数轴教学设计

笔构网

2025-09-28教案

请欣赏数轴教学设计(精选7篇),由笔构网整理,希望能够帮助到大家。

数轴教学设计 篇1

一、教材分析

《数轴》是湘教版七年级上册第一单元的内容。本节课主要是在学生学习了有理数概念的基础上,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具,还是以后学好不等式的解法、函数图象及其性质等内容的必要基础知识。

二、教学目标

知识技能:①了解数轴的概念,学会如何画数轴;

②知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应。

过程与方法:①从直观认识到理性认识,从而建立数轴概念。

②通过数轴概念的'学习,初步体会对应的思想,数形结合的思想方法。

情感态度价值观:通过数轴的学习,体会数形结合的思想方法,进而初步认识事物之间的联系性。

三、重难点

重点:

正确理解数轴的概念和有理数在数轴上的表示方法。

难点:

建立有理数与数轴上的点的对应关系(数与形的结合)。

四、教学教法

教法:启发式教学法和师生互动式教学模式。

学法:“多观察、动脑想、大胆猜、勤钻研”的研讨式学习方法。

五、教学过程

(一)创设情景引入课题

1、观察温度计,体会数、形对应。学生观察温度计后回答下列问题:

①零上5℃怎样表示?

②零下10℃怎样表示?

③0℃怎样表示?

2、画情境图,体会方向与距离

在一条东西向的马路上,有一个汽车站,汽车站东3m和处有一棵柳树和一棵杨树,汽车站西3m和处分别有一棵槐树和一根电线杆,试画图表示这一情境。

(二)得出定义揭示内涵

1、提问,到底什么是数轴?如何画数轴?

2、丰富数轴的内涵:分数和小数在数上怎么表示?

3、观察数轴上的有理数排列的大小?

4、数轴上表示—2的点在原点的____边,距离原点的距离是____。

表示3的点在原点的___边,距原点的距离是______。 小结

①位于数轴左(下)边的数总比右(上)边的数小。

②一般地,设a是一个正数,则数轴上表示数a在原点的____边,与原点的

距离是____个单位长度;表示数—a的点在原点的____边,与原点的距离是____个单位长度。

(三)手脑并用深入理解

1、学生讨论下列图形中哪些是数轴,哪些不是,为什么?

2、画数轴并表示出下列有理数,—2,2,0,

3、指出数轴上A、B、C、D、E点分别表示什么数?

(四)归纳总结强化思想

1、你知道什么是数轴吗?这节课你学会了用什么来表示有理数?

2、数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同的有理数?

(五)分层作业强化思想

1、教材第12页第

1、2题。

2、补充练习。

⑴画一条数轴,并表示出如下各点:±,±,±。

⑵画一条数轴,并表示出如下各点:1000,5000,—20xx。

⑶在数轴上标出到原点的距离小于3的整数。

⑷在数轴上标出—5和+5之间的所有整数。

3、思考练习

在数轴上能否实际画出表示一千分之一的点?这个点存在吗?

数轴教学设计 篇2

一、教材分析

《数轴》是湘教版七年级上册第一单元的内容。本节课主要是在学生学习了有理数概念的基础上,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具,还是以后学好不等式的解法、函数图象及其性质等内容的必要基础知识。

二、教学目标

知识技能:

①了解数轴的概念,学会如何画数轴;

②知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应。

过程与方法:

①从直观认识到理性认识,从而建立数轴概念。

②通过数轴概念的学习,初步体会对应的思想,数形结合的`思想方法。

情感态度价值观:通过数轴的学习,体会数形结合的思想方法,进而初步认识事物之间的联系性。

三、重难点

重点:正确理解数轴的概念和有理数在数轴上的表示方法。

难点:建立有理数与数轴上的点的对应关系(数与形的结合)。

四、教学教法

教法:启发式教学法和师生互动式教学模式。

学法:“多观察、动脑想、大胆猜、勤钻研”的研讨式学习方法。

五、教学过程

(一)创设情景引入课题

1、观察温度计,体会数、形对应。学生观察温度计后回答下列问题:

①零上5℃怎样表示?

②零下10℃怎样表示?

③0℃怎样表示?

