面的□里填上适当的数.

256-47-153=256-(□+□)

(四)全课

减法的意义和加、减法各部分间的关系是什么?

(五)、布置作业

教材第56第3、4题.

3题:根据3427-428=2999,直接说出下面两道题的得数.

(1)2999+428 (2)3427-2999

4题:计算下面各题,并用两种方法验算.

(1)2981+4569 (2)4058-739

比的意义教案 篇10

教学目标:

1、了解小数的产生和理解小数的意义。

2、掌握小数的计数单位及单位间的进率。

教育方面:

1、培养学生的观察、分析能力和抽象概括能力。

2、感受数学与生活的联系及其价值,体验数学学习的乐趣。

教材分析:

1、教学内容:义务教育课程标准实验教科书数学四年级下册《小数的认识和加减法》中的“小数的意义”问题。

2、内容分析:教材选用测量黑板、课桌,一方面这两种事物都是教室里学生非常熟悉的,另一方面学生在测量之后除了能够体会小数的产生于实际需要以外,还可以将测量结果作为一般的常识来掌握。考虑到学生对长度单位比较熟悉,教材仍选用了米尺作为教学小数意义的直观教具,以长度单位为例说明小数的实质是十进分数的另一种表现形式。教材通过分米(厘米、毫米)改写成米数,三个层次共同说明,把低级单位的数改写成高级单位的数可以用分母是10.100.1000??的分数表示,再进一步用小数表示。教材着重从“小数是十进分数的另一种表现形式”的角度说明小数的含义,最后教材说明小数的计数单位及相邻两个计数单位之间的进率由学生自己填出。

3、学情分析:小数的意义属于概念教学,比较抽象,在操作中要重过程。根据本课教学内容的特点和学生对概念认知的思维特点,我们在制定本课教学环节时注意联系生活,尽量联系学生身边的事物,充分利用有效资源让学生经历数学知识的探究与发现的过程,使他们在动手、动脑、动口中理解知识、掌握方法,学会思考、获得积极的情感体验。

4、教学目标:

(1)使学生在初步认识小数的基础上知道小数的产生,理解小数的意义。

(2)使学生理解和掌握小数的计数单位及相邻两个单位间的进率。

(3)培养学生的观察、分析、推理能力。

5、教学重点、难点。

教学重点:

使学生明确小数的产生和意义、小数与分数的联系、小数的计数单位和相邻两个计数单位间的进率。

教学难点:

小数意义的探究过程和相邻两个计数单位间的进率。

教学准备:

多媒体课件 、测量工具(米尺)。

教学过程:

(一)操作导入:

1、让两名学生测量黑板、课桌长度。(用米作单位)

2、交流测量结果,展开讨论。

3、引导小结:

在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。(板书课题:小数的产生和意义)

【设计意图】通过让学生自己动手测量黑板、课桌长度的活动,当让学生用米作单位说出黑板的长时,学生心理产生了矛盾,因为测量黑板时多出的部分不够1米,课桌也不够1米,无法得到整数的结果,需要用其它数来表示,由此引出“小数”。学生通过测量亲自体验了小数产生的必要性。

(二)引导探究:

1、认识一位小数。(出示米尺)

(1)在米尺上找出1分米的地方。

①用米作单位,怎样用分数来表示? 为什么?(结合分数的意义说明)②用小数表示是:0.1米。

③谁来说说0.1米表示什么?(把1米平均分成10份,每份1分米,是 米,也可以写成0.1米。)

板书:1分米= 米=0.1米.

(2)讨论:

①用米作单位,3分米怎样用分数和小数表示?7分米呢?

②分别说说0.3米、7分米表示什么意思?

2、认识两位小数。(出示米尺)

(1)在米尺上找出1厘米的`地方。

①用米作单位,怎样用分数来表示? 为什么?

②用小数表示是:0.01米。

③谁来说说0.01米表示什么?(把1米平均分成100份,每份是1厘米,是 米,也可 以写成0.01米。)

板书:1厘米= 米=0.01米.

(2)讨论:

①用米作单位,3厘米怎样用分数和小数表示?6厘米呢?

②分别说说0.03米、0.06米各表示什么意思?

3、认识三位小数。(出示学生尺)

(1)在尺上找出1毫米的地方。

①用米作单位,怎样用分数来表示? 为什么?

②用小数表示是:0.001米。

③谁来说说0.001米表示什么?

板书:1毫米= 米= 0.001米。

(2)讨论:

①用米作单位,3毫米怎样用分数和小数表示?6毫米和13毫米呢?

②说说0.003米和0.006米各表示什么意思?

照这样分下去,还可以得到万分之一米??也可以写成0.0001米。

象刚才小圆点后面一位的小数叫一位小数,两位的小数叫两位小数??

(三)概括:

1、概括小数与分数的关系。

(1)什么样的分数可以用一位、两位、三位??小数来表示?

