《圆的周长》教案

笔构网

2025-10-19教案

请欣赏《圆的周长》教案(精选16篇),由笔构网整理,希望能够帮助到大家。

《圆的周长》教案 篇1

教学目标:

1、通过猜测、测量、观察、分析及动手操作等数学活动,使学生经历圆周长公式的推导过程,理解圆周率的意义。

2、使学生理解和掌握圆周长公式,并能运用公式解决现实生活中的问题,培养学生的应用意识。

3、通过对圆周率有关数学史料的介绍,结合学生对其中数字的感知,使学生体验到数学家对真理的锲而不舍的追求精神和严谨的科学态度,以及中国古代科技的兴盛。

教学重点:经历探索圆周长公式的过程教学难点:理解圆周率的意义

教学用具:多媒体课件学习用具:圆形学具、直尺、计算器、记录单教学过程:

一、情境导入(课件:圆形喷水池图片)

师导语:同学们,你们看,这是一个圆形喷水池。设计师想在喷水池最外圈每间隔米安装一盏地面灯。现在,设计师急切地想知道至少要准备多少盏地面灯就够用了。谁愿意帮助设计师解决这个问题?师追问:喷水池外圈一圈的长度叫什么?(圆的周长又如何计算呢?)引出课题:看来,咱们要想帮助设计师,就要先学习“圆的周长”了。(板书课题:圆的周长)

二、探究新知

1、引出定义:赶快拿出你手中的圆形纸片,指着它说说什么是圆的周长?同桌交流。(指名回答,教师板书:围成圆的曲线的长)

2、猜想:你能猜猜圆的周长可能与圆的哪部分有关系吗?会有什么样的关系呢?说说你为什么这样猜?(随着回答板书:圆的周长

直径)师导语:同学非常勇敢,积极大胆地进行了猜测,这是我们成功的第一步。但这仅仅是猜测,还不能确定为准确的结论,需要我们做个试验探索,验证一下大家的想法。

3、指导学习方法:那好,看学习要求。(课件)(指名读)师提问:学习要求中提示我们要怎么做?(测量、填记录单、计算、找倍数)交流测量方法:你准备用什么方法测量圆的周长,快跟大家说一说。滚动法:在尺子上滚动圆,注意在圆上做个标记,正好滚动一周到标记的那一点就能测量出圆的周长了。绕绳法:将线绳绕圆一周,再将线绳拉直,测量线绳的长度就是圆的周长。师导语:下面,就请你选用你喜欢的测量方法,测量出你手中的圆的周长和它的直径,并填好记录单,然后找到它们的倍数,得出结论。希望同学们在操作中将误差减少到最小。比一比哪个组合作得最愉快!开始作!

4、小组合作:教师巡视合作学习情况,参与有困难的组,进行个别的指导。

5、反馈:请各组选一名代表汇报你们的学习情况,其他同学看大屏幕,观察数据特点,让我们共同总结出结论。(实物投影反馈信息,教师填表,学生观察。)圆的周长圆的直径圆的周长是直径的几倍(得数保留两位小数)师提问:如果我继续填下去,会出现什么情况?那就用字母代替吧。填(C d三倍多一些)

6、介绍圆周率:经过大家共同努力,发现圆周长是直径的三倍多一些。这是一个固定的数,我们把这个固定的倍数叫做圆周率。用字母“π”来表示(板书:圆周率π)指导读:π(pai)。圆周率就是圆的周长与直径的商,(圆的周长÷直径=圆周率

c÷d=π)它的值在-之间,是一个无限不循环小数。(板书:-)在小学阶段,我们计算时一般取两位小数,π≈(板书)

7、介绍祖冲之:每当提到圆周率,人们会自然的想到一个人物——祖冲之。(课件)现在运用计算机可以将圆周率的'值计算到小数点后上亿位。

8、推导圆周长公式:同学们,根据圆周长与直径的倍数关系,你能推导出圆周长公式吗?(板书:c=πd)要想求圆的周长,必须告诉大家什么条件?(直径)知道半径怎么样求圆的周长?(板书:c=2πr)

9、课堂小结:在全体同学的共同努力下,我们终于得到了圆周长的计算公式,接下来就要帮助设计师解决问题了。

10、解决实际问题:(1)有了求圆周长公式,只要告诉你什么条件就能够帮助设计师计算出至少准备多少地面灯的问题了?(2)你能算出人们围绕这个圆走一圈大约是多少米吗?(课件)

三、巩固练习:

1、口算:在计算圆周长时,我们发现,成为了我们的好朋友。既然这样,就请1——10也来和它交朋友吧!(课件)比比谁的口算能力强?

2、判断:你能根据今天所学知识进行判断吗?

3、解答实际问题:生活中处处有数学问题,你们知道自行车车轮转动一周大约是多少米吗?

4、同学们,你们看。这几位小朋友围坐在一起,正在商量着怎么样才能得到这个大树干的直径是多少米?你能帮他们解决这个问题吗?说说你解决问题的思路。

四、谈学习收获:

同学们,一节课很快就过去了,你能谈一谈这节课最大的收获是什么吗?

板书圆的周长围成圆的曲线的长圆的周长÷直径=圆周率

c ÷ d

= π C = πd = 2πr

《圆的周长》教案 篇2

设计说明

圆的周长是在学生认识了圆,了解半径和直径关系的基础上进行教学的,是学生初步研究曲线图形的基本方法的开始。鉴于本课时的'教学属于计算公式的教学,在设计上突出了以下两点:

1.循序渐进,逐层展开。

教师是学生学习的组织者、引导者、合作者,根据这一理念,我遵循激、导、探、放的原则,引导学生思考、操作,鼓励学生概括、交流。学生运用知识去大胆尝试,在尝试中培养学生自主探究、合作交流、动手操作的能力。

2.动手实验,突破关键。

理解和认识圆周率是推导圆的周长计算公式的关键。教学时用较多的时间组织学生动手实验,探究和认识圆周率,让学生在猜测、实验、验证、计算、交流中发现和认识圆周率,理解周长计算公式的来龙去脉。

课前准备

教师准备

PPT课件

学生准备

直尺、圆形硬纸板、圆规

教学过程

第1课时

认识圆的周长

⊙创设情境,导入新课

1.课件出示两辆车,车轮的大小不一样。

师:明明和刚刚分别骑着自行车和踏板车,如果轮子只滚动一圈,哪个滚得远?

学生讨论、交流,得出车轮越大,滚一圈就越远。

2.引入:在课前,我们通过学情检测卡的内容,已经了解了车轮滚一圈的长度就是它的周长。这节课我们一起来探究圆的周长。

《圆的周长》教案 篇3

一.本单元的基础知识

本单元是在学习了常见的几种简单的几何图形如三角形、长方形、正方形、平行四边形、梯形以及圆和球形的初步认识的基础上进行教学的。

二.本单元的教学内容

P2~22。本单元教材内容包括圆的认识、圆的周长、圆的面积,扇形和扇形统计图,对称图形。

三.本单元的教学目标

1。认识圆,掌握圆的特征,知道是轴对称图形,会用工具画圆。

2。理解直径与半径的相互关系,理解圆周率的意义,掌握圆周率的.近似值。3。理解和掌握求圆的周长与面积。

四.本单元重难点和关键

1。教学重点:求圆的周长与面积。

2。教学难点:对圆周率“π”的真正理解;圆面积计算公式的推导以及画具有定半径或直径的圆。

3。教学关键:能真正理解圆周率的意义;在理解的基础上熟记一些主要的计算公式。

五.本单元的教学课时

13课时

《圆的周长》教案 篇4

教学目标:

用“直接尝试法”探究“已知圆的周长求圆的直径”的方法,培养学生解决问题的能力。

教学过程:

一、探究解决问题的方法。

(1)出示情境图。

(2)介绍解决方法。

1:251.2÷3.14=80(米),因为c=πd,所以只要用周长除以3.14,就可以算出直径了。

2:解:设花坛的直径是x米。X×3.14=251.2,然后解方程。

(3)沟通两种方法间的联系。

师生一起解方程:x=251.2÷3.14,x=80。

观察解方程的第二步“x=251.2÷3.14”和算式“251.2÷3.14”比较,感悟算术方法解答和列方程解答相通的地方。

(4)联想。

想:算出圆的.直径有什么价值。

可以算出半径,80÷2=40米;还可以算圆的面积;根据圆的直径找出圆心;画出圆。

二、多种练习,内化知识。

(1)独立完成试一试和练一练。

(2)解答练习十八第6题。

独立解答,班级交流。注重解答方法的思路交流和作业格式的指导。

(3)解答练习十八第8题。

学生解答中出现两种答案:一是21棵,二是22棵。引导学生画图验证,理解确认正确答案是22棵。

三、作业,练习十八第7题。

《圆的周长》教案(精选5篇)

作为一位无私奉献的人民教师,时常需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。我们该怎么去写教案呢?下面是小编整理的《圆的周长》教案(精选5篇),仅供参考,希望能够帮助到大家。

《圆的周长》教案 篇5

教学目标:

1、通过自主实践探索,理解圆的周长和圆周率的意义,掌握圆的周长计算公式,并能根据公式正确地进行计算。

2、经历观察、试验、猜想、证明等数学活动过程,培养学生初步的演绎推理能力,形成解决问题的一些基本策略。体会“由曲变直”的转化思想。

3、了解我国古代数学家对圆周率七窍的史实,进行爱国主义教育。

教学重难点:

引导学生探究圆的周长与直径、半径的倍数关系和圆周率的含义。

教具学具准备:

直尺、直径分别为5、6、7、8、9、10厘米的圆纸片、绳子、表格。

教学设计:

创设情境,揭示课题

创设情境,认识圆的周长。

师:李奶奶决定让小明和小刚进行一次跑步比赛。方案是这样的:让小明沿着一个边长为d米的正方形跑道跑,让小刚沿着一个直径为d米的圆形跑道跑(假设他俩跑的速度一样);方案一公布,小明就说不公平,同学们,你认为这个方案公平吗?要想判断这个方案是否公平,必须要知道他们所经过的路程是否相等,就必须要算出各自跑道的什么?(周长)

师:对,要知道他们所经过的路程是否相等,就必须要算出各自跑道的周长,这节课我们就一起来探讨圆的周长的知识。(板书课题:圆的周长)

设计意图:创设生动的教学情境,故事的引入给下面将要学习的内容做了一个情境铺垫,激发了学生的学习兴趣和学习热情,自然而然地引出新知。

引导探究,展开新课

1.情境导入,借助教具直观感知,认识圆的周长。

(1)出示教材62页情境图,想一想,要想计算分别需要多长的铁皮,实际上是求什么?(圆的周长)

(2)你知道圆的周长指的是什么吗?

让学生拿出课前准备好的圆片,指出哪一部分是圆的周长?

(3)围成圆周长的是一条什么线?

明确圆的周长的概念:围成圆的封闭曲线的长叫做圆的周长。

2.测量圆的周长。

(1)滚动法。

拿出一元硬币,提问:用什么办法才能知道一个圆的周长呢?(鼓励学生各抒己见,引导学生从多角度考虑)学生把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。

滚动法:把圆放在直尺上滚动一周,直接量出圆的周长。教师强调:用滚动法进行测量时,要注意以下三点:

①要做好标记;

②不能滑动,要滚动;

③要滚动一周,不能多,也不能少。

小结:对于较短的圆形物体的周长,我们可以用滚动法测出圆的周长。

(2)绕绳法。

课件出示:一个圆形水池,提问:要测量这个水池的周长用滚动法可以吗?那你们想出了什么好办法呢?(学生提出可以用绕绳法测量)

绕绳法:用一根绳子绕圆形水池一周,剪去多余的部分,再拉直量出绳子的长度,即可得出圆形水池的周长。提醒学生用绕绳法测量时,要注意以下两点:

①一定要将绳子拉直再测量;

②绳子是无弹性的。

(3)是不是所有的圆的周长都可以用滚动法和绕绳法测量呢?

教师甩动一端系着线的小球问:你们看到了一个什么图形?这个圆的周长能用上面提出的方法测量吗?

经过对比,感受滚动法和绕绳法两种测量方法的局限性。

3.操作实验,探究圆的周长和直径的关系。

(1)观察猜想:圆的周长与它的什么有关呢?

学生猜想:可能与它的直径或半径有关。

课件演示:圆的周长随着直径或者半径的变化而变化。

(2)动手操作,找出规律。

四人一组,合理地分配任务,分别量出圆片的直径和周长,并用计算器计算出周长和直径的比值,逐项填入表中。

(3)观察表中记录的测量数据和计算结果。

①你发现周长与直径的比值有什么特点?(比值都是三点几)

②你认为每个圆的周长和直径是什么关系?(周长是直径的3倍多一些。板书:圆的'周长总是直径的3倍多一些)

(4)进一步验证圆的周长总是直径的3倍多一些。

下面我们共同来验证一下之前得出的结论是否正确。(课件出示:圆的周长随直径的变化而变化,而周长和直径之间的比值却是一个定值)

(5)认识圆周率。

①圆的周长与直径的比值是一个固定的数,有谁知道它叫什么?(圆周率)

②圆周率的概念是什么?(一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率)

③关于圆周率,你们还知道什么?(圆周率用希腊字母π表示,圆周率是一个无限不循环小数。它的值是3.1415926535……在实际的应用中,一般取它的近似值,即π≈3.14)

④感受文明,激发情感。

结合教材63页的资料介绍《周髀算经》中“周三径一”的说法,介绍祖冲之在求圆周率中做出的贡献。

(6)总结圆的周长的计算公式。

①根据刚才的探索,你能总结出圆的周长的计算公式吗?(结合学生回答,板书:圆的周长=圆的直径×圆周率=圆的半径×2×圆周率)

②如果把圆的周长用字母c表示,你们能总结出求圆的周长的字母公式吗?(c=πd或c=2πr)

③小结:圆的周长总是它直径的π倍。

(7)进一步明确复习题答案。

结合圆的周长的计算公式和正方形的周长计算公式,说一说小明和小刚谁先跑完?小明跑完一圈的路程是4d,小刚跑完一圈的路程是πd,4比π大,所以小刚先跑完。

4.学以致用。

课件出示例1,这辆自行车轮子的半径大约是33cm,这辆自行车轮子转1圈,大约可以走多远?(结果保留整米数。)小明家离学校1km,轮子大约转了多少圈?