2、画情境图,体会方向与距离

在一条东西向的马路上,有一个汽车站,汽车站东3m和处有一棵柳树和一棵杨树,汽车站西3m和处分别有一棵槐树和一根电线杆,试画图表示这一情境。

(二)得出定义揭示内涵

1、提问,到底什么是数轴?如何画数轴?

2、丰富数轴的内涵:分数和小数在数上怎么表示?

3、观察数轴上的有理数排列的大小?

4、数轴上表示—2的点在原点的____边,距离原点的距离是____。

表示3的点在原点的___边,距原点的距离是______。

①位于数轴左(下)边的数总比右(上)边的数小。

②一般地,设a是一个正数,则数轴上表示数a在原点的____边,与原点的距离是____个单位长度;表示数—a的点在原点的____边,与原点的距离是____个单位长度。

(三)手脑并用深入理解

1、学生讨论下列图形中哪些是数轴,哪些不是,为什么?

2、画数轴并表示出下列有理数,—2,2,0,

3、指出数轴上A、B、C、D、E点分别表示什么数?

(四)归纳总结强化思想

1、你知道什么是数轴吗?这节课你学会了用什么来表示有理数?

2、数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同的有理数?

(五)分层作业强化思想

1、教材第12页第

1、2题。

2、补充练习。

⑴画一条数轴,并表示出如下各点:±,±,±。

⑵画一条数轴,并表示出如下各点:1000,5000,—20xx。

⑶在数轴上标出到原点的距离小于3的整数。

⑷在数轴上标出—5和+5之间的所有整数。

3、思考练习

在数轴上能否实际画出表示一千分之一的点?这个点存在吗?

数轴教学设计 篇3

一、教材分析:

本节是在引进了负数及分析了有理数的分类后给出的。数轴是理解有理数的概念与运算的重要工具,利用这个数学工具不但可以理解有理数的概念、大小比较等,还可以利用它来解决一些实际问题:包括绝对值,有理数的运算等,非常直观地把数与点结合起来,渗透着初步的数形结合的思想。对以后的知识概念及实际问题的解决起着举足轻重的作用。

二、学习任务分析;

1、要求学生会正确画出数轴初步了解有理数与数轴上的点的对应关系。

2、能将有理数用数轴上的点来表示。

三、目标分析:

1、通过回忆和实例使学生掌握数轴的概念,并理解其三要素。

2、通过动手画数轴和数轴的概念,观察数轴上点的位置关系,了解点与数之间的关系。

3、通过图形与数量的对应关系了解数学研究的一种重要方法-----数形结合。

4、通过实例启发思维调动学生学习数学的兴趣使学生充分体验实践生活离不开数学。

四、教法选择。

创设情景、动手操作、模拟演示、启发引导、学习应用、发展能力。针对学生的年龄特点和心理特征,以及他们的认知水平,采用探究式教学方法,教学中注意课堂民主、平等氛围的营造使学生始终处于主动学习的状态,鼓励学生团结协作、大胆猜想、动手操作。同时,教师要给学生思维活动提供具体、直观、感性的支持,所以本节课的设计借助直观演示、动手操作、启发诱导,由感性认识逐步上升到理性认识。

本节课的引入采用先回忆再从实例引入的教学方法,激发学生学习兴趣。

概念的`得出采用比较探索式的教学方法,坚持以学生为主体,充分发挥学生的主观能动性。教学中,让学生自已动手画数轴,培养学生探究问题的能力。改变原来的“听数学”为“做数学”。

数轴应用采用分层式的教学方法,根据不同学生的实际,进行不同层次的教学。促进他们的全面发展。特别注重基本理论在实际生活中的应用,体现数学应用于生活的一面。

五、教学重难点的确定和突破。

1、正确画出数轴是本节教学的重点。

首先回忆小学生学过的知识直线上用点表示数量数轴的三角形,再通过实物如:标尺、温度计等,要求同学们通过观察能建立数轴的概念模型通过提问:标尺及温度计上的数据有什么规律?从而引出数轴的方向性及数轴的原点和单位长度,上面的过程可以由学生讨论,教师补充从而概括数轴的概念即三要素。

