请欣赏《分数乘整数》教案(精选10篇),由笔构网整理,希望能够帮助到大家。
《分数乘整数》教案 篇1
【教学目标】
知识与能力:
1.使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
2.使学生能够应用分数乘整数的计算法则,比较熟练地进行计算。
过程与方法:
首先复习整数乘法的意义和三个相同分数相同的计算方法,为学习分数乘整数做好准备。然后,通过例题,结合直观图,采用加法与乘法对照的方法,教学分数乘整数的意义和计算方法。
情感态度价值观:
通过观察比较,引导学生探求知识的内在联系,注重培养学生的推理能力,发展学生的思维。
【教学重难点】
1.使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
2.引导学生总结分数乘整数的计算法则。
【教具、学具】
教具准备:多媒体课件、刻度尺。
学具准备:画图纸、刻度尺、铅笔等相关绘图工具。
【教学过程】
一、铺垫孕伏
(一)出示复习题。
1. 口答:
5个12的和是多少?
10个23的和是多少?
4个0.5的和是多少?
2. 整数乘法的意义是什么?
3.计算:
计算 时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。
(二)引出课题。
象上面的题求几个相同的分数相加的和有没有简便的方法呢?这就是今天我们要学习的新课——分数乘法。(板书课题:分数乘整数)
二、探究新知。
(一)教学分数乘整数的意义。
出示例1,小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个,3人一共吃多少个?
指名读题。
1.分析演示:
每人吃 个蛋糕,每人吃的够一块吗?(不够一块)接着出示如课本的三个扇形图。
问:一个人吃了 个,三个人吃了几个 个?使学生从图中看到三个人吃了3个 个。让学生用以前学过的知识解答3个人一共吃了多少个?(教师在3个扇形下面画出大括号并标出?块)订正时教师板书: + + = = = (个),(教师将3个双层扇形图片拼成一个一块蛋糕的 图片)
2.观察引导:
这道题3个加数有什么特点?使学生看到3个加数的分数相同。教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书: 。再启发学生说出 表示求3个 相加的和。
3.比较 和12×5两种算式异同:
提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。
通过讨论使学生得出:
相同点:两个算式表示的意义相同。
不同点: 是分数乘整数,12×5是整数乘整数。
4.概括总结:
教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)
(二)教学分数乘整数的计算法则。
PPT出示:分数乘整数的意义与整数乘法的意义是相同的,都是求几个相同加数的和的简便运算。
1.推导算理:
由分数乘整数的意义导入。
表示什么意义?引导学生说出表示求3个 的和。板书: + + 。学生计算,教师板书: 。提示:分子中3个2连加简便写法怎么写?学生答后板书: (块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)
2.引导观察: 的分子部分、分母与算式 两个数有什么关系?(互相讨论)
观察结果: 的分子部分2×3就是算式中 的分子2与整数3相乘,分母没有变。
3.概括总结:
请根据观察结果总结 的计算方法。(互相讨论)
汇报结果:(多找几名学生汇报)使学生得出 是用分数 的分子2与整数3下乘的积作分子,分母不变。
根据 的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将 按简便方法计算。
(启发学生通过合作学习,学习总结、归纳,培养学生的语言表达能力和逻辑思维能力)
(三) 反馈练习:
1.看图写算式。
订正时让学生说出乘法的意义各表示什么?
2.口答列算式:
=( )×( )
3个 是多少? 5个 是多少?
订正时让学生说一说为什么这样列式。
三、全课小结
这节课我们学习了什么?引导学生回顾总结。
【板书设计】
分数乘整数
+ + + = = = (个)
= = (个)
《分数乘整数》教案 篇2
【教学目标】
知识与能力:
1.使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
2.使学生能够应用分数乘整数的计算法则,比较熟练地进行计算。
过程与方法:
首先复习整数乘法的意义和三个相同分数相同的计算方法,为学习分数乘整数做好准备。然后,通过例题,结合直观图,采用加法与乘法对照的方法,教学分数乘整数的意义和计算方法。
情感态度价值观:
通过观察比较,引导学生探求知识的内在联系,注重培养学生的推理能力,发展学生的思维。
【教学重难点】
1.使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
2.引导学生总结分数乘整数的计算法则。
【教具、学具】
教具准备:多媒体课件、刻度尺。
学具准备:画图纸、刻度尺、铅笔等相关绘图工具。
【教学过程】
一、铺垫孕伏
(一)出示复习题。
1. 口答:
5个12的和是多少?
10个23的和是多少?
4个0.5的和是多少?
2. 整数乘法的意义是什么?
3.计算:
计算 时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。
(二)引出课题。
象上面的题求几个相同的分数相加的和有没有简便的方法呢?这就是今天我们要学习的新课——分数乘法。(板书课题:分数乘整数)
二、探究新知。
(一)教学分数乘整数的意义。
出示例1,小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个,3人一共吃多少个?
