三角形教学设计

笔构网

2025-10-04教案

请欣赏三角形教学设计(精选21篇),由笔构网整理,希望能够帮助到大家。

三角形教学设计 篇1

教学目标

⑴探索并发现三角形的内角和是180°,能利用这个知识解决实际问题。

⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的能力。

⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。

教学重点:

检验三角形的内角和是180°。

教学难点:

引导学生通过实验探究得出三角形的内角和是180度。

教学环节:

问题情境与

教师活动:

学生活动媒体应用设计意图

目标达成

导入新课

一、复习旧知,导入新课。

1、复习三角形分类的知识。

师出示三角形,生快速说出它的名称。

2、什么是三角形的内角?

我们通常所说的角就是三角形的内角。为了便于称呼,我们习惯用∠A、∠B、∠C来表示。

什么是三角形的内角和?

三角形“三个内角的度数之和”就是三角形的内角和。用一个含有∠A、∠B、∠C的式子来表示应该如何写?∠A+∠B+∠C。

3、今天这节课啊我们就一起来研究三角形的内角和。(揭题:三角形的内角和)

由三角形的内角引出三角形的内角和,“∠A+∠B+∠C”的表示形式形象的体现出三内角求和的关系

二、动手操作,探究新知

1、出示三角板,猜一猜。

师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数

把三角形三个内角的度数合起来就叫三角形的内角和。是不是所有的三角形的内角和都是180°呢?你能肯定吗?

2、我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?

3、学生测量

4、汇报的'测量结果

除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°

5、巩固知识。

一个三角形中能不能有两个直角?能不能有2个钝角?

三、应用所学,解决问题。

1、基础练习(课本第68页做一做)

在一个三角形中,∠1=140度,∠3=25度,求∠2的度数。

2、判断题

(1)大三角形的内角和大于180度。()

(2)三角形的内角和可能是180度。()

(3)一个三角形中最多只能有一个直角。()

(4)三角形的三个内角分别可能是30度,60度,70度。()

3、求出下面三角形各角的度数。

(1)我三边相等。

(2)我是等腰三角形,我的顶角是96°。

(3)我有一个锐角是40°。

四、总结:这节课你有什么收获?

三角形教学设计人教版

作为一名专为他人授业解惑的人民教师,常常要根据教学需要编写教学设计,借助教学设计可以提高教学效率和教学质量。一份好的教学设计是什么样子的呢?下面是小编为大家整理的三角形教学设计人教版,希望能够帮助到大家。

三角形教学设计 篇2

教学内容:本节课的教学内容是义务教育课程标准实验教科书数学四年级下册第五单位的第四课时《三角形的内角和》,主要内容是:验证三角形的内角和是180°等。

教学内容分析:三角形的内角和是180是三角形的一个重要性质,它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。

教学对象分析:作为四年级的学生已有一定的生活经验,在平时的生活中已经接触到三角形,在尊重学生已有的知识的基础上和利用他们已掌握的学习方法,教师把课堂教学组织生动、活泼,突出知识性、趣味性和生活性,使学生能在轻松愉快的气氛中学习。

教学目标:

1、知识目标:学生通过量、剪、拼、摆等操作学具活动,找到新旧知识之间的联系,主动掌握三角形内角和是180°,并运用所学知识解决简单的实际问题。

2、能力目标:培养学生的观察、归纳、概括能力和初步的空间想象力。

3、情感目标:培养学生的创新意识、探索精神和实践能力,在学生亲自动手和归纳中,感受到理性的美。

教学重点:理解并掌握三角形的内角和是180°。

教学难点:验证所有三角形的内角之和都是180°。

教具准备:多媒体课件、各种三角形等。

学具准备:三角形、剪刀、量角器等。

教学过程:

一、出示课题,复习旧知

1、认识三角形的内角。

(1)复习三角形的概念。

(2)介绍三角形的“内角”。

2、理解三角形的内角“和”。

【设计理念】通过复习三角形的概念的过程,不仅可以巩固学生的旧知识而且可以为新知识教学提供知识铺垫。

二、动手操作,探究新知

1、通过预习,认识结论,提出疑问

2、验证三角形的内角和

(1)用“量一量、算一算”的方法进行验证

①汇报测量结果

②产生疑问:为什么结果不统一?

③解决疑问:因为存在测量误差。

(2)用“剪一剪、拼一拼”的方法进行验证

①指导剪法。

①分别拼:锐角三角形、直角三角形、钝角三角形。

③验证得出:三角形的内角和是180°。

(3)用“折一折”的方法进行验证

①指导折法。

①分别折:锐角三角形、直角三角形、钝角三角形。

③再次验证得出:三角形的内角和是180°。

3、看书质疑

【设计理念】此过程采用直观教学手段。通过让学生动手量、拼等直观演示操作直接作用于学生的感官,激活学生的思维,有助于学生的认识由具体到抽象的转化。从而明确三角形的内角和是180°。

三、实践应用,解决问题:

1、在一个三角形中,∠1=140°,∠3=25°,求∠2的度数。

2、求出三角形各个角的度数。(图略)

3、爸爸给小红买了一个等腰三角形的风筝。它的一个底角是

70°,它的.顶角是多少度?

4、根据三角形的内角和是180°,你能求出下面的四边形和正六边形的内角和吗?(图略)

5、数学游戏。

【设计理念】练习设计的优化是优化教学过程的一个重要方向,所以在新授后的巩固练习中注意设计层层递进,既有坡度、又注意变式,更有一练一得之妙,从而使学生牢固掌握新知。

四、总结全课、延伸知识:

1、今天你们学到了哪些知识?是怎样获取这些知识的?你感觉学得怎样?

2、知识延伸:给学生介绍一种更科学的验证方法——转化。

【设计理念】课堂总结不仅要关注学生学会了什么,更要关注用什么方法学,要有意识的促进学生反思。

板书设计: 三角形的内角和是180°

方法:①量一量 拼角(略)

②拼一拼

③折一折

【设计理念】此板书设计我力求简明扼要、布局合理、条理分明,体现了简洁美和形象美,把知识的重点充分地展现在学生的眼前,起了画龙点睛的作用。

三角形教学设计 篇3

活动设计背景

小班的幼儿略微有了粗浅的几何概念,这一阶段的幼儿通过老师引导能正确的认识圆形,三角形和正方形。但他们不是从这些形状的特征来认识而是将其和日常生活中熟悉的物体相对照。因此,我让幼儿在游戏中探索中对图形产生兴趣,并通过观察,比较,想象动手等形式感知图形的不同特征。

活动目标

1、通过对比让幼儿感知图形的基本特征,创设愉悦的游戏情节。

2、运用多种感官来调动幼儿的思维想象能力的观察力,激发幼儿的探索能力。

3、引导幼儿积极与材料互动,体验数学活动的乐趣。

4、引发幼儿学习图形的兴趣。

5、发展幼儿逻辑思维能力。

教学重点、难点

圆形三角形和方形的认识和区别

活动准备

小动物的图片,几何图形组成的图画和三种几何图形卡片若干。

活动过程

一.1小朋友老师今天带你们拼拼图,你们愿不愿意图?随后,我会出示用这三种图片组成的各种图片展示给幼儿,激发幼儿的兴趣。我会和幼儿一起继续通过想象摆出各种图形。

2提问;这么多好看的图形你们知道它们使用什么图形组成的吗?

3幼儿回答完我会根据小朋友的回答用儿歌的形式把三种图形的特点和名称说给小朋友们听。

二用游戏的形式让幼儿认识三种图形。

1游戏;摸一摸。用摸得形式让小朋友体会这三种图形的不同之处,并说出图形的名称。

2游戏;谁的本领大。出示由图形拼成的各种图案让小朋友找出是由什么图形组成的。

3游戏;小动物找家。出示小动物图片,我会告诉小朋友它们哭了,原因是找不到自己的家了,请小朋友帮帮它找找它们的'家。例如;我会扮演小动物说说自己的房子是什么形状的,请小朋友来帮忙。

4游戏;找图形宝宝。在教室地板上摆放三个图形宝宝,我喊口令小朋友找图形站好看谁找的快又好。

三.结束。今天我们玩得很开心,小朋友们能告诉老师你们都认识了什么图形,它们都有什么特点?你们回家观察一下,你家里什么东西是由我们今天认识的图形组成的,明天来了告诉老师。

四放排排队的歌,带小朋友去卫生间。

教学反思

当我进行实际教学过程时,我从孩子们身上看到了这样的现象:1.幼儿对各种图形非常感兴趣,幼儿对身边的事物有着敏锐的观察力,有渴望了解图形宝宝的欲望2.在活动中,幼儿的情绪很活跃,能把自己发现的主动地告诉老师和周边的小伙伴,使幼儿的表达能力、反应能力和观察能力都得到了发展。我还从孩子们的操作中,1.在这次活动中孩子乐于参与,积极发现。2.孩子们兴致浓厚,也愿意主动去探索,主动去参与。我觉得我原来的设计可以这样的调整:幼儿自我操作时间不足,没有创设幼儿合作交流的机会,语言还要精炼等,在以后组织活动的过程中我应加以改进,为幼儿传递良好的语感,培养幼儿善于表达的能力。

三角形教学设计 篇4

教学目标

一、知识与技能

1、了解全等形和全等三角形的概念,掌握全等三角形的性质。

2、能正确表示两个全等三角形,能找出全等三角形的对应元素。

二、过程与方法

通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。

三、情感态度与价值观

通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。

教学重点

1、全等三角形的性质。

2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。

教学难点

正确寻找全等三角形的对应元素

难点突破

通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。

课前准备:

课件、三角形纸片

教学过程

一、出示学习目标

1、知道什么是全等形、全等三角形及全等三角形的对应元素。

2、知道全等三角形的性质,能用符号正确地表示两个三角形全等。

二、直观感知,导入新课

教师演示一些全等的图形的课件,让学生直观感知图片并寻找每组图片的特点。二、合作探究,学习新知

1.全等形

我们给这样的图形起个名称----全等形。[板书:全等形]

教师让学生们想生活中还有那些图形是全等形.

2.全等三角形及相关对应元素的定义

教师用多媒体动态演示两个能完全重合地三角形。定义全等三角形:能够完全重合的两个三角形,叫全等三角形。

[板书课题:12.1全等三角形]

2.全等三角形的对应元素及表示

把三角形平移、翻折、旋转后,什么发生了变化,什么没有变?