学生读题后自己完成。让学生板演。

c=2πr

2×3.14×33=207.24(cm)≈2(m)

1km=1000m

1000÷2=500(圈)

答:这辆自行车轮子转1圈,大约可以走2m。小明从家到学校,轮子大约转了500圈。

设计意图:让学生尝试做例1,解决生活中的实际问题,这样的设计把课堂交给学生,让学生成为学习的主人,在尝试的过程中,教师适时给予点拨引导,做学生学习的引路人。

巩固练习,提升能力

1.完成教材64页1题。

2.判断。

(1)圆的周长是直径的3.14倍。( )

(2)圆的周长等于圆周率与直径的乘积。( )

(3)当半径为3cm时,圆的周长为18.84cm。( )

(4)半圆的周长是圆周长的一半。( )

3.爸爸用卷尺量得圆桌面的周长是4.71m,这个圆桌的直径是多少?

4.完成教材66页7、8题。

《圆的周长》教案 篇6

【教学内容】

《义务教育课程标准实验教材 数学》六年级上册第62~64页。

【教学目标】

1.通过小组合作探究,实际测量计算理解圆周率的意义。

2.通过对比分析掌握圆周长的计算公式。

3.能用圆的周长的计算公式解决一些简单的数学问题。

4.通过对圆周率的计算,渗透爱国主义的思想。

【教学重、难点】

重点:推导圆的周长的计算公式,准确计算圆的周长。

难点:理解圆周率的意义。

【教学过程】

一、情景引入

出示一块钟表

问题1:你能猜想小秒针的顶端在一分钟的时间里,所走过的轨迹是一个什么图形吗?

学生猜想。

教师演示小秒针的运动过程,证实学生的猜想是否正确。

问题2:你能知道不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程有多长吗?我们应该怎样解决这个问题呢?

生:先计算出走一圈的路程有多长,在计算出走60圈的长度。

师:非常好。那么小秒针走一圈的路程,就是这个圆的周长又怎么来求呢?今天我们就来学习怎样计算圆的周长。(引入课题——圆的周长)

(设计目的:通过学生身边的实物引入新课,能充分的调动学生的学习积极性,把学生的注意力集中到课堂中来。)

二、动手量一量

学生活动:请同学们拿出你准备好的圆,小组内交换圆,合作完成下表,看哪一组完成的最快。测量值精确到毫米。

三、对比分析

师:观察一下我们得到的几组数据,你发现什么规律了吗?

学生自由谈。

学生发现:

1. 一个圆的周长总是直径的三倍多点。

2. 周长和直径的比值与直径相乘可以得到圆的周长。

师:老师也做了一个圆,现在看一下老师是怎么测量这个圆的周长的。

课件展示圆的周长的测量方法。

(设计目的:通过让学生对比分析表格,教师课件展示圆的周长的测量过程,让学生能对圆的周长和直径之间的关系更加清晰,激发学生想要知道两者之间的具体关系的热情)

课件展示:圆的周长随直径的变化而在变化,而周长和直径之间的比值确是一个定值。

(设计目的:通过课件展示,让学生得到结论——圆的周长和直径的比值是一个定值,顺利得到圆周率的值)

小结1:圆周率:一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做——圆周率,用字母π表示。圆周率是一个无限不循环小数。它的值是:π=3.1415926535……,在实际的应用中,一般取它的近似数π≈3.14。

你知道吗?我们的祖先在圆周率的计算上可是有着辉煌的成绩的,你能讲给同学们听吗?

学生自由谈。

我们有这么伟大的祖先,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。

(设计目的:通过学生讲故事渗透爱国主义思想)

小结2:你能通过分析表格得到圆的周长的计算公式了吗?

学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)

圆的周长(用字母C表示)计算公式:C=πd或C=2πr

四、动手做一做

下面我们来看看怎样应用圆的周长计算公式来解决问题。

1.计算圆的周长

实物投影展示学生的.解题过程

(设计目的:通过简单的图形计算让学生理解圆周长的计算公式的应用,并强调解题的书写过程)

2.一个圆形喷水池的半径是5m,它的周长是多少米?

(设计目的:通过转化把由半径求周长的问题转化为实际问题,让学生体会到学以致用)

3.小组交流错误原因。(可让其他学生避免同样的错误)

(设计目的:通过实例计算,可以让学生更好的理解数学来源于生活,又能解决实际的生活问题的作用,又可为最后的实践题打下很好的伏笔)

4.现在你能告诉大家不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程了吗?要解决这个问题你想得到什么样的数据。

(设计目的:让学生自己寻找解决问题的条件,培养学生的独立思考能力。此题和前面的引入题互相呼应,做到解决问题有始有终)

五.你能说说在这一节课中你有什么收获吗?

可让学生从知识点,从测量方法——能力点,数学史知识——情感态度价值观等方面总结自己的收获。

六、课外合作:

小组合作完成,应用你的知识,想办法测量一下,从学校大门口到圆城楼门口的距离大约是多少米。

《圆的周长》教案 篇7

【教学目标】:

1、知道什么是圆的周长。通过绕一绕、滚一滚等活动找出圆的周长与直径的关系,理解圆周率的意义,合作推导出圆的周长计算公式。

2、能运用圆的周长的计算公式解决一些简单的数学问题。

3、初步体会转换思想,学到一些解决实际问题的数学方法。

【教学重点】: 通过自己动手找出圆的周长和直径之间的关系;探究圆的周长的计算公式,准确计算圆的周长。

【教学难点】:理解圆周率的意义

【教学难点】:教师:课件(U盘)、表格、卷尺。

学生:线或卷尺、计算器。

【教学过程】:

(1)教学准备:

1、根据“8里面有几个2,8就是2的几倍。8里面有4个2,

8就是2的4倍,要求8是2的几倍,用8÷2。”填空。

6是3的( )倍。 20是5的( )倍。

22是7的( )倍。

2、把倍数关系句改写成等式。

①6是3的2倍 ( )

②20是5的4倍。 ( )

③22是7的22/7 倍。( )

④C是d的a倍。( )

3、 数学是一门关系学

正方形的周长与边长的关系

C=4a

正方形的周长 是 边长的4倍

(2)新授过程。

自学课本第62页,思考

1、什么是圆的周长?

答:围成圆的曲线的长是圆的周长。

2、直观认识圆的周长。演示动画。

3、你认为 圆的周长与正方形的'周长最大的不同在哪里?

4、课本里介绍了几种度量圆的周长的方法?

围绳法 滚动法

5、动画演示滚动法

6、哪个圆大?哪个圆的周长大?圆的大小由什么决定圆周长

的大小与什么有关系?

7、猜想、判断。周长与直径比哪个长?周长是直径几倍?

8、动手操作验证猜想

其实,很早就有人研究了周长与直径的关系,发现任意一个圆的周长与它的直径的比值是一个固定的数。我们把它叫做圆周率,用字母π 表示。

π是一个无限不循环小数。

π=3.141592653……

在实际应用中常常只取它保留两位小数的近似值,π≈3.14。

9、投影展示π的前900位,体会π的小数数位的庞大。

10、圆周率前6位谐音记忆

π=3.14159…… 山 巅一寺一壶酒 巅 diān

11、得出结论:圆的周长是它的直径的π倍。写成等式是:c=πd

c=2πr。

12、对比 : c=4 a c=πd

(三)知识应用。求下面圆的周长

(四)课堂作业。《课本》P65 练习十四 1题、2题

《圆的周长》教案

作为一无名无私奉献的教育工作者,常常要写一份优秀的教案,借助教案可以有效提升自己的教学能力。那么优秀的教案是什么样的呢?下面是小编帮大家整理的《圆的周长》教案,欢迎阅读与收藏。

《圆的周长》教案 篇8

1、基础练习:计算下面各图形的周长和面积。只列式,不计算。(P128图略)

2、火眼金睛。(判断对错)

①一个三角形,底6分米,高5分米,它的面积是30平方分米。()

②一个边长5米的正方形,它的面积是20平方米。()

③一个圆,直径是2厘米,它的面积是12.56平方厘米。()

3、对号入座。

①边长是4米的正方形,()

A周长面积;B周长面积;C周长=面积;D周长和面积无法比较

②一个平行四边形和一个三角形等底等高,已知平行四边形的面积是25平方厘米,那么三角形面积是()平方厘米。

A、5B、12.5C、25D、50

4、走进生活。

①假如你家里要在一块边长2米的正方形木板上,剧一个最大的圆用来做饭桌面,请你算出这个圆面的面积并说出理由。

②设计比演,时间3分钟。现在请你来当小设计师,发挥你的设计才能,运用这几种平面图形对学校正门前的空地的布局进行重新规划设计,我们看看谁的设想既美观又合理。(注:设计时可以把图形进行组合)

(1)小组在白纸上进行设计。汇报:用什么图形设计出了什么?

