可能性教案

笔构网

2025-10-13教案

请欣赏可能性教案(精选36篇),由笔构网整理,希望能够帮助到大家。

可能性教案 篇1

教学目标:

1、使学生经历和体验收集、整理、分析数据的过程,学会用画“正”字的方法收集整理数据,能完成相应的统计图,并体会统计是研究、解决问题的方法之一。

2、使学生经历实验的具体过程,从中体验某些事件发生的可能性的大小,能对简单实验可能发生的结果或某些事件发生的可能性的大小作出简单判断,并作出适当的解释,和同学交流自己的想法。

3、培养学生积极参与数学活动的意识,初步感受动手实验是获得科学结论的一种有效的方法,激发主动学习的积极性,进一步发展与他人合作交流的意识与能力。

教学重点:

通过活动认识一些事件发生的等可能性。

教学难点:

理解红球和黄球的个数相等时,任意摸一次,摸到红球和黄球的***会是相等的。

教学准备:

多媒体,红球3个 黄球3个

教学过程:

一、创设情境,激趣导入。

1.出示装有3个红球的袋子

(1)谈话:如果从中任意摸一个球,结果怎样?(一定摸出红球)

(2)往口袋里加入3个黄球,如果从这样的口袋里摸一个球呢?(可能摸出红球,也可能摸出黄球)

2.揭题:在我们的生活中,有些事情一定会发生,有些事情会不会发生难以确定,只能说具有可能性。今天我们继续研究可能性问题。(板书:可能性)

二、活动体验,探索新知。

1.摸球。

(1)猜测。

(出示上述装有3个红球和3个黄球的透明口袋)

谈话:不看球从这个口袋中每次任意摸一个球,摸出以后把球再放回口袋,一共摸40次。猜一猜,红球和黄球可能各摸到多少次?

学生自由猜测

(2)验证。

谈话:这仅仅是我们的猜测,想知道自己猜得对不对,我们可以怎么做?(摸一摸)

①明确活动要求。

谈话:摸前先把袋中的球搅一搅,然后不看球从中任意摸一个,摸出后进行记录,把球再放入口袋中,如此,一共摸40次。

②明确统计方法。

提问:怎样能记住每次摸球的结果呢?

以前我们用过哪些方法来记录?(画“√”、涂方块…)

在生活中,你还见过哪些记录数据的方法?(引导说出画“正”字的方法)

怎样用画“正”字的.方法来记录呢?谁能向大家介绍一下?

教师相***出示“摸球结果记录表”,向学生介绍。

讲解示范:一画“一”表示1次,1个“正”字表示记录5次。

红球

黄球

③明确分工。

谈话:活动时我们要互相合作,互相帮助,这样才能顺利完成任务。请各小组在组长的带领下进行分工活动。

④活动体验。

学生分组实验,教师巡视指导。

(3)归纳。

①各小组交流汇报统计结果,教师用实物投影展示。

② 提问:统计的结果和你的估计差不多吗?我们再将各小组摸到红球的次数和摸到黄球的次数进行比较,你有什么发现?(有的小组摸到红球的次数和摸到黄球的次数同样多,有的小组摸到红球的次数比摸到黄球的次数多一些,有的小组摸到红球的次数比摸到黄球的次数少一些)如果继续摸下去,摸到红球的次数和摸到黄球的次数会怎样?

讲述:这就说明从装有3个红球和3个黄球的袋子里任意摸一个球,摸到红球的***会和摸到黄球的***会是相等的,也就是摸到红球和黄球的可能性是相等的。

提问:我们是用什么方法来记录摸球结果的?你觉得用画“正”字的方法来记录好不好?(记录简便、整理迅速)记录之后我们又对数据作了怎样的处理?(填入统计表)可见用统计的方法来研究事情发生的可能性是一个很好的方法。通过实验和统计得到了什么结论?(摸到红球和黄球的可能性是相等的)

三、玩中交流,内化交流。

1.抛小正方体。

教师出示小正方体,问:知道小正方体有几个面吗?在6个面上都写有数字,小组成员仔细观察有哪些数字?各出现了几次?

如果把小正方体抛30次,那么“1”“2”“3”各字朝上的次数会怎样呢?

验证。

明确活动要求:小组成员按顺序轮流抛小正方体,并记录朝上数字的次数。

在小组内明确分工。

活动体验:学生先分组实验,再统计结果,填写下列表格。

朝上的数字

1、2、3

次数归纳。

各小组汇报统计结果,教师将数据填入下表。

朝上的数字

1、2、3

合计

第一小组

第二小组

第三小组

第四小组

提问:仔细观察统计表,统计的结果和你估计的差不多吗?你发现了什么?

反思。通过这一活动,你又明白了什么?为什么1、2、3朝上的次数差不多?

讲述:根据合计栏里的数据,我们可以看出抛的次数越多,数字1、2、3朝上的次数就越接近。那么抛一次,向上的数字有几种可能性?这三种可能性的大小怎样?(相等)

三、拓展深化

谈话:如果要在装有红球和蓝球的口袋中任意摸一个球,摸到红球和蓝球的可能性相等,可以怎样放球?

学生各抒己见

谈话:为什么可以这样放?(因为红球和蓝球的个数相同,所以任意摸一个球,摸到红球和蓝球的可能性相等。)

2.完成“想想做做”第2题

先小组讨论,再展示交流,说说想法。

四、总结

提问:通过这节课的学习,你学会了什么?知道了什么?

板书设计:

统计与可能性

3个红球 3个黄球

当口袋里红球与黄球一样多时,摸到红球与黄球可能性是相等的。

关于可能性教案模板集锦6篇

作为一位杰出的教职工,常常需要准备教案,教案是保证教学取得成功、提高教学质量的基本条件。来参考自己需要的教案吧!下面是小编收集整理的可能性教案6篇,欢迎阅读,希望大家能够喜欢。

可能性教案 篇2

第一课时

教学目标:

1、 使学生经历和体验收集、、分析数据的过程,学会用画"正"字的方法数据,认识条形图(1格表示1个单位),初步学会用条形图描述数据,能完成相应的统计图,并体会统计是研究、解决问题的方法之一。

2、 使学生经历实验的具体过程,从中体验某些事件发生的可能性的大小,能对简单实验可能发生的结果或某些事件发生的可能性的大小做出判断,并做出适当的解释,能正确使用"经常""偶尔""差不多"等词语描述一些事件发生的可能性的大小,并和同学交流自己的想法。

3、 培养学生积极参与数学活动的意识,初步感受动手实验是获得科学结论的一种有效方法,激发主动学习的积极性,进一步发展与他人合作交流的意识与能力。

教学内容:

P90--91

教学目标:

1、 经历和体验收集、、分析数据的过程,学会用画"正"字的方法数据,体会统计是研究、解决问题的方法之一。

2、 经历实验的具体过程,能对实验可能发生的结果做出简单判断,并做出适当的解释,从中体验某些事件发生的可能性是相等的。

3、 培养积极参与数学活动的意识,初步感受动手实验是获得科学结论的一种有效方法,激发主动学习的积极性,进一步发展与他人合作交流的意识与能力。

教学过程:

一、创设情境,激趣导入

1、谈话:老师带来了一个袋子,你们能猜出袋子里有什么吗?

2、打开袋子验证:3个红球,3个黄球。

二、活动体验,探索新知

1、想一想

问:如果让你们闭上眼睛从袋子里任意摸一个球,可能会摸到什么颜色的球?为什么?

说明:袋子里有红球、黄球。摸到红球和黄球都是有可能的。

2、猜一猜

问:如果让你们闭上眼睛从袋子里任意摸一个球,摸出后把球再放会口袋,一共摸40次,红球、黄球可能各摸到多少次?

学生各抒己见。

讲述:同学们的意见各不相同,这仅仅是我们的估计和猜测,有什么好办法可以知道红球和黄球各摸到多少次呢?

引出课题,并板书。

3、说一说。

问:我们已经学过哪些记录数据的方法?

讲述:今天我们一起来学习一种用画"正"字的方法进行记录。你知道"正"字是由几笔写成的吗?

教师讲解示范画"正"示范的书写格式。

4、 摸一摸。

讲解游戏规则:每个小组的袋子里都由3个红球,3个黄球,摸球前要先把口袋摇一摇,然后闭上眼睛任意摸一个球,如果摸到红球,组长就在红球的后面用画"正"字的方法记录。摸过以后要把球放回口袋,要摇动口袋。小组同学轮流摸球,一直摸完40次。

想一想,每组4个同学,平均每人要摸多少次呢?

学生活动。

⑴每组组长负责记录,并把记录结果填在统计表里。

⑵组长汇报摸球结果。

⑶问:统计的结果和你开始的估计差不多吗?你发现了什么?在小组内说一说。

⑷讲述:在袋子里红球和黄球的个数同样多的情况下,从袋子里每次摸一个球,摸球的次数又比较多,那么摸到红球和黄球的次数是差不多的,这就说明了在这种情况下,任意摸一个球,默祷红球的机会和摸到黄球的机会是相等的,也就是摸到红球和黄球的可能性是相等的。

三、玩中交流,内化提高

1、想想做做1

⑴请每组拿出一个小正方体。

问:知道这个小正方体有几个面吗?在6个上都有写数字,小组内轮流看一下有哪些数字?各出现了几次?

⑵活动规则:把小正方体抛30次,组长用画"正"字的方法记录数字1、2、3朝上的次数。其它同学统计并填表格。

学生活动,并填写表格。

⑶收集各小组数据,并完成班级各小组的汇总表。

⑷问:看着合计栏里的数据,你发现了什么?

⑸讲述:通过观察合计栏里的数据,我们可以看出,抛的次数越多,数字1、2、3朝上的次数就越接近,那么抛一次,向上的数字有几种可能?这三种可能性的大小怎样?(相等的)

2、想想做做2

谈话:在布袋子里放4枝铅笔,怎样放才能分别达到下面的要求?

⑴任意摸一枝,不可能是红铅笔。

想想口袋里该装什么铅笔?

小组同学合作装铅笔,问:你为什么这样装?

⑵任意摸一枝,可能是红铅笔。

问:你是怎样想的?

⑶每次任意摸一枝铅笔,摸50次,摸到红铅笔和蓝铅笔的次数差不多,应该怎样装铅笔?为什么?

四、反思,知识

谈话:今天我们在玩的过程中一起研究了统计与可能性,你学会了什么?知道了什么?

第二课时

教学内容:

P92--93

教学目标:

1、 通过活动,体会事件发生的可能性是有大小的.。

2、 初步学会用条形图描述数据,能完成相应的统计图。

3、 通过积极参与猜想、实验、验证、分析的过程,培养思维能力,提高实践能力。

4、 培养团结合作意识以及乐于探索、勇于实践的。

教学过程:

一、引入活动

1、谈话:老师想在这个布袋里放一些红球和黄球,你能出个注意,怎么放使每次任意摸一个球,摸若干次,摸到红球和黄球的次数差不多?

2、学生交流并反馈。

3、:当布袋里放入同样多的红球和黄球时,摸到两种球的可能性是相等的。

4、谈话:如果布袋里放入的两种颜色的球的个数不一样多,摸到的结果又会怎么样呢?

二、开展活动

1、摸球活动

问:如果在布袋里放3个黄球,1个红球,摸10次,摸到哪种球的次数可能多一些?

⑴猜想

同桌猜一猜。

⑵实验

四人一组讨论分工、记录摸球结果的方法;小组活动。

⑶分析数据:统计的记过和你的估计差不多嘛?你发现了什么?你能分析一下产生这种结果的原因吗?如果我从这个布袋里任意摸一个球,摸到哪种球的可能性大,摸到哪种球的可能性小?

问:每次涂一个方块做记录的方法和每次涂一个方格做记录涂成一个条形图的方法哪一种更好?为什么?

⑷推测

问:如果要使摸到黄球的可能性更大一些,怎么办?

⑸练习

如果老师在袋子里按下面的数量放球,你能很快判断摸球结果吗?

袋子里8个全是黄球。

4个红球,4个黄球。

7个红球,1个黄球。

2、掷小正方体活动

问:一个小正方体,四个面写"1",一个面写"2",一个面写"3",把小正方体抛30次,猜一猜哪个面朝上的次数多一些?哪两个面朝上的次数差不多?

猜想。实验验证。分析:在条形图里你发现了什么?

3、装铅笔活动(想想做做2)

出示课本图片,谈话:图中小朋友在干什么?

提出活动要求:玩两次,第一次的要求是装好后,从袋子里每次任意摸一枝,摸50次,摸到红铅笔的次数比蓝铅笔多。第二次装好后从袋子里每次任意摸一枝,摸50次,摸到红铅笔的次数比蓝铅笔少。

每次活动都按下面的程序进行:同桌进行操作;交流,说一说是怎么装的?怎么想的?

三、活动

今天这节课你参加了哪些活动?你有什么收获?

练习课

教学内容:P94--95练习九

教学目标:

巩固本单元统计与可能性知识的综合练习课,使学生经历实验的具体过程,从中体验某些事件发生的可能性的大小,能对简单实验可能发生的结果或某些事件发生的可能性的大小做出判断,并做出适当的解释,能正确使用"经常""偶尔""差不多"等词语描述一些事件发生的可能性的大小,并和同学交流自己的想法。

教学过程:

一、练习指导

1、P94.1

先让学生观察统计图并填表,进一步认识条形统计图,认识条形统计图的不同形式。

评讲:图中每一格表示多少?你是怎么知道的?

要求学生将"经常"、"偶尔"等表达方式与统计图表中的数据特点紧密联系在一起,有根据地使用"经常"、"偶尔"描述事件发生的情况,从而发展数学思考。

2、P94.2、3

通过观察、分析和实践,使"经常"、"偶尔"等词的含义与事件发生的可能性大小之间建立相应的联系,让学生在获得个人感受的基础上,学会使用相应的词语。

问:看了这几个转盘后,你有什么想法?

你能用"经常"、"偶尔"来说明转盘的转动情况吗?

在生活中有哪些事情是经常出现的?哪些事情是偶尔出现的?

3、P95.4

出示题目图画,要求学生观察思考问题,再用线连一连。

交流:你是怎么连的?为什么这样连?你是怎么想的?

4、P95.5

出示统计图表,观察图表,了解题目要求。

提出小组活动要求及分工合作情况。

讨论活动步骤,教师及时给予纠正与帮助。

小组活动。

汇报活动结果。

评讲:从统计表中你看懂了什么?想到了什么?

如果在你们组开展一项体育竞赛,你认为组织什么项目比较合适?

如果我们班想开展一项体育竞赛,你认为组织什么项目比较合适?

5、P95思考题

明确题目要求。

问:这道题中的要求是什么意思?你打算怎么涂色?

学生活动。

组织交流讨论。

二、全课

三、作业:

准备四种花色的扑克牌各1张,混放在一起并叠整齐。每次任意摸一张,摸20次。先估计每次摸的结果,再把实际摸得的结果记录在下面的表中。

你能涂出条形图来表示摸牌的结果吗?

问:如果再放进3张红心的牌,任意摸20次,结果可能会怎样?

可能性教案 篇3

教学内容:

教材P107—109

教学目的:

4、能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。

5、通过实际操作活动,培养学生的动手实践能力。

6、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。

教学重、难点:

知道事件发生的可能性是有大小的。

教学过程:

一、引入

出示小盒子,展出其中的小球色彩、数量,

如果请一位同学上来摸一个球,他摸到什么颜色的球的可能性最大?

二、探究新知

1、教学例5

(1)每小组一个封口不透明袋子,内装红、黄小球几个。(学生不知数量、颜色)小组成员轮流摸出一个球,记录它的颜色,再放回去,重复20次。

记录次数

活动汇报、

(2)袋子里的红球多还是黄球多?为什么这样猜?

小组内说一说

总数量有10个球,你估计有几个红,几个黄?

(3)开袋子验证

让学生初步感受到实验结果与理论概率之间的关系。

2、练习

P107“做一做”

3、

三、巩固练习

P1096

[1]学生说说掷出后可能出现的结果有哪些

[2]猜测实验后结果会有什么特点

[3]实践、记录、统计

[4]说说从统计数据中发现什么?

[5]由于实验结果与理论概率存在的差异,也可能得不到预期的结果,可以让学生再掷几次,让学生根据试验的结果初步感受到硬币是均匀的,两种结果出现的可能性是相等的。

P1097

学生讨论完成

教学反思:

可能性教案 篇4

《可能性》是义务教育课程标准实验教科书(人教版)三年级上册104-105页内容。其相关知识是新课标增设的教学内容,属于统计与概率学习领域。本节课是学生首次接触有关可能性的知识,是学生对可能性的认识和理解从定性向定量的过渡。小学数学课程标准中明确指出:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程。“数学教学活动必须建立在学生认知发展水平和已有的知识经验基础之上,教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会……”根据这一理念,基于这样的教学内容和学生的知识基础,在设计教学时,我注重联系学生的生活经验,创设有效的教学情境,精心组织活动,为学生提供探究空间、交流平台以促进学生主动学习。

案例描述:

教学目标:

1、通过多种活动,充分体验有些事情的发生是确定的,有些事情的发生是不确定的,并能用“一定、可能、不可能”来描述事情发生的可能性。

2、在探索、解决问题的过程中,形成初步的判断、推理、概括能力。

3、激发学生学习数学的兴趣,产生积极的情感体验。

教学重点:

感受体验事情发生的确定性和不确定性,会判断生活中“一定、可能、不可能”发生的事情。

教、学具:、彩球、塑料袋

教学过程:

一、创设情景,初步感知

1、初步感受事情发生的确定性

(1)用“一定”来描述事情发生的确定性。

师:同学们,老师最近学会了一种很神奇的魔法,想表演给大家看,你们想看吗?

生:想看。

师:老师手里有一个魔袋(一个不透明的袋子),里面装着一些彩球,请同学们从里面任意摸出一个,我能猜出它是什么颜色的。你们相信吗?

(学生有的说信,有的说不信)

师:那我们就试试吧。

(师出示一个不透明的袋子,里面装有彩球,请学生任意摸出一个球,老师都能准确猜出球的颜色。学生猜测,袋中装的都是黄颜色的球。)

师:因为袋中装的全都是黄球,所以从里面任意摸出一个,结果怎样?

师:当事情确定会发生时,我们可以用“一定”来描述。(板书:一定)

把白球倒入空的不透明的袋子中,请学生描述会摸到什么颜色的球?

[设计意图:良好的开端是成功的一半,一开始由猜球游戏导入新课,使学生很快进入最佳学习状态,兴趣盎然、主动参与。使学生在参与猜球的过程中明白“一定”的涵义,初步体验到什么有些事件的发生是“一定”的。]

(2)用“不可能”来描述事情发生的确定性。

师:林老师想从袋中(刚才装白球的袋)摸出一个红球,行吗?为什么?

师:确定不会发生的事情,我们就用“不可能”(板书:不可能)来描述。从这个袋中还不可能摸出什么颜色的球?

[设计意图:在学生已经理解“一定”的.基础上,自然而然地引出“不可能”发生的事情,进一步体验什么情况下事件的发生是“不可能”的。至此,学生对确定性事件已经形成了初步的认识。]

2、初步感受事情发生的不确定性。

(1)用“可能”来描述事情发生的不确定性。

师:(往只装有白球的袋中倒入若干个黄球)这时,任意摸出一个球,结果怎样?

引导:用“可能”来描述事情发生的不确定性。

(2)加深对“可能”的理解。

请学生从装有黄、白、红球的袋中任意摸出一个球,摸之前先猜一猜可能摸到什么颜色的球。

[设计意图:让学生在猜测中主动参与,学会用自己的语言来描述事件发生的情况,为新知内化创造条件。]

二、互动交流,深层体验

1、“生本”对话,描述可能性。

师:通过刚才的活动,我们知道,当事情确定发生时,我们可以用“一定”来描述,当事情确定不会发生时,我们可以用“不可能”来描述,当事情不确定发生时,我们可以用“可能”来描述。下面,老师给大家介绍书上的几位小朋友(出示例1的插图)请同学们仔细观察,你能用“一定”、“不可能”、“可能”对正要摸棋的小朋友说些什么吗?

[设计意图:对话是课堂学习、交流不可缺少的,让学生和书本进行“对话”,学生觉得新颖有趣,乐于对话,敢于对话,在对话交流中既进一步巩固了新知,又提高了学生的观察、推理、交流等数学能力。]

2、揭示课题

3、学习例2,判断可能性。

出示例2,生独立判断,交流汇报。

[设计意图;至此,学生对本节课所学的内容已经有了一定的掌握,对于例2放手让学生独立学习,培养学生自主学习的能力。]

三、联系生活,应用拓展

1、“生生”对话。

小组内活动:

①往袋中装球,用“一定、不可能、可能”说一句话。

②提出一个要求,根据要求来装球。

小组间活动:

小组派代表,向其它小组的同学提问题,当场解决。

[设计意图:再次设计对话环节,小组内的生生交流,小组间的生生对话无不体现学生的自主性,充分发挥了学生的主体作用。]

2、辨一辨。(书本习题)

3、涂一涂。(书本习题)

4、用“一定、可能、不可能”举一举生活中的例子。

[设计意图:让学生带着数学去理解生活,结合生活去体会数学的价值。]

四、课堂总结,升华情感

师:这节课,你学会了什么,有什么收获?觉得自己学得怎样?心情如何?