归纳:旋转前后的两个三角形,位置变化了,但形状大小都没有变,它们依然全等。

以多媒体上的图形为例,全等三角形中的对应元素

(1)对应的顶点(三个)---重合的顶点

(2)对应边(三条)---重合的边

(3)对应角(三个)---重合的角

归纳:方法一---全等三角形对应角所对的`边是对应边,两个对应角所夹的边是对应边;方法二:全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

另外:有公共边的,公共边一定是对应边;有对顶角的,对顶角一定是对应角。

.用符号表示全等三角形

抽学生表示图一、图二、三的全等三角形。

3.全等三角形的性质

思考:全等三角形的对应边、对应角有什么关系?为什么?

归纳:全等三角形的对应边相等、对应角相等。

4.小组活动合作升华

学生分小组动手操作摆图形

小组合作完成位置不同的三角形,写出它们的对应边,对应角。强调其他小组学生说的时候,自己一定要注意倾听,能够分辨出对错来。

三、巩固练习

四、教师用多媒体展示习题,学生做巩固练习。

五、小结:本节课都学到了什么

六、作业:

必做题课本33页习题第1题、2题.

选做题课本第34页第6题。

三角形教学设计 篇5

一、活动目标

1、引导幼儿认识三角形。

2、引导幼儿分辨出三角形的物品。

二、活动准备

1、三角形模型

2、三角形相关物品

3、三角形泡棉

4、幼儿操作卡

三、活动过程

1、情境导入:点心时间到了,小动物们都围在桌子旁边吃着点心。

请你们看看点心的形状都是不同的,你认识这些形状吗?

2、交流探索:引导幼儿认识三角形,分辨出三角形物品。

(1)教师带领幼儿进入认知环节,引导幼儿初步感知三角形。

(2)看,小老虎和小狗的点心形状是一样的,你知道这是什么形状的吗?

3、教师引导幼儿认识三角形的主要特征。

(1)教师出示三角形卡片和三角形的泡棉学具,引导幼儿说出三角形的.主要特征。

(2)小朋友们,请仔细观察,说一说三角形是什么样的?

(3)想一想,正方形和三角形有什么不同?

4、实践操作:引导幼儿操作卡片上内容。引导幼儿区分物品的形状,找出三角形物品。

5、小结总结:有三条边、三个角的封闭图形是三角形,我们身边还有很多三角形的物品,就像小红旗、衣架、屋顶等。

四、活动建议

引导幼儿自助操作练习卡,学习探索,找出拼合图形之中的三角形。

五、活动延伸

(1)引导幼儿从活动室、家里或者其他场所寻找三角形物品。

(2)在区角中,引导幼儿用圆形,正方形和三角形的积木或卡片拼搭图形。

三角形教学设计 篇6

一、教学内容

义务教育课程标准实验教科书北师大版四年级下册第二单元“三角形分类”。

二、教材分析

“三角形分类”是小学几何知识,尤其是三角形知识学习中的一个重要内容。切实掌握三角形的分类,有利于学生更全面地理解三角形的特征,并为后续学习打下坚实的基础。在教学本课之前,学生已经学习了图形的分类知识,对分类的标准和方法并不陌生。教师要为学生提供充分的自学和活动空间,让学生通过操作、自学文本,在分类的过程中体会、归纳每类三角形的特点。

三、学生分析

在知识方面,学生已经了解三角形有三条边、三个角的知识,知道锐角、直角、钝角的意义,对锐角、直角、钝角能做出正确的判断。在生活经验方面,学生对立体图形、平面图形、三角形都有一定的认识,且有初步的表形概念。在学习方式方面,四年级的孩子已经具备一定的自学能力、动手操作的.经验和合作学习的基础,这对他们学好《三角形分类》这一课有很大帮助。

四、教学目标

1.通过对三角形进行分类,认识锐角三角形、直角三角形、钝角三角形、等腰三角形和等边三角形,体会每类三角形的特点,分辨各类三角形。

2.在活动中,渗透分类的数学思想,培养学生的归纳概括能力。

3.在操作、想象、思考、讨论中,培养学生的动手能力、自主学习能力和合作交流能力,逐步发展学生的空间观念。

五、教学重点、难点

教学重点:会按角的特征给三角形分类。

教学难点:区别了解等边三角形、等腰三角形的特征。

六、教学过程

一)激趣导疑(想、说、做三要素组合)

1.引导学生用手势比划直角、锐角、钝角并回忆其意义。 2.出示主题图,引导学生观察三角形的特点并进行分类。 3.同桌交流:你把这些三角形分成了几类?怎么分?

4.提供预习思考题,引导学生带着问题自学课本第

24、25页,做好自学汇报。

【设计意图:学生是在二年级下册认识直角、锐角、钝角的,这些知识对本课的学习具有至关重要的作用。上课伊始,引导学生复习角的知识,激活学生认知结构中的相关概念,较好地促进知识的正迁移。接着引导学生对三角形进行分类,在探索尝试中激起学生的思维冲突,然后引领学生预习,让学生在预习中自己解决疑问,在预习中自主构建知识,在预习中生发新的问题。】

(二)探究体验(听、说、想、做四要素组合,动静转换)

同学们在预习过程中一定有不少收获,下面请大家把自己的收获和全班同学进行分享。

1.我们来解决第一个问题。你是怎样给这些三角形分类的?为什么这样分? 师生一起完成主题图中三角形的分类。

根据学生回答,板书:锐角三角形、直角三角形、钝角三角形。 2.在自学过程中你还了解到哪些知识? 引导学生认识等腰三角形、等边三角形。 3.你能从学具中找出每一种三角形吗?

通过实际操作,强化对锐角三角形、直角三角形、钝角三角形、等腰三角形、等边三角形意义的认识,使图形与意义之间产生对接。

4.想象:各种三角形角的特点、边的特点,并用手势比划出各种图形。

5.联系生活理解等腰三角形、等边三角形特征。在日常生活中,你见到过哪些物体的表面是等腰三角形或等边三角形的?

6.媒体展示等腰三角形、等边三角形实例。引导学生认识等腰直角三角形。 7.你能提出一些数学问题吗?

8.师生补充提出问题,学生通过观察、操作解决问题。

(1)有两个角是锐角的三角形是什么三角形?有一个角是锐角的三角形呢?

(2)等边三角形也是等腰三角形吗?以交通指示牌为特例,让学生通过量一量、折一折、议一议的活动,比较得出结论。

【设计意图:抓住重点,引导学生观察、思考、交流,认识各种三角形的特点;抓住难点,让学生猜想、操作、比较,理解“等边三角形也是等腰三角形”。抓住关键点,让学生生疑、质疑、解疑,体会“有两个角是锐角的三角形,可能是锐角三角形、直角三角形、也可能是钝角三角形”。在学生的学习、探究过程中,既有独立思考与操作,又有相互启发、激励、补充完善等合作交流活动,实现师生之间、生生之间的良性互动。】

(三)应用感悟(想、说、做三要素组合) 1.找一找,填一填。(把题目补充完整再填空)

锐角三角形

2.判断。(对的在括号里打“√”,错的打“×” )

(1)任意一个三角形至少有两个锐角。 (

) (2)等边三角形一定是锐角三角形。

) (3)所有的等腰三角形都是锐角三角形。(

) (4)等腰三角形都是等边三角形。

) 3.在点子图上画一个等腰直角三角形。

【设计意图:练习1,教师提供一定的线索,引导学生应用知识创设练习题,突破了练习内容以教师、课本为中心的定势,充分发挥学生学习的积极性和能动性。练习2,围绕本课的重点和难点进行设计,使重难点知识在学生的思维碰撞中得到突破;练习3的操作画图旨在提高学生的动手能力和综合运用知识的能力。】

(四)拓展延伸(想、听、说三要素组合)

1.今天我们学习了三角形分类的知识,你得到哪些收获? 2.你还有哪些没有解决的问题?

3.你知道举世闻名的金字塔吗?金字塔是古代埃及帝王的陵墓,它的样子像汉字的“金”字。字塔的基底是一个正方形,四个侧面是什么三角形?

【设计意图:通过总结梳理,让学生把新知纳入到原有的认知结构中去;通过延伸拓展,让学生意识到三角形与日常生活的密切联系,从而引起学生更多的数学思考和更持久的学习探索。】

三角形教学设计 篇7

活动目标:

1、培养幼儿对图形的兴趣和数学活动常规。

2、初步发展幼儿的观察力、分析能力和概括能力。

3、感知并说出三角形的基本特征,能找出和三角形相似的物体。

活动准备:多媒体、课件各一,图形若干。

活动分析:观察、对比是孩子们探究的过程,通过图形的对比引导幼儿感知三角形的基本特征,作为本次活动的重点。活动中运用课件直观、形象的特点,通过多种游戏形式,采用启发法、提示法,引导幼儿进一步掌握并概括三角形的'基本特征,从而突破难点部分。活动的结束之际,组织幼儿进一步从生活环境中找出像三角形的物体,作为活动的延伸环节,自然结束。

活动过程:

一、导入。采用观察法,通过课件中图形宝宝的口吻引出三角形。

二、展开。

1、采用游戏法引导幼儿在众图形中寻找三角形。

2、引导幼儿观察三种三角形的共同特征,发现三角形有三条边、三个角。

3、动手操作。

a.幼儿从图形筐中找出三角形,分别数出边、角的数量,进一步掌握三角形特征。

b.观察并说出三角形像什么。

4、游戏“猜猜我是谁”。组织幼儿根据图形渐渐露出部分猜测出图形,进一步巩固幼儿对图形特征的认识。

5、游戏“捉迷藏”幼儿从简单的画面中找出三角形。

6、引导幼儿观察并找出活动室中那些物品像三角形。

三、延伸。

请幼儿到生活环境中进一步寻找三角形的踪迹。

三角形教学设计 篇8

教学内容:

义务教育课程标准实验教科书数学四年级下册80~81页的例1、例2

教学目标:

1、通过动手操作和观察比较,使学生认识三角形,知道三角形的特性及三角形的高和底的含义,会在三角形内画高。

2、培养学生观察、操作、自学的能力和应用数学知识解决实际问题的能力。

3、体验数学和生活的联系,培养学生学习数学的兴趣。

教学重点:

1、理解三角形的特性。

2、在三角形内画高。

教学难点:

理解三角形高和底的含义,会在三角形内画高。

教学准备:

多媒体课件、投影。

教学过程:

一、谈话引入。

师:我们学过哪些平面图形?

师:说一说你对三角形有哪些认识?

师:同学们对三角形已经有了初步的了解,这节课我们继续研究和三角形有关的知识。

(板书课题:三角形的特性)

二、探究新知。

1、三角形的特征。

(1)画一画。

师:请你在纸上画一个自己喜欢的三角形。并和同桌边指边说一说三角形有几条边?几个角?几个顶点?