(2)你准备怎样计算你设计中这些图形的周长和面积呢?

七、全课小结。通过同学们的认真学习,大胆创新设计,我相信你们当中有很多同学会成为杰出的设计师。

八、作业。把你的设计完成,并写出每个图形的周长和面积的计算。

九、板书设计:(电脑演示)

平面图形的周长和面积

贴卡片ac=4a

s=a2hbc=a+b+h

aas=ah2

b

ac=2(a+b)

c=2(a+b)s=ahac=a+b+c+d

s=abcd

bs=(a+b)h2

c=2лr;s=лr2

(联系转化应用)

《圆的周长》教案 篇9

【教学内容】

《义务教育课程标准实验教材 数学》六年级上册第62~64页。

【教学目标】

1.通过小组合作探究,实际测量计算理解圆周率的意义。

2.通过对比分析掌握圆周长的计算公式。

3.能用圆的周长的计算公式解决一些简单的数学问题。

4.通过对圆周率的计算,渗透爱国主义的思想。

【教学重、难点】

重点:推导圆的周长的计算公式,准确计算圆的周长。

难点:理解圆周率的意义。

【教学过程】

一、情景引入

出示一块钟表

问题1:你能猜想小秒针的顶端在一分钟的时间里,所走过的轨迹是一个什么图形吗?

学生猜想。

教师演示小秒针的运动过程,证实学生的猜想是否正确。

问题2:你能知道不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程有多长吗?我们应该怎样解决这个问题呢?

生:先计算出走一圈的路程有多长,在计算出走60圈的长度。

师:非常好。那么小秒针走一圈的路程,就是这个圆的周长又怎么来求呢?今天我们就来学习怎样计算圆的周长。(引入课题——圆的周长)

(设计目的:通过学生身边的实物引入新课,能充分的调动学生的学习积极性,把学生的注意力集中到课堂中来。)

二、动手量一量

学生活动:请同学们拿出你准备好的圆,小组内交换圆,合作完成下表,看哪一组完成的最快。测量值精确到毫米。

物品名称

周长

直径

1号圆

2号圆

3号圆

4号圆

教师评价学生小组合作的情况。

(设计目的:强调学生的小组合作意识)

师:哪个小组汇报一下你们小组是怎么测量的,并展示一下小组测量的结果。

学生展示小组的成果。

(设计目的:通过实物投影,向其它小组的同学展示本小组的结果,增强学生的自信)

三、对比分析

师:观察一下我们得到的几组数据,你发现什么规律了吗?

学生自由谈。

学生发现:1. 一个圆的周长总是直径的三倍多点。2. 周长和直径的比值与直径相乘可以得到圆的周长。

师:老师也做了一个圆,现在看一下老师是怎么测量这个圆的周长的'。

课件展示圆的周长的测量方法。

(设计目的:通过让学生对比分析表格,教师课件展示圆的周长的测量过程,让学生能对圆的周长和直径之间的关系更加清晰,激发学生想要知道两者之间的具体关系的热情)

课件展示:圆的周长随直径的变化而在变化,而周长和直径之间的比值确是一个定值。

(设计目的:通过课件展示,让学生得到结论——圆的周长和直径的比值是一个定值,顺利得到圆周率的值)

小结1:圆周率:一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做——圆周率,用字母π表示。圆周率是一个无限不循环小数。它的值是:π=3.1415926535……,在实际的应用中,一般取它的近似数π≈3.14。

你知道吗?我们的祖先在圆周率的计算上可是有着辉煌的成绩的,你能讲给同学们听吗?

学生自由谈。

我们有这么伟大的祖先,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。

(设计目的:通过学生讲故事渗透爱国主义思想)

小结2:你能通过分析表格得到圆的周长的计算公式了吗?

学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)

圆的周长(用字母C表示)计算公式:C=πd或C=2πr

四、动手做一做

下面我们来看看怎样应用圆的周长计算公式来解决问题。

1.计算圆的周长

实物投影展示学生的解题过程

(设计目的:通过简单的图形计算让学生理解圆周长的计算公式的应用,并强调解题的书写过程)

2.一个圆形喷水池的半径是5m,它的周长是多少米?

(设计目的:通过转化把由半径求周长的问题转化为实际问题,让学生体会到学以致用)

3.小组交流错误原因。(可让其他学生避免同样的错误)

(设计目的:通过实例计算,可以让学生更好的理解数学来源于生活,又能解决实际的生活问题的作用,又可为最后的实践题打下很好的伏笔)

4.现在你能告诉大家不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程了吗?要解决这个问题你想得到什么样的数据。

(设计目的:让学生自己寻找解决问题的条件,培养学生的独立思考能力。此题和前面的引入题互相呼应,做到解决问题有始有终)

五.你能说说在这一节课中你有什么收获吗?

可让学生从知识点,从测量方法——能力点,数学史知识——情感态度价值观等方面总结自己的收获。

六、课外合作:

小组合作完成,应用你的知识,想办法测量一下,从学校大门口到圆城楼门口的距离大约是多少米。

(设计目的:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力)

《圆的周长》教案 篇10

一,教学目标

1,理解圆周率的意义,掌握圆周率的近似值。理解和掌握圆的周长的计算公式,并能应用它解决简单的实际问题。

2,培养学生的观察,比较,概括和动手操作能力。

3,结合我国古代数学家祖冲之的故事,对学生进行爱国主义教育。

二,教学重点

掌握并理解圆的周长,公式推导过程。

三,教学难点

理解圆周率的意义。

四,教学过程

一,创设情境,提出问题

1,师出示圆形桌布,提出在桌布的边缘镶上一圈花边。要想知道至少准备多长的花边,怎么办 请你帮忙想想办法。

2,你们知道这圈花边的边长是什么 (生:圆的周长。)

3,用直尺测量圆的周长,你感到方便吗 能不能找到比较简便的方法

二,师生共同提出假设

1,请学生回忆正方形周长和边长的关系。(边长×4)

2,师:能不能求圆周长的同时也找到这样的倍数关系呢 测量圆的什么比较方便呢

生:半径,直径……

3,请生先画几条长短不一样的直线作直径画圆。师:观察自己画的圆,你发现了什么

学生仔细观察:分组讨论研究圆的周长和直径是否存在倍数关系。

4,师:你估计圆的周长是其直径的几倍

生猜想:3倍左右。

5,师:你有办法验证吗 生讨论

教学意图:正方形的周长只与边长这个数有关系,这点与圆的周长计算方法相似,本环节选择这一教案内容,用于复习旧知和引入新知,渗透的作用是非常有效的。

三,合作交流,发现规律

1,学生思考后可能出现的以下办法:

⑴ 用一根线(或纸条)绕圆一周,剪去多余的部分,再拉直量出它的长度,得到圆的周长。

⑵ 把圆放在直尺上滚动一周,直接量出圆的周长。

师启发学生:用滚动,绳测的方法可以测出圆的周长,但有局限性,那么:我们能不能探讨出一种求圆的周长的普遍规律呢

⑶ 学生在小组内动手操作,测量进行验证。

直径(cm) 周长(cm) 周长是直径的几倍

2 6。2 3倍多一点

3 9。1 3倍多一点

4 12。9 3倍多一点

2,

a,”圆的周长÷直径”等于3倍多一点,经过科学家精密的论证,计算发现这个”3倍多一点”是一个固定数叫圆周率3。14159……是一个无限不循环小数,我们在计算时通常取3。14,用字母π表示(请学生写一写)

b,结合圆周率进行爱国注意教育。

c,师生共同推导计算圆的周长公式。

教学意图:在圆的周长测量中,充分发挥学生的主体地位,课堂上,使学生手脑都动起来,通过各种形式的个人实践及小组合作实践使学生亲而义举的发现规律,掌握知识,学生不是在学习知识,而是在探究,实验,发现新知,这样的'课堂,可以使学生的动手,动脑,动嘴,合作的能力都能得到锻炼提高。

四,实践应用,拓展新知

1,学生尝试求圆的周长

d=2cm r=3。5cm d=10cm

2,圆形花坛的直径是20cm,它的周长是多少m

3,请同学们画一个周长是15cm的圆。

教学意图:设计有坡度的练习,目的是让学生运用圆周长的计算公式反映生活中的实际问题,巩固已经学过的公式,培养学生的学习兴趣,提高学生学习探索的能力。

五,,体验成功

1,通过这节课的学习,你学会了什么

2,课后思考:从边长是4cm的正方形中画出一个最大的圆,这个圆的周长是多少cm

板书设计:

圆的周长

围成圆的曲线的长叫做圆的周长。

c=πd c=2πr

《圆的周长》教案 篇11

教学目标:

⒈使学生知道圆的周长和圆周率的含义。让学生体验圆周率的形成过程,探索圆的周长的计算公式,能正确计算圆的面积。

⒉使学生认识到运用圆的周长的知识可以解决现实生活中的问题,体验数学的价值。

⒊介绍古代数学家祖冲之对圆周率的研究事迹,向学生进行爱国主义教育。

教学重点、难点

教学重点:理解和掌握求圆周长的计算公式。教学难点:对圆周率π的认识。

教学过程设计

一、创设情境,引发探究

⒈"几何画板"《米老鼠和唐老鸭赛跑》演示:休息日,米老鼠和唐老鸭在草地上跑步,米老鼠沿正方形路线跑,唐老鸭沿着圆形路线跑。

⒉揭示课题

⑴要求米老鼠所跑的路线,实际上就是求这个正方形的什么?要知道这个正方形的周长,只要量出它的什么就可以了?

⑵要求唐老鸭所跑的路线,实际上就是求圆的什么呢?

板书课题:圆的周长

二、人人参与,探究新知

(一)教具演示,直观感知,认识圆周长。

教师出示教具:铁丝圆环、圆片,让学生观察围成圆的线是一条什么线,提问:这条曲线就是圆的什么?

(二)理解圆周率的意义

活动一:测量圆的周长

⒈教师提问:你能不能想出一个好办法来测量它的周长呢?

①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。则师生合作演示量教具圆铁环的周长。

然后各组分工同桌合作,量出圆片的周长。

②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。同样,先请学生配合老师演示,然后分工合作。测出圆片的周长。

⒉用"几何画板"《小球的轨迹》演示形成一个圆。

提问:小球的运动形成一个圆。你能用刚才的方法测量出圆的周长吗?

⒊小结:看来,用滚动、绕线的方法可以测量出圆的周长,但却有一定的局限性。我们能不能探讨出求圆周长的一般方法呢?

活动二:探究圆周长与直径的关系,认识圆周率。

⒈圆的周长与什么有关。

⑴启发思考

正方形的周长与它的边长有关。那么,你猜猜看,圆的周长与它的什么有关系呢?

⑵利用不同长度的小球形成的三个圆,让学生观察思考考:.哪一个圆的周长长?圆的周长与它的什么有关呢?

得出结论:圆的周长与它的直径有关。

⒉圆的周长与直径有什么关系。

⑴学生动手测量,验证猜想。

学生分组实验,并记下它们的周长、直径,填入书中的表格里。

⑵观察数据,对比发现。

提问:观察一下,你发现了什么呢?

(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)

⑶出示"几何画板"《周长与直径的关系》演示。

⑷比较数据,揭示关系。

正方形的周长是边长的4倍。那么,圆的周长与直径之间是不是也存在着固定的倍数关系吗?猜猜看,圆的周长可能是直径的几倍?

学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。

提问:这些周长与直径存在几倍的关系,(3倍多一些),是不是所有的.圆周长与直径都是3倍多一些呢?教师演示"几何画板"最后师生共同总结概括出:圆的周长总是直径的3倍多一些,板书:3倍多一些。

⒊认识圆周率

⑴揭示圆周率的概念。

这个3倍多一些的数,其实是个固定不变的数,我们称它为圆周率。圆周率一般用字母π表示。板书:圆周率

现在,谁能说说圆的周长与它的直径有什么关系?谁是固定的倍数?完成板书:圆周长÷直径=π

⑵介绍π的读写法

⑶指导阅读,了解中国人引以为自豪的历史。

提问:你知道了什么?

(三)推导圆的周长计算公式。

⑴提问:已知一个圆的直径,该怎样求它的周长?板书:C=πd

请同学们从表格中挑一个直径计算周长,然后跟测量结果比比看,是不是差不多?

⑵提问:告诉你一个圆的半径,合计算它的周长吗?怎样计算?板书C=2πr。

提问:"几何画板"上的小球轨迹形成的圆你会求周长吗?

学生和自己的伙伴一起解答例1和做一做并说出这两题用哪个公式比较好?

三、应用新知,解决问题

1、和自己的伙伴一起解答例1和做一做

2、说出这两题用哪个公式比较好?

四、实践应用,拓展创新。

⒈基础性练习:

(1)求下列各圆的周长(几何画板)

r=3厘米 d=4厘米

(2)、我们现在有办法求唐老鸭跑的路程吗?

⒉、判断

①圆的周长是直径的π倍。( )

②大圆的圆周率小于小圆圆周率。( )

3、提高练习

在我们校园内有一棵很大的树,你们有什么办法可以测量到这棵大树截面的直径?

五、总结评价,体验成功

1、你学到了什么? 2、你是怎么学到的?