指名读题。
1.分析演示:
每人吃 个蛋糕,每人吃的够一块吗?(不够一块)接着出示如课本的三个扇形图。
问:一个人吃了 个,三个人吃了几个 个?使学生从图中看到三个人吃了3个 个。让学生用以前学过的知识解答3个人一共吃了多少个?(教师在3个扇形下面画出大括号并标出?块)订正时教师板书: + + = = = (个),(教师将3个双层扇形图片拼成一个一块蛋糕的 图片)
2.观察引导:
这道题3个加数有什么特点?使学生看到3个加数的分数相同。教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书: 。再启发学生说出 表示求3个 相加的和。
3.比较 和12×5两种算式异同:
提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。
通过讨论使学生得出:
相同点:两个算式表示的意义相同。
不同点: 是分数乘整数,12×5是整数乘整数。
4.概括总结:
教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)
(二)教学分数乘整数的计算法则。
PPT出示:分数乘整数的意义与整数乘法的意义是相同的,都是求几个相同加数的和的简便运算。
1.推导算理:
由分数乘整数的意义导入。
表示什么意义?引导学生说出表示求3个 的和。板书: + + 。学生计算,教师板书: 。提示:分子中3个2连加简便写法怎么写?学生答后板书: (块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)
2.引导观察: 的分子部分、分母与算式 两个数有什么关系?(互相讨论)
观察结果: 的分子部分2×3就是算式中 的分子2与整数3相乘,分母没有变。
3.概括总结:
请根据观察结果总结 的计算方法。(互相讨论)
汇报结果:(多找几名学生汇报)使学生得出 是用分数 的分子2与整数3下乘的积作分子,分母不变。
根据 的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将 按简便方法计算。
(启发学生通过合作学习,学习总结、归纳,培养学生的语言表达能力和逻辑思维能力)
(三) 反馈练习:
1.看图写算式。
订正时让学生说出乘法的意义各表示什么?
2.口答列算式:
=( )×( )
3个 是多少? 5个 是多少?
订正时让学生说一说为什么这样列式。
三、全课小结
这节课我们学习了什么?引导学生回顾总结。
【板书设计】
分数乘整数
+ + + = = = (个)
= = (个)
《分数乘整数》教案 篇3
教学目标:掌握假分数与带分数互化的基本方法,明确算理,进一步理解分数的意义。
教学过程:
(一)引入;
1、利用上一节课的分类情况,例:9/4;
(二)展开;
1、用图示表示9/4;
2、用算式表示:9/4=8/4+1/4=2+1/4=2又1/4。读法:二又四分之一;意义:表示由整数2和真分数1/4组成--叫做带分数。
3、请你用同样的方法来研究:
第一组学生:把11/4化成带分数
第二组学生:把2又3/4化成假分数
1)自主研究;
2)交流;
3)比较,观察;
4)说说想法,发现了什么?
(三)发现规律与方法;
1、课本P30-3;自主填空;
2、交流,说想法;
3、规律与方法。
(四)练习;
1、练习与应用1;
注意点:有不被分割的完整的独立图--写成带分数,说明有整数出现;无完整的不被分割的图出现--写成假分数,说明都是分数,没有整数出现。
2、练习与应用2;
注意点:在理解掌握算理算法的基础上,引导学生出简便的方法,直接写出结果,提高速度和正确率;
3、练习与应用3;
注意点:在理解掌握算理算法的基础上,引导学生速算方法,提高效率和正确率。
课结束。
练一练(4)
教学目标:
1、通过概念的运用练习,将其纳入到自己已有有数的知识结构中,构建与稳固数的结构络;
2、能熟练地运用真分数和假分数的知识进行解题,熟练假分数与带分数互化的方法。
3、从知识之间的联系中感受到事物之间的联系。
教学预设:
教学预设
学生活动
备注
一、复习知识:
1、真分数、假分数、带分数的概念的复习。
2、完成课本P31练习(4)第一题
3、呈现知识结构。
真分数:分子小于分母
分子能被分母整除
分数(整数)
假分数
分子不能被分母整除
(带分数)
二、技能训练。
1、带分数和假分数的'互化
(1)、借助图的直观性,用带分数与假分数表示涂色部分。
完成练习第2题。
讨论带分数与假分数的判断过程,和它们联系。
(2)带分数与假分数和互化练习,完成练习第5题
(3)带分数和整数化假分数的练习。完成练习第6题。
2、比较带分数、假分数、整数的大小
(1)完成练习(4)第3题
(2)汇报讨论:
真分数小于1。
假分数与带分数比较,既可以把假分数化成带分数,先比较整数部分的大小,再比较分数部分;也可以把带分数化成假分数,分母相同时,比较分子的大小。
(3)、借助数轴,进一步理解真分数、假分数、带分数和整数的大小关系。完成练习第4题。
说说4比18/5多多少?
由3往前数1小格的数是多少?
由2往后数2小格的数是多少?