教学反思:

1、 较好地整好教学资源。

这节课的教学应创设更多的情境让学生在其中体验。教科书提供了丰富的情境材料,在此基础上,我以进行了整合。如例1这之前先设计摸球、猜球的颜色等活动来初步感知事情发生的可能性。对例1也进行了改编,与书本的小朋友进行对话,进一步体验事情发生的可能性。

2、 灵活地组织数学活动。

“数学教学是数学活动的教学”本节课的教学按照学生的认知规律和教学内容的特殊性,灵活地组织数学活动,给学生提供较充足的活动空间,探索空间和创造空间,使学生在操作、比较、实践中认识“可能性”如课一开始的“猜一猜”活动,接下来的“摸球”活动,小组内及小组间活动等,全过程无处不是“可能性”的学习与判断,可以说活动贯穿全课,“可能性”也融贯全课。

3、 精心设计教学对话。

每一堂课都离不开对话,本节课的教学对话可以说是一个亮点。在教学设计时,我非常注重“对话”在教学过程中的积极作用。主要体现在以下三点。

(1) 师生对话

在与学生对话中,我注重用饱满热情、生动的语言,自然可亲的态度与学生进行交流互动,创设平等、**、和谐的课堂氛围,同时关注对学生表达、概括能力的培养。

(2) 生本对话

教学例1时,我设计了“生本”对话环节:“你能用一定、不一定、可能和书上这位正要摸球的小男孩说些什么吗?”学生对这一活动感到新颖、有趣,乐于对话,敢于对话,在对话中既进一步巩固了新知,又提高了学生的观察、推理、交流等数学能力。

(3) 生生对话

在教学完例2后,我又设计了“生生”对话环节。小组内的生生交流,小组间的生生对话无不体现学生的自主性,充分发挥了学生的主体作用。

反思不足之处:

在小组间的交流活动过程中,教师过于放手,学生所提问题不能很好的围绕“可能性”来展开。好果教师事先做一定的示范、指导,再放手让学生活动,这样可增强活动的可操作性和有效性。

可能性教案 篇5

教学目的:

1、能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。

2、通过实际操作活动,培养学生的动手实践能力。

3、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。

教学重、难点:

能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。

教学过程:

一、引入

用自己的话说一说什么是“可能性”举例子说明。

今天我们继续学习

教案《人教版三年级数学上册《可能性》教案》,来自网!

关于“可能性”的知识。

二、实践探索新知

1、教学例3(比较两种结果的可能性大小)

(1)观察、猜测

出示小盒子,展出其中的小球色彩、数量,(四红一蓝)

如果请一位同学上来摸一个球,你们猜猜他会摸到什么颜色的球?

和同桌说一说,你为什么这样猜?

(2)实践验证

学生小组操作、汇报实践结果。

汇总各小组的实验结果:几组摸到红,几组摸到了蓝色。

从小组汇报中你发现了什么?为什么会有这样的情况?

小结:摸到红色多,摸到蓝色的少,因为盒中球红多蓝少。

(3)活动体验可能性的大小

小组成员轮流摸出一个球,记录它的颜色,再放回去,重复20次。

活动汇报、小结

实验过程中,要让学生体会到两点:一、每次摸出的结果是红色还是蓝色,这是随机的,不以人的主观意愿而变化。二、但摸的次数多了以后,在统计上就呈现某种共同的规律性,就是摸出蓝的.次数比红多。

(4)小组实验结果比较

比较后,你发现了什么规律?

出示多组的实验结果,虽然数据不一致,但呈现的规律是相同的

2、教学例4

(1)出示盒内球(一绿四蓝七红)

(2)猜一猜,摸出哪种颜色的球可能性最大,摸出哪种颜色的球的可能性最小?为什么?

3、P106“做一做”

图中每种颜色进行了分割,此时学生可以用数份数的方法来看三种颜色所占的区域大小。

利用前面学过的分数的知识让学生说一说每种颜色占整个圆面的几分之几,为以后学习可能性的精确值做铺垫(因为概率与这些分数相等)。

三、练习

P1094

第4题,是一种逆向思维。并体现开放性,如第1小题,只要红比蓝多,就能满足条件。第2小题,只要蓝比红多,都满足条件。

P1095

教学反思:

可能性教案 篇6

教学设计

1、通过对生活中各种事件的概率的判断,归纳出必然事件、不可能事件和随机事件的特点,并根据这些特点对有关事件做出准确的判断;(重点)

2、知道事件发生的可能性是有大小的(难点)

一、情境导入

在一些成语中也蕴含着事件类型,例如瓮中捉鳖、拔苗助长、守株待兔和水中捞月所描述的事件分别属于什么类型的事件呢?

二、合作探究

探究点一:必然事件、不可能事件和随机事件

【类型一】必然事件

一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是()

A、摸出的4个球中至少有一个是白球

B、摸出的4个球中至少有一个是黑球

C、摸出的4个球中至少有两个是黑球

D、摸出的4个球中至少有两个是白球

解析:∵袋子中只有3个白球,而有5个黑球,∴摸出的4个球可能都是黑球,因此选项A是不确定事件;摸出的4个球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪种情况,至少有一个球是黑球,∴选项B是必然事件;摸出的4个球可能为1黑3白,∴选项C是不确定事件;摸出的4个球可能都是黑球或1白3黑,∴选项D是不确定事件、故选B、

方法总结:事件类型的判断首先要判断该事件发生与否是不是确定的若是确定的,再判断其是必然发生的(必然事件),还是必然不发生的(不可能事件)、若是不确定的,则该事件是不确定事件、

变式训练:见《学练优》本课时练习“课堂达标训练”第1题

【类型二】不可能事件

下列事件中不可能发生的是()

A、打开电视机,中央一台正在播放新闻

B、我们班的同学将来会有人当选为劳动模范

C、在空气中,光的传播速度比声音的传播速度快

D、太阳从西边升起

解析:“太阳从西边升起”这个事件一定不会发生,所以它是一个不可能事件、故选D、

变式训练:见《学练优》本课时练习“课堂达标训练”第2题

【类型三】随机事件

下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④测量三角形的内角和,结果是180°、其中是随机事件的.是________(填序号)、

解析:书的页码可能是奇数,也有可能是偶数,所以事件①是随机事件;100℃的气温人不能生存,所以不可能测得这样的气温,所以事件②是不可能事件,属于确定事件;骰子六个面的数字分别是1、2、3、4、5、6,因此事件③是随机事件;三角形内角和总是180°,所以事件④是必然事件,属于确定事件、故答案是①③、

变式训练:见《学练优》本课时练习“课堂达标训练”第6题

探究点二:随机事件发生的可能性

掷一枚均匀的骰子,前5次朝上的点数恰好是1~5,则第6次朝上的点数()

A、一定是6

B、是6的可能性大于是1~5中的任意一个数的可能性

C、一定不是6

D、是6的可能性等于是1~5中的任意一个数的可能性

解析:要分清可能与可能性的区别:可能是情况的分类数目,是正整数;可能性指事件发生的概率,是一个0到1之间的分数、要求可能性的大小,只需求出各自所占的比例大小即可、第6次朝上的点数可能是6,故A、D均错;因为一枚均匀的骰子上有1~6六个数,所以出现的点数为1~6的可能性相同,故B错,D对、故选D、

方法总结:不确定事件的可能性有大有小、骰子在掷的过程中,每个点数出现的可能性是一样的

变式训练:见《学练优》本课时练习“课堂达标训练”第11题

三、板书设计

1、必然事件、不可能事件和随机事件

必然事件:一定会发生的事件;

不可能事件:一定不会发生的事件;

必然事件和不可能事件统称为确定事件;

随机事件:无法事先确定一次试验中会不会发生的事件、

2、随机事件发生的可能性

教学过程中,结合生活实际,对身边事件发生的情况作出判断,通过实测理解掌握定义,鼓励学生展开想象,积极参与到课堂学习中去。

《6、1感受可能性》课时练习

一、选择题(共15个小题)

1、下列说法正确的是()

A、随机事件发生的可能性是50%

B、确定事件发生的可能性是1

C、为了了解岳阳5万名学生中考数学成绩,可以从中抽取10名学生作为样本

D、确定事件发生的可能性是0或1

答案:D

解析:解答:对于A,随机事件发生的可能性大于0,而小于100%,是在一个范围之内,并不是一个确定的数值;对于B,确定事件,包括发生的可能性是0或1;对于C,应该是从中抽取10名学生的中考数学成绩作为一个样本;D是在B的基础上完整叙述,正确、故选D、

分析:本题考察对多个知识点的理解,关键是认真对照各知识点内容、

6、1感受可能性同步练习

一、选择——基础知识运用

1、不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()

A、摸出的是3个白球

B、摸出的是3个黑球

C、摸出的是2个白球、1个黑球

D、摸出的是2个黑球、1个白球

2、在1,3,5,7,9中任取出两个数,组成一个奇数的两位数,这一事件是()

A、不确定事件B、不可能事件

C、可能性大的事件D、必然事件

3、下列事件是必然事件的是()

A、打开电视机正在播放广告

B、投掷一枚质地均匀的硬币100次,正面向上的次数为50次

C、任意一个一元二次方程都有实数根

D、在平面上任意画一个三角形,其内角和是180°

可能性教案 篇7

教材分析

从选择的素材看,准备部分是十分简单的随机事件,事件的可能性是1/2;例2的情境复杂一些,要用其他分数表示可能性的大小。从研究的可能性看,两道例题都是等可能性,可以用相同的分数表示;“试一试”和练习出现可能性不相等的现象,要用不同的分数分别表示。从问题的难度看,先是摸到某只球、某张牌的可能性,然后是摸到某种花色的牌、某种颜色的球的可能性。

学情分析

是让学生初步认识确定性事件和不确定现象。在此基础上,继续教学可能性,用分数表示事件发生的'可能性有多大。从感性描述可能性到定量刻画可能性,对可能性的体验深入了一步。

教学目标

1、通过学习,让学生进一步感受事件发生的不确定性,增强学生量化的数学意识。

2、学会初步预测不确定事件发生的可能性的大小,理解并掌握用分数表示可能性大小的基本思考方法。

3、认识数学与生活的联系,使学生明确生活中任何幸运和偶然的背后都是有科学规律支配的。

4、进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。

教学重点和难点

重点:理解并掌握用分数表示可能性的大小的基本思考方法。

难点:是在认识事件发生的不确定现象中感受统计概率的数学思想。

教学过程

一、复习旧知,唤起经验。

同学们一定玩过抛硬币游戏,其实抛硬币在生活中有很多的应用(足球、排球),我们一起来看看它在足球比赛中的运用吧。

板书:可能性

这一环节的设计是从学生感兴趣的事出发,带领学生用数学的眼光来研究生活现象,增强学生学习的欲望,提高学生学习兴趣。

二、创设情境、引导发现

1、教学例1

(1)课件出示例1场景图 ,提出问题。

足球比赛中是用抛硬币决定谁先发球的,乒乓球比赛中时是怎么决定谁先发球的?

提问:用猜左右的方法决定由谁先发球公平吗?为什么?

2、同步体验:试一试

这一环节的设计是让学生在可能性的基础上,有意义地接受“猜对或猜错的可能性都相等”。同步练习和体验帮助学生进一步明确用几分之一表示可能性大小的思考方法。

三、迁移和提升。

教学例2

1、 课件出示例2中的实物图(逐一出示,学生说出各是什么牌)

2、提问迁移。

3、对比提升。

这一环节的设计是让学生在可能性的基础上,有意义地接受“猜对或猜错的可能性都相等”。同步练习和体验帮助学生进一步明确用几分之一表示可能性大小的思考方法。

四、实践与应用。

1、生活中的数学问题。(一边说一边出示“转一转”课件)

2、出示练一练

这一环节的设计是借助转盘创设了转盘的游戏情境,让学生自主探索事件发生的可能性是几分之几,帮助学生进一步巩固用几分之几表示可能性大小的方法。

五、巩固练习

六、课堂小结

这两个环节的设计是通过总结、游戏和释疑,既呼应了开头,解开了学生心中的疑团,培养了学生小组合作的精神和动手操作的能力,也使学生明确生活中任何幸运和偶然的背后都是有科学规律支配的。进一步感受数学思考的严谨性。

实用的可能性教案四篇

作为一位无私奉献的人民教师,就难以避免地要准备教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。我们应该怎么写教案呢?以下是小编整理的可能性教案4篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

可能性教案 篇8

【教学内容】

义务教育课程标准实验教科书(西师版)四年级上册第125~126页例1、例2,第127页课堂活动,练习二十五第1题。

【教学目标】

1.能在活动中初步体验有些事件的发生是可能的,有些则是不可能的。

2.在具体的情景中能用“一定”、“可能”、“不可能”等术语来判断生活中的确定现象和不确定现象。

3.体验数学与生活的联系,培养学生猜想、分析、判断、推理以及语言表达能力。

【教学重点】

在具体的活动情景中体验生活中的确定现象和不确定现象。

【教学难点】

能用比较规范的数学语言对确定现象和不确定现象进行分析描述。

【教具学具准备】

硬币、装乒乓球的盒子等。

【教学过程】

一、情景引入

1.教师:上课之前告诉同学们一个消息,我们班马上要转来一位新同学,请同学们猜一猜,是男同学还是女同学?”

2.学生猜:可能是男同学,也可能是女同学,不能确定,都有可能。

3.教师小结:生活中,有些事情我们可以确定它的结果,有的事情则不能确定它的结果。这节课我们一起来研究事情发生的可能性。

(板书课题)

二、探究新知

1?研究不确定现象。

(1)教师:大家喜欢玩游戏吗?我们来玩一个抛硬币游戏怎么样?抛硬币之前请同学们猜一猜硬币落地后,是

正面向上呢?还是反面向上?

(2)学生分组进行抛硬币活动,注意记录和观察硬币落地后,是正面向上还是反面向上。

(3)活动后请学生用语言描述硬币落地后,是正面向上还是反面向上,得出这件事是不确定的结论。

(4)教师引导学生用规范语言描述:同学们的这些意思,在数学上我们一般用“可能……也可能……”(板书:可能……也可能……)这个词语来描述这种不确定现象。

(5)教师小结:抛一枚硬币,落地后可能是正面向上,也可能是反面向上,在数学上,我们把像这样的,可能出现的结果不止一种,而使人们事先不能确定的现象叫做“不确定现象”

(板书:结果不止一种?不确定)。

2?研究确定现象

(1)展示盒子里的球——全是白球。学生可分组摸球后,记录摸球后的结果。教师:当盒子里全是白球时,从里面任意摸出一个,结果怎样呢?学生用自己的语言进行描述:全是白球,都是白球……

教师引导规范语言:同学们的这些意思,在数学上我们一般用“一定”这个词来说。

(板书:一定)

教师:这样放球可能从盒子里摸出黄球吗?

学生用自己的语言进行描述:不可能,不会……

教师引导规范语言:同学们的这些意思,在数学上我们一般用“不可能”这个词来说。

(板书:不可能)

教师:(展示盒子里的球——全是黄球)当盒子里全是黄球时,从里面任意摸出一个,结果又怎样呢?

学生用“一定”、“不可能”来描述摸球结果。教师小结:像这样结果只有一种,我们就用“一定”、“不可能”来描述确定现象。

三、猜想验证

1.(教师将两种球混装)提问:现在盒子里装了3个黄球和3个白球,从里面任意摸出一个,会是什么球呢?教师引导学生用规范语言来描述摸球结果。

2.小组摸球,试验验证。

(1)试验要求。

教师:老师给每组都准备了一个盒子,里面有3个黄球和3个白球。请组长负责安排,小朋友按次序摸球。

要求:

①每人可以摸两次,摸之前要先想想:会摸出什么球呢?然后再摸。

②组内的记录员要将小朋友每次摸球的结果记录下来。

③每次摸出的球要放回盒子里摇一摇,再继续摸。教师:比一比哪个小组最会合作,小组活动开展得又快又好。小组活动,教师巡回指导。

(2)教师小结:完成教科书127~128页1~3题。

2.讨论生活中的不确定现象。

教师:生活中,哪些是可能发生的事情?哪些是一定要发生的事情?

教师举例,引导思考,如:“猜中指”、“石头、剪子、布”等游戏。教师:谁来介绍一下这些游戏?你能预测一下结果吗?

教师小结:可能出现的结果不止一种,是事先不能确定的。

学生举例,分析游戏结果。

教师:想一想,平常你还玩过哪些游戏,或者你能不能自己来设计这样一个游戏,使它可能出现的'结果不止一种,是事先不能确定的。

要求:独立思考,同桌互玩,边玩边想:这个游戏的结果是确定的吗?为什么?

学生汇报交流。

教师小结:刚才大家说的这些有趣的游戏,它可能出现的的结果不止一种,在玩之前是不能确定的,属于数学上的“不确定现象”。也正是因为结果的不确定,人们才可以反复玩,在可能出现的结果中去感受无穷的乐趣。

四、全课小结

教师:今天我们研究了什么知识?你有哪些收获?

可能性教案 篇9

教学目标:

1.通过媒体能够列出简单的试验所有可能发生的结果。

2.通过模拟实验,知道事件发生的可能性是有大小的。

3.能对一些简单事件发生的可能性做出描述,并和同伴交换想法。

教学过程:

一.引入:

1.投飞镖游戏:

计算机模拟两个飞镖盘:

先让同桌进行比赛,各投五次(计算机发镖)

学生发现游戏不公平,说出理由。

2.验证:计算机同时投掷20镖。(告知学生,同样的个数,同样的投掷发现)

小结展示:两个镖盘都有可能被投到黑色和白色 区域,但是后面一个被投中的可能性更大。

3.师:今天我们来研究一下不确定事件中可能性的大小问题。

二.探究:

1.实验:出示一个透明的箱子,展示出里面的内容,再遮蔽,学生通过鼠标去摸取一个棋子,用电子表格记录,再放回去,重复20次。

2.汇总结果:从主机上展示所有同学的记录情况

(1)摸出的棋子有两种可能性,一是摸出红旗子,二是摸出兰棋子。

(2)而且发现总是摸出的红旗子的次数比兰棋子多。

3.组织讨论,思考:

为什么不会摸出其他颜色的棋子?

为什么摸出的红旗子的次数比兰棋子多。

3.反馈小结和展示:因为盒子里只有两种颜色的棋子,所以摸出棋子的可能性也只有两种;在每个棋子的大小样式都一样的情况下,每个棋子被摸出的可能性都一样大,但是红旗子的数量比兰棋子要多,所以摸出红旗子的可能性和兰棋子的可能性是不一样的。红旗子数量多,摸出红旗子的可能性就大。

演示系统再提出:再摸一次,猜猜看,摸出那种棋子的可能性大?

4.转盘辩析:

出示两种转盘,请学生预测指针停的可能性有几种?哪一种可能性大。

5.情景辩析:

小明家离车站100米左右,平时走路5分钟就可走到。今天他要出门,车子9:30到,他在9:20分准备出门?他能赶上这辆车吗?

(1)预测可能性有几种?(赶上和没赶上两种)

(2)哪一种的可能性大?

三.练习:

1.在原盘中涂上蓝色和红色两种颜色。

要求:(1)指针停在红色的可能性大。

(3)指针停在蓝色的可能性大。

2.设置模拟情景:我是小小督察员。

一个商场门口,有一个转盘抽奖活动,根据转盘来判断,商场是否有欺诈消费者的嫌疑,抽奖是否公平。

四.小结:

数学 - 可能性的大小

可能性教案汇编6篇

作为一名优秀的教育工作者,很有必要精心设计一份教案,教案是教学活动的依据,有着重要的地位。来参考自己需要的教案吧!以下是小编帮大家整理的可能性教案6篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

可能性教案 篇10

【教材分析】

(一)教学内容分析:

可能性和概率是七年级下册第三章《事件的可能性》的第3节内容。这是在学生通过具体情境了解了必然事件、不确定事件、不可能事件等概念,并在具体情境中了解事件发生的可能性的意义,会用列举法(包括列表、画树状图)统计在简单问题情境中可能发生的事件的种数的基础上,对其中的可能性事件的进一步学习和提升。通过一些简单的事例,初步认识概率的意义,导出等可能性事件的概率公式,知道不可能事件的概率为0,必然事件的概率为1,不确定事件的概率大于0且小于1。这样的安排完全是按照《新课程标准》的分步到位,螺旋式上升的整体设计。

教材中通过以下步骤建立概率的意义:通过实例认识事件发生的可能性及其大小——用事件发生的可能性的大小定义概率——在等可能性的前提下用比的形式来表示概率。其中第3个步骤“等可能性”这个前提十分重要。课本通过说理的方法来让学生认识等可能性。有关概率的概念,本教科书将在八年级下册学习频数和频率的基础上,主要安排在九年级上册学习。因此在本章教学中尽量不随意提高要求,主要是为以后的进一步学习打下扎实的基础。同时也进一步使学生了解概率的产生与发展是与生产、生活紧密联系的。

(二)学情分析

考虑到七年级学生的认知水平和知识结构,遵循启发式原则,在新课标的指导下,本节课采取发现与探究结合的教学方法。充分体现教师组织、引导、合作的作用,凸现学生的主体作用,让学生充分经历实际问题的情景,这是认识事件发生的可能性及其大小的唯一途径。教学中应通过大量的实际例子,让学生知道什么是等可能性?怎样认识两个事件发生的可能性是否相等?计算等可能事件发生的概率对学生来说不太容易。 涉及一些简单事件的概率计算,主要目的是让学生初步认识概率的意义,以及在等可能性的条件下概率的一种直观表现形式。这是学生学习了事件的可能性后的一个自然延伸。在教学中,应注意所学内容与日常生活、自然、社会和科学技术领域的联系。让学生感受到学习等可能性事件的概率的重要性和必要性。还应注意使学生在具体情境中体会事件的可能性与概率的意义。这些不仅是学习本节的关键,对于学好本章及至以后各章也是很重要的。

【教学目标】

1、 了解概率的意义

2、 了解等可能性事件的概率公式

3、 会用列举法(包括列表、画树状图)计算简单事件发生的概率

进一步认识游戏规则的公平性

【教学重点、难点】

重点:概率的意义及其表示

难点:例2涉及转盘自由转动2次,事件发生的条件构成比较复杂,是本节教学的难点。

【教学过程】

(一) 创设情境,引入新知:

引例:小红与小李被同学们推选为班长,获票数相等,谁担任正班长哪?老师决定用抽签的办法来决定:做4个纸团,其中只有1个纸团里写有“正”字。由小红从中任取1个纸团。抽出有“正”字的纸团,就决定由小红担任正班长。这个办法公平吗?如果不公平,怎样改正才会使之公平?