2、变式;从而也可归纳出数轴商店表示即,数与点的对应关系。

通过例题要求学生动手操作画出数轴并描述点。

说明:(1),可能有不少学生会忘记正方向。

(2),原点左边的数的表识会发生标反的错误。

(3),数轴上的正方向,同时也表示由小到大的方向。

(4),单位长度的截取可以是任意长度,不是唯一的。

(5),数轴的方向也不是唯一的,如温度折线图等,方向也可以是向上的。

3、正确画出数轴后,即使点在数轴上的表示,整数的表示学生很容易理解,强调一下,分数和小数的表示是这一节课的难点,首先通过例题:

数轴教学设计 篇4

教学目标

1、知识与技能

①掌握数轴三要素,能正确画出数轴、

②能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数、

2、过程与方法

①使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识、 ②结合本节内容,对学生渗透数形结合的重要思想方法、

3、情感、态度与价值观

使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点、教学重点难点

重点:数轴的概念、

难点:从直观认识到理性认识,从而建立数轴概念、

教与学互动设计

(一)创设情境,导入新课

问题1在一条东西方向的马路上,有一个学校,学校东50m和西150m?处分别有一个书店和一个超市,学校西100m和160m处分别有一个邮局和医院,分别用A、B、c、d表示书店、超市、邮局、医院,你会画图表示这一情境吗?(学生画图)

教师活动:学生小组讨论解决问题的方法,学生代表画图演示。

学生画图后提问:

(1)马路可以用什么几何图形代表?(直线)

(2)你认为学校起什么作用?(基准点)

(3)你是怎么确定问题中各物体的位置的?(方向,与学校的距离)

问题2上面的问题中,“东”与“西”、“左”与“右”都具有相反的'意义。我们知道,正数和负数可以表示两种具有相反意义的量,那么如何用数表示这些书店、超市、邮局和医院与学校的位置呢?

教师活动:学生画图表示后提问:

(1)0代表什么?(基准点)

(2)数的符号的实际意义是什么?(方向)

(3)如图1,在一条直线上,A,B的距离等于B,c的距离,点B用3表示,点c用

7.5表示,行吗?为什么?(不行,单位不一致,与实际情镜不符)

—4.8 —30 13 7.5

(4)上述方法表示了书店、超市、邮局和医院与学校的相对位置关系。例如,—4。8表示位于汽车站牌西侧4。8m处的电线杆,你能再举个例子吗?

问题3大家都见过温度计吧?你能描述一下温度计的结构吗?比较上面的问题,你认为它用了什么数学知识?

师生活动:教师可以先解释0℃的含义(冰水混合物的温度规定为0℃—温度的基准点)问题4你能说说上述两个实例的共同点吗?

(二)定义、辨析数轴概念

明确数轴的概念:

【定义】用一条直线上的点表示数,这条直线叫做数轴。

任务1带着下面的问题阅读书P8:

(1)画数轴的步骤是什么?

(2)根据上述实例的经验,“原点”起什么作用?(“原点”是数轴的“基准”,表示0,是表示正数和负数的分界点)

(3)你是怎么理解“选取适当的长度为单位长度”的?(与问题的需要相关,表示较大的数,单位长度取小一些。)

(4)数轴上,在原点的右边,里原点越远的点所表示的数___;在原点的左边,离原点越远的点所表示的数____。

明晰概念,加深对数轴概念中“三要素”的理解。数轴的三要素:原点,正方向,单位长度

(三)练习、巩固概念

(1)【归纳】

一般地,设a是一个正数,则数轴上表示数a的点在原点的____边,与原点的距离是____个单位长度,表示数—a的点在原点的_____边,与原点的距离是____个单位长度。

(2)教科书第9页练习1,2,3

(四)小结

教师与学生一起回顾本节课所学主要内容,并请学生回答一下问题:

(1)本节课学了哪些主要内容?

(2)数轴的“三要素”各指什么?它们各起什么作用?

(3)你能举例引进数轴概念的一个好处吗?

(五)布置作业

(1)教科书9页练习题第3题,习题1、2第2题、第3题。

(2)优化设计P4—5数轴部分

数轴教学设计 篇5

一、教学目标

1.使学生正确理解数轴的意义,掌握数轴的三要素;

2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;

3.使学生初步理解数形结合的思想方法.

二、教学重点和难点

重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.

难点:正确理解有理数与数轴上点的对应关系.