完成练习第7题。
3、应用与探索
按要求说说分子A分母B之间的关系
(1)是真分数
(2)A/B是假分数
(3)A/B是可以化成整数的假分数
(4)A/B是可以化成带分数的假分数
4、:
(1)真分数、假分数、带分数的特征
(2)假分数与整数、带分数的关系及互相转化的方法。
学生回忆真分、假分数和带分数的概念,并叙述各自的特征。
学生以直观图为依托,进一步理解带分数与假分数之间的联系。
学生根据假分数与带分数的互化方法,完成第5题。
学生完成第6题。讨论整数化成指定分母的假分数的方法。
学生在完顾第3题的基础上,汇报讨论真分数、假分数和带分数三者比较大小的方法,并归纳出一般的规律。
完成练习第4题、第7题
《分数乘整数》教案 篇4
教材分析
《分数乘整数》是义务教育课程标准实验教科书小学数学六年级上册第二单元的内容。从学生已有的知识经验出发合理地使用教材,本课教学重点是让学生理解算理、掌握计算法则。
学情分析
本课是在整数乘法和分数加法的基础上学习的,通过直观操作帮助学生理解算理并正确进行计算,在此基础上拓宽学生的知识面。
教学目标
知识与能力:
在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。
过程与方法:
通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。
情感态度与价值观:
引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。
教学重点和难点
教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。
教学难点:引导学生总结分数乘整数的计算法则。
教学过程
《分数乘整数》教案 篇5
教学目标 :
1. 通过知识迁移,使学生明确求一个数的几分之几是多少可以用乘法进行计算。
2. 通过操作活动使学生理解分数乘分数的算理,并经过观察、猜测、验证归纳出分数乘分数的计算方法,并能熟练计算。
3. 通过对算理、算法的探究培养学生的观察力、推理能力、归纳能力。
教学重点:
掌握分数乘分数的计算方法,并能熟练计算。
教学难点:
理解分数乘分数的乘法意义及算理。
教具准备:
多媒体课件。
教学过程:
一、导入新课(激发兴趣,明确目标)
1. (课件出示一个正方形)这个正方形我们可以用数字“1”表示。现在涂色部分是它的几分之几? ( )
2. 如果取这 的 ,现在得到的是整个正方形的几分之几?(看图得出结论 )
3. 如果再取这 的 ,又是多少呢?你是怎么想的?(在学生回答后再出示图验证)
【设计意图:讲课一开始采用了看图说分数的方式引入,既是对分数意义的一个回顾,也为本节课理解分数乘分数的算理提供了形的依托。】
二、合作探究(小组合作,解决问题)
出示例3情境图,说说从图上你获得了哪些信息,可以解决什么问题?(根据学生的回答板书两个问题并请学生先看第一个问题)
(一)探究几分之一乘几分之一的算理算法
1. 求种土豆的面积是多少公顷,我们可以怎么列式?你是怎么想的?(如果学生有困难,可以从上节课的.整数乘分数的意义进行类推)
求一个数的几分之几,我们可以用乘法来计算。
2. 等于多少呢?说说你的想法,并把你的想法在纸上写下来。
3. 学生进行尝试(可引导学生用画图的方式来解释自己的想法)。
4. 进行交流反馈
重点反馈描画涂色的想法,并在学生讲解后,教师再利用课件进行讲解巩固
把1个正方形看作1公顷,先平均分成2份,每份表示 公顷,再把 公顷平均分成5份,取其中的一份。也就是把1公顷平均分成(2×5)份,取其中的一份,就是 公顷。
5. 得出结果
根据大家的想法, 。我们再来看看本节课开始的图形,是不是也可以用乘法算式来表示?
6. 猜想计算方法
观察这几个算式,说说你发现了什么?你觉得几分之一乘几分之一可以怎样计算?这个方法可以推广到所有分数乘分数的计算中吗?
【设计意图:尊重学生,培养学生的学习探索能力是很重要的。本节课的教学除了有之前所学分数的意义作为基础之外,学生还在前一课时明确了整数乘分数可以用来表示一个数的几分之几是多少,因此在本堂课中完全可以放手让学生们自己去思考、学习、尝试,教师只要起到一定的点拨作用就可以了。】
(二)探究几分之几乘几分之几的算理算法
1. 尝试猜想
请你试着用这个方法解决第二个问题:求 公顷的 ,用乘法算式表示就是 。根据我们刚才的想法,结果应该是?( 公顷)。这个猜想正确吗?能不能想办法来进行验证?在老师提供的练习纸中画一画、算一算,并和同桌进行交流,有困难的学生也可以打开课本第4页看一看。
2. 探究验证。学生自行探索分数乘法的计算方法。(探索完成的学生可以完成例3做一做第2题进一步验证)
3. 验证反馈
(1)请几个采用不同验证方法的学生进行一一展示。
(预计方法:A. 画图(图形或线段);B. 转化成小数再进行计算;C. 利用分数的意义进行计算)
(2)请已经完成例3做一做2的学生说一说自己计算的结果及得到的想法。
4. 得出结论
看来咱们的猜想是正确的,分数乘分数如何计算?在同学讨论回答后得出结论:分数乘分数,用分子相乘的积作分子,用分母相乘的积作分母。
【设计意图:猜想——举例——验证——得出结论是学生学习数学的一种方式,在本节课的设置上先提供了探索的范例,再让学生提出猜想,最后通过举例、验证形成共识,得到分数乘分数的计算法则,理解算理,使学生既获得了探索的体验,又掌握了基础知识。】
三、展示交流(展示交流,调拨归纳)
简化计算过程
根据我们所得的结论,试着解决下面的问题
出示例4:无脊椎动物中游泳最快的是乌贼,它的速度是 千米/分。
(1)李叔叔的游泳速度是乌贼的 。李叔叔每分钟游多少千米?