分析:小红从4个纸团中抽出写有“正”字的纸团的可能性是 ,即小红担任正班长的可能性是 。如果小红抽到写有“正”字的纸团,就决定由小红担任正班长,这个办法不公平。然后由学生共同合作讨论,得到改正的方法。而且,这改正的方法不止一种。要充分发挥学生的主观能动性和合作精神,让学生积极参与。

解答:这种抽签决定正班长的办法是不公平的,如果仅对小红而言是不公平的。如果小李也按这个办法实行,小李担任正班长的可能性也是 ,也就是说,双方获胜的可能性相同。这个办法才是公平的。(改正的方案不唯一)

(这样的引入,体现数学来源于生活,素材与学生现实紧密结合,从解决实际问题的欲望而促进对数学学习的兴趣,鼓励合作学习。从多角度思考,采用多种解决问题的办法,创造积极合作、讨论的氛围。)

(二) 师生互动,探索新知:

从此题解答中可以得到,在客观条件下使小红与小李抽签胜出的可能性大小相等(也称机会均等)那么才是公平的。而事实上,我们在日常生活中,常常会遇到指明可能性大小的情况:教师可举一些描述实际生活中有关可能性大小的几个例子:

①小明百分之百可以在一分钟内打字50个以上,即小明在一分钟内打字50个以上的可能性是100%。

②小华不可能在7秒内跑完100米,即小华在 秒内跑完100米的可能性是0。

③通过摇奖,要把一份奖品奖给10个人中的一个。每人得奖的可能性是 。

接着类似的可以让学生自己结合生活经验独立举一些例子。

(这样的安排是使学生有独立思考的空间并让学生充分发表自己的意见。只要合理、正确都予以高度肯定,激发学生的兴趣。但学生难免犯错,但相信同学之间也能纠错。教师放手让学生在互相讨论和互相评价中得以提高和加深对知识的理解。在学生评价中,集思广益,能体会到如何更完善和辨证地分析问题。)

然后教师归纳,在教学中我们把事件发生的可能性的大小也称为事件发生的概率,一般用 表示。事件 发生的概率也记为 ,事件 发生的概率记为 ,依此类推。

如果我们知道事件发生的可能性相同的各种结果的总数,并且知道其中事件 发生的可能的结果总数,那么就可用以下式子表示事件 发生的概率:

强调:概率的数学意义是一种比率,这个概率公式适用的条件——事件发生的各种可能结果的可能性都相等。这一点学生容易疏忽。可根据学生具体情况确定是否再举一些实例加以辨别各种可能结果的可能性是否都相等。

例如:任意抛掷一枚硬币,有“正面朝上”和“反面朝上”两种结果。由于硬币质地均匀,抛掷时具有任意性,所以出现“正面朝上”和“反面朝上”的可能性认为是相等的。适用等可能性事件的概率公式。而对于“投篮”,虽然也只有两种可能结果:“命中”与“没命中”,但由于投篮的命中率与投篮者的技术水平相关,“命中”与“没命中”的可能性通常是不相等的。

(三) 讲解例题,综合运用:

在弄清等可能性的含义后,就可以应用本节课的概率公式解决实际问题。

例1:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数是1的概率是多少?是偶数的概率是多少?是正数的概率是多少?是负数的概率是多少?

分析:由于一枚骰子有六个面。当骰子停止运动后,每一个面朝上的可能性都为 。即为等可能性事件。因此可用概率的公式计算。

解:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数有可能性相同的 种可能,即1、2、3、4、5、6。所以朝上一面的数是 只有 种可能,即朝上一面的数是 的概率 ;是偶数的有 种可能,即2、4、6。所以朝上一面的数是偶数的概率 ;是正数的有 种可能,即1、2、3、4、5、6。所以朝上一面的数是正数的概率 ;是负数的可能结果有 种,即所有可能的结果都不是负数,所以朝上一面的数是负数的概率 。

一般地,必然事件发生的概率为100%,即 。不可能事件发生的概率为0,即 。而不确定事件发生的概率介于0与1之间,即 。

(例1的目的主要巩固等可能性事件的概率公式,教师着重讲清解法的思路和方法步骤。解这类问题的基本思路是先分析判断是否适用等可能性事件的概率公式。然后统计所有可能的结果数和所求概率的事件所包含的结果数,再把它们代入公式求出所求概率。)

从例1中自然引出必然事件的'概率为1,不可能事件的概率为0,不确定事件的概率为 。

(四) 练习反馈,巩固新知:

做一做:

1、 从你所在小组任意挑选一名同学参加诗朗诵活动,正好挑中你的可能性是多少?

(根据班级各小组的实际人数回答)

2、 转盘上涂有红、蓝、绿、黄四种颜色,

每种颜色的面积相同。自由转动一次转盘,

指针落在红色 区域的概率是多少?

指针落在红色或绿色 区域的概率是多少?

(1/4,1/2)

(五)变式练习,拓展应用:

例2:如图所示的是一个红、黄两色各占

一半的转盘,让转盘自由转动2次,指针2

次都落在红色 区域的概率是多少?一次落在

红色 区域,另一次落在黄色 区域的概率是多少?

分析:

(1)由于转盘上红、黄两色面积各占一半,转盘自由转动一次,指针落在黄色 区域和落在红色 区域的可能性是相同的。

(2)统计所有可能的结果数,让学生自己列表或画树状图。应注意转盘的两次自由转动意味着事件的发生分两个步骤,各种可能包括了顺序的因素。

(3)统计所求各个事件所包含的可能结果数。

解:根据如图的树状图,所

有可能性相同的结果数有4种:

黄,黄;黄,红;红,黄;红,红。

其中2次指针都落在红色 区域的可能结

果只有1种,所以2次都落在红色 区域

的概率 ;

一次落在红色 区域,另一次落在黄色 区域的可能有结果2种,所以一次落在红色 区域,另一次落在黄色 区域的概率 。

变式:在例2的条件下,再问:第一次落在红色 区域,第二次落在黄色 区域的概率是多少?讲解时注意让学生自己分析同例2的第二问的区别。从中求出变式的正确的解答为 。

(本环节主要让学生体验变式中的探究学习,培养学生的严谨的科学态度,提倡题后反思。)

(五) 反思总结,布置作业:

引导学生总结本节课的所学知识,反思有什么样的收获。进一步激发学生的学习热情,也让参与反思的学生更多。在交流的过程中学会学习,完善自己的知识体系。然后布置作业,有助于学生应用能力和创新能力的培养。

五、教学说明:

本章计算等可能性事件的概率只涉及简单的独立事件。一般每次取1个,最多取3次。教师应把握好教学要求。

可能性教案 篇11

【教学目标】

1.通过让学生经历实际问题的情景,认识事件发生可能性大小的意义。

2.了解事件发生的可能性大小是由发生事件的条件来决定的。

3.会在简单情景下比较事件发生的可能性大小。

4.通过创设游戏情境,让学生感受到生活中处处有数学。主动参与,做“数学实验”,激发学生学习的热情和兴趣,激活学生思维。

【教学重点、难点】

教学重点:认识事件发生可能性大小的意义。

教学难点:在问题情景比较复杂的情况下,比较事件发生的可能性大小

【教学过程】

一、 创设情境引入新知

提出问题:在一个盒子里放有4个红棋,1个蓝棋,摸出一个棋子,可能是什么颜色?摸出红棋的可能性大还是摸出蓝棋的可能性大?

为了解决这个问题,可先让学生分小组进行摸球游戏:

1、每位同学轮流从盒子中摸球,记录所摸得棋子的颜色,并将球放回盒中。

2、做20次这样的活动,将最终结果填在表中。

3、全班将各小组活动进行汇总,摸到红棋的次数是多少?摸到蓝棋的次数是多少?

4、如果从盒中任意摸出一球,你认为摸到哪种颜色的棋子可能性大?

游戏的结论:

在上面的摸球活动中,每次摸到的球的颜色是不确定的。摸出红棋的可能性比摸出蓝棋的可能性大,原因是红棋的数量比蓝棋多。

一般地,不确定事件发生的可能性是有大小的。

说明:摸棋游戏教师首先要使学生明确试验的过程,“摸出一个棋子,记录下它的颜色,再放回去,重复20次”。然后还要使学生明确组内成员的分工,应有人负责摸出棋子,有人负责记录下它的颜色,并应提醒学生在试验前要选择好统计试验数据的方法(可以用画“正”字的方法)。而且还要向学生说明在试验的过程中,应注意保证试验的随机性,如:每次摸棋子前应将盒中的棋子摇匀;摸棋子时不要偷看等。在各小组进行试验的过程中,教师应关注每一个小组,及时给予指导,保证试验的随机性。

二、观察思考 理解新知

请考虑下面问题:

(1)如果你和象棋职业棋手下一盘象棋,谁赢利的可能性大?

分析:根据本人的实际棋艺水平来确定,答案不唯一。

(2)有一批成品西装,经质量检验,正品率达到98%。从这批西装中任意抽出1件,是正品的可能性大,还是次品的可能性大?

分析:要比较“任意抽出1件是正品”与“任意抽出1件是次品”两个事件发生的可能性大小,只要比较两个事件发生的条件:“正品率达到98%”与“次品率达到2%”,显然抽到正品的可能性大。

(3)任意抛一枚均匀的硬币,出现正面朝上、反面朝上的可能性相等吗?

分析:任意抛一枚均匀的硬币,有两种可能①正面朝上②反面朝上,因为它们出现的机会均等,所以出现正面朝上、反面朝上的可能性相等。

(4)一个游戏转盘如图,红、黄、蓝、绿四个扇形的圆心角度数分别是90°,60°,90°,120°。让转盘自由转动,当转盘停止后,指针落在哪个区域的可能性最大?在哪个区域的可能性最小?有可能性相等的情况吗?为什么?

分析:因为绿色扇形区域面积最大,黄色扇形区域面积最小,红、蓝色扇形区域面积相等,所以指针落在绿域的可能性最大,黄域的可能性最小,红、蓝域的可能性相等。

从上可得出以下结论:

①事件发生的可能性大小是由发生事件的条件来决定的。

②可能性的大小与数量的多少有关。

数量多(所占的区域面积大)?可能性大

数量少(所占的区域面积小)? 可能性小

三、师生互动运用新知

例1某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据什么?

分析:在教学中要求学生先分清事件发生的条件分别是什么?事件“遇到红灯”发生的条件是“红灯时间设置40秒”,事件“遇到绿灯”发生的条件是“绿灯时间设置60秒”,所以人或车随意经过该路口时,遇到绿灯的可能性最大,遇到红灯的可能性最小。本例相对容易,可让学生通过交流自己完成。

完成P76 1,2的`做一做

例2某旅游区的游览路线图如图3—4所示.小明通过入口后,每逢路口都任选一条道.问他进人A景区或B景区的可能性哪个较大?请说明理由.

分析:本题有一定难度,教学时要抓住这两个事件发生的条件,可分以下几个步骤:

(1)小明进入旅游区后一共有多少种可能的路线?可以把小明进入旅游区的A景点或进入旅游区B景点的过程分解为两个步骤:第一步进入左、中、右主干线,有3种可能,第2步进入每条主干线的两条支线,各有2种可能;

(2)将上述结果列表或画树状图;

(3)确认各种可能性是否相等,确认“进入A景点” “进入B景区”分别占了多少种,也就是确定两个事件发生的条件;

(4)比较两个事件发生的条件,判定哪个事件发生的可能性大。

完成课内练习1,2

四、梳理知识 形成结构

通过本节课的学习,谈谈你的收获?

在交流中,师生可共同梳理知识点:

(1)事件发生的可能性大小是由发生事件的条件来决定的。

(2)可能性的大小与数量的多少有关。

数量多(所占的区域面积大)?可能性大

数量少(所占的区域面积小)? 可能性小

五、应用新知 体验成功

1、小明任意买一张电影票(每排有40个座位),座位号是2的倍数与座位号是5的倍数的可能性哪个大?

答案: 2的倍数可能性哪个大。

2、请你在班上任意找一名同学,找到男同学与找到女同学的可能性哪个大?为什么?

答案:要根据该班的男、女实际人数来确定.如该班男同学22名,女同学24人,则任意找一名同学,找到女同学与的可能性比找到男同学的可能性大。

3、某公交车站共有1路、12路、31路三路车停靠,已知1路车8分钟一辆;12路车5分钟一辆、31路车10分钟一辆,则在某一时刻,小明去公交车站最先等到几路车的可能性最大。

答案:间隔时间最短,31路车间隔时间最长,所以小明去公交车站最先等到12路车的可能性最大。

4、盒子中有8个白球、4个黄球和2个红球,除颜色外其他相同。任意摸出一个球,可能出现哪些结果?哪一种可能性最大?哪一种可能性最小?

答案:任意摸出一个球,可能摸出白球、黄球或红球。任意摸出一个球,摸出白球可能性最大,摸出红球可能性小。

5、如图是小明家地板的部分示意图,它由大小相同的黑白两色正方形拼接而成,家中的小猫在地板上行走,请问:小猫踩在哪种颜色的正方形地板上可能性较大?

讲故事 5张

唱 歌 3张

跳 舞 1张

答案:由于黑色正方形比白色正方形块数多,所以小猫在地板上行走,踩在黑色的正方形地板上可能性较大。

6、联欢会上小红可能抽到什么节目?

抽到什么节目的可能性最大?抽到什么节目的 可能性最小?

答案:联欢会上小红可能抽到的节目是讲故事、唱歌或跳舞。抽到讲故事节目的可能性最大。

7、连续两次抛掷一枚均匀的硬币,朝上一面有几种可能?你认为两次正面朝上与一次正面朝上、一次正面朝下发生的可能性哪个大?

答案:

朝上一面有4种可能:①正、正 ②正、反③反、正 ④反、反。

一次正面朝上,另一次正朝面下发生的可能性大。

六、布置作业巩固新知

作业题:1 — 4必做5、6选做。

有关可能性教案集锦八篇

作为一名默默奉献的教育工作者,时常需要用到教案,教案是教学活动的总的组织纲领和行动方案。如何把教案做到重点突出呢?以下是小编精心整理的可能性教案8篇,欢迎阅读与收藏。

实用的可能性教案三篇

作为一名教职工,时常要开展教案准备工作,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。怎样写教案才更能起到其作用呢?下面是小编精心整理的可能性教案3篇,仅供参考,大家一起来看看吧。

可能性教案 篇12

教学内容:

义务教育课程标准实验教科书二年级上册第98—99页

教学目标:

1、通过一系列的游戏让学生体会到有些事情是确定的,有些事情是不确定的。初步能用“一定”“可能”“不可能”等词语描述生活中一些事情发生的可能性。

2、培养学生初步的判断和推理能力

3、培养学生学习数学的兴趣,形成良好的合作学习的态度

教学重难点:通过具体的操作活动,使学生体会事件发生的“可能性”。并能对一些事件的可能性做出正确判断。

教学准备:

1、每组2个口袋,1个装6个红球,1个装3个绿的和3个蓝的。

2、每组一个小正方体,写上1、1、2、2、3、3

3、4张不同图案的A

教学过程:

一、小组合作 游戏探知

1、小朋友你们喜欢玩游戏吗?那这节课就让我们一起来玩游戏好吗?

2、教师出示1个格子口袋:谁来猜一猜老师在袋子里装了什么东西呢?(学生猜)

想知道答案吗?(请一个小朋友上来在袋子外面摸一摸)

请你告诉小朋友老师在口袋里装了什么东西?(球)谁猜对了?

3、如果老师从口袋里任意摸出一个球,摸出的一定是红球吗?(出示:任意摸出一个球,摸出的一定是红球吗?)(学生猜一猜)

4、你想知道自己猜的对不对呢,让我们自己来试一试吧。

5、宣布规则:你们的桌子上也都有这个袋子,请组长拿袋子,按顺序给每人任意摸出一个球,然后记住你摸到的是什么颜色,再把球放在篮子里。开始

活动后统计:你们摸到的'都是什么颜色的球呀?刚才谁又猜对了。

6、为什么每一位同学摸出的都是红球呢?(因为袋子里都是红球,所以摸出来的一定是红球)出示读:袋子里都是红球,摸出的一定是红球。

7、小结:原来袋子里都是红球,所以每次摸到的——学生说:一定是红球。

8、拿出黑袋子,在这个袋子里任意摸出一个球,摸出的也一定是红球吗?为什么呢?有没有不同的想法?(学生猜)

9、按刚才的方法每人再任意摸一次,看一看摸出的还一定是红球吗?(学生小组活动)

10、提问:摸到红球的请举手?那么多人怎么会一个红球也没有摸到呢?什么原因呢?(袋子里没有红球,所以不可能摸到红球)出示读:袋子里没有红球,摸出的不可能是红球。

11、小结:原来袋子里只有蓝球和绿球,没有红球,所以摸出的——学生说:不可能是红球。板书:不可能

12、那你们刚才摸到的是什么颜色的球呀?(绿球和蓝球)

13、现在请组长在黑袋子里装进2个红球、2个蓝球、2个绿球。想一想任意摸一个球会是什么颜色的球?(可能是红球,也可能是绿球,还可能是黄球)为什么呢?(因为刚才放进去的是2个红球、2个蓝球、2个绿球呀)他的想法对吗?和他想的一样的请举手。想不想通过摸一摸来验证你的想法呢。注意:这次每人任意摸一个球看清楚颜色后,还要回放在袋子里,摇一摇再按顺序给其他小朋友摸(学生活动)

14、摸到红球的请举手?摸到蓝球的请举手?剩下的肯定是摸到绿球的吧。刚才我们摸到的有红球,也有蓝球,还有绿球。怎么会这样的呢?(因为袋子里放了红球、蓝球、绿球)所以摸出的出示读:板书:袋子里有红球、绿球、蓝球,摸出的可能是红球,也可能是蓝球,还可能是绿球。

15、小结:通过刚才的游戏,我们知道了:(学生一起读一读)袋子里都是红球,摸出的一定是红球。袋子里没有红球,摸出的不可能是红球。袋子里有红球、绿球、蓝球,摸出的可能是红球,也可能是蓝球,还可能是绿球。

二、联系生活 巩固新知

1、还想做摸球的游戏吗?

出示想想做做第一题图:从每个口袋里任意摸一个球,一定是黄球吗?(学生读要求)

老师强调:从每个口袋里任意摸一个球,一定是黄球吗?把你的想法先在小组里说一说。(学生小组交流)

全班交流:谁来说一说从每个口袋里任意摸一个球,一定是黄球吗?注意还要说出你的理由

指第一个口袋:任意摸一个球,一定是黄球吗?

(任意摸一个球不一定是黄球。可能是黄球,也可能是红球。因为袋子里有红球也有黄球。)

第二个袋子呢任意摸一个球,一定是黄球吗?(第二个口袋里任意摸一个球不可能是黄球。因为袋子里根本就没有黄球。)

还可以怎么说呢?(可能是蓝球也可能是红球)说的太好了

第三个袋子呢任意摸一个球,一定是黄球吗?(第三个袋子里任意摸出一个球一定是黄球。因为袋子里只有黄球。)

还可以怎么说呢?(不可能摸到其它颜色的球)说的真好

2、想玩摔股子游戏吗?

出示一个小正方体,给学生观察,老师在正方体的6个面上写上了哪几个数字?(1、2、3)我这样随便一摔,朝上的一面会是什么数字呢?(学生猜)老师摔,展示结果,是几?谁猜对了呀。还想玩这个游戏吗?下面老师请你们每人做一回小老师,(每桌发一个小正方体给第一位)玩的时候小老师要想老师刚才那样先让小朋友猜一猜是什么数字,然后再摔,看谁猜的对。按顺序每人摔一次。开始吧(学生活动)

提问:哪些人摔到了1?2呢是谁?剩下的肯定摔到的是3吧。

3、刚才你们玩的很开心,老师也想玩,同意吗?现在老师想玩摸球的游戏,请你们来为老师装球,好吗?

(1)想一想:每次口袋里该放什么球?

(2)出示;任意摸一个,不可能是绿球。

小组里可以先讨论一下该放什么球,然后有组长拿起该放的球举起来。

提问:为什么不拿绿球呢?(因为是任意摸一个,不可能是绿球。所以不能拿绿球。拿其它颜色的球都可以。)你们真聪明呀

(2)我还想摸一次可以吗?出示:任意摸一个,可能是绿球。现在看你们拿什么球了?商量好了组长举起来。(学生商量取球)怎么有那么多颜色的球呀?(因为要摸的可能是绿球,也有可能是红球,还有可能是蓝球)所以只要有绿球,然后再放其它颜色的都可以。你们又对了

(3)再装一袋,这次老师(出示:任意摸一个,一定是绿球。)该拿什么球呢?

怎么都是绿球呀?(因为老师任意摸一个,一定是绿球,所以不能拿其它颜色的球的)真聪明。如果我加了1个红球进去会怎么样呢?(就不一定是绿球了,可能是绿球也可能是红球了)如果现在袋子里放1个红球5个绿球,谁摸到的可能性大?(摸到绿球的可能性大)为什么呢?(绿球多,红球少)

4、的确,在生活中有些情况一定会发生,有些情况不可能会发生;还有些情况有可能发生,也有可能不发生。譬如你爸爸妈妈问你:你们查老师是女老师还是男老师,你肯定说是女老师,不可能回答是男老师吧;还有查老师和一个小朋友比,现在查老师一定比这位小朋友高。再过10年呢,查老师还一定比他高吗?为什么呢?

