一次函数教案

笔构网

2025-10-24教案

请欣赏一次函数教案(精选6篇),由笔构网整理,希望能够帮助到大家。

一次函数教案 篇1

教学目标

1、经历一般规律的探索过程,发展学生的抽象思维能力。

2、理解一次函数和正比例函数的概念,能根据所给条件写出简单的一次函数表达式,发展学生的数学应用能力。教学重点 1、 一次函数、正比例函数的概念及两者之间的关系。

2、 会根据已知信息写出一次函数的表达式。教学难点一次函数知识的运用教学方法教师引导学生自学法教具准备弹簧一根、课件教学过程一、创设问题情境,引入新课 1、 简单复习函数的'概念(设在某一变化过程中有两个变量X和Y,如果

,那么我们称Y是X的函数,其中X是自变量,Y是因变量) 2、 演示弹簧在力的作用下发生形变现象,提出问题:在弹簧长度发生变化过程中,弹簧的长度是哪个变量的函数?为什么? 3、 汽车匀速行驶途中,油箱中的剩余油量与什么有关系?这其中有函数吗?二、新课学习 1、 做一做。让学生做书上157页上面两个题目,使学生在探索一般规律的过程中,发展抽象思维能力。 2、 一次函数、正比例函数的概念学习讨论:刚才写出的两个关系式y=3+0.5x、y=100-0.18x在形式上有什么相同之处?

让学生分析出他们的共同点:①左边都是因变量,右边都是含自变量的代数式;②自变量X与因变量Y的次数都是1;③从形式上看,形式都为y=kx+b,K,b为常数。

问:从自变量的次数上看,这样的函数大家认为可以取个什么名字?引导学生归纳出一次函数的概念:若两个变量x,y间的关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x是自变量,y是因变量)。

问:一次函数y=kx+b中,k可以为0吗?b可以为0吗?引导学生得出正比例函数的概念。

并接着引导学生比较一次函数与正比例函数的关系(用集合的方法比较):一次函包括正比例函数,正比例函数是一次函数的特殊情况。

3、 例题学习

例题1是考察学生对一次函数与正比例函数概念的理解,学生直接进行口答。

例题2是培养学生根据题意列出简单一次函数关系式及利用一次函数解决实际问题的能力。其中第三问严格地讲应先判断出工资的范围是800<x<1300,应将此情况提出让学生讨论。< p="">

三、随堂练习

1、找出下面的一次函数,并指出其中K、b的值。若不是一次函数,请说明理由。

A、y= +x B、y=-0.8x C、y=0.3+2x2 D、y=6-

2、已知函数y=(m+1)x+(m2-1),当m ,y是x的一次函数;当m ,y是x的正比例函数。

四、拓展应用

学校组织部分学生去井岗山体验革命历史。出行方面准备从甲、乙两家旅行社中选择一家代办,已知两家旅行社报价相同,都是每人200元。不过,甲旅行社开出的团体(15人以上)优惠办法是返还现金500元作为门票费,乙旅行社的团体优惠是,所有人员费用均打9折。设学生人数为x人,两家旅行社的收费分别为y甲、y乙,解答下列问题:(1)分别写出两家旅行社收费y(元)与学生人数x(人)之间的函数关系式;该关系式是什么函数?(y甲=200x-500,y乙=180x)(2)如果学生为20人,分别计算两家旅行社收费。到哪家合算?(y甲=200×20-500=3500(元);y乙=180×20=3600(元);y甲< y乙,所以到甲旅行社合算。)(3)在什么情况下,选择乙旅行社?(依题意得, y甲- y乙>0,即(200x-500) -180x>0,解不等式得,x>25,所以当学生多于25人时,到乙旅行社合算。)五、课堂小结