(2)乌贼30分钟可以游多少千米?
1. 读题,独立列式并解答。
2. 反馈
(1)题(1)展示不同的计算过程:A、先计算再约分;B、先约分再计算。
(2)题(2)明确整数与分数相乘,可以在计算时直接将整数和分母约分,结合学生的情况说明约分的书写格式。
(3)对比体会得出结论:在计算时,先仔细观察数的特征,能约分的先约分再乘,会比较简单。
3. 练习
例4做一做1。
【设计意图:培养简便计算的意识对于提高学生计算的准确性和速度至关重要。让学生通过计算和对比体会到在分数乘法中先约分再计算比较简单,对培养学生的简算意识很有帮助。】
四、拓展总结(应用拓展,盘点收获)
1. 基础练习
(1)先看数再计算(练习一6、7两题)
反馈校对、纠错。
在反馈时通过对比、纠错让学生明白先观察数的特征,可以约分的先约分再计算,这样能又对又快地得到结果。
预计错题,估计错例:由于4和 的分子相同,学生有可能会将整数4与分子4相约分,在计算 时,结果错算成 。应该使学生明确:整数与分数相乘,可将整数与分母约分(也就是把整数看成分母是1的分数),再进行计算。
【设计意图:将练习一的6、7两题并在一起,并将题目的考查形式改成先看数再计算,有助于学生形成计算的审题习惯。让学生发现通过观察可以感知数的特征并进行约分,这样可以让计算变得更加简单,正确率也可以得到更大的提升。第6题不以改错的方式出现,而直接以计算题的方式出现,是出于不强加错的思考,来自于学生的错例,学生更易于记在心上。】
(2)完成例3、例4做一做剩下的题
反馈校对、纠错。
在校对答案后,可以进行小结,使学生进一步明确:分数乘法就是求一个数的几分之几是多少的运算。
2. 练习提升
在○里填“>”“<”或“=”。想一想,哪些式子,你不计算就可以直接填出来?
○ ○ ○ ○
反馈:请学生说说自己的想法,哪些式子可以不计算就直接得出结果。
(1)题1、题3主要引导学生从分数乘法的意义来理解;
(2)题2、题4主要是对分数计算方法的巩固。
【设计意图:计算的练习往往比较枯燥,这时题目的设计就显得比较重要了。本题的设计让学生们在练习反馈中既对分数乘法的意义进行了回顾,又将整数乘分数和分数乘分数的意义进行对比,还对计算方法进行了巩固和应用,对学生的思维的拓展也是大有益处的。】
3.拓展总结
这节课我们学习了什么?我们是怎样得出这些结论的?
没错,“猜想——举例——验证——得出结论”是我们学习数学很有效的方法,在以后的学习中,同学们可以用这样的思路去学习更多的数学知识。
【设计意图:在对本节课的小结中,对猜想——举例——验证——得出结论的数学学习方法进行回顾,对于六年级的学生来说很重要。】
《分数乘整数》教案 篇6
一、引入,明确今后主要的学习内容。鼓励学生相信自己能学好。
二、口算,感受分数乘整数的含义
1、读出算式,并口算出结果:
1/5+2/5= 1/4+1/4= 2/6+3/6+1/6= 1/16+3/16= 2/9+2/9= 2/9+2/9+2/9+2/9+2/9+2/9= 2/9+2/9......2/9(30个)
2、感受分数乘整数的意义
30个2/9相加读起来太麻烦了,(让学生读时,很多学生都笑了。)有没有简单的表示方法?(学生会想到用乘法表示成2/9×30)然后让学生说一说2/9×30表示的含义。让学生再说一些分数乘整数的算式,教师板书,然后从中选则一些让学生说一说意义。
三、尝试计算,归纳方法
1、尝试计算。
让学生试着计算2/9×4=、说一说计算方法,允许有不同的方法。(这是课的一个重点)再计算2/9×5=,然后让学生自己思考分数乘整数的计算方法。
2、自己选择练习
自己选则的内容,学生计算的积极性会更高,让学生从上面学生说出的算式中选择两道题进行计算。
3、概括分数成整数的计算方法
让学生自己归纳计算方法,并尝试用字母表示这个计算方法如:b/a×c=b×c/a。
总之,给学生发现的机会,他们能自己做的我们不告诉他们。如1、他们会发现几个相同分数相加用乘法比较简便,能发现分数乘整数的意义。2、他们能自己计算分数乘整数的式题。3、他们会自己概括出分数乘整数的计算方法。这些方面我们都要给学生机会。
同时我感觉到,这节课是六年级数学的第一课,在教学时还要注意以下几点:
一、给孩子鼓劲儿,让孩子看到希望
告诉他们“我们这一学期数学课主要学习的都是有关分数的知识,六个单元中有四个单元都是有关分数的知识。这部分知识和以前联系不大,只要从现在开始,加油,都能把这部分知识学好!”老师也要满怀信心的对待每一个孩子,给不同层次的孩子以机会,真正在课堂上关注他们,让他们学得幸福,感受到成功,感受到付出之后的快乐,相信自己能越来越好!