三、课堂教学过程设计

(一)创设情境,引入新课

师:大家知识温度计的用途是什么?

生:温度计可以测量温度

(出示投影1)

三个温度计.其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.

师:三个温度计所表示的温度是多少?

生:2℃,-5℃,0℃.

我们能否用类似温度计的图形表示有理数呢?

这种表示数的图形就是今天我们要学的内容—数轴(板书课题).

(二)探索新知,讲授新课

1.数轴的画法

与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:

第一步:画直线定原点原点表示0(相当于温度计上的0℃).

第二步:规定从原点向右的为正方向那么相反的方向(从原点向左)则为负方向.(相当于温度计上℃以上为正,0℃以下为负).

第三步:选择适当的长度为单位长度(相当于温度计上每1℃占1小格的'长度).

(出示投影1)

(1)原点表示什么数?

(2)原点右方表示什么数?原点左方表示什么数?

(3)表示+2的点在什么位置?表示-1的点在什么位置?

(4)原点向右0。5个单位长度的a点表示什么数?原点向左个单位长度的b点表示什么数?

根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义.

学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答.大家思考准备更正或补充.

教师根据学生回答给予肯定或否定,纠正后板书.

2.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴.

向学生提出问题:数轴上为什么要规定原点、正方向和单位长度呢?它们各起什么作用?引导学生结合温度订正确回答这个问题,从而知道数轴三要素的重要性,了解三者缺一不可,认识和掌握判断一条直线是不是数轴的依据.

学生活动:同桌之间、前后桌之间讨论.使学生从直观认识上升到理性认识.

3.尝试反馈,巩固练习

请大家回答下列问题:

(出示投影2)

(1)有人说一条直线是一条数轴,对不对?为什么?

(2)下列所画数轴对不对?如果不对,指出错在哪里?

学生活动:学生思考,不准讨论,想好后举手回答.

让其他学生对其回答进行评判,对确有疑问的题目,教师给予讲解.

4.有理数与数轴上点的关系

通过刚才的学习我们知道所有的有理数都可以用数轴上的点来表示.

例1画一条数轴,并画出表示下列各数的点:

1,5,0,-2。5,.

学生练习:同学们在练习本上画一条数轴,然后在数轴上标出各点,一名学生板演.教师巡回指导,发现问题及时纠正.

例2指出数轴上a、b、c、d、e各点分别表示什么数?

先让学生思考一会,然后学生举手回答解:a表示-3;b表示;c表示3;d表示;e表.

数轴教学设计15篇(精华)

作为一名教学工作者,时常需要准备好教学设计,借助教学设计可以让教学工作更加有效地进行。你知道什么样的教学设计才能切实有效地帮助到我们吗?以下是小编精心整理的数轴教学设计,希望能够帮助到大家。

数轴教学设计 篇6

一、教材分析

《数轴》是湘教版七年级上册第一单元的内容。本节课主要是在学生学习了有理数概念的基础上,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具,还是以后学好不等式的解法、函数图象及其性质等内容的必要基础知识。

二、教学目标

(一)知识技能:

①了解数轴的概念,学会如何画数轴;

②知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应。

(二)过程与方法:

①从直观认识到理性认识,从而建立数轴概念。

②通过数轴概念的学习,初步体会对应的思想,数形结合的思想方法。

(三)情感态度价值观:通过数轴的学习,体会数形结合的思想方法,进而初步认识事物之间的联系性。

三、重难点

重点:正确理解数轴的概念和有理数在数轴上的表示方法。

难点:建立有理数与数轴上的点的对应关系(数与形的结合)。

四、教学教法

教法:启发式教学法和师生互动式教学模式。

学法:“多观察、动脑想、大胆猜、勤钻研”的研讨式学习方法。

五、教学过程

(一)创设情景引入课题

1、观察温度计,体会数、形对应。学生观察温度计后回答下列问题:

①零上5℃怎样表示?

②零下10℃怎样表示?

③0℃怎样表示?

2、画情境图,体会方向与距离

在一条东西向的马路上,有一个汽车站,汽车站东3m和处有一棵柳树和一棵杨树,汽车站西3m和处分别有一棵槐树和一根电线杆,试画图表示这一情境。

(二)得出定义揭示内涵

1、提问,到底什么是数轴?如何画数轴?