让学生归纳本节课学习内容:1、一次函数、正比例函数概念以及它们之间的关系。2、会根据已知信息写出一次函数的关系式。

六、作业读一读:中国古代漏刻必做题:161页习题6.2第1、2、3题选做题:161页试一试

一次函数教案

作为一名默默奉献的教育工作者,就不得不需要编写教案,教案是备课向课堂教学转化的关节点。教案应该怎么写才好呢?下面是小编整理的一次函数教案,欢迎阅读,希望大家能够喜欢。

一次函数教案 篇2

教学目标

1、使学生理解待定系数法;=】、】

2、能用待定系数法求一次函数,用一次函数表达式解决有关现实问题、

3、感受待定系数法是求函数解析式的基本方法,体会用“数”和“形”结合的方法求函数式;

4、结合图象寻求一次函数解析式的求法,感受求函数解析式和解方程组间的转化.教学过程

一、创设问题情境

一次函数关系式y=kx+b(k≠0),如果知道了k与b的值,函数解析式就确定了,那么有怎样的条件才能求出k和b呢?

问题1已知一个一次函数当自变量x=—2时,函数值y=—1,当x=3时,y=—3.能否写出这个一次函数的解析式呢?

由已知条件x=—2时,y=—1,得—1=—2k+b.由已知条件x=3时,y=—3,得—3=3k+b.两个条件都要满足,即解关于x的二元一次方程

问题2已知弹簧的长度y(厘米)在一定的限度内是所挂物质量x(千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米,求这个一次函数的关系式.

考虑这个问题中的不挂物体时弹簧的长度6厘米和挂4千克质量的重物时,弹簧的长度7.2厘米,与一次函数关系式中的两个x、y有什么关系?

二、合作探究

讨论1.本题中把两对函数值代入解析式后,求解k和b的过程,转化为关于k和b的二元一次方程组的问题.

2.这个问题是与实际问题有关的'函数,自变量往往有一定的范围.问题3若一次函数y=mx—(m—2)过点(0,3),求m的值.分析考虑到直线y=mx—(m—2)过点(0,3),说明点(0,3)在直线上,这里虽然已知条件中没有直接给出x和y的对应值,但由于图象上每一点的坐标(x,y)代表了函数的一对对应值,它的横坐标x表示自变量的某一个值,纵坐标y表示与它对应的函数值.所以此题转化为已知x=0时,y=3,求m.即求关于m的一元一次方程.

解当x=0时,y=3.即:3=—(m—2).解得m=—1.

这种先设待求函数关系式(其中含有未知的常数系数),再根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法,叫做待定系数法。

三、实践应用

例1已知一次函数y=kx+b的图象经过点(—1,1)和点(1,—5),求当x=5时,函数y的值.

分析1.图象经过点(—1,1)和点(1,—5),即已知当x=—1时,y=1;x=1时,y=—5.代入函数解析式中,求出k与b.

2.虽然题意并没有要求写出函数的关系式,但因为要求x=5时,函数y的值,仍需从求函数解析式着手.这个函数解析式为y=—3x—2.当x=5时,y=—3×5—2=—17.

例2已知一次函数的图象如下图,写出它的关系式.

分析从“形”看,图象经过x轴上横坐标为2的点,y轴上纵坐标是—3的点.从“数”看,坐标(2,0),(0,—3)满足解析式.解设所求的一次函数的解析式为y=kx+b(k≠0).直线经过点(2,0),(0,—3),把这两点坐标代入解析式,得例3求直线y=2x和y=x+3的交点坐标.

分析两个函数图象的交点处,自变量和对应的函数值同时满足两个函数关系式.而两个函数关系式就是方程组中的两个方程.所以交点坐标就是方程组的解.所以直线y=2x和y=x+3的交点坐标为(3,6).

四、检测反馈1。根据下列条件写出相应的函数关系式.(1)直线y=kx+5经过点(—2,—1);

(2)一次函数中,当x=1时,y=3;当x=—1时,y=7.2。写出两个一次函数,使它们的图象都经过点(—2,3).

3、如图是某长途汽车站旅客携带行李费用示意图.试说明收费方法,并写出行李费y(元)与行李重量x(千克)之间的函数关系.