二、别让孩子掉队,给接受能力稍慢的孩子吃一吃偏饭
我们的老师都很敬业,这一点我从来都不怀疑,但是有时后我们的方法不够合适。就拿给学困生辅导来说吧,很多老师都要面临这个问题,不管是否课改,一些基本的东西都是要孩子会的。在给学困生补习的时候,要注意(1)及时,有些教师总是快考试的时候才想到要给差生辅导,那时侯内容太多,他们已经接受不了了。所以要及时给他们辅导。(2)要让他们自己说解题的思路,说做某一类题的时候应该注意什么,不要让他们光做题,不要让他们死记硬背一些东西,要让他们理解。
三、理解分数乘法含义、尝试计算
从分数加法的口算引入,2/5+1/5=、3/7+2/7=,从2/9+2/9+2/9.......2/9(30个2/9相加)让学生感受到这样的算式非常罗嗦,不好读,而且不好计算。让学生自然想到用乘法算,2/9×30让学生自己说一说表示的含义,理解分数乘法的意义。
同时让学生说出另外一个分数乘以整数的算式,丛中选择一些算式让学生说一说表示的含义。然后试着计算2/9×4,鼓励学生自己想办法计算,可以用不同的方法。2/9×5,让学生独立计算,并试着用自己的话概括分数乘整数的计算方法。练习,从学生自己说出的算式中选择两道计算。
《分数乘整数》教案 篇7
教学内容:课本P98-100页
教学目标:
1、使学生通过实物和图形,初步认识几分之一,会读会写几分之一,了解分数各部分名称;
2、使学生会运用直观的方法比较几分之一的大小。
教学重点:1、认识几分之一2、比较几分之一的大小
难点:理解几分之一的含义
教学准备:
课件、每人准备一张长方形纸片、两张圆形纸片、一张正方形纸片、水彩笔
教学过程:
一、创设情境,引发冲突
师:今天是星期天,小明要过生日,他请好朋友小红一起到郊外玩,看,他们都带了哪些什么好吃的?(看大屏幕)(4个苹果、2瓶矿泉水、还有一个大蛋糕。)
师:把这些食品平均分成两份,每人各分得多少?你会分吗?(4个苹果平均分成2份,每人分得2个;2瓶矿泉水平均分成2份,每人得1瓶)
师:把一个蛋糕平均分成2份,每人分得多少呢?(板书:平均)(一个蛋糕平均分给两个小朋友,每人分得了这块蛋糕的一半。)
师:怎么分?(动画演示)一半在数学上用什么数来表示呢?(1/2),1/2就是分数,这节课我们就一起来认识一种新的数分数。(板书课题:认识分数)
二、操作活动,探究新知
1、认识二分之一
师:请同学们观察,我们现在把蛋糕分成了几份?2份中的1份,就是1/2。谁会读?我们一起来读读!
师:这一份是1/2,那另一份呢?(出示:把一个蛋糕平均分成2份,每一份就是它的1/2。)它指的是谁?现在谁能说说我们刚才是怎么得到这个蛋糕的1/2的呢?
2、教学试一试
师:一个蛋糕平均分成两份,我们可以得到它的1/2。那么一张长方形纸我们怎样才能得到它的1/2呢?(出示长方形纸)请同学们拿出课前准备好的长方形纸片,先折一折,再把它的1/2涂上颜色。看看谁完成的又快又正确。
师:都完成了吗?谁愿意把你的作品展示给大伙儿看看的?展示学生作品,并将其贴在黑板上:
①对折同意他的折法吗?一样的举起来。
②纵向对折涂色的这部分是长方形的1/2吗?
③斜折这样呢?
师:他们的折法不同,有的横,有的'竖有的斜,涂色的部分也各不相同,为什么说他们都是1/2啊?(都是一半,都是把长方形平均分成了2份。而涂色的正好是其中的一份。)
小结:只要把一个东西平均成两份,其中的一份就是1/2。
师:认识了1/2,现在你还想认识几分之一?(1/3、1/4)
师:想不想用一个图形表示出想认识的分数?用纸折一折,并用斜线表示出来。
反馈交流:讲一讲,平均分成了几份,涂色部分是它的几分之几?(平均)
老师收集了一些纸片,你看到了什么共同的特点吗?出示:正方形1/4、长方形1/4、圆形1/4。
(都表示1/4。)
师:为什么他们形状不一样,却都是1/4呢?(因为他们都是平均分成了四份,表示的都是其中的一份。)
师:那相同的图形,能表示出不同的分数吗?出示:学生画的1/2、1/4,比较这两个图形,1/2和1/4哪个更大?你怎样比较1/2和1/4的大小的呢?