2、丰富数轴的'内涵:分数和小数在数上怎么表示?

3、观察数轴上的有理数排列的大小?

4、数轴上表示—2的点在原点的____边,距离原点的距离是____。

表示3的点在原点的___边,距原点的距离是______。 小结

①位于数轴左(下)边的数总比右(上)边的数小。

②一般地,设a是一个正数,则数轴上表示数a在原点的____边,与原点的

距离是____个单位长度;表示数—a的点在原点的____边,与原点的距离是____个单位长度。

(三)手脑并用深入理解

1、学生讨论下列图形中哪些是数轴,哪些不是,为什么?

2、画数轴并表示出下列有理数,—2,2,0,3、指出数轴上A、B、C、D、E点分别表示什么数?

(四)归纳总结强化思想

1、你知道什么是数轴吗?这节课你学会了用什么来表示有理数?

2、数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同的有理数?

(五)分层作业强化思想

1、教材第12页第

1、2题。

2、补充练习。

⑴画一条数轴,并表示出如下各点:±,±,±。

⑵画一条数轴,并表示出如下各点:1000,5000,—20xx。

⑶在数轴上标出到原点的距离小于3的整数。

⑷在数轴上标出—5和+5之间的所有整数。

3、思考练习

在数轴上能否实际画出表示一千分之一的点?这个点存在吗?

数轴教学设计 篇7

【教学重点与难点】

教学重点:正确理解数轴的概念和用数轴上的点表示有理数。

教学难点:从直观认识到理性认识,从而建立数轴的概念,并初步体会数形的结合的思 方法是本节课的教学难点。

【教学目标】

1、 理解数轴的概念,会画数轴;

2、 知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应;会利用数轴解决有关问题。

3、 通过生活中的实例,由直观认识到理性认识,从而建立数轴概念;通过数轴概念的学习,初步体会对应的思想,数形结合的思想方法,进而初步认识事物之间的联系性。

【教材处理】

本节一课时完成,将从生活中的实例入手,引导学生由直观认识到理性认识,从而自然建立数轴概念,进而探究数轴的画法、作用、数与点的对应。

【教学方法】

通过创设情境,以问题为载体给学生提供探索的空间,引导学生积极探索。整节课以观察、动手、思考、讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,并教给学生“多观察、善动脑、大胆猜、勤钻研”的研讨式学习方法。教学中给学生提供更多的活动机会和空间,使学生在动脑、动手、动口的过程中获得充足的体验和发展,从而培养学生的数形结合的思想。

【教学过程】

一、问题解决 引入实例

(设计说明:从生活中的实例出发引出数轴,贴近生活,直观具体,易于学生接受,同时能够调动学生自主学习的兴趣和积极性。)

问题1:在一条东西走向的马路上,有一个汽车站,汽车站东3米和7.5米处分别有一棵柳树和一棵杨树,汽车站西3米和4.8米处分别有一棵槐树和一根电线杆,你能画图表示这一情境吗?

学生会画一条直线表示马路,并在直线的左、右侧分别标上西、东,在直线上取一点O表示车站的位置,规定一个单位长度表示1米,于是点O的右边距离点分别3个和7.5个单位的点A和点B,分别表示柳树和杨树的位置,点O的左边距离点3个和4.8个单位的点C和点D分别表示槐树和电线杆的位置。

二、提出问题感受特征

问题2: 怎样用数简明地表示这些树、电线杆与车站的相对位置关系呢?(用数体现出方向、距离的不同)

规定从左向右表示从东到西,把点O左右两边的数分别用负数和正数表示。由此可见,正数,0和负数可用一条直线上的点表示出来。

问题3:你还能举出生活中用直线上的点表示数的例子吗?