4、一次函数y=kx+b(k≠0)的图象经过点(3,3)和(1,—1).求它的函数关系式,并画出图象.

5、陈华暑假去某地旅游,导游要大家上山时多带一件衣服,并介绍当地山区海拔每增加100米,气温下降0.6℃.陈华在山脚下看了一下随带的温度计,气温为34℃,乘缆车到山顶发现温度为32.2℃.求山高.课堂小结

本节课,我们讨论了一次函数解析式的求法

1、求一次函数的解析式往往用待定系数法,即根据题目中给出的两个条件确定一次函数解析式y=kx+b(k≠0)中两个待定系数k和b的值;

2、用一次函数解析式解决实际问题时,要注意自变量的取值范围.

3、求两个一次函数图象的交点坐标即以两解析式为方程的方程组的解.教学反思

一次函数解析式的求法一般是采用待定系法,对于学生而言,如何理解这种方法是解决这一问题的关键为了解决这个问题,我举了这样一个例子:已知直线y=kx+b经过点(3,5)和点(5,6)怎样求这个函数关系式?学生们很容易想到通过列方程组解决问题,为什么要选择列方程组解决这个问题,目的是什么?学生习惯于如何做题,却从不想为什么采用这种方法,这种方法的出发点是什么?经过思考,有的学生终于答出了这个问题:确定k,b的值一次函数解析式就确定下来了。这正是待定系数法的精髓,学生们只有能理解到这一点才能领会到待定系数法的精髓。

一次函数教案人教版

一次函数是初中数学常考的内容之一,可以说是重点,下面是小编整理的一次函数教案人教版,欢迎阅读参考!

一次函数教案 篇3

一、课程标准要求:

①结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。

②会画一次函数的图象,根据一次函数的图象和解析表达式y=kx+b(k0)探索并理解其性质(h0或b0时,图象的变化情况)。

③理解正比例函数。

④能根据一次函数的图象求二元一次方程组的近似解。

⑤能用一次函数解决实际问题。

二、识方法回顾:

1.已知直线y=2x+m不经过第二象限,那么实数m的取值范围是 _.

2.一次函数y=kx+b 的图象经过P(1,0)和Q(0,1)两点,则k= ,b= .

3.正比例函数的图象与直线y= - 3(2)x+4平行,则该正比例函数的解析式为 ____ .

4.函数y= - 2(3)x的图象是一条过原点(0,0)及点(2, )的直线,这条直线经过第 _____象限,y随的增大而 .

5.已知一次函数y= - 2(1)x+2当x= 时,y=0;当x 时y 当x 时y0.

6.把直线y= - 2(3)x -2向 平移 个单位,得到直线y= - 2(3)(x+4)

7.一次函数y=kx+b过点(-2,5),且它的图象与y轴的.交点和直线y=-2(1)x+3与y轴的交点关于x轴对称,那么一次函数的解析式是 .

8. 直线y=kx+b经过点(0,3),且与两坐标轴构成的直角三角形的面积是6,则其解析式为 .

三、典型例题讲解:

例1 已知一次函数y=-2x-6。

(1)当x=-4时,则y= ,

当y=-2时,则x=

(2)画出函数图象;

(3)不等式-2x-60解集是_____,

不等式-2x-60解集是_____;

(4)函数图像与坐标轴围成的三角形的面积为

(5)若直线y=3x+4和直线y=-2x-6交于点A,则点A的坐标______;

(6)如果y 的取值范围-42,则x的取值范围__________;

(7)如果x的取值范围-33,则y的最大值是________,最小值是_______.

例2 在边长为的正方形ABCD的边BC上,有一点P从B点运动到C点,设PB=x,四边形APCD的面积为y,写出y与自变量x的函数关系式,并且在直角坐标系中画出它的图象.

例3 已知一次函数y=x+m和y=-x+n的图象交于点A(-2,0)且与y轴的交点分别为B、C两点,求△ABC的面积.