生:从图上直接看出1/2>1/4
师:同样大小的两张纸片,一张平均分成2份,一张平均分成了4份,分得的份数越多,每一份反而越小。
师:再来看这一张长方形纸片。老师把它平均分成了8份,绿色的部分就表示它的1/8。看看,和上面的1/2、1/4相比,你们知道谁大谁小吗?
3、出示练习
4、写分数
师:现在你们认识了分数,分数怎样写呢?象1/2这样的分数怎样写呢?现在请同学们伸出你们的小手书空,跟老师来一起写1/2。
写法:(1)画一条横线表示平均分(板书:)
(2)在横线下面写2,表示平均分成2份(板书:2)
(3)在横线上写1,表示取其中的1份。(板书:1)
师:你们知道吗,分数的各部分还有名字呢!
1/2中间的这条横线叫做分数线(板书:分数线)
分数线下面的2叫做分母(板书:分母)
分数线上面的1叫做分子(板书:分子)
1/2这个分数分母是2,分子是1。
三、练习应用,拓展延伸
1、你能用分数表示涂色的部分吗?
2、(想想做做第1、2、3题)
3、拓展
100页的4、5题
②出示黑板报。
师:同学们出黑板报,分出一块科学天地(二分之一),一块艺术园地(四分之一)各版块各大约占黑板报的几分一?请同桌互相讨论。
反馈:(1)科学园地1/2(2)艺术园地1/4。
师:为什么是1/4,明明分成了3份了吗!
师:这些就是我们生活中的分数,我们的生活不光有整数,也有分数。
通过这节课的学习,你对分数有哪些认识?
《分数乘整数》教案 篇8
教学目标 :
1. 通过知识迁移,使学生明确求一个数的几分之几是多少可以用乘法进行计算。
2. 通过操作活动使学生理解分数乘分数的算理,并经过观察、猜测、验证归纳出分数乘分数的计算方法,并能熟练计算。
3. 通过对算理、算法的探究培养学生的观察力、推理能力、归纳能力。
教学重点:
掌握分数乘分数的计算方法,并能熟练计算。
教学难点:
理解分数乘分数的乘法意义及算理。
教具准备:
多媒体课件。
教学过程:
一、导入新课(激发兴趣,明确目标)
1. (课件出示一个正方形)这个正方形我们可以用数字“1”表示。现在涂色部分是它的几分之几? ( )
2. 如果取这 的 ,现在得到的是整个正方形的几分之几?(看图得出结论 )
3. 如果再取这 的 ,又是多少呢?你是怎么想的?(在学生回答后再出示图验证)
【设计意图:讲课一开始采用了看图说分数的方式引入,既是对分数意义的一个回顾,也为本节课理解分数乘分数的算理提供了形的依托。】
二、合作探究(小组合作,解决问题)
出示例3情境图,说说从图上你获得了哪些信息,可以解决什么问题?(根据学生的回答板书两个问题并请学生先看第一个问题)
(一)探究几分之一乘几分之一的算理算法
1. 求种土豆的面积是多少公顷,我们可以怎么列式?你是怎么想的?(如果学生有困难,可以从上节课的整数乘分数的意义进行类推)
求一个数的几分之几,我们可以用乘法来计算。
2. 等于多少呢?说说你的想法,并把你的想法在纸上写下来。
3. 学生进行尝试(可引导学生用画图的方式来解释自己的想法)。
4. 进行交流反馈
重点反馈描画涂色的想法,并在学生讲解后,教师再利用课件进行讲解巩固
把1个正方形看作1公顷,先平均分成2份,每份表示 公顷,再把 公顷平均分成5份,取其中的一份。也就是把1公顷平均分成(2×5)份,取其中的一份,就是 公顷。
5. 得出结果
根据大家的想法, 。我们再来看看本节课开始的图形,是不是也可以用乘法算式来表示?
6. 猜想计算方法
观察这几个算式,说说你发现了什么?你觉得几分之一乘几分之一可以怎样计算?这个方法可以推广到所有分数乘分数的计算中吗?
【设计意图:尊重学生,培养学生的学习探索能力是很重要的。本节课的教学除了有之前所学分数的意义作为基础之外,学生还在前一课时明确了整数乘分数可以用来表示一个数的几分之几是多少,因此在本堂课中完全可以放手让学生们自己去思考、学习、尝试,教师只要起到一定的点拨作用就可以了。】
(二)探究几分之几乘几分之几的算理算法
1. 尝试猜想
请你试着用这个方法解决第二个问题:求 公顷的 ,用乘法算式表示就是 。根据我们刚才的想法,结果应该是?( 公顷)。这个猜想正确吗?能不能想办法来进行验证?在老师提供的练习纸中画一画、算一算,并和同桌进行交流,有困难的学生也可以打开课本第4页看一看。
2. 探究验证。学生自行探索分数乘法的计算方法。(探索完成的学生可以完成例3做一做第2题进一步验证)
3. 验证反馈
(1)请几个采用不同验证方法的学生进行一一展示。
(预计方法:A. 画图(图形或线段);B. 转化成小数再进行计算;C. 利用分数的意义进行计算)
(2)请已经完成例3做一做2的学生说一说自己计算的结果及得到的想法。
4. 得出结论
看来咱们的猜想是正确的,分数乘分数如何计算?在同学讨论回答后得出结论:分数乘分数,用分子相乘的积作分子,用分母相乘的积作分母。
【设计意图:猜想——举例——验证——得出结论是学生学习数学的一种方式,在本节课的设置上先提供了探索的范例,再让学生提出猜想,最后通过举例、验证形成共识,得到分数乘分数的计算法则,理解算理,使学生既获得了探索的体验,又掌握了基础知识。】
三、展示交流(展示交流,调拨归纳)
简化计算过程
根据我们所得的结论,试着解决下面的问题
出示例4:无脊椎动物中游泳最快的是乌贼,它的速度是 千米/分。
(1)李叔叔的游泳速度是乌贼的 。李叔叔每分钟游多少千米?