《圆的周长》教案 篇12

教学目标:

⑴通过对比让学生理解计算圆周率的必要性;通过合作交流计算圆周率,并推导出圆周长的计算公式;会利用公式解决简单的数学问题。

⑵通过学生的合作操作交流活动,培养学生的精确操作能力,培养学生的探索意识。

教学流程:

一、揭示课题

⑴猜测这节课的学习内容。

⑵揭示课题--圆的周长。

二、确定探索新知的方向。

⑴观察课前画在黑板上的两幅图。

分别指出正方形、圆形和正六边形的周长。

⑵沟通联系。

找出正方形和圆形联系的地方(圆的直径就是正方形的边长);找出正六边形和圆形联系的地方(圆的半径就是正六边形的边长,圆的直径就是2个正六边形的边长)。

⑶比较周长的长短。

以直径为基准,正方形的周长相当于直径的4倍,圆形的周长比它小;正六边形的周长相当于直径的3倍,圆形的周长比它长;所以,圆形的周长在直径的3倍与4倍之间。

⑷确定探究方向。

量出圆的周长和直径,算出它们之间的倍数。

⑸准备数据采集。

序号

周长(c)cm

直径(d)cm

周长是直径的几倍

三、合作探究新知。

⑴学生操作活动。

小组合作:量出所带圆形物体周长和直径,采集数据,填入上表。

教师观察:各组量周长和直径的.情况,量周长有用线围的,用圆片滚的;量直径不成问题,上一节课的知识已经迁移、内化为学生的技能。

教师在分组活动中采集到的数据。(是后加的,时加的)

序号

周长(c)cm

直径(d)cm

周长是直径的几倍

1

15.5

5

3.10

2

8.9

2.9

3.07

3

14

4.3

3.26

4

7.6

2.5

3.04

5

8.9

2.7

3.30

⑵合理,得出公式,

看教材第99页,感受周长是直径的几倍就是圆周率,用字母π表示,保留两位小数是3.14;表中的数据,3.10最接近,操作中的误差最小;根据周长是直径的π倍,得出公式c=π或dc=2πr。

⑶介绍祖冲之。

四、利用新知解决简单的数学问题。

⑴说出计算周长的算式。

⑵口答练习十八1~2。

⑶作业练习十八3~4。

《圆的周长》教案 篇13

教学目标:

1、通过猜测、测量、观察、分析及动手操作等数学活动,使学生经历圆周长公式的推导过程,理解圆周率的意义。

2、使学生理解和掌握圆周长公式,并能运用公式解决现实生活中的问题,培养学生的应用意识。

3、通过对圆周率有关数学史料的介绍,结合学生对其中数字的感知,使学生体验到数学家对真理的锲而不舍的追求精神和严谨的科学态度,以及中国古代科技的兴盛。

4、通过合作探究,使学生体验到实验对猜测的验证作用以及对问题的探索过程,并掌握学习方法,感受“转化”的数学思想。

教学重点:经历探索圆周长公式的过程

教学难点:理解圆周率的意义

教学用具:多媒体课件

学习用具:圆形学具、直尺、计算器、记录单

教学过程:

一、 情境导入

(课件:圆形喷水池图片)

师导语:同学们,你们看,这是一个圆形喷水池。设计师想在喷水池最外圈每间隔0.5米安装一盏地面灯。现在,设计师急切地想知道至少要准备多少盏地面灯就够用了。谁愿意帮助设计师解决这个问题?

师追问:喷水池外圈一圈的长度叫什么?

(圆的周长又如何计算呢?)

引出课题:看来,咱们要想帮助设计师,就要先学习“圆的周长”了。(板书课题:圆的周长)

二、 探究新知

1、引出定义:赶快拿出你手中的圆形纸片,指着它说说什么是圆的周长?同桌交流。(指名回答,教师板书:围成圆的曲线的长)

2、猜想:你能猜猜圆的周长可能与圆的哪部分有关系吗?会有什么样的关系呢?说说你为什么这样猜?(随着回答板书:圆的周长直径)

师导语:同学非常勇敢,积极大胆地进行了猜测,这是我们成功的第一步。但这仅仅是猜测,还不能确定为准确的结论,需要我们做个试验探索,验证一下大家的想法。

3、指导学习方法:那好,看学习要求。(课件)(指名读)

师提问:学习要求中提示我们要怎么做?(测量、填记录单、计算、找倍数)

交流测量方法:你准备用什么方法测量圆的周长,快跟大家说一说。

滚动法:在尺子上滚动圆,注意在圆上做个标记,正好滚动一周到标记的那一点就能测量出圆的周长了。

绕绳法:将线绳绕圆一周,再将线绳拉直,测量线绳的长度就是圆的周长。

师导语:下面,就请你选用你喜欢的测量方法,测量出你手中的圆的周长和它的直径,并填好记录单,然后找到它们的`倍数,得出结论。希望同学们在操作中将误差减少到最小。比一比哪个组合作得最愉快!开始合作!!!

4、小组合作:教师巡视合作学习情况,参与有困难的组,进行个别的指导。

5、反馈:请各组选一名代表汇报你们的学习情况,其他同学看大屏幕,观察数据特点,让我们共同总结出结论。(实物投影反馈信息,教师填表,学生观察。)

圆的周长

圆的直径

圆的周长是直径的几倍

(得数保留两位小数)

师提问:如果我继续填下去,会出现什么情况?

那就用字母代替吧。填(C d 三倍多一些)

6、介绍圆周率:经过大家共同努力,发现圆周长是直径的三倍多一些。这是一个固定的数,我们把这个固定的倍数叫做圆周率。用字母“π”来表示(板书:圆周率 π)指导读:π(pai)。圆周率就是圆的周长与直径的商,(圆的周长÷直径=圆周率 c÷d=π)它的值在3.1415926-3.1415927之间,是一个无限不循环小数。(板书:3.1415926-3.1415927)在小学阶段,我们计算时一般取两位小数,π≈3.14(板书)

7、介绍祖冲之:每当提到圆周率,人们会自然的想到一个人物——祖冲之。(课件)现在运用计算机可以将圆周率的值计算到小数点后上亿位。

8、推导圆周长公式:同学们,根据圆周长与直径的倍数关系,你能推导出圆周长公式吗?(板书:c=πd)

要想求圆的周长,必须告诉大家什么条件?(直径)

知道半径怎么样求圆的周长?(板书:c=2πr)

9、课堂小结:在全体同学的共同努力下,我们终于得到了圆周长的计算公式,接下来就要帮助设计师解决问题了。

10、解决实际问题:

(1)有了求圆周长公式,只要告诉你什么条件就能够帮助设计师计算出至少准备多少地面灯的问题了?

(2)你能算出人们围绕这个圆走一圈大约是多少米吗?(课件)

三、 巩固练习:

1、口算:在计算圆周长时,我们发现,3.14成为了我们的好朋友。既然这样,就请1——10也来和它交朋友吧!(课件)比比谁的口算能力强?

2、判断:你能根据今天所学知识进行判断吗?

3、解答实际问题:生活中处处有数学问题,你们知道自行车车轮转动一周大约是多少米吗?