5、你也能用“一定”、“可能”和“不可能”来说说生活中的事吗?

学生说,师注意评价。

6、还想不想玩扑克牌游戏呢?

出示4张不同的A展示给学生看,现在老师手里有4张不同图案的A,(绞和一下)提问:最上面一张是什么图案的呢?(可能是……4种情况)出示:谁猜对了呀,你真厉害

现在上面的一张是什么图案的牌呢?为什么不猜(刚出来的图案)呢?(因为他已经不在里面了)。你真聪明!出示,谁又猜对了呢

现在还剩下2张牌了,(教师每只手各拿一张)你觉得这张可能是什么呀?如果这张是?那么这张就是?那你猜猜这张是什么呢?(学生猜)出示,谁又猜对了,

现在只有一张了,可以怎么样说?(这张一定是……)你们真聪明!出示

三、全课总结 拓宽延伸

1、这节课我们一起研究了有关可能性的知识(板书:可能性),

2、回家后把学到的新知识讲给爸爸妈妈听,再调查一下,看看生活中还有哪些事情一定能发生,哪些事情不可能发生或可能会发生,一星期后我们可以利用综合活动课举行一个交流会,比比谁讲得多讲得好

2、 回家后还可以和爸爸妈妈继续玩刚才我们玩的游戏,譬如:可以在正方体上写上1、3、3、4、5、6,摔一摔看看每次会摔到几?还可以试一试,如果每次我要摔到一样的数字,正方体上该写上什么数?

(评析)本节课学习的可能性是概率的初步,即事件的不确定性和可能性,要让学生感受事件发生的可能性和不确定性,初步体验有些事件是一定会发生的,有些事件是不可能发生,有些事件是可能发生,也可能不发生的。

可能性教案 篇13

教学内容:

人教课标版教材三年级上册第八单元(P110—111)

教学目标:

1、通过练习让学生进一步感受可能性,知道事件发生的可能性是有大有小的。

2、通过实际操作活动,培养学生的动手实践能力,合作交流能力。

3、巩固本单元知识。

教学过程:

一、情境引入,回顾再现

师:同学们,通过前面的学习我们知道有些事情的发生是确定的,有些则是不确定的。哪位同学愿意用“一定”、“可能”、“不可能”等词语来描述生活中一些事情发生的可能性呢?(指2—3名同学举例,其他同学评判,教师适时点评。)

师:我们还知道事件发生的可能性有大有小。下面就请同学们猜一下三、一班的张晨同学做哪个游戏的可能性比较大?(大屏幕出示:大课间活动,三、一班的40名同学在操场上做游戏,有30人在丢手绢,6人在跳绳,4人在踢毽子。张晨是三、一班的学生,她做哪个游戏的可能性大?为什么?)

生1:张晨做丢手绢游戏的可能性大,因为……。

生2:……

生3:……

师:这节课我们就来针对这些内容进行相关练习。(引出并板书课题:可能性的练习。)

(设计意图:让学生通过对“一定”“可能”“不可能”等现象的描述和事件发生可能性大小的解答,回忆再现新授课中有关的知识和方法。)

二、分层练习,强化提高

师:首先,看一看同学们能不能做一名合格的小法官。(出示)

1、基本练习

(1)我是小法官。(快速抢答,看谁说的又对又快。)

①一周有七天。()

②人的一生中一定要吃饭。()

③小明长大后一定能当飞行员。()

④下周一一定是阴天。()

(2)从放5个红球和1个绿球的口袋中随意摸出一个球,摸出什么球的可能性更大些?(指生回答,重点说原因。)

师:刚才同学们的表现真棒!下面我们来做个游戏好吗?

2、综合练习

(1)课本110页第8题。

师:掷骰子游戏喜欢吗?请同学们拿出写有1—6这几个数字的骰子来,我们一起玩。

①让生说一说掷出后可能出现的结果有哪些?

②猜测试验后的结果会有什么特点?

③实践、记录、统计。(全班一起掷一次,师参与记录各个面出现的次数。)

④说说从统计数据中发现了什么?

⑤由于实验结果与理论概率存在差异,如果得不到预期结果,可以再让学生多掷次,增加实验总次数,尽量使实验结果接近理论概率。

(设计意图:让学生亲自动手实践,使学生进一步感受事件发生的等可能性。)

(2)课本110页第9题。(出示主题图)

师:过元旦的时候,

三、一班用抽签的`形式来决定每位同学所要表演的节目。其中讲故事5张,唱歌3张,跳舞1张。如果你是其中的一员,你最有可能表演什么节目?

生:我最有可能表演讲故事。

师:为什么?

生:因为讲故事的签比较多。

师:谁能用“最有可能”和“最不可能”说一说其它两个事件发生的可能性?

生:我觉得最有

可能抽到唱歌,最不可能抽到跳舞。

(3)课本111页第10题。

师:我这里有4个盒子,其中一个盒子里放有硬币,猜一猜可能在哪个盒子里?(注意:每个同学只能选择一次,不能重复选。)

①生猜。

②简单统计猜测情况。

③揭示结果。

④说一说为什么猜错的比猜对得多。(引导学生发现:硬币只能在4个盒子中的1个,有3个盒子中没有,所以猜错的人数比较多猜错的可能性大。)

师:同学们真聪明!考虑问题真全面。接下来老师提高一下难度,有没有信心做好?

3、提高练习

(1)课本111页第11题。

师:请同学们拿出自制的正方体来,在它的6个面上涂上红、蓝两种颜色,要使掷出的红色的可能性比蓝色大,应该怎样凃?

①生动手涂色。

②小组展示交流,说想法。

③集体展示交流凃法。(只要涂色后正方体的红面比蓝面多就行。)

(2)课本111页第12题。(出示)

①生独立思考应怎样填。

②小组合作完成。

③集体展示交流。(只要写有数字“1”的卡片数量最多,写有数字“5”的卡片数量最少就行。)

(设计意图:让学生通过动手、动脑,合作交流,汇报展示,使学生积极的参与到数学学习活动中,进一步体会事件发生的可能性是有大有小的。)

三、自主检测,评价完善

(一)自主检测

师;刚才同学们用所学的知识,解决了这么多的数学问题,真了不起。老师还为同学们准备了一组测试题,请同学们赶快大显身手吧!(让生做在测试纸上)

1、选择题。

①有一个盒子,里面装着4个白球和5个黄球,任意从盒子中取出一个,( )的可能性较大。

A、白球 B、蓝球 C、黄球

②把一些白色围棋子放在书包里,从中任意摸出一个,( )是白棋子。

A、可能 B、一定 C、不可能

③从8个红色的的玻璃球和2个黄色的玻璃球中任意摸出一个,找到( )色的玻璃球可能性更大些。

A、红色 B、蓝色 C 黄色

④从1个蓝色的玻璃球和10个白色的玻璃球中任意摸出一个,摸到( )玻璃球可能性更小一些。

A、白色 B、蓝色 C、红色

⑤把3个白球和5个红球放在盒子里,任意摸出一个,( )是蓝色的。

A、可能 B、一定 C、不可能

2、按要求凃一涂

(1)摸出的一定是

(2)摸出的不可能是

(3)摸出的可能是

(二)、评价完善。

生汇报答案,其余自我核对,纠正错误。

(设计意图:通过自主检测,进一步强化“双基”,找出存在的问题,订正错误,并体验学习成功的喜悦。)

四、归纳小结,课外延伸

1、归纳小结

师:这节课主要练习了什么内容?你最大的收获是什么?你觉得你表现的怎样?

可能性教案 篇14

教学目标:

1、通过猜测、游戏活动、生活体验让学生初步体验有些事件发生是确定的,有些则是不确定的。

2、能结合已有的经验对一些事件的可能性用一定(肯定)、可能、不可能做出合理判断,并能简单地说明理由。

3、培养学生的表达能力和逻辑推理能力。

4、培养学生学习数学的兴趣和良好的合作学习态度。

教学重点:

能对一些事件的可能性做出正确判断。

教学准备:

1、学具:彩色笔1盒、学习答题卡等。

2、教具:课件、纸盒(3个)、乒乓球(白色和黄色各12个)。

教学时间:

1课时

教学过程:

一、游戏激趣,导入课题

师:同学们,喜欢玩游戏吗?(喜欢)玩过“剪刀、石头、布”的猜拳游戏吗?

1、先让学生以同桌的形式试一试,再请两名同学到台前玩猜拳游戏。玩之前猜一猜:谁会赢呢?举手表决,你们支持谁呢?

2、猜拳2-4次,出现不同的'结果,问:你们猜对了吗?

3、教师小结:刚才的猜拳游戏中,有可能是自己赢,也有可能是对方赢,这就是一种可能性。(相机板书课题:可能性)

[设计意图]通过学生熟悉的猜拳游戏活动,激发学生学习的兴趣。

二、摸球游戏,探究新知

师:(出示1号盒,教师摇一摇)听一听,猜到老师给大家带来了什么?(让学生猜一猜,再开始摸球游戏)

1、初步感知确定性事件。认识“一定”、“不可能”

(1)、出示装有8个白球的盒子,每人只能摸一次,你能猜猜你摸到的结果吗?用一句话来表示。(学生猜测,板书:一定)

(2)、出示装有8个黄球的盒子,每人只能摸一次,你能猜猜你摸到的结果吗?我们可能从这盒子里摸出白球吗?(板书:不可能)

你们为什么那么肯定?(板书:确定)

2、初步感知不确定性事件。认识“可能”

出示装有4个黄球和4个白球的盒子,每人只能摸一次。用一句话猜猜你摸到的结果。(板书:可能)

当事情的结果是不确定的,我们用“可能”来描述。(板书:不确定)

[设计意图]学生通过摸球游戏活动,在猜一猜、摸一摸、说一说中,感受事件发生的可能性,能用一定、不可能、可能等词语做出合理的判断。

三、联系生活,巩固新知(教学例2)

师:原来,数学就在我们身边,在我们生活中处处都有“可能性”。那么,你能用“一定”、“可能”和“不可能”对下面几个与我们生活紧密相关的现象进行准确的判断和说说理由吗?

1、观察课本第105页的例2,思考后在书上作出判断。

2、与组内的同学交流自己的想法。

3、汇报,小结。

重点提示:图1教师借助视频资料帮助学生理解“地球每天都在转动”是一定的;图5通过一些图片资料展示,让学生理解“吃饭时,人用左手拿筷子”是可能的;图6借助调查资料显示让学生明白“世界上每天都有人出生”是一定的。

[设计意图]通过教学例2,让学生体验生活中可能性的现象,感受数学与日常生活是相互联系的。

四、巩固练习,强化新知

1、完成练习二十四第1题。

(1)、指明学生判断事件可能性的方法。

(2)、重点提示:图1大王花像粪便一样臭,再列举缅桂、兰花等花是香的花,所以“花是香的”是不确定的。图2教师可播放“月球的运动”视频帮助学生理解“月球绕着地球转”事件发生的必然性。

2、完成练习二十四第2题。(按要求涂一涂)

(1)、要求学生读懂题意后再涂一涂。学生独立完成。

(2)、学生汇报,教师小结。重点提示:图1的5个小方块全部涂成红色即可;图2的5个圆形只要不涂成蓝色,其它颜色和五颜六色都可以;图3的五个锥体至少有1个或2个以上黄色。

3、完成练习二十四第3题。(结合你的生活经验,在下面的句子里用上“可能”、“一定”、“不可能”这些词。)

[设计意图]通过涂一涂、想一想、说一说练习,培养学生的表达能力,巩固强化可能性知识。

五、课堂小结

这堂课,你学到了什么?(指名说,教师小结)

板书设计:

可能性教案 篇15

本单元共安排了5个例题。主题图、例1、例2体验事件发生的确定性和不确定性。例3、例4、例5及相关内容能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。

1.体验事件发生的确定性和不确定性。

对于纷繁的自然现象与社会现象,如果从结果能否预知的角度出发去划分,可以分为两大类:一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定现象。例如,抛一个石块,可预知它必然要下落;在标准大气压下且温度低于0℃时,可预知冰不可能融化。另一类现象的结果是无法预知的,即在一定的条件下,出现哪种结果是无法事先确定的,这类现象称为随机现象或不确定现象。例如,掷一枚硬币,我们无法事先确定它将出现正面,还是出现反面。

教科书通过主题图及例1、例2的教学,使学生初步体验在现实世界中有些事件的发生是确定的,有些则是不确定的

(1)主题图的教学。

教科书第104页呈现了学生熟悉的“新年联欢会上抽签表演节目”的场景,引入本单元的学习。目的是从学生已有的生活经验出发,使学生体验在现实生活中存在着不确定现象,感受数学与日常生活的密切联系。教学时,教师可以先让学生观察图意,描述图意,调动学生学习的主动性和积极性,再引导学生说一说自己在“抽签表演节目”时的实际感受。使学生在观察、描述和交流的活动过程中充分感受到,在用抽签来决定表演的节目的活动中,“表演某种节目”这样的事件的发生是不确定性的。教师还可以引导学生结合自己周围熟悉的情境,说一说在生活中还有什么事情的发生是不确定的。

需要注意的是,只要学生能够结合具体的问题情境,用“可能”等词语来描述就可以了,如“我可能要表演唱歌”。不必要求学生一定要说出“我表演唱歌这件事情的发生是不确定的”。

(2)例1的教学。

教科书呈现了学生摸棋子的试验,使学生在猜测、试验与交流的活动中初步体验有些事件的发生是确定的,有些事件的发生则是不确定的。教科书中给出了两个盒子装有不同情况的棋子,是想通过两个简单试验的对比,让学生更好地体会确定事件和不确定事件。教师可以依照教科书中的图示分别在两个盒子里放进各种颜色的棋子(也可选用乒乓球等),注意这些棋子除了颜色外应完全相同,并将放棋子的过程完整地展现给学生,而且在每次摸棋子之前都应将盒中的棋子摇匀。

教科书中一共提出了三个问题,提示教学的过程、反映不同方面的要求。

①教学第一个问题“哪个盒子里肯定能摸出红棋子”。教师可以先提问“左边的盒子里肯定能摸出红棋子吗?”让学生进行猜测,再让学生实际摸摸看。通过试验,验证自己的猜测,认识到在左边的盒子里装的都是红棋子,所以一定能摸出红棋子,“在左边的盒子里摸出红棋子”这个事件的发生是确定的。教师再提问“在右边的盒子里肯定能摸出红棋子吗?”让学生进行猜测,再让学生实际摸摸看。通过试验,使学生发现在右边的盒子里有红棋子,所以可能摸出红棋子,但不一定能摸出红棋子,“在右边的盒子摸出红棋子”这个事件的发生是不确定的。

②②第二个问题“哪个盒子里不可能摸出绿棋子”和第三个问题“哪个盒子里可能摸出绿棋子”可一同教学。教师可以先引导学生猜测“左边的盒子里可能摸出绿棋子吗?”“右边的盒子里可能摸出绿棋子吗?肯定能摸出绿棋子吗?”,同样再让学生讨论交流,并通过试验,验证自己的猜测,认识到因为左边的盒子里没有绿棋子,所以不可能摸出绿棋子,“在左边的盒子里不能摸出绿棋子”这个事件的发生是确定的;在右边的盒子里有绿棋子,可能摸出绿棋子,但不一定能摸出绿棋子,“在右边的盒子里摸出绿棋子”这个事件的发生是不确定的。

③教学中,教师应充分地为学生提供猜测、试验与交流的机会,有条件的地方宜采取小组合作学习的方式。教师可以依照教

科书中的图示,事先为每个小组准备两个盒子和两袋棋子,为了交流方便,可以给盒子标上序号1和2。在教学时,先指导学生分别将两袋棋子放入两个盒子,然后逐一提出教科书中的问题。教师还要提醒学生,在每次摸棋子前应将盒中的棋子摇匀。提出一个问题后,先让学生在小组内充分讨论、试验,然后再全班交流。使学生充分经历猜测、试验与交流的活动过程,丰富学生对确定现象和不确定现象的体验。

④另外,在汇报时只要学生能够结合具体的问题情境,用“在左边的盒子里一定能摸出红棋子”“在右边的盒子里可能摸出红棋子”等描述进行表达就可以了,不必要求学生一定要说出“在左边的'盒子里摸出红棋子这个事件的发生是确定的”,“在右边的盒子摸出红棋子这个事件的发生是不确定的”。

⑤(3)例2的教学。

⑥教科书呈现了六幅与现实世界的自然现象和社会现象紧密相关的画面,通过生活实例丰富学生对确定和不确定事件的认识,让学生根据已有的知识和生活经验学会判断哪些事件的发生是确定的,哪些事件的发生是不确定的。

⑦教学时,教师可以先让学生观察图意,独立思考,根据自己已有的知识经验做出判断,再引导学生讨论。使学生在描述、思考和讨论交流的活动过程中充分感受确定和不确定现象。需要注意的是,在让学生判断事件发生的确定性和不确定性时,只要学生能够结合具体的问题情境,用“一定”“不可能”“可能”等词语来表述就可以了,如“地球一定每天都在转动”“三天后可能下雨”“太阳不可能从西边升起”等。不必要求学生一定要说出“我从出生到现在没吃过一点东西这件事的发生是确定的”“吃饭时,人用左手拿筷子这件事情的发生是不确定的”“每天都有人出生这件事情的发生是确定的”。

⑧教师还可以引导学生结合自己周围熟悉的情境,说一说在生活中还有什么事情的发生是确定的,什么事情的发生是不确定的。另外,教师还应有意识地寻找一些带有感情色彩的事件让学生来判断其发生的确定性和不确定性,如“明天的拔河比赛我们班会赢”。让学生认识到对于某一客观事件来说,其发生的确定性和不确定性与个人的愿望无关。

⑨2.能够列出简单试验所有可能发生的结果,知道事件发生的可能性是有大小的。

⑩随机现象虽然对于个别试验来说无法预知其结果,但在相同条件下进行大量重复试验时,却又呈现出一种规律性,我们称它为随机现象的统计规律性。概率论正是揭示这种规律性的一个数学分支。

为了叙述的方便,把条件每实现一次,叫做进行一次试验。例如对“掷一枚硬币,出现正面”这个事件来说,做一次试验就是将硬币抛掷一次。如果一个试验在相同条件下可以重复进行,而每次试验的可能结果多于一个,在一次试验中结果无法事先确定,这种试验就叫做随机试验。把随机试验中,可能发生也可能不发生的事情,称为随机事件。

一个随机事件的发生既有随机性(对单次试验来说),又存在着统计规律性(对大量重复试验来说)。随机事件的统计规律性表现在:随机事件的频率──即此事件发生的次数与试验总次数的比值具有稳定性,即总是在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们给这个常数取一个名字,叫做这个随机事件的概率。概率可以看作频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小。上述关于概率的定义,通常称为概率的统计定义。

由于学生的年龄和思维特点,他们一般只能在感性的层面理解概率的知识。因此,教科书通过例3、例4和例5的教学,使学生在试验活动中,认识简单试验所有可能发生的结果,初步感受随机现象的统计规律性,并知道事件发生的可能性是有大小的。

可能性教案 篇16

教学目的:

1、经历和体验收集、整理、分析数据的过程,学会用画“正字”的方法记录整理数据

2、会运用规律结实生活现象

教学重点、难点:

发现规律

教具:8个布口袋。红球、绿球各48个。

教学过程:

一、 复习“一定”与“不可能”

师:老师这里有一个口袋,放5个红球进去,我请同学来摸一摸的话,你能摸出什么颜色的球?一定吗?为什么?可能摸出黄球吗?为什么?

师:那我放一个黄球进口袋。现在,如果你在口袋中摸一个球,会摸出什么颜色的球?为什么?

总结:是啊,现在我们不能肯定摸到的一定是红球还是黄球。只能说可能摸到红球,可能摸到黄球。具有“可能性”

板书:可能性

二、 学习可能性

师:这只口袋了有5个红球,1个黄球。你能猜一猜摸到红球的可能性大还是摸到黄球的可能性大?为什么?

那5个黄球,1 个红球呢?摸到红球的可能性大还是摸到黄球的可能性大?为什么?

师:哦。可这毕竟是我们的猜测啊,得想个办法严验证一下,怎么验证呢?

师:是啊,多摸几次我们才可以发现规律啊!同学们,你们真了不起,不光提出了自己的猜想,而且想到做摸球的实验来验证自己的猜想。很有科学家的意识啊!

师:那我们来验证一下这个猜想吧!但在实验前老师有个要求。我请1-4组做5个红球1个环球的实验。5-8组做5个黄球1个红球的实验。我们6人一组。由课前选好的正副组长负责记录和监督。其他人每人摸10次。总共40次。

师:为了让实验更科学,大家说说要注意些什么?

师:那记录的方法有哪些呢?(没有正字就说老师这里介绍一种新的方法:正字法)

师:那谁给大家介绍一下正字法!如果有其他方法,就个正字法比较一下(可以根据合计比较)

师:你觉得正字法有什么好处?

师:我们就规定实验的时候,同一用正字法记录。同学们,实验的时候一定要像科学家研究科学一样,认真对待,实事求是。让我们比一比,哪个小组实验的最认真,活动最规范。明确了吗?小科学家们,开始实验吧!

三、 汇报

师:刚才同学们都猜测摸到红球的可能性大,那实验结果到底是这样的呢?请各小组汇报数据,其他同学注意边听边思考问题。

板书:5个红球 1个黄球 5个黄球 1个红球

师:观察这2组数据,比较一下,你发现了什么?思考一下然后在小组中交流。

师:为什么1-4组摸到红球多,而5-8组摸到黄球的次数多呢?这说明了什么?