例4 某单位要印刷产品说明书,甲印刷厂提出:每份说明书收1元印刷费,另收1500元制版费;乙印刷厂提出:每份说明书收2.5元印刷费,不收制版费。

(1)分别写出两个印刷厂的收费y甲、y乙(元)与印刷数量x(份)之间的函数关系式;

(2)在同一坐标系中作出它们的图像;

(3)根据图像回答问题:

①印刷800份说明书时,选择哪家印刷厂比较合算?

②该单位准备拿出3000元用于印刷说明书,找哪家印刷厂印制的说明书多一些?

四、探究实践:

【问题1】已知:一次函数的图象经过点(2,1)和点(-1,-3).

(1)求此一次函数的解析式;

(2)求此一次函数与x轴、y轴的交点坐标以及该函数图象与两坐标轴所围成的三角形的面积;

(3)若一条直线与此一次函数图象相交于(-2,a)点,且与y轴交点的纵坐标是5,求这条直线的解析式;

(4)求这两条直线与x轴所围成的三角形面积.

【问题2】有一卖报人,从报社批进某种证券报是每份1.5元,卖出的价格是每份2元,卖不掉的报纸以每份1元的价格退回报社,在30天的时间里有20天每天可卖出150份,其余10天只能卖出100份,但这30天每天从报社批进的份数必须相同.设卖报人每天从报社批出x份报纸,月利润为y元.

(1)写出y与x的函数关系式;

(2)画出此函数的图象;

(3)此卖报人应该每天从报社批进多少份报纸时才能使月利润最高?最高利润是多少?

五、巩固练习:

1.直线y=kx+b经过一、二、四象限,则直线y=-bx+k不经过第____象限.

2.已知等腰三角形周长为20,写出底边长y关于腰长x的函数解析式(x为自变量),并写出自变量取值范围,画出函数图象.

3.已知A(8,0)及在第一象限的动点P(x,y),且x+y=10,设△OPA的面积为S.(1)求S关于x的函数解析式;(2)求x的取值范围;(3)求S=12时P点坐标;(4)画出函数S的图象.

4.某果品公司欲请汽车运输公司或火车货运站将60吨水果从A地运到B地。已知汽车和火车从A地到B地的运输路程均为s千米。这两家运输单位在运输过程中,除都要收取运输途中每吨每小时5元的冷藏费外,要收取的其它费用及有关运输资料由下表给出:

运输工具

行驶速度(千米/小时)

运费单价(元/吨千米)

装卸总费用(元)

汽车

50

2

3000

火车

80

1.7

4620

说明:1元/吨千米表示每吨每千米1元

(1) 请分别写出这两家运输单位运送这批水果所要收取的总费用y1(元)和y2(元)(用含s的式子表示);

(2) 为减少费用,你认为果品公司应选择哪家运输单位运送这批水果更为合算?

六、小结 本节我们主要是学习了哪些内容?

七、教学反思

一次函数教案 篇4

教学过程设计

一、复习回顾

1.一次函数的定义。

2.一次函数的图象。

3.直线y=kx+b与方程的联系。

那么一元一次不等式与一次函数是怎样的关系呢?本节课研究一元一次不等式与一次函数的关系。

教师活动:引导学生回顾一次函数相关概念以及一次函数与方程的关系。

设计意图:回顾所学知识作好新知识的衔接。

二、导探激励

问题1:我们来看下面两个问题有什么关系?

1.解不等式5x+6>3x+10.

2.当自变量x为何值时函数y=2x—4的值大于0?

教师活动:引导学生分别从数和形两个角度理解这两个问题的关系,归纳出一般形式结论。由上面两个问题的关系,我们能得到“解不等式ax+b>0”与“求自变量x?在什么范围内,一次函数y=ax+b的值大于0”之间的关系,实质上是同一个问题.

由于任何一元一次不等式都可以转化的ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大于(或小于)0时,?求自变量相应的取值范围.

问题2:作出函数y=2x—5的图象,观察图象回答下列问题:

(1)x取何值时,2x—5=0?