师黑板上画一个三角形,让学生说出各部分的名称师板书。(教师板书各部分名称)

(2)摆一摆。

师:每根小棒相当于一条线段。请你动手用三根小棒摆一个三角形。

找一学生上投影前摆一摆,并说一说是怎么摆的?

(3)看一看。

老师也摆了一个三角形,课件出示。

你们有什么看法?

教师用课件演示并强调:有三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。

(4)找一找。

下面图形中是三角形的请打√,不是三角形的请打×,并说出你的理由。(学生一起用手势表示)

2、三角形的特性。

(1)动手操作发现三角形的特性。

师生拿出平行四边形框架。

师:用手拉动,说一说有什么发现?(容易变形,不稳定。)

指导学生操作:去掉一条边,再扣上拼组成三角形框架。

师:再拉一拉有什么感觉?

师:想一想这说明三角形具备什么特性?(稳定性)

(2)生活中寻找三角形的特性。

师:三角形的稳定性在生活中的用处很大,你能举个例子吗?

课件出示例2的主题图,请你找出各图中哪有三角形?说一说它们有什么作用?

3、认识三角形的底和高。

(1)情境引入。

故事引入,两个三角形争论谁的个高。课件出示

让学生说一说怎样比较这两个三角形的高,并准备好相应的.两个三角形学具试着让学生前面来分别指一指它们的高,并比一比。

师:请你拿出(指锐角三角形)这样一个三角形,试着指一指它的高。

(2)看书自学。

师:什么是三角形的高?怎样正确的画出三角形的高呢?请打开书81页,看看书上是怎样说的,又是怎样画的,和你的想法一样吗?

师:谁来说一说?

请你在刚才的三角形中画出三角形的一条高,并标出它所对应的底。

(3)教师板演。

我把三角形的三个顶点分别用字母A、B、C 表示,这个三角形可以称作三角形ABC。想想怎样以AC边为底画出这个三角形的高?

生说高的画法,师板演,并强调用三角板画高的方法。

(4)进一步认识三角形的高。

在三角形中标上字母ABC,和同桌说一说刚才画的高是以哪条边为底画的?

师:刚才我们画了三角形的一组底和高,想一想一个三角形只有一组底和高吗?为什么?

(三)应用练习。

1、填空:

三角形有( )个顶点,( )条边,( )个角。

2、学校的椅子坏了,课件演示,怎样加固它呢?(教材86页第2题)

3、小明画了三角形的一条高,你说他画的对吗?为什么?

(四)课堂小结。

通过这节课的学习,你对三角形又有了哪些新的认识?

你还想了解和三角形有关的哪些知识?

三角形教学设计 篇9

【活动目标】

1.教幼儿知道三角形和生活的名称和主要特征,知道三角形由3条边,三个角。

2.教幼儿把三角形和生活中常见实物进行比较,能找出和三角形相似的物体。

3.发展幼儿观察力,空间想象力。培养幼儿的动手操作能力。

4.体验数学集体游戏的快乐。

5.初步培养观察、比较和反应能力。

【活动准备】

1.大小尺寸不同的三角形6个。

2.图形组成的实物图片4张。

3.孩子人手3个三角形若干.

【活动过程】

一.复习3的'数数

引领幼儿手口一致点数3的物体。

通过点的横排、竖排,及三点随意排的点数让幼儿手口一致的数数,并引出通过三点连线形成三角形。

二.学习三角形特征

1.引导幼儿观察比较图形,幼儿每人一个三角形。通过自己数一数,试一试,感知图形特征,并充分让幼儿表述,得出图形的特征。

2.引导幼儿观察几个不同形状,不同大小的三角形,通过验证得出三角形三条边,三个角;有三条边,三个角的图形都是三角形。

3.老师小结三角形特征,使幼儿获得的知识完整化。

三.复习巩固三角形的特征

1.给图形宝宝找朋友,让幼儿从众多几何图形卡片中找出三角形。请幼儿一一找出三角形,并说出为什么?

2.请幼儿从图形拼图中找出三角形,将图片一一出示。请幼儿观察说出这些图象什么?哪些部分是用三角形拼成的?用了几个三角形?

3.请幼儿在周围环境中找出象三角形的东西。

延伸活动:

在区角里添置冰糕棒、吸管供幼儿拼三角形,巩固认识其三角形。

教学反思:

我上这节数学课,就是让孩子们认识三角形,难点就是让幼儿如何区分三角形和正方形。在这教学过程中,我将许多长短不同的小棍放在孩子们的桌上,让孩子们数3根小棍拼做三角形(可以找一样长的小棍,也可以找不一样长的)。通过让他们动手操作,让孩子们进一步认识到了

1、三角形有三个角、三条边

2、三角形的三条边可以不一样长,三个角可以不一样大。

三角形教学设计 篇10

【教学目标】

1.学生动手操作,通过量、剪、拼、折的方法,探索并发现"三角形内角和等于180度"的规律。

2.在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。

3.体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。

【教学重点】

探究发现和验证"三角形的内角和为180度"的规律。

【教学难点】

理解并掌握三角形的内角和是180度。

【教具准备】

PPT课件、三角尺、各类三角形、长方形、正方形。

【学生准备】

各类三角形、长方形、正方形、量角器、剪刀等。

【教学过程】

口算训练(出示口算题)

训练学生口算的速度与正确率。

一、谜语导入

(出示谜语)

请画出你猜到的图形。谁来公布谜底?

同桌互相看一看,你们画出的三角形一样吗?

谁来说说,你画出的是什么三角形?(学生汇报)

(1)锐角三角形,(锐角三角形中有几个锐角?)

(2)直角三角形,(直角三角形中可以有两个直角吗?)

(3)钝角三角形,(钝角三角形中可以有两个钝角吗?)

看来,在一个三角形中,只能有一个直角或一个钝角,为什么不能有两个直角或两个钝角呢?三角形的三个角究竟存在什么奥秘呢?这节课,我们一起来学习"三角形的内角和。"(板书课题:三角形的内角和)

看到这个课题,你有什么疑问吗?

(1)什么是内角?有没有同学知道?

内:里面,三角形里面的角。

三角形有几个内角呢?请指出你画的三角形的内角,并分别标上∠1、∠2、∠3。

(2)谁还有疑问?什么是内角和?谁来解释?(三个内角度数的和)。

(3)大胆猜测一下,三角形的内角和是多少度呢?

【设计意图】

创设数学化的情境。学生用已经学的三角形的特征只能解释"不能是这样",而不能解释"为什么不能是这样"。这样引入问题恰好可以利用学生的这种认知冲突,激发学生的学习兴趣。

二、探究新知

有猜想就要有验证,我们一起来探究用什么方法能知道三角形的内角和呢?

1、确定研究范围

先请大家想一想,研究三角形的内角和,是不是应该包括所用的三角形?

只研究你画出的那一个三角形,行吗?

那就随便画,挨个研究吧?(太麻烦了)

怎么办?请你想个办法吧。

分类研究:锐角三角形,直角三角形,钝角三角形(贴图)

2、探究三角形的内角和

思考一下:你准备用什么方法探究三角形的内角和呢?

小组合作:从你的学具袋中,任选一个三角形,来探究三角形的内角和是多少度?

小组汇报:

(1)量一量:把三角形三个内角的度数相加。

直接测量的方法挺好,虽然测量有误差,但我们知道了三角形的内角和在180°左右。究竟是不是一定就是180°呢?哪个小组还有不同的方法?

(2)拼一拼:把三角形的三个内角剪下来,拼成了一个平角。

能想到这种剪一剪拼一拼的方法,真不简单。三个角拼在一起,看起来像个平角,究竟是不是平角呢?谁还有别的方法?

(3)折一折:把三角形的三个角折下来,拼成了一个平角。

这种方法真了不起,能借助平角的度数来推想三角形内角和是180°。

总结:同学们动脑思考,动手操作,运用不同的方法来验证三角形的内角和。这三种方法都很好,但在操作过程中,难免会有误差,不太有说服力。我们能不能借助学过的图形,更科学更准确的来验证三角形的内角和?

3、演绎推理的方法。

正方形四个角都是直角,正方形内角和是多少度?

你能借助正方形创造出三角形吗?(对角折)

把正方形分成了两个完全一样的直角三角形,每个直角三角形的内角和:360°÷2=180°

再来看看长方形:沿对角线折一折,分成了两个完全一样的直角三角形,内角和:360°÷2=180°

这种方法避免了在剪拼过程中操作出现的误差,

举例验证,你发现了什么?

通过验证,知道了直角三角形的内角和是180度。

你能把锐角三角形变成直角三角形吗?

把锐角三角形沿高对折,分成了两个直角三角形。

一个直角三角形的内角和是180°,那么这个锐角三角形的内角和就是180°×2=360°了,对吗?(360-180=180°)

通过计算,我们知道了这个锐角三角形的内角和是180°,那么所有的锐角三角形的内角和都是180°吗?你是怎么知道的?

通过刚才的.计算,你发现了什么?(锐角三角形内角和180°)

钝角三角形的内角和,你们会验证吗?谁来说说你的想法?180×2-90-90=180°

通过验证,你又发现了什么?(钝角三角形内角和180°)

4、总结

通过分类验证,我们发现:直角180,锐角180,钝角180,也就是说:三角形的内角和是180°。也验证了我们的猜想是正确的。(板书)

5、想一想,下面三角形的内角和是多少度?(小--大)

你有什么新发现?(三角形的内角和与它的大小,形状没有关系。)

【设计意图】

为了满足学生的探究欲望,发挥学生的主观能动性,通过独立探究和组内交流,实现对多种方法的体验和感悟。学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。

三、自主练习

1、在一个三角形中,如果想求一个角的度数,至少得知道几个角的度数呢?(2个)那我们就试一试,挑战第一关。(两道题)

2、算得真快!如果只知道一个角的度数,还能求出未知角的度数吗?挑战第二关。(三道题)

3、说得真清楚,如果一个角的度数也不知道,你还能求出未知角的度数吗?挑战第三关。(一道题)

师:同学们真了不起,从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,都能正确求出未知角的度数。

4、学无止境,课下,请你利用三角形的内角和,探究一下四边形、五边形、六边形的内角和各是多少度?

【设计意图】

练习由浅入深,层层递进。从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,要求学生求出未知角的的度数,梯度训练,拓展思维。

四、课堂总结

同学们,回想一下,这节课我们学习了什么?通过这节课的学习,你有哪些收获呢?