师:这跟我们原来的猜想一样吗?刚才,我们提出了自己的想法,又用实验验证了自己的想法。高兴吗?表扬表扬自己!

四、 实验

师:如果在这个口袋中放3个红球3个黄球,在这个袋子中,猜猜摸带红球、黄球的可能性又会怎样呢?为什么?

师:要知道我们的猜想是否正确,只要怎样?大家都知道,那我们来验证一下吧!还是跟刚刚一样。大家要认真负责啊!好了,开始吧!让老师来看看哪个同学像小科学家。

五、 汇报

师:好了。我们来看一下实验结果。看看我们的猜想对不对。

板书:3个红球 3个黄球

师:观察一下这组数据,比较一下,你发现了什么?

总结:同学们,摸到红球黄球个数相等,所以摸到红球。黄球的可能性就相等。

师:这跟我们的猜想一样吗?

六、 巩固

师:如果要使1号口袋中摸到红黄球的可能性相等,怎么办?

师:那为什么可能性星相等了呢?是啊,球数相等,可能性就相等。

七、 总结

今天我们在玩的过程中一起研究了统计与可能性,你学会了什么?知道了什么?

有关可能性教案锦集8篇

在教学工作者开展教学活动前,就难以避免地要准备教案,教案有助于顺利而有效地开展教学活动。那要怎么写好教案呢?以下是小编帮大家整理的可能性教案8篇,欢迎阅读,希望大家能够喜欢。

可能性教案 篇17

(第一课时)

教学目标:

1、使同学了解有些事情是必定发生的,有些事情是不可能发生的,有些事情是可能发生的,发生的可能性是有大小的,能用分数表示。

2、结合生活实例,进一步让同学体验生活中存在的数学问题。

教学重难点:使同学经历实验的具体过程,从中体验某些事情发生的可能性的大小。

教学准备:白球1个、黄球3个、红绿两种颜色的铅笔等。

教学过程:

一、情境、引入

1、师述、情境:庆“庆六一”联欢会,教师要求每人都要扮演节目,节目的形式有:唱歌、跳舞、相声、小品等。用抽签的方法决定。

小华在抽签之前想:我是金嗓子,最好让我抽到唱歌……

2、讨论:小华肯定能如愿以偿吗?为什么?

[点评]:给同学发明机会留有空间,让同学开动脑筋,捕获生活中的现象,将所学的知识和同学的生活实际紧密结合,加深对数学知识的理解。这一情境,是同学经历过并且有体验,所以他们知道小华有可能抽不到唱歌,有可能抽得到,但抽到的可能性不大,因为在这些签中只有一张签是唱歌,这就自然引出课题:可能性大小。

3、小结:在我们的生活中,有些事情是必定发生的,有些事情是不可能发生的,有些事情是可能发生的,发生的可能性有大有小。今天我们就学习(板书)可能性大小。

二、实验探究

1、摸球活动。

活动规则:准备3个黄球,1个白球,球的大小一样,放进袋子里,搅拌一下。

(1)同桌活动。每人摸10次,每次摸一个球,然后把摸出来的球放进去,搅拌后再摸第2次、第3次……填好摸20次的统计表(可用“正”字)。

(2)同学分组活动。

(3)观察:第一次实验结果与预测结果一样吗?

(4)四人一小组活动,填好摸40次的统计表。

(5)观察讨论:汇总后的结果与预测结果是否接近?

(6)小结:摸的次数越多,结果与预测结果越接近。

[点评]:这一活动体现了“动手实践、自主探索与合作交流”的学习方式,同学从实践中获取知识。

2、练习教材89页中的1—4题。

(1)同学独立考虑,进行练习。

(2)集体交流,讨论学习情况,并说明你的理由。

三、拓展、延伸

1、在一个正方体中标出1、2、3三个数,符合下面要求:数字1和数字2的可能性都是1/6,数字3的`可能性是2/3。

2、摸奖活动。

(1)盒子里有4红、2绿,两种颜色的铅笔,要求先说出你想摸一支什么颜色的铅笔?可能性是多少?然后到盒子里摸,假如说的和摸的颜色一致,就可以拿走这支铅笔。

(2)盒子里有红色、蓝色、黑色三支一样的笔,假如随意拿出2支笔,可能出现多少种结果?

[点评]:这是同学比较感兴趣的活动,富有情趣和挑战性,为同学提供充沛发展的空间。

四、总结:这节课你有什么收获?

[总评]

本节课的关键在于关注了同学的学习过程,教师创设了一个有利于同学生动活泼主动发展的教育氛围,教师真正成为教学活动的组织者、引导者和合作者。从实际教学效果看,同学学得积极主动,时时闪烁着创新思维的火花。

可能性教案 篇18

教学目标:1、通过具体的活动让学生体验事件发生的等可能性,会判断游戏规则的公平性,学会用简单的分数几分之一表示事件发生的可能性,《等可能性》教案。2、让学生亲身经历比赛公平性的探究过程,实验、分析的学习方法,培养学生的观察分析、逻辑推理能力和合作学习的意识。3、在学习探究活动中,感受探究数学活动的乐趣,体验游戏与比赛的公平原则,体验数学与生活间的密切联系,感受数学知识的使用价值,激发学习数学的乐趣。教学重点:通过实验活动让学生进一步体会等可能性。

教学难点:使学生学会有根据的思考问题,有条理的说明问题。教具学具准备: 硬币、多媒体课件等。

教学过程:

一、创设情境,引出问题:谈话:你们看过足球比赛吗?你们知道在足球比赛时我们用什么方式决定谁先开球吗?我们一起来看一下。(播放课件)你认为我们用抛硬币的'方式决定谁先开球公平吗?为什么?因为抛硬币的结果是无法人为控制的,所以抛硬币的事件是一种可能性事件。这节课我们继续学习可能性。(板书:可能性)

二、探索研究,解决问题:谈话:刚才大家对老师提出的用抛硬币的方法决定哪个队先开球是否公平这个问题(板书:问题)进行了猜测,(板书:猜测)要想验证我们的猜测是否正确怎么办?(板书:实验)老师给每个同学都准备了一枚硬币,一会儿我们就利用这枚硬币进行实验。1、实验前:我们先来规定一下,币值这面我们叫它正面,国徽这面我们叫它反面。实验的时候为了实验结果的准确性,我们一定要竖着拿着硬币,抛的时候先向上。提问:我们实验几次呢?(如果实验一次,看不出正面朝上的次数和反面朝上的次数是否相等,所以最少实验2次)。2、学生实验2次。试验后找一组汇报数据。通过实验我们的得出的数据,(板书:数据)观察数据,看一看正面朝上的次数和反面朝上的次数是否相等。根据我们刚才实验的数据,你们能说着正面朝上的可能性和反面朝上的可能性相等吗?如果数据不能证明我们的猜测是错误的?不是猜测有问题,那是哪儿有问题?3、实验10次学生实验。(把结果统计在表格中)汇报次数。观察数据正面朝上的次数和反面朝上的次数怎样?

总结:通过试验次数的增多,正面朝上的次数和反面朝上的次数越来越相近了,那是不是就近似相等。我们做了十次实验,出现了相差2次,4次,甚至6次的情况。你觉得我们实验十次成不成,那我们实验多少次才成呢?4、统计全班数据正面朝上的次数和反面朝上的次数相差几次。你们觉得370次实验,相差10次不多?我们可不可以说正面朝上的可能性和反面朝上的可能性近似相等呢?5、出示科学家数据我们全班做了370次实验,那你知道我们的科学家为了验证这个猜测是否正确,做了多少次实验?(观看数据视频)6、得出结论通过科学家的试验,得到了大量数据根据这些数据我们可以得出一个什么结论?如果用一个分数表示,正面朝上的可能性是多少?如果抛1000次、10000次,会有多好次正面朝上?

三、巩固提高。其实不光在足球比赛中,在许多国际比赛中,例如:乒乓球、篮球比赛中,我们也都用到了抛硬币决定哪个队先开球,应为这种方式是公平的。生活中,我们同学也选取了一些身边的材料来进行游戏,我们来看看他们的游戏规则公平不公平?1、游戏棋:掷正方体的木块,木块的各面分别写着1,2,3,4,5,6。掷到数字几就走几步。你认为这个游戏规则公平吗?每个面朝上的可能性是多少?如果换成长方体的木块来做这个游戏,游戏规则公平吗?2、桌子上摆着9张卡片,分别写着1-9各数。如果摸到单数小明赢,如果摸到双数小芳赢。你认为这个游戏规则公平吗?如果不公平怎么办?3、(1)转动转盘,会有几种可能的情况?(2)指针停在这四种颜色区域的可能性相等吗?(3)指针停在这四种颜色区域的可能性各是多少?

四、小结:你有什么收获?板书设计:可能性相等问题→猜测→实验→数据→结论

可能性教案 篇19

教学目标:

1、通过猜测、游戏活动、生活体验让学生初步体验有些事件发生是确定的,有些则是不确定的。

2、能结合已有的经验对一些事件的可能性用一定(肯定)、可能、不可能做出合理判断,并能简单地说明理由。

3、培养学生的表达能力和逻辑推理能力。

4、培养学生学习数学的兴趣和良好的合作学习态度。

教学重点:

能对一些事件的可能性做出正确判断。

教学准备:

1、学具:彩色笔1盒、学习答题卡等。

2、教具:课件、纸盒(3个)、乒乓球(白色和黄色各12个)。

教学时间:

1课时

教学过程:

一、游戏激趣,导入课题

师:同学们,喜欢玩游戏吗?(喜欢)玩过“剪刀、石头、布”的猜拳游戏吗?

1、先让学生以同桌的形式试一试,再请两名同学到台前玩猜拳游戏。玩之前猜一猜:谁会赢呢?举手表决,你们支持谁呢?

2、猜拳2-4次,出现不同的结果,问:你们猜对了吗?

3、教师小结:刚才的猜拳游戏中,有可能是自己赢,也有可能是对方赢,这就是一种可能性。(相机板书课题:可能性)

[设计意图]通过学生熟悉的猜拳游戏活动,激发学生学习的'兴趣。

二、摸球游戏,探究新知

师:(出示1号盒,教师摇一摇)听一听,猜到老师给大家带来了什么?(让学生猜一猜,再开始摸球游戏)

1、初步感知确定性事件。认识“一定”、“不可能”

(1)、出示装有8个白球的盒子,每人只能摸一次,你能猜猜你摸到的结果吗?用一句话来表示。(学生猜测,板书:一定)

(2)、出示装有8个黄球的盒子,每人只能摸一次,你能猜猜你摸到的结果吗?我们可能从这盒子里摸出白球吗?(板书:不可能)

你们为什么那么肯定?(板书:确定)

2、初步感知不确定性事件。认识“可能”

出示装有4个黄球和4个白球的盒子,每人只能摸一次。用一句话猜猜你摸到的结果。(板书:可能)

当事情的结果是不确定的,我们用“可能”来描述。(板书:不确定)

[设计意图]学生通过摸球游戏活动,在猜一猜、摸一摸、说一说中,感受事件发生的可能性,能用一定、不可能、可能等词语做出合理的判断。

三、联系生活,巩固新知(教学例2)

师:原来,数学就在我们身边,在我们生活中处处都有“可能性”。那么,你能用“一定”、“可能”和“不可能”对下面几个与我们生活紧密相关的现象进行准确的判断和说说理由吗?

1、观察课本第105页的例2,思考后在书上作出判断。

2、与组内的同学交流自己的想法。

3、汇报,小结。

重点提示:图1教师借助视频资料帮助学生理解“地球每天都在转动”是一定的;图5通过一些图片资料展示,让学生理解“吃饭时,人用左手拿筷子”是可能的;图6借助调查资料显示让学生明白“世界上每天都有人出生”是一定的。

[设计意图]通过教学例2,让学生体验生活中可能性的现象,感受数学与日常生活是相互联系的。

四、巩固练习,强化新知

1、完成练习二十四第1题。

(1)、指明学生判断事件可能性的方法。

(2)、重点提示:图1大王花像粪便一样臭,再列举缅桂、兰花等花是香的花,所以“花是香的”是不确定的。图2教师可播放“月球的运动”视频帮助学生理解“月球绕着地球转”事件发生的必然性。

2、完成练习二十四第2题。(按要求涂一涂)

(1)、要求学生读懂题意后再涂一涂。学生独立完成。

(2)、学生汇报,教师小结。重点提示:图1的5个小方块全部涂成红色即可;图2的5个圆形只要不涂成蓝色,其它颜色和五颜六色都可以;图3的五个锥体至少有1个或2个以上黄色。

3、完成练习二十四第3题。(结合你的生活经验,在下面的句子里用上“可能”、“一定”、“不可能”这些词。)

[设计意图]通过涂一涂、想一想、说一说练习,培养学生的表达能力,巩固强化可能性知识。

五、课堂小结

这堂课,你学到了什么?(指名说,教师小结)

板书设计:

可能性教案 篇20

活动一:完成调查表

活动二:接力长跑

活动三:有奖游戏

教学内容:

教材P93《铺地砖》

教学目标:

l.通过活动,使学生能应用面积计算的知识解决铺地砖的实际问题,能从实际需要出发,合理地选择所需的地砖,能根据不同要求灵活解决实际问题。

2、进一步增强估算意识,提高学生运用数学解决生活中问题的能力。

3.培养学生用数学的意识和创新精神,并在实践中对学生进行美育渗透,培养学生的审美意识。

4. 体会数学与生活的联系,感受数学的作用和价值。

教学重点:

运用多种知识解决问题。 合理地选择所需的地砖,根据不同要求灵活解决问题。

教学难点 :

灵活运用面积计算的知识解决实际问题。

教学流程与设计

一、汇报课前调查情况,做好设计准备

师:要铺地砖,我们必须先选地砖,那选地砖时必须要考虑哪些条件才能选好呢?

师根据学生的回答,出示各种地板模型及规格。(40×40,50×50)

二、联系实际,小组讨论计算。

1、出示卧室地面的平面图,并介绍地面的长和宽,分别是长5米,宽4米。

2、师指定50×50这种规格,让学生计算需要此种规格的地砖多少块。

(估计学生都用“客厅地面面积÷每块地砖的面积=所需地砖的块数”这种方法计算)

50×50=2500(平方厘米)=0.25(平方米)

5×4=20(平方米)

20÷0.25=80(块)

80×8=640(元)

师指定40*40这种规格,让学生计算需要此种规格的.地砖多少块。

40×40=1600(平方厘米)=0.16(平方米)

5×4=20(平方米)

20÷0.16=125(块)

125×5=625(元)

通过计算用40*40地转铺地更省钱

三、活动小结,发散联想

师:通过本节活动课你受到什么启发?在日常生活中(或在布置装饰家居时)还有哪些方面的计算要根据实际情况灵活运用所学知识进行计算?

板书设计:

估计学生都用“客厅地面面积÷每块地砖的面积=所需地砖的块数”这种方法计算)

50×50=2500(平方厘米)=0.25(平方米)

5×4=20(平方米)

20÷0.25=80(块)

80×8=640(元)

师指定40*40这种规格,让学生计算需要此种规格的地砖多少块。

40×40=1600(平方厘米)=0.16(平方米)

5×4=20(平方米)

20÷0.16=125(块)

125×5=625(元)

通过计算用40*40地转铺地更省钱

可能性教案 篇21

【教学内容】

小学数学人教课标版三年级上册第八单元(p104—111)

【教学目标】

一、基础性目标:

1、使学生初步体验有些事件的发生是确定的,有些则是不确定的。

2、使学生能够列出简单试验所有可能发生的结果。

3、使学生知道事件发生的可能性是有大小的,能对一些简单事件发生的可能性作出描述,并和同伴交换想法。

二、发展性目标:

1、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。

2、通过实际操作活动,培养学生的动手实践能力,交流合作能力,推理能力。

【教学重、难点】

重点:体验事件发生的确定性和不确定性,能够列举出简单实验所有可能发生的结果,知道事件发生的可能性是有大小的。

难点:研究事件的不确定现象,从不确定现象中寻找规律。

【教材分析】

在现实世界中,严格确定性的现象十分有限,不确定现象却是大量存在的,而概率正是研究不确定现象的规律性的分支。《新课标》将“概率”作为义务教育阶段数学课程的四个学习领域之一“统计与概率”中的一部分,从第一学段起就安排了有关的学习内容。

本单元主要是教学事件发生的不确定性和可能性,使学生初步体验现实世界中存在着不确定现象,并知道事件发生的可能性是有大小的。本单元教材在编排上有下面几个特点。

1、选取学生熟悉的生活情境及感兴趣的游戏活动作为教学素材,帮助学生理解数学知识。

根据学生的年龄特点和生活经验,教科书中选取了学生非常熟悉的“新年联欢会上抽签表演节目”的.现实情境,引入本单元的学习内容,还通过大量生活实例丰富学生对不确定现象的体验,目的是使学生积极地参与到数学学习活动中,并感受到数学就在自己的身边,体会数学学习与现实的联系。

教科书中还设计了有趣的摸棋子试验等活动,激发学生的学习兴趣,使学生愉快的投入到数学学习活动中去。

2、设计丰富的活动,为学生提供探索与交流的时间和空间。

不确定现象是这部分内容的一个重要研究对象,从不确定现象中去寻找规律,这对学生来说是一种全新的观念。如果缺乏对随机现象的丰富体验,学生较难建立这一观念。

因此,教科书中设计了多种不同层次的、有趣的活动和游戏,如摸棋子试验、涂色活动、抽签游戏等。通过创设这些具有启发性的问题情境,使学生在大量观察、猜测、试验与交流的数学活动过程中,经历知识的形成过程,逐步丰富对不确定现象和可能性大小的体验。

【教学建议】

1、注意创设问题的情境,引导学生在数学活动中体验不确定现象和可能性。

在教学中,教师应注意创设各种问题情境,充分调动学生的积极性和主动性,让学生在具体的操作活动中进行独立思考,鼓励学生发表自己的意见,并与同伴交换自己的想法。引导学生在观察、猜测、试验与交流等数学活动中,充分感受和体验不确定现象和事件发生的可能性。

2、把握好教学要求。

教师在引导学生感受“确定事件”“不确定事件”以及“事件发生的可能性大小”时,只要让学生结合具体情境的问题情境,用“一定”“不可能”“可能”“经常”“偶尔”等词语来描述事件发生的可能性就可以了,不必要求学生使用有关术语进行解释,也不必要求学生求出可能性的具体大小。

3、本单元可用四课时进行教学。

关于可能性教案模板汇编七篇

作为一名辛苦耕耘的教育工作者,常常需要准备教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。我们应该怎么写教案呢?以下是小编精心整理的可能性教案7篇,欢迎大家分享。

可能性教案 篇22

教学目标:1、通过具体的活动让学生体验事件发生的等可能性,会判断游戏规则的公平性,学会用简单的分数几分之一表示事件发生的可能性,《等可能性》教案。2、让学生亲身经历比赛公平性的探究过程,实验、分析的学习方法,培养学生的观察分析、逻辑推理能力和合作学习的意识。3、在学习探究活动中,感受探究数学活动的乐趣,体验游戏与比赛的公平原则,体验数学与生活间的密切联系,感受数学知识的使用价值,激发学习数学的乐趣。教学重点:通过实验活动让学生进一步体会等可能性。

教学难点:使学生学会有根据的思考问题,有条理的说明问题。教具学具准备: 硬币、多媒体课件等。

教学过程:

一、创设情境,引出问题:谈话:你们看过足球比赛吗?你们知道在足球比赛时我们用什么方式决定谁先开球吗?我们一起来看一下。(播放课件)你认为我们用抛硬币的方式决定谁先开球公平吗?为什么?因为抛硬币的结果是无法人为控制的,所以抛硬币的事件是一种可能性事件。这节课我们继续学习可能性。(板书:可能性)

二、探索研究,解决问题:谈话:刚才大家对老师提出的用抛硬币的方法决定哪个队先开球是否公平这个问题(板书:问题)进行了猜测,(板书:猜测)要想验证我们的猜测是否正确怎么办?(板书:实验)老师给每个同学都准备了一枚硬币,一会儿我们就利用这枚硬币进行实验。1、实验前:我们先来规定一下,币值这面我们叫它正面,国徽这面我们叫它反面。实验的时候为了实验结果的准确性,我们一定要竖着拿着硬币,抛的时候先向上。提问:我们实验几次呢?(如果实验一次,看不出正面朝上的次数和反面朝上的次数是否相等,所以最少实验2次)。2、学生实验2次。试验后找一组汇报数据。通过实验我们的得出的数据,(板书:数据)观察数据,看一看正面朝上的次数和反面朝上的次数是否相等。根据我们刚才实验的.数据,你们能说着正面朝上的可能性和反面朝上的可能性相等吗?如果数据不能证明我们的猜测是错误的?不是猜测有问题,那是哪儿有问题?3、实验10次学生实验。(把结果统计在表格中)汇报次数。观察数据正面朝上的次数和反面朝上的次数怎样?

总结:通过试验次数的增多,正面朝上的次数和反面朝上的次数越来越相近了,那是不是就近似相等。我们做了十次实验,出现了相差2次,4次,甚至6次的情况。你觉得我们实验十次成不成,那我们实验多少次才成呢?4、统计全班数据正面朝上的次数和反面朝上的次数相差几次。你们觉得370次实验,相差10次不多?我们可不可以说正面朝上的可能性和反面朝上的可能性近似相等呢?5、出示科学家数据我们全班做了370次实验,那你知道我们的科学家为了验证这个猜测是否正确,做了多少次实验?(观看数据视频)6、得出结论通过科学家的试验,得到了大量数据根据这些数据我们可以得出一个什么结论?如果用一个分数表示,正面朝上的可能性是多少?如果抛1000次、10000次,会有多好次正面朝上?