(2)x取哪些值时,2x—5>0?

(3)x取哪些值时,2x—5<0?

(4)x取哪些值时,2x—5>3?

教师活动:展示问题1,适当时间后请学生解答并说明理由,教师借助课件作结论性评判。

设计意图:问题2可以直接解不等式(或方程)求解,但这里意图是让学生通过直接图

象得到。引导学生体会既可以运用函数图象解不等式,也可以运用解不等式帮助研究函数问题,二者互相渗透,互相作用。

学生可以用不同方法解答,教师意图是尽量用图象求解。

问题3:用画函数图象的方法解不等式5x+4<2x+10

设计意图:通过这一活动使学生熟悉一元一次不等式与一次函数值大于或小于0时,?自变量取值范围的问题间关系,并寻求出解决这一问题的具体方法,灵活运用.教师活动:引导学生通过画图、观察、寻求答案,并能通过两种不同解法,得到同一答案,探索思考总结归纳出其中的共同点.

学生活动:在教师指导下,顺利完成作图,观察求出答案,并能归纳总结出其特点.活动过程及结论:

方法一:原不等式可以化为3x—6<0,画出直线y=3x—6的图象,可以看出,当x<2时这条直线上的点在x轴的下方.即这时y=3x—6<0,所以不等式的解集为:x2时,对于同一个x,直线y=5x+4?上的点在直线y=2x+10上的相应点的下方,这时5x+4<2x+10,?所以不等式的解集为:x<2.

以上两种方法其实都是把解不等式转化为比较直线上点的位置的高低.从上面两种解法可以看出,虽然像上面那样用一次函数图象来解不等式未必简单,但是从函数角度看问题,能发现一次函数.一元一次不等式之间的联系,能直观地看出怎样用图形来表示不等式的解.这

种函数观点认识问题的方法,对于继续学习数学很重要.

三、巩固练习

1.当自变量x的取值满足什么条件时,函数y=3x+8的值满足下列条件?①y=—7.②y<2.

2.利用图象解出x:

6x—4<3x+2.

[解]1.(1)方法一:作直线y=3x+8的图象.从图象上看出:y=—7?时对应的自变量x取值为—5,即当x=—5时,y=—7.

方法二:要使y=—7即3x+8=—7,它可变形为3x+15=0.作直线y=3x+15的图象,?从图上可看出它与x轴交点横坐标为—5,即x=—5时,3x+15=0.所以x=—5时,y=—7.

(2)方法一:画出y=3x+8的图象,从图象上可以看出当x<—2时,?对应的函数值都小于2.所以自变量x的取值范围是x<—2.

方法二:要使y<2即3x+8<2,它可变形为3x+6<0,作出直线y=3x+6?的图象可以看出它与x轴交点横坐标为—2,只有当x<—2时对应的函数值才小于0.?所以自变量x的取值范围是x<—2.

2.方法一:6x—4<3x+2可变形为:3x—6<0.作出直线y=3x—6的图象.?从图象上可看出:当x<2时,这条直线上的点都在x轴下方,即y<0,3x—6<0.所以,6x—?4<3x+2的解为x<2.

方法二:作出直线y=6x—4与直线y=3x+2,它们的交点横坐标为2,?从图象上可以看出当x<2时,直线y=6x—4在直线y=3x+2的下方,即6x+4<3x+2.所以,6x—4<3x+2的解为x<2.

四.随堂练习

1.求当自变量x取值范围为什么时,函数y=2x+6的值满足以下条件?①y=0;②y>0.

2.利用图象解不等式5x—1>2x+5.

五.课时小结

本节我们学会了用一次函数图象来解一元一次不等式.虽说方法未必简单,但我们从函数的角度来重新认识不等式,发现了一次函数、一元一次不等式之间的联系,能直观看到怎样用图形来表示不等式的解,对我们以后学习很重要.

六.课后作业

习题14.3─3、4、7题.