(2)乌贼30分钟可以游多少千米?
1. 读题,独立列式并解答。
2. 反馈
(1)题(1)展示不同的计算过程:A、先计算再约分;B、先约分再计算。
(2)题(2)明确整数与分数相乘,可以在计算时直接将整数和分母约分,结合学生的情况说明约分的书写格式。
(3)对比体会得出结论:在计算时,先仔细观察数的特征,能约分的先约分再乘,会比较简单。
3. 练习
例4做一做1。
【设计意图:培养简便计算的意识对于提高学生计算的准确性和速度至关重要。让学生通过计算和对比体会到在分数乘法中先约分再计算比较简单,对培养学生的简算意识很有帮助。】
四、拓展总结(应用拓展,盘点收获)
1. 基础练习
(1)先看数再计算(练习一6、7两题)
反馈校对、纠错。
在反馈时通过对比、纠错让学生明白先观察数的特征,可以约分的先约分再计算,这样能又对又快地得到结果。
预计错题,估计错例:由于4和 的分子相同,学生有可能会将整数4与分子4相约分,在计算 时,结果错算成 。应该使学生明确:整数与分数相乘,可将整数与分母约分(也就是把整数看成分母是1的分数),再进行计算。
【设计意图:将练习一的6、7两题并在一起,并将题目的考查形式改成先看数再计算,有助于学生形成计算的审题习惯。让学生发现通过观察可以感知数的特征并进行约分,这样可以让计算变得更加简单,正确率也可以得到更大的提升。第6题不以改错的方式出现,而直接以计算题的方式出现,是出于不强加错的思考,来自于学生的错例,学生更易于记在心上。】
(2)完成例3、例4做一做剩下的题
反馈校对、纠错。
在校对答案后,可以进行小结,使学生进一步明确:分数乘法就是求一个数的几分之几是多少的运算。
2. 练习提升
在○里填“>”“<”或“=”。想一想,哪些式子,你不计算就可以直接填出来?
○ ○ ○ ○
反馈:请学生说说自己的想法,哪些式子可以不计算就直接得出结果。
(1)题1、题3主要引导学生从分数乘法的意义来理解;
(2)题2、题4主要是对分数计算方法的巩固。
【设计意图:计算的练习往往比较枯燥,这时题目的设计就显得比较重要了。本题的设计让学生们在练习反馈中既对分数乘法的意义进行了回顾,又将整数乘分数和分数乘分数的意义进行对比,还对计算方法进行了巩固和应用,对学生的思维的拓展也是大有益处的。】
3.拓展总结
这节课我们学习了什么?我们是怎样得出这些结论的?
没错,“猜想——举例——验证——得出结论”是我们学习数学很有效的方法,在以后的学习中,同学们可以用这样的思路去学习更多的数学知识。
【设计意图:在对本节课的小结中,对猜想——举例——验证——得出结论的数学学习方法进行回顾,对于六年级的学生来说很重要。】
《分数乘整数》教案 篇9
教学目标
使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.
教学重点
使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.
教学难点
引导学生总结分数乘整数的计算法则.
教学过程()
一、设疑激趣
(一)下面各题怎样列式?你是怎样想的?
5个12是多少?10个23是多少?25个70是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算)
(二)计算下面各题,说说怎样算?
+ + = + + =
说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试.
同学之间交流想法: + + = = 3× ×3=
×3这个算式表示什么?为什么可以这样计算?
教师板书: + + = ×3=
二、自主探索
(一)出示例1 小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?
1.读题,说说 块是什么意思?
2.根据已有的知识经验,自己列式计算
三、交流、质疑
(一)学生汇报,并说一说你是怎样想的?
方法1: + + = = = (块)
方法2: ×3= + + = = = = (块)
(二)比较这两种方法,有什么联系和区别?
联系:两种方法的结果是一样的.
区别:一种方法是加法,另一种方法是乘法.
教师板书: + + = ×3
(三)为什么可以用乘法计算?
加法表示3个 相加,因为加数相同,写成乘法更简便.
(四) ×3表示什么?怎样计算?
表示3个 的和是多少?
+ + = = = = ,用分子2乘3的积做分子,分母不变.
(五)提示:为计算方便,能约分的要先约分,然后再乘.