真了不起,同学们不仅学到了知识,还掌握了学习的方法。"在数学的天地里,重要的不是我们知道什么,而是我们怎么知道的",在这节课上,重要的不是我们知道了三角形的内角和是180°,而是我们通过猜测,一步一步验证,得到这个规律的过程。

课后反思

《三角形的内角和》是五四制青岛版四年级上册第四单元的信息窗二,本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过一系列活动得出"三角形的内角和等于180°"。

本着"学贵在思,思源于疑"的思想,这节课我不断创设问题情境,让学生去猜想、去探究、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念。"问题的提出往往比解答问题更重要",其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是只是"知其然而不知其所以然"。

为此,我设计了大量的操作活动:画一画、量一量、折一折、拼一拼等,我没有限定了具体的操作环节。在操作活动中,老师有"扶"有"放"。做到了"扶"而不死,"伴"而有度,"放"而不乱。利用课件演示,更直观的展示了活动过程,生动又形象,吸引学生的注意力。使学生感受到每种活动的特点,这对他认识能力的提高是有帮助的。

最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,为了强化学生对这节课的掌握,从知道两个角的度数,到知道一个角的度数,再到一个角的度数也不知道,要求学生求出未知角的的度数,层级练习,步步加深,梯度训练。

教学是遗憾的艺术。当然本节课的教学中,存在许多不尽如意之处:

1、让学生养成良好的学具运用习惯,特别是小组学生在合作操作时,应有效指导,对学生及时评价,激励表扬,调动学生学习的积极性与主动性。

2、学生在介绍剪拼的方法时,可以让介绍的学生先上台演示是如何把内角拼在一起,这样学生在动手操作的时候就可以节省时间。

3、在做练习时,为了赶时间,题出现的频率较快,留给学生计算思考的时间不足,可能只照顾到好学生的进程,没有关注全体学生,今后应注意这一点。

教学是一门艺术,上一节课容易,上好一节课谈何容易,在今后的课堂教学中,只有勤学、多练,才能更好的为学生的学习和成长服务,让自己的人生舞台绽放光彩。

三角形教学设计 篇11

教学目标:

1、通过动手操作和观察比较,使学生认识三角形,直到三角形的特性及三角形高和底的含义,会在三角形内画高。

2、通过实验使学生知道三角形的稳定性及其在生活中的应用。

3、体会数学与生活的联系,培养学生学习数学的兴趣。

重点:

理解三角形的定义,掌握三角形的特性。

难点:

不同三角形的高的画法。

教具准备:

PPT、三角板

学具准备:

小棒、白纸、铁丝、三角形、稳定性学具

教学过程:

一、引入

1、教师出示三角形,提问:这是什么图形?学生回答后板书课题

2、在哪看到过这种图形?(生举例)

二、教学三角形的定义

1、师:想不想自己动手做一个三角形。拿出老师为你们准备的学具做一个三角形。(学生动手操作)

展示学生的作品:

生1:用小棒摆的一个三角形

师:你们对他摆的三角形有什么想说的吗?

生:他摆的三角形小棒与小棒处没有粘牢。

师:你愿意上来让这个三角形变得更完美些吗?

生2:用白纸折了后剪出来的一个三角形。

生3:用铁丝折的一个三角形

师刚展示,就有学生在下面提意见:那不是三角形?

师:你为什么认为这个不是三角形?

生:它没有封口。

师:其他同学的意见呢?

师动手捏住铁丝的两头问:这样是一个三角形了吗?

2、师:现在我们说也说了,做也做了,那谁能说说什么样的图形式三角形呢?同桌交流

3、学生回答,教师不断完善。得出三角形的定义:由三条线断围成的图形叫三角形。

4、提问:什么叫围成?学生齐读三角形的定义

5、师:接下来让我们当一回小法官,判断一下上面的图形式不是三角形。(PPT出示)

5、自己动手画一个三角形。教师也在黑板上画一个三角形。

(反思:关于三角形的知识学生在三年级的时候就已经接触过,关于三角形的定义作业本中也曾以判断的形式出现过,因此备这节课的时候,一直在犹豫,是直接以提问形式出现:“关于三角形的知识,你都知道哪些?”还是先建立表象,再得出定义。最终还是采用了第二种方法。课堂中学生表现出来的问题,也都掉进了自己预设的陷阱中:如用小棒摆的三角形连接点超出了,用铁丝围的三角形连接点没围住,教师抓住了学生的这些生成进行及时的反馈,一步一步让学生理解什么是“围成”,突破了教学中的第一难点。)

三、教学三角形个部分的名称、(承接上面的环节)刚才有人提到了三角形的边,谁来指指这三角形的边在哪儿?(学生上来指)

师手指三角形的'顶点问:“这叫三角形的什么”?手指角问:“这又叫三角形的什么?”

教师边说边板书:咦,原来三角形有三个顶点、三条边、三个角。

2、在刚才自己画的三角形中标出各部分名称,然后和同桌说一说。

3、小游戏:师:每一个顶点都有它对应的边,现在我们来做一个小游戏,老师指定点,你们来指出它对应的边。

4、命名:我们每个人都有自己的名字,三角形也有,数学上通常用三个连续的大写字母a、b来表示三角形的三个顶点,这个三角形就叫做三角形abc,这个顶点就叫做顶点a、定点b、定点c;这条边就叫做线段ab、线段ac、线段bc

师:给你的三角形也起个名字吧!(学生起名)

师:让我们认识一下你画的三角形(生手举三角形,并说这是三角形***)

(反思:上学期教学画平行四边形和梯形的高时,发现学生顶点和对应的边很会搞错,因此这儿设计了了一个小游戏,本意就是为学生在下面一个环节画高做准备,但就像云外天所说,如果把这个环节与后面的画高结合起来进行教学,课堂就更精彩。)

三、教学三角形的稳定性

1、师:早我们的生活中三角形运用的很广泛,老师也采集了一些,一起来看看:(出示PPT)请学生指一指三角形在哪儿?

2、师:为什么设计师都到用三角形而不用别的图形呢?(引出三角形的稳定性)

3、师:真的是这样吗?想不想动手来验证一下(学生拿出学具进行操作)

4、三角形的稳定性给我们的生活带来了很大的用处,你还能举出生活中应用三角形稳定性的例子吗?

(反思:让学生通过动手操作理解三角形的稳定性,本是个很好的教学设计。但是学生在进行学具操作时,教师过于心急,对学生的操作有太多的指导,导致这个环节失去了原有的功效)

四、画高

1、老师这儿有一个三角形,从一个顶点出发向对边画了好几条线段(PPT出示)哪一条最短?为什么?引出高。

2、那什么叫高呢?教师边在PPT上演示,边介绍:从一个顶点出发,到它的对边画一条垂直线段,这条垂直线段就是三角形的高,这条边叫三角形的底。

3、看书,书中是怎样介绍三角形的高和底的。

4、锐角三角形:教师演示画高,学生在自己画的三角形上画高。

师:刚才我们是从一个顶点出发向它的对边画了一条高,如果从另外的顶点出发,你会画高吗?想想三角形的高有几条?为什么?(学生画高,投影仪上展示学生的作品)

5、直角三角形:出示学生自己画的直角三角形:刚才有同学遇到了困难。像这样的三角形怎样画高?(学生回答并在练习纸上画出以最长的那条边为底边的三角形的高)

6、钝角三角形:教师出示:像这样的三角形也有三条高,今天我们只画斜边上的高。学生动手画高,展示作品。

五、应用

1、师:今天我们又重新认识了三角形,你能说说你又了解了三角形的哪些知识?

2、出示:小红家的椅子用了很多年了,已经摇摇晃晃,你能帮他修好吗?

(反思:这个环节教师稍微进行了一下拓展,因为例题中只出现画锐角三角形的高,而且关于角的分类是安排在例4。但从学生的掌握程度来看,学生还是掌握的较好。画锐角三角形的高的过程中教师也发现了一个问题:很多学生画的锐角三角形的三条高没有相交于一点,因时间关系,教师只是点了一下,在画高的细节上教师还应强调。)

三角形教学设计 篇12

一、说教材

《三角形三边的关系》是人教版义务教育课程标准实验教科书《数学》第八册第82页的教学内容,属于"空间与图形"的领域。这部分内容是在学生知道了三角形有三条边、三个角和具有稳定性的基础上探索三角形三边的关系。大家知道,在平面图形里,三角形是由3条线段围成的,但并不意味着任意三条线段都能围成三角形。所以掌握这部分内容,可以进一步丰富学生对三角形的认识和理解;它既是对所学知识的延续,又是后继学习多边形的基础,在知识体系上具有承上启下的作用。

几何初步知识无论是线、面、体还是图形的特征、性质,对于小学生来说都比较抽象,要解决数学的抽象性和小学生思维之间的矛盾,就要充分运用直观性进行教学,让学生动手做数学,而不是用耳朵听数学,让学生经历"数学化"、"做数学"等过程,强调在教师的引导作用下,由"获得知识结论快乐"转变为"探究发现知识快乐",并注重与生活实际紧密联系,让学生获得良好的数学教育。依据新课标的精神、结合学生的知识现状和年龄特点,以及这一教学内容在教材中所处的地位与作用,我制定了以下教学目标:

(一)教学目标

1、认知目标:通过创设情景、实物操作、观察比较,发现三角形任意两边之和大于第三边。

2、能力目标:培养学生自主探究、观察、比较和概括能力以及小组合作的意识,能根据三角形三边关系解释生活中的现象,提高解决问题的能力。

3、情感目标:结合教学内容,渗透数学文化、思想、方法的教育。

(二)说教学重难点

探究发现"三角形任意两条边的和大于第三边"是教学重点,而理解"任意两边"是本节课的教学难点。

接下来说说这节课的教法与学法

二、说教法

新课标指出,教无定法,贵在得法。数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。新课程改革要求教师要由传统意义上知识的传授者和学生的管理者转变为学生发展的促进者和帮助者;课堂教学要体现以学生为中心,让学生真正成为学习的主人。因此,我主要采用了情境导入法、设疑诱导法、操作发现法等来组织学生开展探索性的活动,让他们在这一系列活动中经历"数学化"的过程

三、说学法

有效的数学学习活动不是单纯的依赖模仿与记忆,而是一个有目的、主动建构知识的过程,动手操作法、观察发现法、自主探究法、合作交流法是这一节课的学习方法。整节课让学生体验"做数学"的过程。

以下是我的而教学流程。

四、说教学流程教学流程按照8个环节进推进:

第一环节:矛盾冲突。

兴趣是最好的老师,上课一开始,我给学生变魔术,用长度分别是15厘米,13厘米10厘米的三根小棒首尾相接围成三角形,在学生认为我的魔术太简单而不屑一顾时,我让一个学生也上来变一个(给表演的学生提供长度是15厘米,9厘米,26厘米的小棒)学生围不了三角形。我说,他没能围出一个三角形,你能吗?(不能)问题到底出在哪?学生估计会把注意力集中在第三根小棒上,认为第三根小棒太长了,如果是这样,我就把第三根小棒换成5厘米的,还是围不了,此时,教师引导学生提出疑问:怎么就围不起来的呢?看来,看来,三根小棒是否能围成三角形跟它们的长度有关,这节课,老师和你们一起来研究三角形三边的关系。(板书课题)

在教师能变魔术,而学生却变不成的矛盾冲突中,可能已经有大部分学生开始这节课的数学思考了。此处"魔术"的价值不仅仅在于激发学生学习的兴趣,还在于成功地将学生引入到数学思考之中。

第二环节:初建模型。

新课标强调要从学生已有的生活经验出发,让学生动起来,活起来,让他们在猜想、质疑、验证、探究、问题解决等过程中,经历摆一摆、围一围、比一比、想一想、议一议等活动,努力营造协作互动、大胆表达课堂教学氛围,将课堂真正还给学生,让学生在自主活动中得以发展。

给学生提供研究的材料,(5根小棒,不同颜色长度不同,红色(2根)3厘米,绿色5厘米,蓝色7厘米,黄色8厘米。)并提出操作要求(ppt出示)

(1)从这5根小棒中任意选取3根围一个三角形;

(2)同桌2人合作,共同摆小棒。

(3)摆完后共同观察,并把结果记录在表格中。

(4)音乐响起开始,音乐停止时活动结束。

看哪一组完成最多最好。

这一环节是要发挥每个人的。作用,全员参与,人人有事做,避免小组合作流于形式。

反馈(1)3 3 5(2)3 3 7

(3)3 3 8(4)3 5 7

(5)3 5 8(6)3 7 8

(7)5 7 8(ppt出示表格)

观察:三根小棒在什么情况下能围城三角形呢?

最后引导归纳:三角形两条边的和大于第三条边(师板书)

随着教学活动的逐步展开,教师围绕"核心知识"精心设疑,引导学生操作观察比较,使学生的思考沿着教学目标不断深入。

第三个环节,完善模型。

回到变魔术的环节,验证学生没有围成的三角形三边的关系,9+155怎么也不能围成三角形呢?

完善性质:三角形任意两边的和大于第三边

验证老师变出的三角形三边的关系,10+13>15 10+15>13 15+13>10

第四环节:验证模型。

验证:让学生画出任意三角形,量出三条边的.长短再算一算,三边之间的关系。

引导学生经历从特殊到一般的数学思考过程,让学生猜想,发现,归纳,验证,寻找反例等数学活动中思考、辨析、释疑、概括、推理,有效渗透从特殊到一般的数学思想,为学生构建了一种结构严谨、逻辑严密的数学思维模式。

第五环节:应用模型。

判断下面的小棒能否围成三角形

(1)2厘米3厘米8厘米()

(2)4厘米7厘米8厘米()

(3)6厘米5厘米8厘米()

(4)5厘米14厘米9厘米()

(5)5厘米9厘米13厘米()

第六环节:优化模型、并体会极限思想。

——优化

有的学生很快做出判断,他们有什么诀窍?

这一过程实际上是打破刚才建构的数学模型,抓住问题本质属性,留下两条短边与长边比较,形成最优化的数学模型结构——两条短边的和大于第三边,

——极限思想

让学生重点观察(4)中的数据

提问:5厘米和9厘米能与多长的小棒围成三角形?

学生思考:第三边不比4厘米短,不能超过14厘米(课件演示)

这一环节是通过直观操作让学生感悟数学的极限思想,让学生感受当两边的长度是5厘米和9厘米时,第三边的长度在4与14厘米之间,感受当第三边变成4厘米或14厘米时,三角形便不存在,将成为一条直线,感受量变到质变的过程,充满理性的思考的数学课堂才是真正扎实有效甚至高效的数学课堂。

第七个环节、走进生活

老师要去小雨家家访,走哪条路近?请你用今天学习的知识来解释

《三角形三边关系》说课

走小路近(让学生说明理由)

(ppt显示草坪)

还走这条路吗?

这一环节的设计不仅使学生深化了对三角形三边关系的理解,还让学生感知作为人还应该有一份社会责任,有一份人文情怀,彰显数学的大教育观。)

第八个环节:课后延伸。

播放《将军饮马》的故事(课件呈现图)

教师讲述:古希腊有一位聪明国人的学者,名叫海伦,有一天,一位将军不远千里来向他请教一个百思不得其解的问题,将军从A地出发到河边饮马,再到B地视察军营(出示图),怎么走路线最短?(出示路线图)你们能用今天学习的知识解决吗?

五、说板书设计

板书设计力求做到重点突出,一目了然。

纵观本节课,体验是学生学习的前提,是学生学习数学的本职与要求,可以说,没有体验就没有真正意义上的学习,慢慢跟着学生的脚步,让学经历的探索过程,在这一过程中,学生参与、经历、思考、反思、发展,作为教者,我们一路倾听花开的声音。

三角形教学设计(15篇)

作为一名人民教师,很有必要精心设计一份教学设计,借助教学设计可以更好地组织教学活动。你知道什么样的教学设计才能切实有效地帮助到我们吗?下面是小编收集整理的三角形教学设计,仅供参考,大家一起来看看吧。

三角形教学设计 篇13

教学目标

通过猜想、验证,了解三角形的内角和是180度。在学习的过程中进一步激发学生探索数学规律的兴趣,初步感知计算多边形内角和的公式。

教学重难点

三角形的内角和

课前准备

电脑课件、学具卡片

教学活动

一、计算三角尺三个内角的和。

出示三角尺中的一个,提问:谁来说说三角尺上的三个角分别是多少度?

引导学生说出90度、60度、30度。

出示另一个三角尺,引导学生分别说出三个角的度数:90度、45度、45度。

提问:请同学们任选一个三角尺,算出他们三个角一共多少度?

学生计算后指名回答。

师:三角尺三个角的和是180度。

二、自主探索,解决问题

提问:是不是任一个三角形三个角的`和都是180度呢?请同学们在自备本上

任画一个三角形,量出它们三个角分别是多少度,再求出它们的和,然后小组内交流。

学生小组活动,教师了解学生情况,个别同学加以辅导。

全班交流:让学生分别说出三个角的度数以及它们的和。

提问:你发现了什么?

任何一个三角形三个角的和都是180度。利用三角形的这一性质,我们可以解决许多问题。

三、试一试

要求学生先计算,再用量角器量,最后比较结果是否相同?让学生说说计算的方法。

教师说明:即使结果不完全一样,是因为测量的结果存在误差,我们还是以

计算的结果为准。

四、巩固提高

完成想想做做的题目。

第1题

学生独立计算,交流算法。要求学生用量角器量出结果,和计算的结果想比较。

第2题

指导学生看图,弄清拼成的三角形的三个内角指的是哪三个角。计算三角形三个角的内角和,帮助学生进一步理解:三角形三个内角的和是180度。

第3题

通过操作、计算,使学生认识到:不管三角形的大小怎样变化,它的内角和是不会变化的。

第4、5、6题

引导学生运用三角形的分类及三角形内角和的有关知识解决有关问题,重点培养学生灵活运用知识解决问题的能力。

三角形教学设计 篇14

教材与学情:

解直角三角形的应用是在学生熟练掌握了直角三角形的解法的基础上进行教学,它是把一些实际问题转化为解直角三角形的数学问题,对分析问题能力要求较高,这会使学生学习感到困难,在教学中应引起足够的重视。

信息论原理:

将直角三角形中边角关系作为已有信息,通过复习(输入),使学生更牢固地掌握(贮存);再通过例题讲解,达到信息处理;通过总结归纳,使信息优化;通过变式练习,使信息强化并能灵活运用;通过布置作业,使信息得到反馈。

教学目标

⒈认知目标:

⑴懂得常见名词(如仰角、俯角)的意义

⑵能正确理解题意,将实际问题转化为数学

⑶能利用已有知识,通过直接解三角形或列方程的方法解决一些实际问题。

⒉能力目标:培养学生分析问题和解决问题的能力,培养学生思维能力的灵活性。

⒊情感目标:使学生能理论联系实际,培养学生的对立统一的观点。

教学重点、难点:

重点:利用解直角三角形来解决一些实际问题

难点:正确理解题意,将实际问题转化为数学问题。

信息优化策略:

⑴在学生对实际问题的探究中,神经兴奋,思维活动始终处于积极状态

⑵在归纳、变换中激发学生思维的灵活性、敏捷性和创造性。

⑶重视学法指导,以加速教学效绩信息的顺利体现。

教学媒体:

投影仪、教具(一个锐角三角形,可变换图2-图7)

高潮设计:

1、例1、例2图形基本相同,但解法不同;这是为什么?学生的思维处于积极探求状态中,从而激发学生学习的积极性和主动性

2、将一个锐角三角形纸片通过旋转、翻折等变换,使学生对问题本质有了更深的认识

教学过程

一、复习引入,输入并贮存信息

1.提问:如图,在Rt△ABC中,∠C=90°。

⑴三边a、b、c有什么关系?

⑵两锐角∠A、∠B有怎样的关系?

⑶边与角之间有怎样的关系?