4、同学们,你们看。这几位小朋友围坐在一起,正在商量着怎么样才能得到这个大树干的直径是多少米?你能帮他们解决这个问题吗?说说你解决问题的思路。

四、 谈学习收获:

《圆的周长》教案 篇14

教学目标:

1、经历圆周率的形成过程,探索圆周长的计算公式,能正确计算圆的周长。

2、运用圆的周长的知识解决现实生活中的问题,体验数学的价值。

3、培养学生的操作试验、分析问题解决问题的能力。使学生掌握一些数学方法。

4、通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育。

教学重点:推导圆的周长的计算公式,准确计算圆的周长。

教学难点:理解圆周率的意义。

教具准备:圆片、铁圈、绳子、直尺。

教学方法:观察、演示、小组合作交流

教学过程:

一、把准认知冲突,激发学习愿望。

1、问题从情境中引入:花花和亮亮进行赛跑比赛,(如图)花花绕着长方形地跑,亮亮绕着圆形跑。花花跑的路程是长方形的什么?亮亮呢?同桌互相指一指学具中圆片的周长,说说圆的周长与长方形或正方形等图形的周长有什么不同?谁能说说什么是圆的周长?如果两人用相同速度,都跑一周,你认为花花和亮亮谁获胜的可能性大些?(引导揭示课题:圆的周长)

2、化曲为直,测量周长。

(1)(出示铁环)直尺是直的,而圆是由曲线组成的,怎样测量圆的周长?讨论:把铁环拉直后测量——“剪开拉直”。

(2)出示易拉罐(指底面),这是一个什么圆形?你能将它“剪开拉直”测量出它的周长吗?你还能想出什么办法,将它化曲为直,测量出周长呢?讨论:

方法1:可以用带子绕圆一周,剪去多余的部分,测出周长;

方法2:将圆在直尺上滚动一周,测出周长。(板书:“先绕后量”和“滚动测量”)

(3)教师拿一根绳子拴着一个物体,将它旋转几周,指出物体旋转的轨迹是一个圆,你能用“化曲为直”的方法测量出圆的周长吗?(不能)教师再指出黑板上所画的圆,你还能用“化曲为直”的方法,测量它的周长吗?(不能)指出:化曲为直在测量圆的周长时存在一定局限性,必须要寻找一种普遍的方法来计算圆周长的方法。

二、经历探究全程,验证猜想发现。

㈠圆的周长与直径有关系。

1、猜想:正方形的周长与它的边长有关,猜一猜圆的周长与什么有关?

2、验证:结合学生的回答,演示三个大小不同的圆,滚动一周。(如图)指出哪个圆的直径最长?哪个直径最短?哪个圆的周长最长?哪个圆的周长最短?

3、总结:圆的直径的长短,决定了圆周长的长短。

㈡圆的周长与直径的倍数关系。

1、猜想:正方形的周长总是边长的4倍,所以正方形的周长=边长×4。(出示内接圆图)对照这幅图,猜一猜,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的4倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的2倍。)小结:通过观察和想象,大家都已经意识到圆的`周长肯定是直径的2~4倍之间,究竟是几倍呢?你还能想出办法来找到这个准确的倍数吗?

2、验证:(小组合作)用先绕后量或滚动测量的方法,测量出圆的周长,求出周长与直径的比值。周长C(毫米)直径(毫米)的比值(保留两位小数)讨论从表中你们小组发现了什么?(圆的周长除以直径的商是3点几,圆的周长总是直径的3倍多一些)

三、感受数学文化,激发情感教育。

1、介绍祖冲之在求圆周率中做出的贡献,让学生想像祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(附:祖冲之在一个直径米的大圆里割到正一万二千二百八十八边形,计算出每条边的长度是毫米。虽然如此,祖冲之并没有停步,继续分割得到正二万四千五百七十六边形,每条边已经和圆周紧密贴在一起了。祖冲之经过不懈地努力和严谨的计算,终于得到比较精确的圆周长和直径的比值在和之间。这个结论在当时的世界上独一无二,比欧洲人发现这一结果至少要早一千多年。)

2、介绍计算圆周率的情况。

3、教学圆周率:π≈。

四、归纳圆的周长的计算公式。

学生讨论:(1)求圆的周长必须知道哪些条件?

(2)如果用C表示圆的周长,求圆周长的字母公式有几个?各是什么?

生回答,教师板书:C=πd或C=2πr

五、应用圆周长计算公式,解决简单的实际问题。

多媒体出示例1:一张圆桌面的直径是米,这张圆桌面的周长是多少米?(得数保留两位小数)指名读题,自己列式解答(1生板演)

六、巩固新知。

1、请学生说说怎样计算圆的周长?用字母又怎样来表示?如果知道圆半径怎样来求圆的周长?用字母怎样表示?

2、尝试练习:一辆自行车车轮的直径是米。车轮滚动一周,自行车前进多少米?(得数保留两位小数)

3、明辨是非:

⑴圆的周长和直径的比的比值叫做圆周率。()

⑵大圆的圆周率大于小圆的圆周率。()

⑶π的值等于。()

⑷半径是10厘米的圆,它的周长是厘米。()

4、抢答:求下面各圆的周长:d=2厘米,d=3厘米,d=4厘米,d=5厘米,d=6厘米,d=7厘米,d=8厘米,d=9厘米让学生记住这些算式的乘积。

七、质疑、小结:这节课你有什么收获?谁还有疑问?

八、布置作业:练习四3、4、5题。

《圆的周长》教案 篇15

教学素材:根据人教版和北师大版课标教材六年级上册中圆的相关知识自行开发的教材。

教学目标:

1、进一步理解圆的周长和面积计算公式的推导过程,进一步掌握圆的周长和面积的计算公式。

2、能运用圆的知识熟练、正确解答有关圆的周长和面积的问题。

3、建立知识间的联系,使知识系统化、条理化,提高学生解决问题能力。

教学设计思想:

复习课是帮助学生复习、巩固已学过的知识,建立知识间的联系,使知识系统化、条理化,提高学生解决问题能力的一种课型。复习课不同于练习课,复习课虽然要继续训练解题的技能技巧,但其更重要的任务是把所学的知识进行归纳、整理,把原来分散学习的知识有机地联系起来,使它形成一个完整的知识系统。这样做的目的是使学生获得稳定、清晰的核心概念,形成良好的认知结构,便于对知识的理解和记忆,也为以后学习新概念打下良好的知识基础。

教学过程:

一、创设情境,揭示课题。

二、回顾整理,讨论交流。

1、怎样求圆的周长?求圆的面积有几种情况?

2、圆的周长和面积公式是怎样推导出来的?

3、精彩会放。(教师结合课件演示帮助学生回顾圆的周长和面积公式的推导过程)

4、圆的周长和面积公式的推导过程对我们学习的启示。(转化思想)

5、学生交流:在计算圆的周长和面积时怎样能够提高计算速度?

三、发现生活中的数学问题

教师结合图片演示,让学生提出有关圆的周长和面积的问题。

图片内容:农村的喷灌、碾子、拴在木桩上的小羊。

四、走进美丽的图形世界

教师通过一些圆形和正方形等图形的变化,形成各种几何图形,让学生计算圆的.周长和面积。

五、开心词典

以开心词典的形式,让学生做六道选择题。

六、走进生活,解决问题

1、小猴子骑独轮车走钢丝。求车轮要转多少周。

2、用绳子绕树干10周,求横截面的直径。

3、一个圆形餐桌的直径是2米,如果一个人需要0.5米宽的位置就餐,这张餐桌大约能坐多少人?

4、刘大爷用15.7米长的篱笆靠墙围一个半圆形的养鸡场.这个养鸡场的面积是多少平方米?

七、思考生活中的数学问题

1、在200米和400米比赛时,为什么运动员站在不同的起跑线上?