四、归纳、概括:
(一)结合 = ×3= 和 + + = ×3= ,说一说一个分数乘整数表示什么?
求几个相同加数的和的简便运算.
(二)分数乘整数怎样计算?
用分子和分母相乘的积做分子,分母不变
五、巩固、发展
(一)巩固意义
1.改写算式
+ + + =( )×( )
+ + + + + + + =( )×( )
2.只列式不计算:3个 是多少? 5个 是多少?
(二)巩固法则
1.计算(说一说怎样算)
×4 ×6 ×21 ×4 ×8
思考:为什么先约分再相乘比较简便?
2.应用题
(1)一个正方体的礼品盒,底面积是 平方米,要想将这个礼品盒包装起来,至
少需要多少包装纸?
(2)美术馆要进行美术展览,有5张画是边长 米的正方形的,如果为这几幅画
配上镜框,需要木条多少米?
(三)对比练习
1.一条路,每天修 千米,4天修多少千米?
2.一条路,每天修全路的 ,4天修全路的几分之几?
六、课后作业
(一) 的3倍是多少? 的10倍是多少?
(二)一个正方形的边长是 米,它的周长是多少米?
(三)一种大豆每千克约含油 千克,100千克大豆约含油多少千克?1吨大豆呢?
七、板书设计
分数乘整数
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.
例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?
用加法算: + + = = = (块)
用乘法算: ×3= + + = = = = (块)
答:3人一共吃了 块.
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.
教学设计点评
1、依据知识的迁移,进行很必要的铺垫,利用知识间的联系,精心设计复习题,为教学重点服务服务,使学生顺利掌握“分数乘整数的意义与整数乘法意义相同”。同时复习分数加法,为推导公式进行铺垫。
2、重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识的让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动,活泼,发挥小组的团结协作作用。
《分数乘整数》教案 篇10
教学目标
使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.
教学重点
使学生理解分数乘整数的意义,掌握分数乘整数的计算法则.
教学难点
引导学生总结分数乘整数的计算法则.
教学过程()
一、设疑激趣
(一)下面各题怎样列式?你是怎样想的?
5个12是多少?10个23是多少?25个70是多少?
(概括:整数乘法表示求几个相同加数的和的简便运算)
(二)计算下面各题,说说怎样算?
+ + = + + =
说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试.
同学之间交流想法: + + = = 3× ×3=
×3这个算式表示什么?为什么可以这样计算?
教师板书: + + = ×3=
二、自主探索
(一)出示例1 小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?
1.读题,说说 块是什么意思?
2.根据已有的知识经验,自己列式计算
三、交流、质疑
(一)学生汇报,并说一说你是怎样想的.?
方法1: + + = = = (块)
方法2: ×3= + + = = = = (块)
(二)比较这两种方法,有什么联系和区别?
联系:两种方法的结果是一样的.
区别:一种方法是加法,另一种方法是乘法.
教师板书: + + = ×3
(三)为什么可以用乘法计算?
加法表示3个 相加,因为加数相同,写成乘法更简便.
(四) ×3表示什么?怎样计算?
表示3个 的和是多少?
+ + = = = = ,用分子2乘3的积做分子,分母不变.
(五)提示:为计算方便,能约分的要先约分,然后再乘.
四、归纳、概括:
(一)结合 = ×3= 和 + + = ×3= ,说一说一个分数乘整数表示什么?
求几个相同加数的和的简便运算.
(二)分数乘整数怎样计算?
用分子和分母相乘的积做分子,分母不变
五、巩固、发展
(一)巩固意义
1.改写算式
+ + + =( )×( )
+ + + + + + + =( )×( )
2.只列式不计算:3个 是多少? 5个 是多少?
(二)巩固法则
1.计算(说一说怎样算)
×4 ×6 ×21 ×4 ×8
思考:为什么先约分再相乘比较简便?
2.应用题
(1)一个正方体的礼品盒,底面积是 平方米,要想将这个礼品盒包装起来,至
少需要多少包装纸?
(2)美术馆要进行美术展览,有5张画是边长 米的正方形的,如果为这几幅画
配上镜框,需要木条多少米?
(三)对比练习
1.一条路,每天修 千米,4天修多少千米?
2.一条路,每天修全路的 ,4天修全路的几分之几?
六、课后作业
(一) 的3倍是多少? 的10倍是多少?
(二)一个正方形的边长是 米,它的周长是多少米?
(三)一种大豆每千克约含油 千克,100千克大豆约含油多少千克?1吨大豆呢?
七、板书设计
分数乘整数
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变.
例1.小新、爸爸、妈妈一起吃一块蛋糕,每人吃 块,3人一共吃多少块?
用加法算: + + = = = (块)
用乘法算: ×3= + + = = = = (块)
答:3人一共吃了 块.
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.
教学设计点评
1、依据知识的迁移,进行很必要的铺垫,利用知识间的联系,精心设计复习题,为教学重点服务服务,使学生顺利掌握“分数乘整数的意义与整数乘法意义相同”。同时复习分数加法,为推导公式进行铺垫。
2、重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识的让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动,活泼,发挥小组的团结协作作用。