(2)一位、两位、三位??小数分别表示几分之几?举例说说。

2、概括小数的意义。

师:分母是10、100、1000??的分数可以用小数表示。

【设计意图】小数的意义是十分抽象的概念,学生比较难理解。要改变死记硬背、机械 训练的方式,防止重结论,轻过程的做法。因此,我引导学生进行观察,使学生始终参与 到概念的探究过程中,通过比较、归纳、分析和综合,理解小数、分数之间的关系,最后 抽象出小数的意义。从具体事例推进到语言描述,这个过程需要迁移类推,更需要抽象概括,这样能加深对概念的理解,培养学生的逻辑思维能力。

(四)小数的计数单位和进率

(1)小数的计数单位是什么?(展开讨论)板书:(十分之一、百分之一、千分之一??,分别写作0.1、0.01、0.001??)

(2)1米里有几个0.1米?0.1米里有几个0.01米???每相邻两个单位间的进率是多少?

(3)师:因为整数和分数相邻两个单位间进率都是10,所以这些分数也可以仿照整数的写法,写在个位的右面,用一个小圆点(小数点)隔开,用来表示十分之几、百分之几、千分之几??的数,叫做小数。

【设计意图】老师没有直接告诉学生小数的计数单位是什么,每相邻两个计数单位间的进 率是10,而是让学生从解决问题中发现、归纳出来。这样能促使学生进行多角度、多方面、多层次的探索,符合学生的认知规律,培养学生应用所学知识解决问题的能力,获得学习 成功的体验,增进学好数学的信心。通过讨论交流和概括总结,培养数学思维能力和合作 精神。

(五)巩固应用

1、学生看书并完成例1的空白。

2、P51 “做一做”用分数、小数表示涂色部分。

3、闯关练习:

(1)括号里能填几?你是怎么知道的?

0.3里面有()个 ,0.09里面有()个 ;0.08里面有()个 。

(2)下面的括号里能填几?

0.1米里面有()个0.01米 ;

0.01米里面有()个0.001米 ;

0.001米里面有()个0.0001米。

(3)找朋友:(用线把上下两组数连起来)

0.045 0.13 0.0001 0.9

4、说说这些小数的计数单位分别是什么? 它里面含有多少个计数单位?

0.3 0.18 0.250.036

【设计意图】使学生明确小数和分数的关系,加深对小数意义的理解和对计数单位的认识,让所学知识得以巩固。

(六)课堂总结

这节课我们学习了什么?你知道了什么?你还有什么问题?

【设计意图】对知识点进行梳理,培养学生概括能力和语言表达能力。

(七)板书设计:

小数的产生和意义

小数的产生:在进行计算和测量时,往往得不到整数的结果。

比的意义教案 篇11

教学目标

1。使学生理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。

2。掌握分数除以整数的计算法则,并能正确的进行计算。

3。培养学生分析能力、知识的迁移能力和语言表达能力。

教学重点

正确归纳出分数除以整数的`计算法则,并能正确的进行计算。

教学过程

一、复习引新

(一)说出下面各数的倒数。

0.3 6

(二)已知126×45=5670,直接说出5670÷45和5670÷126的得数,再说说你是怎样想的,根据是什么。(学生回答后教师总结:根据整数除法的意义,不用计算就能知道这两题的结果,谁还记得整数除法的意义是什么?已知两个因数的积与其中一个因数,求另一个因数的运算。)

(三)引新:同学们想不想知道分数除法的意义吗?分数除法如何计算呢?这节课我们就一起来

学习

分数除法。(板书课题:分数除法的意义和计算法则)

二、新授教学

(一).教学分数除法的意义(演示课件:分数除法的意义)

1.每人吃半块月饼,4个人一共吃多少块月饼?

教师提问:半块月饼用分数怎么表示?求4个人一共吃多少块月饼就是求几个?求4个是多少怎样列算式?()

2.两块月饼,平均分给4人,每人分得多少块?怎样列式?

列式:2÷4

3.两块月饼,分给每人半块,可以分给几个人?

列式:

教师提问:说一说结果是多少?你是如何得出结果的?

4.组织学生讨论:分数除法的意义。

总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

5.练习反馈。

1.出示例1.把米铁丝平均分成2段,每段长多少米(演示课件:分数除以整数)

(1)求每段长多少米怎样列算式?

(2)以小组为单位讨论一下得多少呢?

米平均分成2段就是要把6个米平均分成2份,每份是3个米是米。

(3)教师板书整理。

2.教师质疑:如果把米铁丝平均分成3段、6段怎样计算?

也可以这样想:把米铁丝平均分成3段,就是求米的是多少,列式是:

把米铁丝平均分成6段,就是求米的是多少,列式是:

3.教师继续质疑:如果把米铁丝平均分成4段每段长多少米?怎样计算?

为什么采用转化成分数乘法这种方法比较好呢?

组织学生观察在转变中,什么变了,什么没变?讨论分数除以整数的计算法则。

4.学生边概括教师边板书:分数除以整数(0除外)等于分数乘以这个整数的倒数。

三、巩固练习

(一)计算下面各题。

学生独立完成,教师巡视,进行个别辅导。

(二)求未知数

1.2.

(三)判断。

1.分数除法的意义与整数除法的意义相同。()

2.已知两个分数的积与其中一个分数,求另一个分数,用除法解答。()

(四)解答下面各题。

1.把平均分成4份,每份是多少?

2.什么数乘以6等于?

3.一个正方形的周长是米,它的边长是多少米?

四、课堂总结

这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?

五、课后作业

(一)计算下面各题。

(二)解下列方程。

六、板书设计

分数除法

大家都在看