2.提问:解直角三角形应具备怎样的条件:

注:直角三角形的边角关系及解直角三角形的条件由投影给出,便于学生贮存信息

二、实例讲解,处理信息:

例1.(投影)在水平线上一点C,测得同顶的仰角为30°,向山沿直线 前进20为到D处,再测山顶A的仰角为60°,求山高AB。

⑴引导学生将实际问题转化为数学问题。

⑵分析:求AB可以解Rt△ABD和

Rt△ABC,但两三角形中都不具备直接条件,但由于∠ADB=2∠C,很容易发现AD=CD=20米,故可以解Rt△ABD,求得AB。

⑶解题过程,学生练习。

⑷思考:假如∠ADB=45°,能否直接来解一个三角形呢?请看例2。

例2.(投影)在水平线上一点C,测得山顶A的仰角为30°,向山沿直线前进20米到D处,再测山顶A的仰角为45°,求山高AB。

分析:

⑴在Rt△ABC和Rt△ABD中,都没有两个已知元素,故不能直接解一个三角形来求出AB。

⑵考虑到AB是两直角三角形的直角边,而CD是两直角三角形的直角边,而CD均不是两个直角三角形的直角边,但CD=BC=BD,启以学生设AB=X,通过 列方程来解,然后板书解题过程。

解:设山高AB=x米

在Rt△ADB中,∠B=90°∠ADB=45°

∵BD=AB=x(米)

在Rt△ABC中,tgC=AB/BC

∴BC=AB/tgC=√3(米)

∵CD=BC-BD

∴√3x-x=20 解得 x=(10√3+10)米

答:山高AB是(10√3+10)米

三、归纳总结,优化信息

例2的图开完全一样,如图,均已知∠1、∠2及CD,例1中 ∠2=2∠1 求AB,则需解Rt△ABD例2中∠2≠2∠1求AB,则利用CD=BC-BD,列方程来解。

四、变式训练,强化信息

(投影)练习1:如图,山上有铁塔CD为m米,从地上一点测得塔顶C的仰角为∝,塔底D的仰角为β,求山高BD。

练习2:如图,海岸上有A、B两点相距120米,由A、B两点观测海上一保轮船C,得∠CAB=60°∠CBA=75°,求轮船C到海岸AB的距离。

练习3:在塔PQ的正西方向A点测得顶端P的

仰角为30°,在塔的'正南方向B点处,测得顶端P的仰角为45°且AB=60米,求塔高PQ。

教师待学生解题完毕后,进行讲评,并利用教具揭示各题实质:

⑴将基本图形4旋转90°,即得图5;将基本图形4中的Rt△ABD翻折180°,即可得图6;将基本图形4中Rt△ABD绕AB旋转90°,即可得图7的立体图形。

⑵引导学生归纳三个练习题的等量关系:

练习1的等量关系是AB=AB;练习2的等量关系是AD+BD=AB;练习3的等量关系是AQ2+BQ2=AB2

五、作业布置,反馈信息

《几何》第三册P57第10题,P58第4题。

板书设计:

解直角三角形的应用

例1已知:………例2已知:………小结:………

求:………求:………

解:………解:………

练习1已知:………练习2已知:………练习3已知:………

求:………求:………求:………

解:………解:………解:………

三角形教学设计 篇15

教材与学情:

解直角三角形的应用是在学生熟练掌握了直角三角形的解法的基础上进行教学,它是把一些实际问题转化为解直角三角形的数学问题,对分析问题能力要求较高,这会使学生学习感到困难,在教学中应引起足够的重视。

信息论原理:

将直角三角形中边角关系作为已有信息,通过复习(输入),使学生更牢固地掌握(贮存);再通过例题讲解,达到信息处理;通过总结归纳,使信息优化;通过变式练习,使信息强化并能灵活运用;通过布置作业,使信息得到反馈。

教学目标

⒈认知目标:

⑴懂得常见名词(如仰角、俯角)的意义

⑵能正确理解题意,将实际问题转化为数学

⑶能利用已有知识,通过直接解三角形或列方程的方法解决一些实际问题。

⒉能力目标:培养学生分析问题和解决问题的能力,培养学生思维能力的灵活性。

⒊情感目标:使学生能理论联系实际,培养学生的对立统一的观点。

教学重点、难点:

重点:利用解直角三角形来解决一些实际问题

难点:正确理解题意,将实际问题转化为数学问题。

信息优化策略:

⑴在学生对实际问题的探究中,神经兴奋,思维活动始终处于积极状态

⑵在归纳、变换中激发学生思维的灵活性、敏捷性和创造性。

⑶重视学法指导,以加速教学效绩信息的顺利体现。

教学媒体:

投影仪、教具(一个锐角三角形,可变换图2-图7)

高潮设计:

1、例1、例2图形基本相同,但解法不同;这是为什么?学生的思维处于积极探求状态中,从而激发学生学习的积极性和主动性

2、将一个锐角三角形纸片通过旋转、翻折等变换,使学生对问题本质有了更深的认识

教学过程

一、复习引入,输入并贮存信息

1.提问:如图,在Rt△ABC中,∠C=90°。

⑴三边a、b、c有什么关系?

⑵两锐角∠A、∠B有怎样的关系?

⑶边与角之间有怎样的关系?

2.提问:解直角三角形应具备怎样的条件:

注:直角三角形的`边角关系及解直角三角形的条件由投影给出,便于学生贮存信息

二、实例讲解,处理信息:

例1.(投影)在水平线上一点C,测得同顶的仰角为30°,向山沿直线 前进20为到D处,再测山顶A的仰角为60°,求山高AB。

⑴引导学生将实际问题转化为数学问题。

⑵分析:求AB可以解Rt△ABD和

Rt△ABC,但两三角形中都不具备直接条件,但由于∠ADB=2∠C,很容易发现AD=CD=20米,故可以解Rt△ABD,求得AB。

⑶解题过程,学生练习。

⑷思考:假如∠ADB=45°,能否直接来解一个三角形呢?请看例2。

例2.(投影)在水平线上一点C,测得山顶A的仰角为30°,向山沿直线前进20米到D处,再测山顶A的仰角为45°,求山高AB。

分析:

⑴在Rt△ABC和Rt△ABD中,都没有两个已知元素,故不能直接解一个三角形来求出AB。

⑵考虑到AB是两直角三角形的直角边,而CD是两直角三角形的直角边,而CD均不是两个直角三角形的直角边,但CD=BC=BD,启以学生设AB=X,通过 列方程来解,然后板书解题过程。

解:设山高AB=x米

在Rt△ADB中,∠B=90°∠ADB=45°

∵BD=AB=x(米)

在Rt△ABC中,tgC=AB/BC

∴BC=AB/tgC=√3(米)

∵CD=BC-BD

∴√3x-x=20 解得 x=(10√3+10)米

答:山高AB是(10√3+10)米

三、归纳总结,优化信息

例2的图开完全一样,如图,均已知∠1、∠2及CD,例1中 ∠2=2∠1 求AB,则需解Rt△ABD例2中∠2≠2∠1求AB,则利用CD=BC-BD,列方程来解。

四、变式训练,强化信息

(投影)练习1:如图,山上有铁塔CD为m米,从地上一点测得塔顶C的仰角为∝,塔底D的仰角为β,求山高BD。

练习2:如图,海岸上有A、B两点相距120米,由A、B两点观测海上一保轮船C,得∠CAB=60°∠CBA=75°,求轮船C到海岸AB的距离。

练习3:在塔PQ的正西方向A点测得顶端P的

仰角为30°,在塔的正南方向B点处,测得顶端P的仰角为45°且AB=60米,求塔高PQ。

教师待学生解题完毕后,进行讲评,并利用教具揭示各题实质:

⑴将基本图形4旋转90°,即得图5;将基本图形4中的Rt△ABD翻折180°,即可得图6;将基本图形4中Rt△ABD绕AB旋转90°,即可得图7的立体图形。

⑵引导学生归纳三个练习题的等量关系:

练习1的等量关系是AB=AB;练习2的等量关系是AD+BD=AB;练习3的等量关系是AQ2+BQ2=AB2

五、作业布置,反馈信息

《几何》第三册P57第10题,P58第4题。

板书设计:

解直角三角形的应用

例1已知:………例2已知:………小结:………

求:………求:………

解:………解:………

练习1已知:………练习2已知:………练习3已知:………

求:………求:………求:………

解:………解:………解:………

关于三角形教学设计

作为一名教师,可能需要进行教学设计编写工作,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。那么教学设计应该怎么写才合适呢?以下是小编为大家收集的关于三角形教学设计,希望对大家有所帮助。

三角形教学设计 篇16

使幼儿通过感知和观察,了解三角形的名称和特点,能找出生活中相应形状的实物来。

准备

1、圆形纸板;大三角尺、三角形纸板或这种形状的其他物品各4、5件(按幼儿分组的数准备)。两根约4米长的.绳。

2、彩纸或白纸剪成的可重叠比较的等边三角形和圆形每个幼儿各1个。

3、配套幼儿用书《数学》上册。

过程

1、感知三角形的特征

教师出示三角形的实物,让幼儿观察并轮流触摸边缘,说一说是什么形状,有什么特征,数一数它们有几个角。

2、找实物

教师请幼儿在活动室内找三角形的物品,或让幼儿回忆在生活中见过哪些这种形状的物品,如小彩旗是三角形的,山的形状是三角形的等。

3、认识图形名称和基本特征

教师将三角形的物品按在黑板上,用粉笔沿边缘勾画出物体的外形轮廓,告诉幼儿三角形的名称,教幼儿正确的发音。然后教师请幼儿拿出纸制成的三角形和圆形,重叠起来进行观察比较,并说一说三角形的特征,如三角形有三个角和三条边。

4、做练习

教师指导幼儿做幼儿用书第2页的练习。

三角形教学设计 篇17

一、教学目标

1.知识与技能目标:通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2.过程与方法目标: 经历观察、猜想、验证的过程,提升自身动手操作及推理、归纳总结的能力。

3.情感态度价值观目标: 在参与学习的过程中,感受数学的魅力,体验成功的喜悦,激发学习数学的兴趣。

二、教学重难点

重点:掌握三角形内角和定理。

难点:理解三角形内角和定理推理的过程。

三、教学过程

尊敬的各位老师大家好,我是小学数学组2号考生,今天我试讲的题目是三角形内角和,下面我将正式开始我的试讲。

上课,同学们好,请坐。

【导入】

同学们,上课之前呢我们先来看一下大屏幕,老师给大家准备了几张照片我们来看一下,在图形的王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形说“我的钝角大,我的内角和一定比你们的内角和大”。锐角三角形也不示弱“你虽然有一个钝角,可是其它两个角都很小,而我的三个角都不是很小,所以我的内角和比你大”。直角三角形说“别争了,我们的内角和是一样大的,因为三角形的内角和是180°”。

那同学们,大家同不同意它的说法呀,老师看到同学们都很疑惑的样子,没关系,今天这位节课我们就一起来研究一下这个问题,学习一下——三角形的内角和。

【新授】

活动一:

那同学们,接下来啊我们拿出尺字,画出几个三角形,然后测量并计算一下,三角形3个内角的和各是多少度呢?给大家三分钟时间同桌之间相互交流一下这个问题。

老师看到同学们都安静了下来,第三排这位同学,你来说一说你们两个人的结论。哦,他说呀他们发现他们两人画出的直角三角形内角和都是180度,你们的思路非常清晰,请坐!后边同学有不同意见,你来说,他说呀他们两人画出的锐角三角形也是180度。也是正确的,请坐!

活动二:

那同学们,是不是所有的三角形的内角和都是180°呢?如何进行验证呢?