三、巩固提高。其实不光在足球比赛中,在许多国际比赛中,例如:乒乓球、篮球比赛中,我们也都用到了抛硬币决定哪个队先开球,应为这种方式是公平的。生活中,我们同学也选取了一些身边的材料来进行游戏,我们来看看他们的游戏规则公平不公平?1、游戏棋:掷正方体的木块,木块的各面分别写着1,2,3,4,5,6。掷到数字几就走几步。你认为这个游戏规则公平吗?每个面朝上的可能性是多少?如果换成长方体的木块来做这个游戏,游戏规则公平吗?2、桌子上摆着9张卡片,分别写着1-9各数。如果摸到单数小明赢,如果摸到双数小芳赢。你认为这个游戏规则公平吗?如果不公平怎么办?3、(1)转动转盘,会有几种可能的情况?(2)指针停在这四种颜色区域的可能性相等吗?(3)指针停在这四种颜色区域的可能性各是多少?

四、小结:你有什么收获?板书设计:可能性相等问题→猜测→实验→数据→结论

可能性教案 篇23

可能性

第2课时

学习内容:

第94、95页例3、例4及课堂活动,练习二十三第4~6题。

学习目标:

1.知道事件发生的可能性有大有小,会求简单事件发生的可能性。

2.通过实践操作,体验事件发生的可能性及游戏规则的公平性。

3.会求简单事件发生的可能性。

教学重点:

会求简单事件发生的可能性及游戏规则的公平性。

教学难点:

让学生亲身经历事件发生的过程来感知可能性有大有小。

教具准备:

多媒体课件

学习方法:

小组合作、探究学习

教学过程:

一、复习旧知

二、自主探索,学习新知

1.教学例3。

课件出示例3:有10张倒扣着的相同的卡片,其中有4张画的燕子,3张画的大象,2张画的老虎,1张画的喜鹊,打乱后从中任意拿1张。

(1)看了这些信息你有什么感想?

(2)小娟喜欢燕子,她一定能拿到画有燕子的.卡片吗?

(3)拿到画有燕子的卡片的可能性和画有大象的卡片的可能性哪个大?为什么?

(4)分组游戏,并做好记录,然后集体汇报。

(5)思考:可能性的大小和什么有关系?

(6)猜想:任意拿1张,拿到燕子的可能性是( ),拿到大象的可能性是( ),拿到老虎的可能性是( ),拿到喜鹊的可能性是( )。

(7)汇报每组实验数据,进行分析计算,验证猜想。

(8)教师小结求简单事件发生的可能性的方法。

2.教学例4。将一副扑克牌的13张方块牌和匀,从中任意抽出1张,用“可能”“不可能”“一定” “偶尔”“经常”等来描述抽牌的情况。

(1)认真审题,弄清题意:说说例4让我们做什么?

(2)小组合作进行实验。

(3)集体汇报实验结果。

(4)填一填

( )抽到方块2,( )抽到黑桃A,( )抽到方块A,( )抽到方块。。。。。。

3.教师小结:在我们生活中经常会用“可能”“不可能”“一定” “偶尔”“经常”等来描述生活中的一些现象。

三、运用新知,巩固提高

1、小林做5个纸团。并将其中几个纸团做上记号。小丁任意摸出1个并作记录,放回和匀后再摸

(1)小丁摸了40次,将结果记录如下

(2)分析上表中的数据,得出什么结论?

(3)两人交换角色。小丁做纸团并做记号,再由小林来摸并记录

两人交流对这次游戏活动的感受。

2、盒中有形状相同的红色小棒8根,黄色小棒2根。小兰从盒中任意取出1根小棒,取出哪种颜色的小棒的可能性大?

选择“不可能”、“偶尔”、“经常”填空。

(1)( )取出红色小棒。

(2)( )取出黄色小棒。

(3)( )取出白色小棒

四、学生质疑,教师总结

教师:通过这节课的学习,谈一谈你有哪些收获?

五、课堂作业:练习二十三第4~6题。

家庭作业:第95页课堂活动。

板书设计:

可能性的大小

可能性教案 篇24

教学内容:

小学数学苏教版国标本第五册P92-93的内容

教学目标:

1、体验有些事件的发生是确定的,有些则是不确定的;

2、知道事件发生的可能性是有大小的;

3、培养学生学习数学的兴趣,形成良好的合作学习的习惯。

教学重点:

使学生经历实验的具体过程,从中体验某些事件发生的可能性的大小,能对简单实验可能发生的结果或某些事件发生的可能性的大小作出简单判断,并作出适当的解释。

教学难点:

在实验过程中引导学生形成正确的科学认识。

教学理念:

放手让学生做实验的主人。

教学设计:

教学步骤

教师活动过程

学生活动过程

一、创设情境,导入新课

1.学生们,我们来开展一次摸球比赛,好不好?每人轮流摸一次球,哪个队摸到的白球次数多就取胜。

请出8名男同学和8名女同学分别组成男生队和女生队,我们来进行男女生对抗赛。(每次摸之前把球先搅动几下。)

2、每队拿一个袋子,袋子里装着白球和黄球。

(男生队的袋子里3白1黄,女生队的袋子里34黄1白)

3.(比赛结束后)哪个队获胜?

4.(取出内袋)女生队,你们有什么想说的?男生队为什么会赢?

师:因为袋里的白球和黄球的个数不同时,摸到的可能性就有大有小了。

让学生先估计。

学生实践。

让学生结果进行讨论。

教学内容

教师活动过程

学生活动过程

二、实践探索,初步体验

三、做做想想,深化认识

今天我们就要来研究这方面的内容。

(板书课题:统计与可能性)

1.师生互动:

(1)同学们,你们想不想自己来摸球?

刚才在摸球比赛时大家是通过数的方法来得到他们摸球的结果,这次我们要用涂方格的方法来统计摸球的情况。

(2)请两名同学上来摸球,老师进行统计。

2、学生小组操作(出示要求):

(1)在还没摸之前,请大家猜一猜,白球会摸到几次?黄球会摸到几次?

(2)大家的猜测是否正确呢?下面请组长负责记录,其他组员轮流摸球,看哪一组完成得又快又好!

(3)完成后观察统计的结果,你发现了什么?

3、交流。

(一)抛正方体

1、做完了摸球游戏,下面我们要来玩抛正方体。

(1)请大家猜一猜,会出现什么结果?

(2)出示统计表,师简要说明。

(3)分组活动,师巡视。

(4)展示交流,指着统计图说说你们的结果,算出四个组的合计数,你发现了什么?为什么?

(5)如果要让“1”出现的次数更多,怎么办?

学生看桌上的袋子里面装了哪些球?

学生估计谁是胜者。

学生分组活动,师巡视。

学生展示统计结果,并进行小结。

说说从中发现了什么?

学生进行讨论,如有必要安排实验。

教学内容

教师活动过程

学生活动过程

四、联系实际,灵活运用

(二)连一连

1、过渡:刚才我们通过摸球,抛正方体,知道了当条件不同时,所产生的可能性是有大小的。下面请大家看一看,这些结果是怎样产生的?

3、连一连,并说说为什么?

安排运动会:

(1)我们学校的喜事接连不断,在前不久举办的江都市小学生田径比赛重,我校的田径队获得了全市第一名。这一切都离不开田径队平时的艰苦训练。再过几天,10月份我们学校举办学校田径运动会,具体日子还没定下来,你们认为选什么样的日子比较好呢?

(2)在我们每组的桌上都有一份1994年到20xx年三月份的天气情况,请小组讨论一下,你们准备选哪一天?为什么?

(3)交流

(4)小结:大家的选择都很有道理,我会把它转告给篮球比赛的负责人,我相信一定会采纳大家的意见的!

学生活动

(1)在小正方体的2个面上写“1”,2个面上写“2”,2个面上写“3”。

(2)把小正方体抛30次,用涂方格的方法记录“1”、“2”、“3”朝上的次数。

让学生对实验结果进行分析。

(3)出示P93第4题,学生独立完成。

学生小组合作,先进行讨论选择什么天气的日期。

分工合作在已有的就日历中寻找理想的日期。

每个小组推举一名学生汇报结果。

教学内容

教师活动过程

学生活动过程

五、全课总结

同学们,今天这堂课你有什么收获?

教师小结:在我们生活中,有很多事件的发生都是有它的可能性,而且可能性是有大小的。不过在很多时候,我们可以根据一些条件,来预测可能性的大小

学生举手发言,汇报本课的收获。

教学理念:(教学设计说明)

这节课的内容是通过实验让学生初步体会有些事件发生的可能性是相等的,有些事件发生的可能性是有大有小的,引导学生积累判断事件发生可能性大小的经验。在教学设计中注意了以下几点:

1.放手让学生做实验的主人,通过实验这一教学途径来达成教学目的的。

2.突出了让学生在数据收集整理的基础上建立对事件发生可能性大小的清晰体验。

3.不能满足于引导学生经历实验的过程,在经历过程的基础上引领学生对其中的数学思想和知识有所体验和感受,并能还原于生活,运用于生活。

可能性教案 篇25

[教学内容]

教材第94、95页的内容,第96页练习十八的第1、2题。

[教学目标]

1、使学生初步理解并掌握用分数表示可能性大小的基本思考方法,会用分数表示简单事件发生的可能性,进一步加深对可能性大小的认识。

2、使学生在学习用分数表示可能性大小的过程中,进一步体会数学知识间的内在联系,感受数学思考的严谨性与数学学习的趣味性。

3、使学生在学习过程中乐意与他人交流自己的想法,并获得一些成功的体验。

[教学重点]

会用分数表示简单事件发生的可能性大小。

[教学难点]

理解并掌握用分数表示可能性大小的基本思考方法。

[教学过程]

一、谈话

你们知道我们国家的国球是什么吗?你知道哪些著名的乒乓球运动员?(电脑上显示著名乒乓球运动员的照片。)这些运动员通过努力为祖国争得了许多的荣誉,真了不起,我们要向他们学习。

大家都这么喜欢乒乓球这一运动,老师想考考大家对乒乓球比赛的规则是不是了解呢?(猜裁判把乒乓球放在左手还是右手,猜对的先发球;五局三胜;每球得分制;每局11分)

[教学设想:乒乓球是我们国家的国球,和学生交流相关的话题,往往可以激发学生的兴趣,学生乐于交流,这样一种良好的交流氛围也一定可以延伸到之后的教学活动中。在谈话的同时放一些相关的图片,学生在交流和欣赏的`同时一定会产生自豪感的,同时进行了思想教育。]

二、新课教学

1、教学例1。

谈话:刚才我们讲到在乒乓球比赛中,通过猜裁判把乒乓球放在左手还是右手的方法来决定谁先发球。(出示场景图。)

你们认为这种用猜左右的方法决定由谁先发球的方法公平吗?(公平)你们有没有想过为什么这么做对双方运动员来讲都是公平的呢?能不能把你的想法先和你同桌交流一下。

全班交流,形成共识:裁判员把1个乒乓球握在手里,不让任何人知道球在哪只手里,给参加比赛的运动员猜。由于乒乓球可能在裁判的左手,也可能在裁判的右手,所以,有可能猜对,也可能猜错。也就是说猜对或猜错的可能性是一样的、相等的。

老师也要做一回裁判,请两位学生也来猜一猜,验证一下我们刚才讨论的结果。

[教学设想:先让学生通过讨论,让他们有自己的一些理解,再通过实际演示让学生更加直观地明白在这种情况下,猜对或猜错的可能性是一样的、相等的,所以是公平的。]

可能性教案 篇26

【教学内容】

小学数学人教课标版三年级上册第八单元(p104—111)

【教学目标】

一、基础性目标:

1、使学生初步体验有些事件的发生是确定的,有些则是不确定的。

2、使学生能够列出简单试验所有可能发生的结果。

3、使学生知道事件发生的可能性是有大小的,能对一些简单事件发生的可能性作出描述,并和同伴交换想法。

二、发展性目标:

1、通过学生的猜一猜、摸一摸、转一转、说一说等活动,增强学生间的交流,培养学习兴趣。

2、通过实际操作活动,培养学生的动手实践能力,交流合作能力,推理能力。

【教学重、难点】

重点:体验事件发生的确定性和不确定性,能够列举出简单实验所有可能发生的结果,知道事件发生的可能性是有大小的。

难点:研究事件的不确定现象,从不确定现象中寻找规律。

【教材分析】

在现实世界中,严格确定性的现象十分有限,不确定现象却是大量存在的,而概率正是研究不确定现象的规律性的分支。《新课标》将“概率”作为义务教育阶段数学课程的四个学习领域之一“统计与概率”中的一部分,从第一学段起就安排了有关的学习内容。

本单元主要是教学事件发生的不确定性和可能性,使学生初步体验现实世界中存在着不确定现象,并知道事件发生的可能性是有大小的。本单元教材在编排上有下面几个特点。

1、选取学生熟悉的生活情境及感兴趣的游戏活动作为教学素材,帮助学生理解数学知识。

根据学生的年龄特点和生活经验,教科书中选取了学生非常熟悉的“新年联欢会上抽签表演节目”的现实情境,引入本单元的学习内容,还通过大量生活实例丰富学生对不确定现象的体验,目的是使学生积极地参与到数学学习活动中,并感受到数学就在自己的身边,体会数学学习与现实的联系。

教科书中还设计了有趣的摸棋子试验等活动,激发学生的学习兴趣,使学生愉快的投入到数学学习活动中去。

2、设计丰富的活动,为学生提供探索与交流的时间和空间。

不确定现象是这部分内容的一个重要研究对象,从不确定现象中去寻找规律,这对学生来说是一种全新的.观念。如果缺乏对随机现象的丰富体验,学生较难建立这一观念。

因此,教科书中设计了多种不同层次的、有趣的活动和游戏,如摸棋子试验、涂色活动、抽签游戏等。通过创设这些具有启发性的问题情境,使学生在大量观察、猜测、试验与交流的数学活动过程中,经历知识的形成过程,逐步丰富对不确定现象和可能性大小的体验。

【教学建议】

1、注意创设问题的情境,引导学生在数学活动中体验不确定现象和可能性。

在教学中,教师应注意创设各种问题情境,充分调动学生的积极性和主动性,让学生在具体的操作活动中进行独立思考,鼓励学生发表自己的意见,并与同伴交换自己的想法。引导学生在观察、猜测、试验与交流等数学活动中,充分感受和体验不确定现象和事件发生的可能性。

2、把握好教学要求。

教师在引导学生感受“确定事件”“不确定事件”以及“事件发生的可能性大小”时,只要让学生结合具体情境的问题情境,用“一定”“不可能”“可能”“经常”“偶尔”等词语来描述事件发生的可能性就可以了,不必要求学生使用有关术语进行解释,也不必要求学生求出可能性的具体大小。

3、本单元可用四课时进行教学。

可能性教案 篇27

【教学目标】

1.通过让学生经历实际问题的情景,认识事件发生可能性大小的意义。

2.了解事件发生的可能性大小是由发生事件的条件来决定的。

3.会在简单情景下比较事件发生的可能性大小。

4.通过创设游戏情境,让学生感受到生活中处处有数学。主动参与,做“数学实验”,激发学生学习的热情和兴趣,激活学生思维。

【教学重点、难点】

教学重点:认识事件发生可能性大小的意义。

教学难点:在问题情景比较复杂的情况下,比较事件发生的可能性大小

【教学过程】

一、 创设情境引入新知

提出问题:在一个盒子里放有4个红棋,1个蓝棋,摸出一个棋子,可能是什么颜色?摸出红棋的可能性大还是摸出蓝棋的可能性大?

为了解决这个问题,可先让学生分小组进行摸球游戏:

1、每位同学轮流从盒子中摸球,记录所摸得棋子的颜色,并将球放回盒中。

2、做20次这样的活动,将最终结果填在表中。

3、全班将各小组活动进行汇总,摸到红棋的次数是多少?摸到蓝棋的次数是多少?

4、如果从盒中任意摸出一球,你认为摸到哪种颜色的棋子可能性大?

游戏的结论:

在上面的摸球活动中,每次摸到的球的颜色是不确定的。摸出红棋的可能性比摸出蓝棋的可能性大,原因是红棋的数量比蓝棋多。

一般地,不确定事件发生的可能性是有大小的。

说明:摸棋游戏教师首先要使学生明确试验的过程,“摸出一个棋子,记录下它的颜色,再放回去,重复20次”。然后还要使学生明确组内成员的分工,应有人负责摸出棋子,有人负责记录下它的颜色,并应提醒学生在试验前要选择好统计试验数据的方法(可以用画“正”字的方法)。而且还要向学生说明在试验的过程中,应注意保证试验的随机性,如:每次摸棋子前应将盒中的棋子摇匀;摸棋子时不要偷看等。在各小组进行试验的过程中,教师应关注每一个小组,及时给予指导,保证试验的随机性。

二、观察思考 理解新知

请考虑下面问题:

(1)如果你和象棋职业棋手下一盘象棋,谁赢利的可能性大?

分析:根据本人的实际棋艺水平来确定,答案不唯一。

(2)有一批成品西装,经质量检验,正品率达到98%。从这批西装中任意抽出1件,是正品的可能性大,还是次品的'可能性大?

分析:要比较“任意抽出1件是正品”与“任意抽出1件是次品”两个事件发生的可能性大小,只要比较两个事件发生的条件:“正品率达到98%”与“次品率达到2%”,显然抽到正品的可能性大。

(3)任意抛一枚均匀的硬币,出现正面朝上、反面朝上的可能性相等吗?

分析:任意抛一枚均匀的硬币,有两种可能①正面朝上②反面朝上,因为它们出现的机会均等,所以出现正面朝上、反面朝上的可能性相等。

(4)一个游戏转盘如图,红、黄、蓝、绿四个扇形的圆心角度数分别是90°,60°,90°,120°。让转盘自由转动,当转盘停止后,指针落在哪个区域的可能性最大?在哪个区域的可能性最小?有可能性相等的情况吗?为什么?

分析:因为绿色扇形区域面积最大,黄色扇形区域面积最小,红、蓝色扇形区域面积相等,所以指针落在绿域的可能性最大,黄域的可能性最小,红、蓝域的可能性相等。

从上可得出以下结论:

①事件发生的可能性大小是由发生事件的条件来决定的。

②可能性的大小与数量的多少有关。

数量多(所占的区域面积大)?可能性大

数量少(所占的区域面积小)? 可能性小

三、师生互动运用新知

例1某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据什么?

分析:在教学中要求学生先分清事件发生的条件分别是什么?事件“遇到红灯”发生的条件是“红灯时间设置40秒”,事件“遇到绿灯”发生的条件是“绿灯时间设置60秒”,所以人或车随意经过该路口时,遇到绿灯的可能性最大,遇到红灯的可能性最小。本例相对容易,可让学生通过交流自己完成。

完成P76 1,2的做一做

例2某旅游区的游览路线图如图3—4所示.小明通过入口后,每逢路口都任选一条道.问他进人A景区或B景区的可能性哪个较大?请说明理由.

分析:本题有一定难度,教学时要抓住这两个事件发生的条件,可分以下几个步骤:

(1)小明进入旅游区后一共有多少种可能的路线?可以把小明进入旅游区的A景点或进入旅游区B景点的过程分解为两个步骤:第一步进入左、中、右主干线,有3种可能,第2步进入每条主干线的两条支线,各有2种可能;

(2)将上述结果列表或画树状图;

(3)确认各种可能性是否相等,确认“进入A景点” “进入B景区”分别占了多少种,也就是确定两个事件发生的条件;

(4)比较两个事件发生的条件,判定哪个事件发生的可能性大。

完成课内练习1,2

四、梳理知识 形成结构

通过本节课的学习,谈谈你的收获?

在交流中,师生可共同梳理知识点:

(1)事件发生的可能性大小是由发生事件的条件来决定的。

(2)可能性的大小与数量的多少有关。

数量多(所占的区域面积大)?可能性大

数量少(所占的区域面积小)? 可能性小

五、应用新知 体验成功

1、小明任意买一张电影票(每排有40个座位),座位号是2的倍数与座位号是5的倍数的可能性哪个大?

答案: 2的倍数可能性哪个大。

2、请你在班上任意找一名同学,找到男同学与找到女同学的可能性哪个大?为什么?

答案:要根据该班的男、女实际人数来确定.如该班男同学22名,女同学24人,则任意找一名同学,找到女同学与的可能性比找到男同学的可能性大。

3、某公交车站共有1路、12路、31路三路车停靠,已知1路车8分钟一辆;12路车5分钟一辆、31路车10分钟一辆,则在某一时刻,小明去公交车站最先等到几路车的可能性最大。

答案:间隔时间最短,31路车间隔时间最长,所以小明去公交车站最先等到12路车的可能性最大。

4、盒子中有8个白球、4个黄球和2个红球,除颜色外其他相同。任意摸出一个球,可能出现哪些结果?哪一种可能性最大?哪一种可能性最小?

答案:任意摸出一个球,可能摸出白球、黄球或红球。任意摸出一个球,摸出白球可能性最大,摸出红球可能性小。

5、如图是小明家地板的部分示意图,它由大小相同的黑白两色正方形拼接而成,家中的小猫在地板上行走,请问:小猫踩在哪种颜色的正方形地板上可能性较大?

讲故事 5张

唱 歌 3张

跳 舞 1张

答案:由于黑色正方形比白色正方形块数多,所以小猫在地板上行走,踩在黑色的正方形地板上可能性较大。

6、联欢会上小红可能抽到什么节目?

抽到什么节目的可能性最大?抽到什么节目的 可能性最小?

答案:联欢会上小红可能抽到的节目是讲故事、唱歌或跳舞。抽到讲故事节目的可能性最大。

7、连续两次抛掷一枚均匀的硬币,朝上一面有几种可能?你认为两次正面朝上与一次正面朝上、一次正面朝下发生的可能性哪个大?