2、阅读关于400米标准跑道的小资料。

课后思考题:一块正方形草地,边长是20米,在两个相对的角上各有一棵树,树上各拴一只羊,拴羊的绳长与草地边长相等,两只羊都能吃到草的草地面积是多少平方米?(提示:先根据题意画出图再解答

《圆的周长》教案 篇16

教材分析:

这部分内容是在学生认识了圆周长的概念和圆的基本特征的基础上,引导学生从已有的生活经验出发,以小组合作的方式,通过实验探究圆的周长与直径的关系,自学自知圆周率,从而总结探究出求圆的周长的公式。另一方面提高学生运用公式解决实际问题的能力,体会数学与现实生活的密切联系。

教学目标:

1.让学生经历圆周率的探索过程,理解圆周率的意义,掌握圆周长的公式,能运用圆周长公式解决一些简单的实际问题。

2.培养学生的观察、比较、分析、综合及动手操作能力,发展学生的空间观念。

3.让学生理解圆周率的含义,熟记圆周率的近似值,结合圆周率的教学,感受数学文化,激发爱国热情。

教学重点:

通过多种数学活动推导圆的周长公式,能正确计算圆的周长。

教学难点:

圆的周长与直径关系的探讨。

教学准备:

多媒体课件、线、尺、塑胶板上剪下的直径大小不一的圆、实验报告单、计算器等。

教学过程:

一、把准认知冲突,激发学习愿望。

1.谈话:同学们,知道大家都喜欢看《喜羊羊和灰太狼》的动画片,今天,老师把它俩带到了我们的课堂。听:(课件播放故事:在一个天气晴朗的日子里,喜羊羊和灰太狼举行跑步比赛,喜羊羊沿正方形路线跑,灰太狼沿圆形路线跑,一圈过后,它们又同时回到了起点。此时,它俩正为谁走的路程长而争论不休。同学们,你们认为呢?)(学生进行猜测)

2.要想确定它俩究竟谁跑的路程长,可怎么做?(生:先求出正方形和圆形的周长,再进行比较。)

3.指名一生说说正方形的周长计算方法:(生:边长×4=周长)今天这节课,我们一起来研究圆的周长。(揭示课题:圆的周长)

二、经历探究全程,验证猜想发现。

(一)认识圆周长的含义并初步感知圆周长与直径之间的关系。

1.谈话:那什么是圆的周长呢?(课件出示3个车轮)

2.师:上面的3个数据是表示什么的?(生:圆的直径)“英寸”是什么意思?(学生看书回答)

3.将3个车轮各滚动一圈,猜一猜,谁滚动的路程最长?从中你们有什么发现?(生:车轮滚动一周的长度是车轮的周长;直径越长,周长越长,直径越短,周长越短)

(二)交流测量圆周长的方法

1.学生拿出课前剪的圆,互相指一指它们的周长。

2.用什么办法测量它们的周长?(同桌交流方法)

3.指名到前面投影上展示测量周长的方法

①滚动法。明确注意点:做好记号,从零刻度开始滚,滚动到这个记号再次指向这里,圆滚动一周的长就是这个圆的周长。

②绕圈法。明确:线贴紧圆周,把多余的部分剪掉,把线拉直,这两点之间线的长就是这个圆的周长。

③用软尺测量。明确:用软尺上有厘米刻度的一面测量。从零刻度开始量,绕圆周一圈,然后看看对齐哪个刻度。

4.小结:这些方法有一个共同的特点:(生:将一条弯曲的线变成一条直的线)这就是数学上所讲的“化曲为直”的方法。

5.(课件出示摩天轮图片)问:它的周长能用刚才的方法测量吗?(生:不能,很不方便)问:那怎么办?引发学生探究圆的周长与直径之间的关系。

(三)认识圆周率。

1.谈话:接下来同学们分4人小组,选择自己喜欢的方法,测量出身边这些圆的周长与直径,完成表格。(学生分组活动,完成书上表格)(课件出示表格)

2.各小组组长汇报测量结果。(学生说结果,教师在课件上完善)

3.让学生观察表格中的数据,说说又发现了什么?(学生小组交流后汇报:一个圆的周长总是直径的3倍多一些)

4.(课件出示)介绍《周髀算经》这本书及“周三径一”的意思。(圆的周长大约是直径的3倍)

5.介绍祖冲之在求圆周率中做出的`贡献,让学生想象祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(课件播放资料,学生自学)

6.学生说说从资料的介绍中知道了什么?(学生交流自己的学习所得)

7.师小结:祖冲之是我们民族的骄傲与自豪,正因为他杰出

的成就,月球上有一座环形山就被命名为祖冲之山,宇宙中第1888号小行星也是以他的名字命名的。希望同学们以后也能像他那样刻苦钻研,将来也做一个不平凡的人。

(四)推导公式

1.当学生弄清了圆周长与直径之间的关系后,让学生说说圆的周长怎么计算?(生:圆的周长=圆周率×直径)

2.谈话:如果圆的周长用大写字母C表示,那么这个公式用字母怎么表示?

3.谈话:还可已知什么条件求周长?(生:半径)为什么?(生:在同一个圆中,圆的直径是半径的两倍)那这个公式还可怎么变换?

4.齐读公式,加深印象。

三、刷新应用能力,总结巩固新知。

1.(课件出示第1题)学生口答两个圆的周长。

2.计算例4中三个自行车车轮的周长大约各是多少英寸?(课件出示3个车轮)通过计算,比一比谁的周长最长?这再一次说明了什么?(生:圆的周长与它的直径有关)

3.(课件出示一个喷水池)一个圆形喷水池的周长是12米,它的周长是多少米?(学生独立完成在作业本上,投影仪展示答案)

4.(课件出示摩天轮图)它的半径是10米,坐着它转动一周,大约在空中转过多少米?(学生独立完成在作业本上,后在全班交流)

四、交流学习收获,课后拓展延伸

1.通过这节课研究圆的周长,你有什么收获?(学生全班交流)

2.谈话:现在如果老师问喜羊羊和灰太狼谁走的路程长一些?同学们可怎么做?(学生独立完成,后全班交流)有没有其它方法?(学生可通过计算解决,也可直接观察两个图比较)

3.师:种种方法都可以帮助我们来确定谁走的路程长,所以当喜羊羊得知这一结果后,直喊比赛不公平,于是老村长为它们又重新设计了一种新的赛跑路线:问:如果喜羊羊和灰太狼沿这样的路线赛跑,谁走的路程长一些呢?(学生课后思考,下节课交流。)

教学反思:

一、“情境”与“知识”两条主线相互交融。

结合本节课的教学内容和学生的年龄特点,教师抓住“情境”与“知识”这两条主线。在教学情境上,教师努力为学生创设一个生动、活泼、和谐的学习氛围。我们知道,《喜羊羊与灰太狼》是学生喜闻乐见的动画片,学生对此非常感兴趣,也有一定的了解,以此为学习的背景,作为学习圆周长的切入点,使“情境主线”与本节课的“知识主线”有机的融合在一起,形成一个完整的统一体,激发了学生的学习兴趣,时学生积极主动地投入到学习活动中。

二、动手操作让学生亲身经历知识的形成过程。

动手操作是学生获得知识的一条重要途径。本节课从学生的生活经验和已有的知识背景出发,为他们提供了丰富的操作材料和开放的操作空间,使学生在操作活动中亲身经历了圆的周长计算公式的推导过程,在此过程中,教师以一个组织者、引导者和合作者的身份参与到学生的学习活动中,使学生的操作活动有目的、有思考、有选择、有创造,使学生在做一做、看一看、想一想的过程中增长智力,提高动手实践能力,获得积极的情感体验。

三、数学阅读让学生感受数学的厚实的文化。

在数学学习过程中,适当介绍一些有关数学发现与数学史的认识,能够丰富学生对数学发展的整体认识,对后续学习起到一定的激励作用。结合本节课的教学内容,教师向学生介绍了圆周率的有关认识。这里的介绍从《周髀算经》中的“周三径一”、祖冲之的“算筹”到圆周率在现代生活中的应用以及用电子计算机来计算圆周率,使学生对圆周率的历史有一个完整的认识,感受到我们祖先的智慧,体会数学知识与人类生活经验和实际需要的密切关系。

大家都在看