那接下来5分钟我们前后排4个人一小组进行讨论,待会啊老师会找同学提问。

老师看到同学们都很迷茫,给大家一点小提示,我们可以用剪拼的形式来验证一下。

好时间到,哪位同学来告诉一下老师,你们的'讨论结果呢。你们小组讨论的最激烈,你来告诉一下老师,他说呀他们小组是将三种不同类型的三角形的三个角剪下来,再拼一拼,发现都拼成一个了平角,你们的方法非常独特,请坐!那大家的方法和它们的方法是一样的吗?

看来同学们的思路都非常的清晰,那同学们,由此我们就验证得出了,三角形的内角和就是180度。

观察一下黑板上这些内容,以上就是本节课所要学习的三角形内角和。

【巩固练习】

通过本节课的学习,相信大家对平行四边形有了更深的了解。我们看向黑板,接下来给大家两分钟时间来做一下这道题巩固一下,在△ABC中∠1=140°,∠2=25°,求出∠3的度数。课代表来黑板上板书一下。老师看到同学们笔都放下了,我们一起来看一下黑板上同学的答案,∠3=15°,同学们的答案和他的是一样的吗,看来同学们对本节课知识的掌握都已经非常扎实了。

【课堂小结】

不知不觉本节课马上就接近了尾声,哪位同学来说一下本节课你都有哪些收获呢?(停顿2秒)第二排手举得最高这位同学你来说一下,哦,他说啊,通过本节课的学习他掌握了三角形当中一个新的特点,三角形的内角和是180度,总结的非常全面见,请坐!

【作业布置】

接下来老师来给大家布置个小任务,回家之后仔细观察一下家中的物体,看一看那些物品是三角形的,动手测量一下内角和,看一看是否满足180度,下节课一起来交流讨论一下,今天这节课就上到这里,同学们再见。

三角形教学设计 篇18

【设计理念】

新课标重视让学生经历数学知识的构成过程,要求教师创设有效的问题情境激发学生的参与欲望,带给足够的时间和空间让学生经历观察、猜测、验证、交流反思等过程,使学生在动手操作、合作交流等活动中亲身经历知识的构成过程。这样,学生不仅仅能够掌握知识,而且能够积累探究数学问题的活动经验,发展空间观念和推理潜力。

【教材资料】

新人教版义务教育课程标准实验教科书四年级下册数学第67页例6、“做一做”及练习了十六的第1、2、3题。

【教材分析】

三角形的内角和是三角形的一个重要特征。本课是安排在三角形的概念及分类之后教学的,它是学生以后学习了多边形的内角和及解决其它实际问题的基础。教材很重视知识的探索与发现,安排两次实验操作活动。教材呈现教学资料时,不但重视体现知识的构成过程,而且注意留给学生充分进行自主探索和交流的空间和时间,为教师灵活组织教学带给了清晰的思路。概念的构成没有直接给出结论,而是透过量、拼等活动,让学生探索、实验、交流、推理归纳出三角形的内角和是180°。

【学情分析】

1、在学习了本课时,学生已经有了探索三角形内角和的知识基础:明白直角和平角的度数,会用量角器度量角的度数;认识长方形、正方形,明白他们的四个角都是直角;认识了三角形,明白了三角形按角分有锐角三角形、直角三角形和钝角三角形;已经明白了等腰三角形和正三角形。

2、已经有一部分学生明白了三角形内角和是180°,只是知其然而不知所以然。

【教学目标】

1、透过“量、剪、拼”等活动发现、验证三角形的内角和是180°,并能运用这个知识解决一些简单的问题。

2、在观察、猜想、操作、合作、分析交流等具体活动中,提高动手操作潜力,积累基本的数学活动经验,发展空间观念和推理潜力。

3、在参与数学学习了活动的过程中,获得成功的体验,感受数学探究的严谨与乐趣。

【教学重点】

探索发现、验证“三角形内角和是180°”,并运用这个知识解决实际问题。

【教学难点】

验证“三角形的内角和是180°”。

【教(学)具准备】

多媒体课件;锐角三角形、直角三角形、钝角三角形纸片若干个各类三角形(也包括等边、等腰)、长方形、正方形若干个;每人一个量角器;一把剪刀;每人一副三角尺。

【教学步骤】

一、复习了旧知引出课题

1、你已经明白有关三角形的哪些知识?

2、出示课题:三角形的内角和

【设计意图:也自然导入新课。】

二、提出问题引发猜想

1、提出问题:看到这个课题,你有什么问题想问的?

预设:

(1)三角形的内角指的是哪些角?

(2)三角形的内角和是什么意思?

(3)三角形的内角一共是多少度?

2、引发猜想

猜一猜:三角形的内角和是多少度?你是怎样猜的?

【设计意图:提出一个问题比解决一个问题更重要。课始在复习了三角形已学知识后,引导学生提出有关三角形的新问题,让学生学习了自己想研究的资料,无疑激发了学生的学习了兴趣,培养了学生的问题意识。由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎样猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。】

三、操作验证构成结论

1、交流验证方法:

(1)用什么方法证明三角形的内角和是180度呢?

预设:

①量算法

②剪拼法

③折拼法等

(2)三角形的个数有无数个,验证哪些三角形能够代表所有的三角形?我们的操作过程怎样分工才会做到省时又高效?

2、动手验证

3、全班汇报交流

4、小结:刚才透过大家的动手操作验证了三角形的内角和是180°度。但动手操作会存在必须的误差,我们的结论也可能存在偏差。

5、方法拓展

推理验证:用直角三角形的内角和来证明其他三角形内角和是180°的方法。

6、构成结论:任意三角形的内角和是180°。

【设计意图:《标准》指出:“教师应激发学生的.用心性,向学生带给充分从事数学活动的机会,帮忙他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”猜测后先独立思考验证的方法,再进行全班交流,给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列操作活动中发现了三角形内角和是180°这个结论。在探索活动前,交流如何使研究样本具有代表性和全面性与如何分工做到操作省时高效这两个问题,培养学生严谨、科学正确的研究态度,让学生在活动中积累基本的数学活动经验,为后续的学习了带给了经验支撑。】

四、应用结论解决问题

1、巩固新知:想一想,算一算。

2、解决问题:等腰三角形风筝的顶角是多少度?

3、辨析训练,完善结论。

五、课堂总结,归纳研究方法

这天这节课你学到了哪些知识?你是怎样得到这些知识的?

六、课后延伸:

用这天所学的方法继续研究四边形的内角和。

七、板书设计:

三角形的内角和

猜测:三角形的内角和是180°?

验证:量拼

结论:任意三角形的内角和是180°

三角形教学设计 篇19

本节内容的重点是定理。本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点。推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论。

本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反。学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点。另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法。由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用。

教法建议:

本节课教学方法主要是“以学生为主体的讨论探索法”。在数学教学中要避免过多告诉学生现成结论。提倡教师鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下:

(1)参与探索发现,领略知识形成过程

学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言。最后找一名学生用文字口述定理的内容。这样很自然就得到了定理。这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。

(2)采用“类比”的`学习方法,获取知识。

由性质定理的学习,我们得到了几个推论,自然想到:根据定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。如果学生提到的不完整,教师可以做适当的点拨引导。

(3)总结,形成知识结构

为了使学生对本节课有一个完整的认识,便于今后的应用,教师提出如下问题,让学生思考回答:

(1)怎样判定一个三角形是等腰三角形?有哪些定理依据?

(2)怎样判定一个三角形是等边三角形?

一。教学目标 :

1、使学生掌握定理及其推论;

2、掌握等腰三角形判定定理的运用;

3、通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;

4、通过自主学习的发展体验获取数学知识的感受;

5、通过知识的纵横迁移感受数学的辩证特征。

二。教学重点:

定理

三。教学难点 :

性质与判定的区别

四。教学用具

直尺,微机

五。教学方法:

以学生为主体的讨论探索法

六。教学过程 :

1、新课背景知识复习

(1)请同学们说出互逆命题和互逆定理的概念

估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。

(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?

启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:

1、定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等。

(简称“等角对等边”)。

由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法。

已知:如图,△ABC中,∠B=∠C.

求证:AB=AC.

教师可引导学生分析:

联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形。因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起。再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.

注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆。

(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形。

(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系。

2、推论1:三个角都相等的三角形是等边三角形。

推论2:有一个角等于60°的等腰三角形是等边三角形。

要让学生自己推证这两条推论。

小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理。

证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.

3、应用举例

例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形。

分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和。要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系。

已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.

求证:AB=AC.

证明:(略)由学生板演即可。

补充例题:(投影展示)

1、已知:如图,AB=AD,∠B=∠D.

求证:CB=CD.

分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.

证明:连结BD,在 中, (已知)

(等边对等角)

(已知)

(等教对等边)

小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系。

2、已知,在 中, 的平分线与 的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF.

分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论。

三角形教学设计 篇20

一、教材分析

本教材选自《幼儿园教育教学安排意见》小班内容,认识三角形是幼儿几何形体教育的内容之一,幼儿的几何形体教育使幼儿数学教育的重点内容。幼儿学习一些几何形体的简单知识能帮助他们对客观世界中形形色色的物体做出辨别和区分。发展它们的空间知觉能力和初步的空间想象力从而为小学学习几何形体做些准备。小班幼儿在他们充分获得对圆形的感知和确认后,再让他们认识三角形的特征,这对发展幼儿的观察力、比较能力和空间概念具有重要意义。认识三角形是在认识圆形的基础上进行的。这就为比较圆形和三角形奠定了知识基础,有利于幼儿对三角形的感知和掌握。本节课的知识点就是三角形的特征。基于以上对教材的分析,结合幼儿的认知特点,确定以下教学目标:

1、教幼儿知道三角形的名称和主要特征,知道三角形由3条边、3个角。

2、教幼儿把三角形和生活中常见的实物进行比较,能找出和三角形相似的物体。

3、发展幼儿观察力、空间想象力,培养幼儿的动手操作能力。

确定目标的依据:小班上学期虽然还没有进行数的形成教学,但在日常活动中已经渗透了许多数的概念教育,因此,通过数形结合认识三角形的特征幼儿有一定的基础。3岁幼儿经常会把几何形体理解为他们所熟悉的实物,因此,教幼儿把三角形和生活中常见的实物进行比较找出和三角形相似的物体有利于发展幼儿对应能力。