答案:

朝上一面有4种可能:①正、正 ②正、反③反、正 ④反、反。

一次正面朝上,另一次正朝面下发生的可能性大。

六、布置作业巩固新知

作业题:1 — 4必做5、6选做。

可能性教案 篇28

教学目标:

1.使学生结合具体的实例,初步感受简单的随机现象,能列举出简单随机事件中所有可能出现的结果,能正确判断简单随机事件发生的可能性的大小。

2.使学生在观察、操作和交流等具体活动中,初步感受简单随机现象在日常生活中的广泛应用,能应用有关可能性的知识解决一些简单的实际问题或解释一些简单的生活现象,形成初步的随机意识。

3.使学生在参与学习活动的过程中,获得学习成功的体验,感受与他人合作交流的乐趣,培养对数学学习的兴趣。

课时安排:

教学本单元用2课时

第1课时

重点难点:

感受简单随机现象的特点,能列举出简单随机现象中所有可能发生的结果,能对简单随机现象发生的可能性大小作出定性描述。

教学准备:

师:红、黄、绿球各2个、扑克牌、投影仪等;生:红桃A—4、黑桃4扑克牌

教学过程:

一、揭题

谈话:同学们喜欢玩游戏吗?今天这节课我们主要通过玩一些游戏,来研究游戏中隐藏着的数学知识。(揭示课题)

二、探究

1.教学例1。

谈话:先请看,这是一个不透明的空口袋,这里还有2个球,1个是红球,1个是黄球。把这2个球放入口袋里,想一想,如果从口袋里任意摸出1个球,你认为摸出的会是哪个球?相机板书:可能谈话:可能是红球,也可能是黄球,到底能摸到哪个球并不确定(板书:不确定)。情况是不是这样呢?我们可以通过摸球游戏来检验,先看老师怎样摸球,(示范)像这样每次在摸球前先用手在口袋里把2个球搅一搅,再任意摸出1个球,看一看是什么颜色,并把摸出的结果记录在这张表里,然后把球放回口袋里,搅一搅,再摸。会做这样的游戏了吗?请小组长拿出课前准备好的口袋,在口袋里放1个红球和1个黄球。小组合作,轮流摸球,摸10次,并按顺序记录每次摸出球的颜色。

学生按要求活动,教师巡视。反馈摸球结果:请各小组选派一名代表到投影仪前展示你们组摸球的结果,并说说摸出红球和黄球各多少次。展示后,把各小组的记录单对应着排列起来。

讨论:比较各小组的'摸球结果,你能发现什么?学生讨论,明确:各小组摸出红球、黄球次数不完全相同;每次摸出的球的颜色也不完全相同;但每个小组既摸出了红球,也摸出了黄球。提问:通过摸球游戏,你有什么体会?

2.教学“试一试”。

出示口袋,并在口袋里放2个红球。提问:现在口袋里有几个球?是什么颜色的?如果从这个口袋里任意摸出1个球,结果会怎样?(板书:一定)提问:如果口袋里只放了2个黄球,从中任意摸出1个球,可能摸出红球吗?为什么?(板书:不可能)追问:如果口袋里放1个黄球和一个绿球,从中任意摸出1个球,能摸出红球吗?比较:请同学们回顾一下例1和“试一试”的学习过程,想一想,同样在口袋里摸球,例1和“试一试”有什么不同?

3.小结

像这样,有些事件的发生与否是确定的,要么一定发生,要么不可能发生,这样的事件又称为确定事件;有些事件的发生与否是不确定的,可能发生,也可能不发生,这样的事件又称为不确定事件。(板书:确定性不确定性)4.教学例2。

谈话:通过摸球游戏,我们知道了有些事件的发生是确定的,有些事件的发生是不确定的。接下来,我们来玩摸牌游戏。(出示例2中的4张扑克牌)如果把这4张牌打乱后反扣在桌上,从中任意摸出1这,可能摸出哪一张?摸之前能确定吗?提问:可能出现的结果一共有多少种?把“红桃4”换成“黑桃4”,提问:现在的4张牌中,既有红桃,又有黑桃。如果从这4张牌中任意摸出1张,可能出现的结果一共有多少种?学生在小组里讨论,交流。

验证,各小组合作进行摸牌游戏。一共摸40次。

展示摸牌结果。比较发现。

可能性教案 篇29

【教材分析】

(一)教学内容分析:

可能性和概率是七年级下册第三章《事件的可能性》的第3节内容。这是在学生通过具体情境了解了必然事件、不确定事件、不可能事件等概念,并在具体情境中了解事件发生的可能性的意义,会用列举法(包括列表、画树状图)统计在简单问题情境中可能发生的事件的种数的基础上,对其中的可能性事件的进一步学习和提升。通过一些简单的事例,初步认识概率的意义,导出等可能性事件的概率公式,知道不可能事件的概率为0,必然事件的概率为1,不确定事件的概率大于0且小于1。这样的安排完全是按照《新课程标准》的分步到位,螺旋式上升的整体设计。

教材中通过以下步骤建立概率的意义:通过实例认识事件发生的可能性及其大小——用事件发生的可能性的大小定义概率——在等可能性的前提下用比的形式来表示概率。其中第3个步骤“等可能性”这个前提十分重要。课本通过说理的方法来让学生认识等可能性。有关概率的概念,本教科书将在八年级下册学习频数和频率的基础上,主要安排在九年级上册学习。因此在本章教学中尽量不随意提高要求,主要是为以后的进一步学习打下扎实的基础。同时也进一步使学生了解概率的产生与发展是与生产、生活紧密联系的。

(二)学情分析

考虑到七年级学生的认知水平和知识结构,遵循启发式原则,在新课标的指导下,本节课采取发现与探究结合的教学方法。充分体现教师组织、引导、合作的作用,凸现学生的主体作用,让学生充分经历实际问题的情景,这是认识事件发生的可能性及其大小的唯一途径。教学中应通过大量的实际例子,让学生知道什么是等可能性?怎样认识两个事件发生的可能性是否相等?计算等可能事件发生的概率对学生来说不太容易。 涉及一些简单事件的概率计算,主要目的是让学生初步认识概率的意义,以及在等可能性的条件下概率的一种直观表现形式。这是学生学习了事件的可能性后的一个自然延伸。在教学中,应注意所学内容与日常生活、自然、社会和科学技术领域的联系。让学生感受到学习等可能性事件的概率的重要性和必要性。还应注意使学生在具体情境中体会事件的可能性与概率的意义。这些不仅是学习本节的关键,对于学好本章及至以后各章也是很重要的。

【教学目标】

1、 了解概率的意义

2、 了解等可能性事件的概率公式

3、 会用列举法(包括列表、画树状图)计算简单事件发生的概率

进一步认识游戏规则的公平性

【教学重点、难点】

重点:概率的意义及其表示

难点:例2涉及转盘自由转动2次,事件发生的条件构成比较复杂,是本节教学的难点。

【教学过程】

(一) 创设情境,引入新知:

引例:小红与小李被同学们推选为班长,获票数相等,谁担任正班长哪?老师决定用抽签的办法来决定:做4个纸团,其中只有1个纸团里写有“正”字。由小红从中任取1个纸团。抽出有“正”字的纸团,就决定由小红担任正班长。这个办法公平吗?如果不公平,怎样改正才会使之公平?

分析:小红从4个纸团中抽出写有“正”字的纸团的可能性是 ,即小红担任正班长的可能性是 。如果小红抽到写有“正”字的纸团,就决定由小红担任正班长,这个办法不公平。然后由学生共同合作讨论,得到改正的方法。而且,这改正的方法不止一种。要充分发挥学生的主观能动性和合作精神,让学生积极参与。

解答:这种抽签决定正班长的办法是不公平的,如果仅对小红而言是不公平的。如果小李也按这个办法实行,小李担任正班长的可能性也是 ,也就是说,双方获胜的可能性相同。这个办法才是公平的。(改正的方案不唯一)

(这样的引入,体现数学来源于生活,素材与学生现实紧密结合,从解决实际问题的欲望而促进对数学学习的兴趣,鼓励合作学习。从多角度思考,采用多种解决问题的办法,创造积极合作、讨论的氛围。)

(二) 师生互动,探索新知:

从此题解答中可以得到,在客观条件下使小红与小李抽签胜出的可能性大小相等(也称机会均等)那么才是公平的。而事实上,我们在日常生活中,常常会遇到指明可能性大小的情况:教师可举一些描述实际生活中有关可能性大小的几个例子:

①小明百分之百可以在一分钟内打字50个以上,即小明在一分钟内打字50个以上的可能性是100%。

②小华不可能在7秒内跑完100米,即小华在 秒内跑完100米的可能性是0。

③通过摇奖,要把一份奖品奖给10个人中的一个。每人得奖的可能性是 。

接着类似的可以让学生自己结合生活经验独立举一些例子。

(这样的安排是使学生有独立思考的空间并让学生充分发表自己的意见。只要合理、正确都予以高度肯定,激发学生的兴趣。但学生难免犯错,但相信同学之间也能纠错。教师放手让学生在互相讨论和互相评价中得以提高和加深对知识的理解。在学生评价中,集思广益,能体会到如何更完善和辨证地分析问题。)

然后教师归纳,在教学中我们把事件发生的可能性的.大小也称为事件发生的概率,一般用 表示。事件 发生的概率也记为 ,事件 发生的概率记为 ,依此类推。

如果我们知道事件发生的可能性相同的各种结果的总数,并且知道其中事件 发生的可能的结果总数,那么就可用以下式子表示事件 发生的概率:

强调:概率的数学意义是一种比率,这个概率公式适用的条件——事件发生的各种可能结果的可能性都相等。这一点学生容易疏忽。可根据学生具体情况确定是否再举一些实例加以辨别各种可能结果的可能性是否都相等。

例如:任意抛掷一枚硬币,有“正面朝上”和“反面朝上”两种结果。由于硬币质地均匀,抛掷时具有任意性,所以出现“正面朝上”和“反面朝上”的可能性认为是相等的。适用等可能性事件的概率公式。而对于“投篮”,虽然也只有两种可能结果:“命中”与“没命中”,但由于投篮的命中率与投篮者的技术水平相关,“命中”与“没命中”的可能性通常是不相等的。

(三) 讲解例题,综合运用:

在弄清等可能性的含义后,就可以应用本节课的概率公式解决实际问题。

例1:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数是1的概率是多少?是偶数的概率是多少?是正数的概率是多少?是负数的概率是多少?

分析:由于一枚骰子有六个面。当骰子停止运动后,每一个面朝上的可能性都为 。即为等可能性事件。因此可用概率的公式计算。

解:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数有可能性相同的 种可能,即1、2、3、4、5、6。所以朝上一面的数是 只有 种可能,即朝上一面的数是 的概率 ;是偶数的有 种可能,即2、4、6。所以朝上一面的数是偶数的概率 ;是正数的有 种可能,即1、2、3、4、5、6。所以朝上一面的数是正数的概率 ;是负数的可能结果有 种,即所有可能的结果都不是负数,所以朝上一面的数是负数的概率 。

一般地,必然事件发生的概率为100%,即 。不可能事件发生的概率为0,即 。而不确定事件发生的概率介于0与1之间,即 。

(例1的目的主要巩固等可能性事件的概率公式,教师着重讲清解法的思路和方法步骤。解这类问题的基本思路是先分析判断是否适用等可能性事件的概率公式。然后统计所有可能的结果数和所求概率的事件所包含的结果数,再把它们代入公式求出所求概率。)

从例1中自然引出必然事件的概率为1,不可能事件的概率为0,不确定事件的概率为 。

(四) 练习反馈,巩固新知:

做一做:

1、 从你所在小组任意挑选一名同学参加诗朗诵活动,正好挑中你的可能性是多少?

(根据班级各小组的实际人数回答)

2、 转盘上涂有红、蓝、绿、黄四种颜色,

每种颜色的面积相同。自由转动一次转盘,

指针落在红色 区域的概率是多少?

指针落在红色或绿色 区域的概率是多少?

(1/4,1/2)

(五)变式练习,拓展应用:

例2:如图所示的是一个红、黄两色各占

一半的转盘,让转盘自由转动2次,指针2

次都落在红色 区域的概率是多少?一次落在

红色 区域,另一次落在黄色 区域的概率是多少?

分析:

(1)由于转盘上红、黄两色面积各占一半,转盘自由转动一次,指针落在黄色 区域和落在红色 区域的可能性是相同的。

(2)统计所有可能的结果数,让学生自己列表或画树状图。应注意转盘的两次自由转动意味着事件的发生分两个步骤,各种可能包括了顺序的因素。

(3)统计所求各个事件所包含的可能结果数。

解:根据如图的树状图,所

有可能性相同的结果数有4种:

黄,黄;黄,红;红,黄;红,红。

其中2次指针都落在红色 区域的可能结

果只有1种,所以2次都落在红色 区域

的概率 ;

一次落在红色 区域,另一次落在黄色 区域的可能有结果2种,所以一次落在红色 区域,另一次落在黄色 区域的概率 。

变式:在例2的条件下,再问:第一次落在红色 区域,第二次落在黄色 区域的概率是多少?讲解时注意让学生自己分析同例2的第二问的区别。从中求出变式的正确的解答为 。

(本环节主要让学生体验变式中的探究学习,培养学生的严谨的科学态度,提倡题后反思。)

(五) 反思总结,布置作业:

引导学生总结本节课的所学知识,反思有什么样的收获。进一步激发学生的学习热情,也让参与反思的学生更多。在交流的过程中学会学习,完善自己的知识体系。然后布置作业,有助于学生应用能力和创新能力的培养。

五、教学说明:

本章计算等可能性事件的概率只涉及简单的独立事件。一般每次取1个,最多取3次。教师应把握好教学要求。

可能性教案9篇

作为一名教职工,有必要进行细致的教案准备工作,教案有助于顺利而有效地开展教学活动。那么优秀的教案是什么样的呢?以下是小编精心整理的可能性教案9篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

可能性教案 篇30

【教材分析】

(一)教学内容分析:

可能性和概率是七年级下册第三章《事件的可能性》的第3节内容。这是在学生通过具体情境了解了必然事件、不确定事件、不可能事件等概念,并在具体情境中了解事件发生的可能性的意义,会用列举法(包括列表、画树状图)统计在简单问题情境中可能发生的事件的种数的基础上,对其中的可能性事件的进一步学习和提升。通过一些简单的事例,初步认识概率的意义,导出等可能性事件的概率公式,知道不可能事件的概率为0,必然事件的概率为1,不确定事件的概率大于0且小于1。这样的安排完全是按照《新课程标准》的分步到位,螺旋式上升的整体设计。

教材中通过以下步骤建立概率的意义:通过实例认识事件发生的可能性及其大小——用事件发生的可能性的大小定义概率——在等可能性的前提下用比的形式来表示概率。其中第3个步骤“等可能性”这个前提十分重要。课本通过说理的方法来让学生认识等可能性。有关概率的概念,本教科书将在八年级下册学习频数和频率的基础上,主要安排在九年级上册学习。因此在本章教学中尽量不随意提高要求,主要是为以后的进一步学习打下扎实的基础。同时也进一步使学生了解概率的产生与发展是与生产、生活紧密联系的。

(二)学情分析

考虑到七年级学生的认知水平和知识结构,遵循启发式原则,在新课标的指导下,本节课采取发现与探究结合的教学方法。充分体现教师组织、引导、合作的作用,凸现学生的主体作用,让学生充分经历实际问题的情景,这是认识事件发生的可能性及其大小的唯一途径。教学中应通过大量的实际例子,让学生知道什么是等可能性?怎样认识两个事件发生的可能性是否相等?计算等可能事件发生的概率对学生来说不太容易。 涉及一些简单事件的概率计算,主要目的是让学生初步认识概率的意义,以及在等可能性的条件下概率的一种直观表现形式。这是学生学习了事件的可能性后的一个自然延伸。在教学中,应注意所学内容与日常生活、自然、社会和科学技术领域的联系。让学生感受到学习等可能性事件的概率的重要性和必要性。还应注意使学生在具体情境中体会事件的可能性与概率的意义。这些不仅是学习本节的关键,对于学好本章及至以后各章也是很重要的。

【教学目标】

1、 了解概率的意义

2、 了解等可能性事件的概率公式

3、 会用列举法(包括列表、画树状图)计算简单事件发生的概率

进一步认识游戏规则的公平性

【教学重点、难点】

重点:概率的意义及其表示

难点:例2涉及转盘自由转动2次,事件发生的条件构成比较复杂,是本节教学的难点。

【教学过程】

(一) 创设情境,引入新知:

引例:小红与小李被同学们推选为班长,获票数相等,谁担任正班长哪?老师决定用抽签的办法来决定:做4个纸团,其中只有1个纸团里写有“正”字。由小红从中任取1个纸团。抽出有“正”字的纸团,就决定由小红担任正班长。这个办法公平吗?如果不公平,怎样改正才会使之公平?

分析:小红从4个纸团中抽出写有“正”字的纸团的可能性是 ,即小红担任正班长的可能性是 。如果小红抽到写有“正”字的纸团,就决定由小红担任正班长,这个办法不公平。然后由学生共同合作讨论,得到改正的方法。而且,这改正的方法不止一种。要充分发挥学生的主观能动性和合作精神,让学生积极参与。

解答:这种抽签决定正班长的办法是不公平的,如果仅对小红而言是不公平的。如果小李也按这个办法实行,小李担任正班长的可能性也是 ,也就是说,双方获胜的可能性相同。这个办法才是公平的。(改正的方案不唯一)

(这样的引入,体现数学来源于生活,素材与学生现实紧密结合,从解决实际问题的欲望而促进对数学学习的兴趣,鼓励合作学习。从多角度思考,采用多种解决问题的办法,创造积极合作、讨论的氛围。)

(二) 师生互动,探索新知:

从此题解答中可以得到,在客观条件下使小红与小李抽签胜出的可能性大小相等(也称机会均等)那么才是公平的。而事实上,我们在日常生活中,常常会遇到指明可能性大小的情况:教师可举一些描述实际生活中有关可能性大小的几个例子:

①小明百分之百可以在一分钟内打字50个以上,即小明在一分钟内打字50个以上的可能性是100%。

②小华不可能在7秒内跑完100米,即小华在 秒内跑完100米的可能性是0。

③通过摇奖,要把一份奖品奖给10个人中的一个。每人得奖的可能性是 。

接着类似的可以让学生自己结合生活经验独立举一些例子。

(这样的安排是使学生有独立思考的空间并让学生充分发表自己的意见。只要合理、正确都予以高度肯定,激发学生的兴趣。但学生难免犯错,但相信同学之间也能纠错。教师放手让学生在互相讨论和互相评价中得以提高和加深对知识的理解。在学生评价中,集思广益,能体会到如何更完善和辨证地分析问题。)

然后教师归纳,在教学中我们把事件发生的可能性的'大小也称为事件发生的概率,一般用 表示。事件 发生的概率也记为 ,事件 发生的概率记为 ,依此类推。

如果我们知道事件发生的可能性相同的各种结果的总数,并且知道其中事件 发生的可能的结果总数,那么就可用以下式子表示事件 发生的概率:

强调:概率的数学意义是一种比率,这个概率公式适用的条件——事件发生的各种可能结果的可能性都相等。这一点学生容易疏忽。可根据学生具体情况确定是否再举一些实例加以辨别各种可能结果的可能性是否都相等。

例如:任意抛掷一枚硬币,有“正面朝上”和“反面朝上”两种结果。由于硬币质地均匀,抛掷时具有任意性,所以出现“正面朝上”和“反面朝上”的可能性认为是相等的。适用等可能性事件的概率公式。而对于“投篮”,虽然也只有两种可能结果:“命中”与“没命中”,但由于投篮的命中率与投篮者的技术水平相关,“命中”与“没命中”的可能性通常是不相等的。

(三) 讲解例题,综合运用:

在弄清等可能性的含义后,就可以应用本节课的概率公式解决实际问题。

例1:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数是1的概率是多少?是偶数的概率是多少?是正数的概率是多少?是负数的概率是多少?

分析:由于一枚骰子有六个面。当骰子停止运动后,每一个面朝上的可能性都为 。即为等可能性事件。因此可用概率的公式计算。

解:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数有可能性相同的 种可能,即1、2、3、4、5、6。所以朝上一面的数是 只有 种可能,即朝上一面的数是 的概率 ;是偶数的有 种可能,即2、4、6。所以朝上一面的数是偶数的概率 ;是正数的有 种可能,即1、2、3、4、5、6。所以朝上一面的数是正数的概率 ;是负数的可能结果有 种,即所有可能的结果都不是负数,所以朝上一面的数是负数的概率 。

一般地,必然事件发生的概率为100%,即 。不可能事件发生的概率为0,即 。而不确定事件发生的概率介于0与1之间,即 。

(例1的目的主要巩固等可能性事件的概率公式,教师着重讲清解法的思路和方法步骤。解这类问题的基本思路是先分析判断是否适用等可能性事件的概率公式。然后统计所有可能的结果数和所求概率的事件所包含的结果数,再把它们代入公式求出所求概率。)

从例1中自然引出必然事件的概率为1,不可能事件的概率为0,不确定事件的概率为 。

(四) 练习反馈,巩固新知:

做一做:

1、 从你所在小组任意挑选一名同学参加诗朗诵活动,正好挑中你的可能性是多少?

(根据班级各小组的实际人数回答)

2、 转盘上涂有红、蓝、绿、黄四种颜色,

每种颜色的面积相同。自由转动一次转盘,

指针落在红色 区域的概率是多少?

指针落在红色或绿色 区域的概率是多少?