学生思考并讨论交流后可得出,例如:温度计、杆秤、门牌号码……。

可以通过多媒体课件展示温度计(显示不同的度数),让学生体验读取温度,并比较各温度计上所显示 的温度的高低,使学生充分体验和认识温度计的设计特点,让学生再次体会数与形的对应关系。

(教学说明:根据学生的生活经验,学生在画图的过程中,能够认识到要描述马路上这三棵树、电线杆与车站的相对位置关系,既要考虑距离,又要考虑方向;但由于学生刚刚学习有理数中的正负数,对正负数意义的理解不是很深刻,因此他们可能想不到用正负来体现物体

方向的相反,因此可以提出问题2加以引导,从而让学生认识到,我们可以用正数、0、负数,来描述直线上点的位置,反过来,正数、0、负数可以用直线上的点来表示,借助于这一情景,让学生非常自然的初步感受到数与形的结合。问题三的设计让学生再次体会数与形的对应关系,为数轴的引出做好充分的准备。)

三、适时命名 学生定义

1.引入数轴概念

(设计说明:由直观认识到理性认识,引导学生建立数轴概念)

通过上面的问题,我们知道正数,0和负数可用一条直线上的点表示出来。

一般地,在数学中人们用画图的方式把数"直观化"。通常用一条直线上的点表示数,这条直线叫做数轴。

2、揭示数轴内涵

(设计说明:让学生在动手操作中探索数轴的三要素)

四、提炼总结 规范定义

问题4:表示数的直线(数轴)须具备什么条件,才能将不同的数用它上面的点清楚的表示出来呢?你能试着画出满足条件的数轴吗?

可以先让学生试着画出自己想象的数轴,并把学生不同的画法展示出来,让学生先讨论交流哪种画法最规范,然后师生共同分析归纳得出数轴的特征。(边总结边画图)

(1) 数轴是一条直线(习惯上将它画成水平,也可根据需要画成倾斜或竖直的)

(2) 数轴三要素

① 原点(可取直线上任一点作为原点,但一取定就不再改变。它表示数0,是正负数的分界点。)

② 正方向(通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向)

③ 单位长度(选取适当的长度为单位长度,直线上从原点向右,再隔一个单位长度取一个点,依次表示1,2,3……,原点向左,用类似方法依次表示-1,-2,-3……;单位长度的长短,可根据实际情况而定,但同一单位长度所表示的量要相同。)

由此我们也可以说:规定了原点、正方向和单位长度的直线叫做数轴。

五、定义辨析 练习巩固

(设计说明:通过形式不同的练习,从不同的角度帮助学生进一步加深对数轴认识,

形成初步技能。)

1、下列图形哪些是数轴,哪些不是,为什么?

2、(1)画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75;

(2)画一条数轴,并表示出如下各点:1000,5000,-2000;

(3)在数轴上标出到原点的举例小于3的整数;

(4)在数轴上标出-5和+5之间的'所有整数。

(教学说明:练习1是基础性训练,主要是进一步巩固如何在数轴上表示有理数,并能说出数轴上表示有理数的点所表示的数;练习2有所加深,在巩固基本知识的同时,还要关注到画数轴时要根据已知数适当地选择单位长度和原点的位置,这对初学者来说有一定的难度,因此,在学生独立尝试的基础上,还可以让学生进行交流,互相学习,教师也可以适时地进行点拨。)

六、反思总结 情意发展

(设计说明:围绕三个问题,师生以谈话交流的形式,共同总结本节课的学习收获。) 问题1:什么是数轴?

问题2:如何画数轴?

问题3:如何在数轴上表示有理数?

(教学说明:以上设计再次通过对三个问题的思考引导学生回顾自己的学习过程,畅所欲言,加强反思、提炼及知识的归纳,纳入自己的知识结构)

七、布置作业

1、 课本18页习题1.2第2题

2、指出下面数轴上A、B、C、D各点所表示的数

3、数轴上的点p与表示有理数3的点A的距离是2

(1)试确定点p表示的有理数;

(2)将点A向右移2个单位到点B,点B表示的有理数是多少?

(3)再把点B向左移动9个单位到点C,则点C表示的有理数是多少?

设计说明:

数轴是数形转化、数形结合的重要媒介,也是学生难以理解的一个难点,对学生来说,将数和形结合在一起是非常抽象的,因此,教学过程从贴近学生的实际出发,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体现了从感性认识到理性认识到抽象概括地认识规律。

教学过程突出了情景—抽象---概括的主线,体现了从特殊到一般研究问题的方法,注意从学生已有的知识经验出发,充分发挥学生的主体意识,让学生主动参与到学习活动之中,并引导学生在课堂上感悟知识的生成、发展与变化,培养学生自主探索的精神。

大家都在看