围绕教学目标根据小班幼儿的认知特点,我认为本节课的重点是认识三角形的特征,幼儿认知几何形体对图形的知觉属于空间知觉的范畴,从幼儿感知

三角形的形状到表达需要完成配对——指认——图形的特征,因此,三角形的特征定为本节课的重点。

三角形的特征同时也是本节课的难点。三角形的特征有三条边、三个角。但是,对于还没学过一一对应点数的幼儿来说还有一定的难度,所以把三角形的特征定为本节课的难点。

二、教学方法

为了让幼儿更好地掌握知识,充分发挥教与学的互动作用,更好地完成教学任务,我将采用游戏法和启发探索法,体现教师为主导,幼儿为主体的师生双边活动。

游戏法:在计算教学中运用游戏法能激发幼儿的学习兴趣,集中幼儿的注意力,帮助幼儿轻松愉快地理解知识,因此,在本节课中,无论是新知的学习,还是复习巩固我都采用游戏的形式,如在课的开始,教师以游戏的口吻介绍两个图形娃娃到小班做客,激发了幼儿的学习兴趣,在复习巩固三角形特征时,设计了游戏给图形娃娃找朋友、奇妙的拼图、拼拼三角形使幼儿进一步巩固了三角形的特征,又激发了幼儿的学习兴趣。

启发探索法:这一教学方法是教学过程中依靠幼儿已有的数学知识和经验启发幼儿去探索并获得新知。其最大的特点是激发幼儿的兴趣,最大限度地调动幼儿学习的积极性、主动性,在本节课认识三角形的特征时,我采用这一方法先出示一个圆形娃娃,再出示一个三角形娃娃,启发幼儿比较三角形和圆形的不同,在幼儿的观察探索中得出三角形有角、有边,通过亲自数一数、试一试,让幼儿明确有三个角的图形是三角形,三角形的角有点儿扎手。

本节课采用的教具:

⑴圆形、三角形娃娃各一个,用于引出课题,激发幼儿兴趣。

⑵图形拼图一幅

⑶每桌一盘各类几何图形及冰糕棍若干。

选取教具的依据是小班幼儿的年龄特点及认知特点。

三、学法指导

1、复习内容的确定:三角形的特征有三条边、三个角。幼儿要掌握三角形的特征,就必须通过数一数来掌握,因此,3的数数的掌握直接影响到幼儿学习三角形的效果,因此将3的数数定为学习内容。采用幼儿比较喜欢的体态动作(拍手、拍肩、拍褪)进行,幼儿比较感兴趣又很快地集中了幼儿的注意力。

2、引导幼儿用探索法和操作法学习新知,发展幼儿的观察力。为了便于幼儿更好地掌握三角形的特征,请幼儿通过观察圆形和三角形有哪些地方不一样?通过亲自数一数、摸一摸来感知三角形的特征。幼儿从观察、判断到表述是幼儿利用旧知获取新知,主动学习的过程。

3、在操作、游戏中发展幼儿的空间想象力,在复习巩固三角形特征时,采取了游戏《给图形娃娃找朋友》、用小棍拼三角形。幼儿在游戏时,就需要将头脑中三角形的特征的轮廓体现出来,需要幼儿将想象、图形小棒联系在一起,进一步发展了幼儿的空间想象力,同时幼儿联想生活中的实物与三角形想象的物体将图形与实物相联系,从而发展幼儿的空间想象力。

4、数形结合,时幼儿在掌握特征的同时,加深幼儿对3的认识,在学习三角形特征时让幼儿数数三角形有几条边、几个角在看拼图找三角形的游戏中,让幼儿数数蝴蝶的翅膀、树身、房顶个由几个三角形拼成,在数形结合中既巩固了新知,又发展了幼儿的`观察力和思维能力。

四、教学程序

为了小学过程中更好地突出重点,突破难点取得较好的教学效果,我准备分以下几个步骤完成教学任务:

1、复习3的数数

设计这一环节的目的是为了在下步学习三角形特征时

幼儿能更好地学习掌握,能准确感知图形特征这一环节,采用体态动作一集体复习的形式进行。

2、学习三角形特征:这一环节是本节课的重点难点所在,我准备分以下几步完成,以突出重点、突破难点。

⑴引导幼儿观察比较圆形娃娃和三角形娃娃的不同,提供幼儿每人一三角形,通过自己数一数,试一试,感知图形特征,并充分让幼儿表述,得出图形的特征。

⑵引导幼儿观察几个不同形状、不同大小的三角形,通过验证得出三角形都有三条边、三个角,有三条边、三个角的图形都是三角形。

⑶老师小结三角形特征,使幼儿获得的知识完整化。

3、复习巩固三角形的特征。在幼儿初步掌握三角形特征的基础上只有通过各种形式的练习才能得以巩固,准备分三步完成这一环节。

⑴给图形娃娃找朋友:目的是幼儿排除干扰从众多几何图形卡片中找出三角形。

⑵看图拼图找三角形:

图形拼图能进一步激发幼儿的学习兴趣通过让幼儿观察:

这些拼图像什么?哪些部分是用三角形拼成的?用了几个三角形?

⑶周围环境中找出像三角形的东西:幼儿通过自己的联想寻找发展幼儿的空间想象能力,进一步巩固了三角形的特征。

五、延伸活动:

幼儿用冰糕棒拼三角形,引导幼儿拼完后讲一讲你拼得三角形有几条边?几个角?用了几根冰糕棒?

教学反思:

我这次开展的数学活动,教学目标是通过对比,让幼儿感知三角形的基本特征。活动前我们对活动的内容进行了讨论,在确定这一内容时,老师们都觉得这一内容很简单,但经过对中班幼儿认知特点的分析发现,中班的幼儿已有了粗浅的几何概念,这一阶段的幼儿虽然能正确地认识三角形但他们不是从这些形状的特征来认识,而是将其和自己日常生活中熟悉的物体相对照。因此,我们最终确定了《认识三角形》这一活动,让孩子在游戏探索中对图形产生兴趣,并通过观察、比较、想象、动手等,感知三角形特征。

本次活动,除了让幼儿感知图形特征外,采用导入方式:一种是实物直接导入,教师出示魔术袋引起幼儿兴趣,然后通过让幼儿摸一摸,通过对摸出的实物形状的区别来初步感知三角形的基本特征。这样能激起幼儿的活动兴趣,只是游戏的方法具有神秘感,并与下面环节有较好的衔接,因此能更快地调动幼儿的情绪,激发孩子们的学习兴趣。

这次活动,幼儿参与性比较高,但同时活动过程中也出现了许多问题,虽然我在活动前对这一内容的目标定位进行了仔细的考虑斟酌,但在活动后发现,我们设置的其它几个环节还是过于简单,没有将活动目标真正的达成,在最后环节中,孩子们在找找身边的三角形时,对于正方形的认知出现了偏差。针对这一问题,我对自己的活动进行了反思。

根据活动目标,教师除了运用游戏让幼儿感知图形特征外,还必须在认识时让幼儿用语言来描述图形特征,通过多次的描述巩固幼儿对图形基本特征的认识。如:三角形:三个角三条边教师在向幼儿正确描述图形特征时,让幼儿也来描述,通过多次寻找图形,描述图形来认知图形特征。这样在最后环节时或许就不会出现图形区别时的偏差,而活动目标也会达成的更好。

三角形教学设计 篇21

知识与技能

1、通过小组合作,运用直观操作的方法,探索并发现三角形内角和等于180。能应用三角形内角和的性质解决一些简单问题。

2、经历亲自动手实践、探索三角形内角和的过程,体会运用“量一量”、“算一算”、“拼一拼”、“折一折”进行验证的数学思想方法,提高动手操作能力和数学思考能力。

情感态度与价值观

3、使学生在数学活动中获得成功的体验,感受探索数学规律的乐趣。培养学生的创新意识、探索精神和实践能力,在学生亲自动手实践和归纳中,感受理性的美。

教学重点:

1、探索和发现三角形三个内角和的度数和等于180o。

2、已知三角形的两个角的度数,会求出第三个角的度数。

教学难点:

已知三角形的两个角的度数,会求出第三个角的度数。

方法与过程

教法:主动探究法、实验操作法。

学法:小组合作交流法

教学准备:小黑板、学生、老师准备几个形状不同的三角形、量角器。

教学课时:1课时

教学过程

一、预习检查

说一说在预习课中操作的感受,应注意哪些问题,三角形的内角和等于多少度?组内交流订正。

二、情景导入呈现目标

故事引入。一天,大三角形对小三角形说:“我的个头大,所以我的内角和一定比你的大。”小三角形很不甘心地说:“是这样的吗?”揭示课题,出示目标。产生质疑,引入新课。

三、探究新知

自主学习

1、活动一、比一比2、活动二、量一量

(1)什么是内角?

(2)如何得到一个三角形的内角和?

(3)小组活动,每组同学分别画出大小,形状不同的`若干个三角形。分别量出三个内角的度数,并求出它们的和。

(4)填写小组活动记录表。发现大小,形状不同的每个三角形,三个内角的度数和都接近度。

3、说一说,做一做。

(1)我们把三个角撕下来,再拼在一起,看一看会是怎样的。

(2)把三个角折叠在一起,,三个角在一条直线上。从而得到三角形三个内角和等于()度。

四、当堂训练(小黑板出示内容)

1、三角形的内角和是()°,一个等腰三角形,它的一个底角是26°,它的顶角是()。

2、长5厘米,8厘米,()厘米的三根小棒不能围成一个三角形。

3、三角形具有()性。

4、一个三角形中有一个角是45°,另一个角是它的2倍,第三个角是(),这是一个()三角形。

5、按角的大小,三角形可以分为()三角形、()三角形、()三角形。

6、交流学案第三题。先独立做,最后组内交流。

五、点拨升华

任意三角形三个角的度数和等于180度。独立思索小组交流总结方法教师点拨。

六、课堂总结

通过这节课的学习,你有什么新的收获或者还有什么疑问?先小组内说一说,最后班上交流。

七、拓展提高

妈妈给淘气买了一个等腰三角形的风筝。它的顶角是40°,它的一底角是多少?先独立做,最后组内交流。

板书设计:

三角形的内角和

测量三个角的度数求和:结论:

教学反思:三角形内角和等于180°,对于大多数同学来说并不是新知识。因为在此之前学生已经运用过这一知识。因此,我觉得这一堂课的重点不是让学生记住这一结论,也不是怎样运用它去解结问题。而是让学生证明这一结论,即要让学生亲历探索过程并在探索中验证。在教学中,通过丰富的材料让学生动手操作,通过量、撕拼、折拼等实验活动,让学生得到的不仅仅是三角形内角和的知识,更重要的是学到了怎样由已知知识探索未知的思维方式与方法,激发了他们主动探索知识的欲望。通过多种实验进行操作验证也让学生明白了只要善于思考,善于动手就能找到解决问题的方法。

当然,在教学中也还有一些不顺利的地方,比如一些动手能力差的学生未能及时跟进,对于方法不对的学生未能及时指导和帮助等。但是本堂课采用这样的方式展开教学是学生喜欢的也是有成效的。

大家都在看