(1/4,1/2)

(五)变式练习,拓展应用:

例2:如图所示的是一个红、黄两色各占

一半的转盘,让转盘自由转动2次,指针2

次都落在红色 区域的概率是多少?一次落在

红色 区域,另一次落在黄色 区域的概率是多少?

分析:

(1)由于转盘上红、黄两色面积各占一半,转盘自由转动一次,指针落在黄色 区域和落在红色 区域的可能性是相同的。

(2)统计所有可能的结果数,让学生自己列表或画树状图。应注意转盘的两次自由转动意味着事件的发生分两个步骤,各种可能包括了顺序的因素。

(3)统计所求各个事件所包含的可能结果数。

解:根据如图的树状图,所

有可能性相同的结果数有4种:

黄,黄;黄,红;红,黄;红,红。

其中2次指针都落在红色 区域的可能结

果只有1种,所以2次都落在红色 区域

的概率 ;

一次落在红色 区域,另一次落在黄色 区域的可能有结果2种,所以一次落在红色 区域,另一次落在黄色 区域的概率 。

变式:在例2的条件下,再问:第一次落在红色 区域,第二次落在黄色 区域的概率是多少?讲解时注意让学生自己分析同例2的第二问的区别。从中求出变式的正确的解答为 。

(本环节主要让学生体验变式中的探究学习,培养学生的严谨的科学态度,提倡题后反思。)

(五) 反思总结,布置作业:

引导学生总结本节课的所学知识,反思有什么样的收获。进一步激发学生的学习热情,也让参与反思的学生更多。在交流的过程中学会学习,完善自己的知识体系。然后布置作业,有助于学生应用能力和创新能力的培养。

五、教学说明:

本章计算等可能性事件的概率只涉及简单的独立事件。一般每次取1个,最多取3次。教师应把握好教学要求。

可能性教案 篇31

统计和可能性总备:

本单元是在学生学习了简单的统计表,会求算术平均数、初步理解简单事件发生的可能性的基础上继续学习比较复杂的统计表、加权平均数、中位数、众数以及简单事件发生的可能性问题等知识。

教学目标:

(知识能力情感价值观)

1、进一步学习统计表,会填写较复杂的统计表;了解统计表中的合计、总计的具体意义;会根据统计表中所提供的数据,回答一些简单的问题;能对统计表进行简单的分析。

2、进一步理解统计中平均数的意义和作用;能根据所给数据求加权平均数,并能解释结果的实际意义。

3、通过一些简单事件,理解中位数、众数的意义,会求数据的中位数、众数。

4、通过生活中的实例,进一步体会事件发生的可能性,初步尝试根据给定的可能性设计一些简单的游戏。教学重点: 进一步学习统计表,会填写较复杂的统计表;了解统计表中的合计、总计的具体意义;会根据统计表中所提供的数据,回答一些简单的问题;能对统计表进行简单分析。

教学难点:

1、通过一些简单事件,理解中位数、众数的意义,会求数据的中位数、众数。

2、通过生活中的实例,进一步体会事件发生的可能性,初步尝试根据给定的.可能性设计一些简单的游戏。

突破重难点的方法与手段: 让学生深入生活去获取信息,学会整理和分析。教师重视安排好学生的社会实践活动。

统计和可能性

平均数

教学目标:

1、进一步理解统计中的平均数的意义和作用。

2、能根据所给数据求加权平均数,并能解释结果的实际意义。

教学重点:

能根据所给数据求加权平均数。

教学难点:

能运用所学的知识解决实际问题。

教学过程:

一、复习求简单的平均数。

1、引导学生思考

①从这个统计表中你能了解到哪些情况?

②还准备知道哪些情况?

2、随着问题的提出、自然地进行解决。五年级平均每人得多少分?(用五年级学生的得分总数除以五年级学生的总人数)

可能性教案 篇32

学具准备:

学生学具:

1、每组一盒 3红3白(号盒子2红2黄2白,号盒子5白1红,发给左侧两小组)

2、分好6个小组,按坐的.顺序定好1-6号,中间一人组长,培训组长、示范摸球。

教师学具:

1、四个硬纸板盒子(其中13号打印,塑封;还有一个用作放球用);三块黑卡纸;4红4黄4绿吸铁石。

2、教师有3个盒子,一号1白1红1黄(例题演示),二号7白(备10白1红),三号4红3黄(用作猜球练习)。

3、备红粉笔1支,确认磁性黑板,在黑板上布好点,放好12个吸铁石。

教学过程:

一、摸球

师:同学们一定在想,今天给我们上课的怎么是杨老师?不过,杨老师上课可不空手,今天,我给大家带来了一盒球礼品,想不想看看?

生:想(很兴奋)

师:咱们看看。(满面含笑摸出一个球,高举这是一个),

生:齐答:黄球

师:(放进去再摸出一个),里面啊还有(生接:白球),还有(生接:红球)

师:(欣喜)这红球漂亮吗?(漂亮)想要吗?(想)

师:这红球可不是心里想要就要得到的,我得把这几种颜色的球放在一个盒子里,让小朋友们去摸,如果你摸到红球,就把它送给你,想不想试试?

生:(斩钉截铁)想

师:现在,老师这儿有三个盒子,都装了些什么球呢,瞧(贴,这是1号盒子,这是2号盒子,这是3号盒子)现在,如果你特别想从盒子里摸出一个红球,你会选择到几号盒子里去摸?1号、2号还是3号?

生1:第3个,生2:第3个,生3:第3个。

师:想摸3号盒子的举手。哇,你们都想摸第3个盒子?奇怪,为什么你们都选3号?

生:因为3号盒子全部都是红球。

师:追问:全部是红球怎么了呢?

生1继续:随便摸哪个球都是红球。 生2:先摸哪个球都是红球。

师:都这么想吗?还有补充吗?是呀,盒子里全是红球,任意摸一个,会怎么样啊?(贴一定摸出红球:数学上,我们可以说)

可能性教案 篇33

背景:

我所教的二年级学生思维活跃,知识面较广,对于课本知识有相当一部分同学已经有一定认识,因而在数学课上如何能够吸引各水平段学生,使他们都能得到提高是教学设计的重要问题。所以这节课的目的我定在引导学生通过动手实际操作,发现“可能发生”、“不可能发生”、“一定会发生”。通过学生活动,使学生学会能根据给定的环境确定具体的内容。同时在教学中注意培养学生积极动手动脑解决问题的好习惯。

教材设计:

兴趣是学生学好这门课的关键,我在上课之前,认真地设计了学前导入部分,把学生的兴趣激发出来了,让学生从内心深处想上这节课,然后再进入主题。

“和谐高效,思维对话”型课堂,就是强调学生的参与性和实践性,让学生主体参与学习全过程,通过自身的实践活动,建构属于自己的知识结构。学生活动的成功与否,关键看亲历过程体验得深刻不深刻,是否真正有利于学生的发展。

在这堂实践课中,我设计了两组学生实际动手操作的活动,教学中我注重培养学生的动手操作能力,通过放小球的游戏,学生不仅能加深对“可能”“不可能”“一定”的认识,而且通过活动,培养了学生之间互相合作的意识。第二组活动是在前一次活动基础上,让学生想办法采用正确的方法去摘苹果。动手操作活动的设置使学生兴趣浓厚,勇于表达自己的意见,能充分锻炼学生独立思考解决问题的能力。

教学过程:

(一)、导入。

同学们,喜欢听故事吗?今天,老师给同学们讲一个故事,请同学们瞪大眼睛,看!是谁来了?(播放课件)

“一天,阿凡提牵着自己心爱的小毛驴,背着一袋金币往家赶。刚到村口,就碰到那个贪财、吝啬的大财主。他看到阿凡提手里的一袋金币就眼红。眼珠转了转,对阿凡提说:“如果你能把口袋里的金币往空中一抛,落下后个个都是正面朝上,那么这些金币就是你的了。如果不是,哼!哼!那它就是我的。”

师:同学们,听了这个故事之后,你觉得大财主是怎样的一个人呢?

生:是个贪财的人。

生:是个很坏的人。

师:你们觉得大财主出的主意对于阿凡提来说公平吗?你们觉得聪明的阿凡提会上当吗?

师:想和阿凡提一样聪明吗?学习了本节课的内容,你会像阿凡提一样聪明,一样能想出一个好办法来对付可恶的大财主的,大家有信心吗?

(二)、合作教学。

1、通过观察认识可能性。

(出示课件)

师:老师这里有几个盒子,第一个盒子里装着12个白球,任意摸一个球,可能是什么颜色的球呢?

生:白色的球。

师:一定是白色的吗?为什么呢?

生:因为盒子里装的全都是白色的球。(板书“一定”)

师:同学们,生活中有哪些事情一定会发生呢?(生回答)

师:再看第二个盒子,里面装着10个红球,任意摸一个球,可能是什么颜色的球呢?

生:红色的球。

师:一定是红色的吗?为什么呢?

生:因为盒子里装的全都是红色的球。

师:我想摸出一个白色的球,行吗?为什么?

生:不可能。因为盒子里没有白色的球。(板书“不可能”)

师:同学们,生活中有哪些事情不可能会发生呢?(生回答)

师:第三个盒子里装着12个白球和10个红球,任意摸一个球,可能是什么颜色的球呢?

生:有可能是白色的球,也有可能是红色的球。

师:请同学们思考一下,为什么会有两种可能呢?

生:因为盒子里既有红色的球也有白色的球。(板书“可能”)

师:生活中有哪些事情可能会发生呢?(生回答)

2、结合生活经验,解决问题。

师:老师这里也有一些事情,请同学们来判断一下。

(出示课件)

(1)、王阿姨要生宝宝了,()是个女孩。

(2)、明天()是星期六。

(3)、公鸡()会下蛋。

(4)、太阳()从东方升起。

(5)、明天()会下雨。

(6)、爸爸的年龄()比我小。

3、动手操作,完成目标。

师:同学们,老师发现你们真是太聪明了,不但能自己发现问题,还能自己去解决问题,为了奖励大家,老师带领同学们来玩一个小游戏,好吗?

老师这里有绿色和红色两种颜色的球,请同学们根据小桶上的标签内容,把球放好。看哪一个小组完成的最好,比一比吧!

师:我刚才发现每一个小组的同学表现都非常积极,我相信同学们完成的一定非常出色,下面,我们来展示一下好吗?

(小组派代表下来边展示边解说)

4、亲身体验,实践练习。

师:太精彩了,老师真为你们感到高兴,面对这么多可爱的小天使,老师又有了一个大胆的想法,我要带领大家去果园摘苹果,想去吗?不过,有一个要求,必须要按照农民伯伯的要求去摘,能做到吗?(老师在黑板上画一棵大树,树上结了几个苹果。)

师:第一个要求是必须要摘到红苹果,应该贴什么颜色的苹果呢?

(学生操作)

师:第二个要求是不可能摘到红苹果,应该贴什么颜色的苹果呢?

(学生操作)

师:第三个要求是可能摘到红苹果,也可能摘到绿苹果,应该怎样贴呢?

(学生操作)

5、前后呼应,解决课前问题。

师:同学们,学习了本节课的内容,你现在就是聪明的阿凡提了,你准备想个什么办法对付可恶的大财主呢?谁想下来说一说。

(学生自我展示)

(三)、总结评价。

师:同学们,这节课你对自己的表现满意吗?

生:满意。

师:给自己来点儿掌声,鼓励一下吧。

师:同学们,老师为你们的表现感到骄傲,希望同学们在今后的'学习过程中,能更多地去发现问题,并且想办法去解决问题,好吗?

教学反思:

在本课的教学中,我力图实现以下几点:

1、激发兴趣,培养探索精神。

整个教学过程始终围绕教学目标展开,力求做到层次清楚,环节紧凑。学生学习知识是发现、创造的过程,因此,在课堂教学中既要重视学习结果,更要重视过程,引导学生主动去探索,自己去发现。在课堂上我为学生创设一系列活动,让学生做中学,学中做;做中悟,悟中创。突出体现了学生对知识的获取和能力的培养。从不同角度去激发学生的学习兴趣。比如采用“听故事、摸球游戏、摘苹果”等游戏形式帮助学生理解、记忆,让学生的学习兴趣高涨,创设了一个良好的课堂氛围。

2、设计有价值的问题,引导并启发学生展开思考和学习活动。

问题是思维的源泉,更是思维的动力。新课程改革以转变学生的学习方式为突破口,倡导以问题为中心的教学,通过问题解决建构知识的理解。实施以问题为中心的教学,问题的设计非常关键。在本课中主要问题有:你能帮助阿凡提出主意对付大财主吗?帮农民伯伯摘苹果等等。以问题为线,以观察、思考、小组合作等为渠道,引导学生在积极思维的过程中深刻理解所学知识。

3、巩固应用力图有梯度

练习的设计具有层次性、系统性,既注重操作性又考虑拓展性,助于学生对可能性有关知识的牢固掌握和学生的创新意识和实践能力的培养。

4、实现预设与生成相和谐

课堂教学过程是一个动态变化、发展的过程,也是师生、生生之间交流互动的过程。所以在本课中,有良好的预设,同时又有一些随时动态生成的信息。例如:在第一个环节讲故事中,学生听完故事以后,当我问学生对故事的感受时,学生的回答基本都是对财主的评价,怎么贪财,怎么可恨等等,丝毫没有涉及到对财主出的主意进行思考和评价。没有办法,我只能再继续引导启发;在讲解从盒子中摸球的问题时,本来我是提前设计好,说出“一定”这个词语就马上让学生说一说身边有哪些事情一定会发生,可有一个学生突然说了一句“不可能摸出白球。”这时,我只好调整教学过程的预设方案,又在黑板上板书了“不可能”,然后才让学生说一说身边的一些“一定能发生的事情”和“不可能发生的事情”;在讲解给红球、绿球找家的游戏中,我的要求是按小桶标签内容把两种球放好,可有一个小组没有听明白,下来交流的时候,提着装小球的袋子就下来了,经过我的提示,他才理解过来。

我感觉,整堂课学生虽然没有完全按照我预设的过程一步一步走下来,课堂中也出现了这样那样的突发事件,但我觉得这是学生真实的一面,也充分展示了二年级小同学敏捷的思维和天真活泼的性格。

可能性教案 篇34

教学目的:

1、经历和体验收集、整理、分析数据的过程,学会用画“正字”的方法记录整理数据

2、会运用规律结实生活现象

教学重点、难点:

发现规律

教具:8个布口袋。红球、绿球各48个。

教学过程:

一、 复习“一定”与“不可能”

师:老师这里有一个口袋,放5个红球进去,我请同学来摸一摸的话,你能摸出什么颜色的球?一定吗?为什么?可能摸出黄球吗?为什么?

师:那我放一个黄球进口袋。现在,如果你在口袋中摸一个球,会摸出什么颜色的球?为什么?

总结:是啊,现在我们不能肯定摸到的一定是红球还是黄球。只能说可能摸到红球,可能摸到黄球。具有“可能性”

板书:可能性

二、 学习可能性

师:这只口袋了有5个红球,1个黄球。你能猜一猜摸到红球的可能性大还是摸到黄球的可能性大?为什么?

那5个黄球,1 个红球呢?摸到红球的可能性大还是摸到黄球的可能性大?为什么?

师:哦。可这毕竟是我们的猜测啊,得想个办法严验证一下,怎么验证呢?

师:是啊,多摸几次我们才可以发现规律啊!同学们,你们真了不起,不光提出了自己的猜想,而且想到做摸球的实验来验证自己的猜想。很有科学家的意识啊!

师:那我们来验证一下这个猜想吧!但在实验前老师有个要求。我请1-4组做5个红球1个环球的实验。5-8组做5个黄球1个红球的实验。我们6人一组。由课前选好的正副组长负责记录和监督。其他人每人摸10次。总共40次。

师:为了让实验更科学,大家说说要注意些什么?

师:那记录的方法有哪些呢?(没有正字就说老师这里介绍一种新的方法:正字法)

师:那谁给大家介绍一下正字法!如果有其他方法,就个正字法比较一下(可以根据合计比较)

师:你觉得正字法有什么好处?

师:我们就规定实验的时候,同一用正字法记录。同学们,实验的时候一定要像科学家研究科学一样,认真对待,实事求是。让我们比一比,哪个小组实验的最认真,活动最规范。明确了吗?小科学家们,开始实验吧!

三、 汇报

师:刚才同学们都猜测摸到红球的可能性大,那实验结果到底是这样的呢?请各小组汇报数据,其他同学注意边听边思考问题。

板书:5个红球 1个黄球 5个黄球 1个红球

师:观察这2组数据,比较一下,你发现了什么?思考一下然后在小组中交流。

师:为什么1-4组摸到红球多,而5-8组摸到黄球的次数多呢?这说明了什么?

师:这跟我们原来的猜想一样吗?刚才,我们提出了自己的想法,又用实验验证了自己的想法。高兴吗?表扬表扬自己!

四、 实验

师:如果在这个口袋中放3个红球3个黄球,在这个袋子中,猜猜摸带红球、黄球的可能性又会怎样呢?为什么?

师:要知道我们的猜想是否正确,只要怎样?大家都知道,那我们来验证一下吧!还是跟刚刚一样。大家要认真负责啊!好了,开始吧!让老师来看看哪个同学像小科学家。

五、 汇报

师:好了。我们来看一下实验结果。看看我们的猜想对不对。

板书:3个红球 3个黄球

师:观察一下这组数据,比较一下,你发现了什么?

总结:同学们,摸到红球黄球个数相等,所以摸到红球。黄球的可能性就相等。

师:这跟我们的猜想一样吗?

六、 巩固

师:如果要使1号口袋中摸到红黄球的可能性相等,怎么办?

师:那为什么可能性星相等了呢?是啊,球数相等,可能性就相等。

七、 总结

今天我们在玩的过程中一起研究了统计与可能性,你学会了什么?知道了什么?

可能性教案 篇35

教学内容:

人教版小学数学教材五年级上册第44页主题图、例1、第45页“做一做”及相关练习,第49页“生活中的数学”。

教学目标:

1、初步体验事件发生的确定性和不确定性,能列出简单的随机现象中所有可能发生的结果。能结合具体问题情境,用“一定”“不可能”“可能”等词语来描述事件发生的确定性和不确定性。

2、借助猜测、实验、交流等活动,培养学生的逻辑思维能力和口头表达能力。

3、通过学生对确定现象和不确定现象的体验,体会数学和日常生活的密切联系。

教学重点:

通过活动,使学生体验事件发生的确定性与不确定性。

教学难点:

使学生能结合具体问题情境,用“一定”“不可能”“可能”等词语来描述事件发生的确定性和不确定性。

教学准备:

课件、节目卡片、抽奖盒。

教学过程:

一、游戏导入,激活经验

(一)游戏1:猜猜硬币在哪只手里。

1、教师将枚硬币握在手中,并在背后交换位置,让学生猜一猜硬币在哪只手里。说一说你能确定吗?

2、教师打开没有硬币的手,再让学生猜一猜硬币在哪只手里。说一说你能确定吗?为什么?

(二)游戏2:猜猜抛出的硬币是正面朝上还是反面朝上。

1、教师将这枚硬币抛出,让学生说出可能是哪个面朝上,要求说出所有可能。

2、让学生猜一猜是哪个面朝上。

3、教师揭示结果。

(三)揭示课题。在生活中有些事件的发生是确定的,有些是不确定的.。今天我们一起来探究事件发生的可能性。

【设计意图】通过游戏激活学生的生活经验,初步感知事件发生的确定性和不确定性,为学生进一步探究奠定坚实的基础。

可能性教案 篇36

课前准备

教师准备 多媒体课件 盒子及不同颜色的小球若干

学生准备 红色球若干 白色球若干 纸箱一个

教学过程

⊙联系生活,导入新课

师:同学们,你们抽过奖吗?中奖了吗?前两天我去买东西,遇见超市搞抽奖活动。抽奖规则很简单,就是摸球,摸到绿球有奖,摸到红球就没有奖。商家会怎样放球?为什么?如果你是顾客,你希望商家怎样放球?为什么?

师:其实,中奖率高低与可能性大小密切相关,今天我们就来复习可能性大小这个问题,学习了今天的内容,你就会找到抽奖时中奖率低的真正原因了。(板书课题:可能性的大小)

⊙回顾梳理,整理复习

1.课件出示情境图,根据教材中的四幅图回答书中问题。

学生小组讨论并回答问题。

2.事件发生的不确定性。

师:在我们的生活中,有很多事情是可能发生的.,也有很多事情是一定会发生的,还有很多事情是不可能发生的。同学们能举例说说吗?

(1)先在小组内说一说,然后全班交流。

(2)汇报。

预设

生1:太阳不可能从西边升起。

生2:人不可能长翅膀。

生3:时间不可能倒流。

生4:妈妈今年可能会带我去外婆家过寒假。

生5:明天可能会下雨。

生6:小鸟不可能在水里游。

……

(3)教师小结。

通过同学们的发言,我们可以知道,在生活中,有的事情是可能发生的,有的事情是不可能发生的,还有的事情是一定会发生的。我们要学会用“可能”“一定”“不可能”描述事件发生的不确定性。

(4)请你用“可能”“一定”“不可能”说一说生活中的现象或事物。

3.事件发生的可能性。

师:我在盒子里面放了10个红球、8个白球和4个绿球,这些球除颜色不同外,其他都相同。任意摸出一个球,摸出哪种颜色球的可能性最大?摸出哪种颜色球的可能性最小?请同学们根据以前的学习分组讨论。

(1)学生小组交流讨论,得出结论。

(2)学生根据讨论结果汇报。

预设

生1:摸出红球的可能性最大,因为盒子里红球的数量最多。

生2:摸出绿球的可能性最小,因为盒子里绿球的数量最少。

(3)提问:现在老师想让摸出绿球的可能性变大些,摸出红球的可能性变小些,你有哪些办法呢?

大家都在看