七.活动与探究

a、b两个商场平时以同样价格出售相同的商品,在春节期间让利酬宾.a商场所有商品8折出售,b商场消费金额超过200元后,可在这家商场7折购物.?试问如何选择商场来购物更经济

教学反思:

本堂课在设计上可以跳出教材,根据学生的实际情况,在问题1中可设计一

个简单一点的不等式,待学生会将不等式转化为一次函数分析并用图像解决时在增加难度,放在问题3中一并解决,这样学生在接受上不会太难,也不会导致时间分配不合理,以至设计的内容无法完成。另外,这充分发挥学生的主体性,让学生通过观察及操作发现一次函数与一元一次不等式的关系及用一次函数解决一元一次不等式的方法。

一次函数教案 篇5

一、教学目标

1、理解一次函数和正比例函数的概念,以及它们之间的关系。

2、能根据所给条件写出简单的一次函数表达式。

二、能力目标

1、经历一般规律的探索过程、发展学生的抽象思维能力。

2、通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力。

三、情感目标

1、通过函数与变量之间的关系的联系,一次函数与一次方程的联系,发展学生的数学思维。

2、经历利用一次函数解决实际问题的过程,发展学生的数学应用能力。

四、教学重难点

1、一次函数、正比例函数的概念及关系。

2、会根据已知信息写出一次函数的表达式。

五、教学过程

1、新课导入

有关函数问题在我们日常生活中随处可见,如弹簧秤有自然长度,在弹性限度内,随着所挂物体的重量的增加,弹簧的`长度相应的会拉长,那么所挂物体的重量与弹簧的长度之间就存在某种关系,究竟是什么样的关系,请看:

某弹簧的自然长度为3厘米,在弹性限度内,所挂物体的质量x每增加1千克、弹簧长度y增加0.5厘米。

(1)计算所挂物体的质量分别为1千克、2千克、3千克、4千克、5千克时弹簧的长度,并填入下表:

(2)你能写出x与y之间的关系式吗?

分析:当不挂物体时,弹簧长度为3厘米,当挂1千克物体时,增加0.5厘米,总长度为3.5厘米,当增加1千克物体,即所挂物体为2千克时,弹簧又增加0.5厘米,总共增加1厘米,由此可见,所挂物体每增加1千克,弹簧就伸长0.5厘米,所挂物体为x千克,弹簧就伸长0.5x厘米,则弹簧总长为原长加伸长的长度,即y=3+0.5x。

2、做一做

某辆汽车油箱中原有汽油100升,汽车每行驶50千克耗油9升。

(1)完成下表:

你能写出x与y之间的关系吗?(y=1000.18x或y=100x)

接着看下面这些函数,你能说出这些函数有什么共同的特点吗?

上面的几个函数关系式,都是左边是因变量,右边是含自变量的代数式,并且自变量和因变量的指数都是一次。

3、一次函数,正比例函数的概念

若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

4、例题讲解

5、课堂练习

补充练习……

六、课后小节

1、一次函数、正比例函数的概念及关系。

2、能根据已知简单信息,写出一次函数的表达式。

一次函数教案 篇6

一、创设情境

1.一次函数的图象是什么,如何简便地画出一次函数的图象?

(一次函数y=kx+b(k≠0)的图象是一条直线,画一次函数图象时,取两点即可画出函数的图象).

2.正比例函数y=kx(k≠0)的图象是经过哪一点的直线?

(正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线).

3.平面直角坐标系中,x轴、y轴上的点的坐标有什么特征?

4.在平面直角坐标系中,画出函数的图象.我们画一次函数时,所选取的两个点有什么特征,通过观察图象,你发现这两个点在坐标系的什么地方?

二、探究归纳

1.在画函数的图象时,通过列表,可知我们选取的点是(0,-1)和(2,0),这两点都在坐标轴上,其中点(0,-1)在y轴上,点(2,0)在x轴上,我们把这两个点依次叫做直线与y轴与x轴的交点.

2.求直线y=-2x-3与x轴和y轴的交点,并画出这条直线.

分析x轴上点的纵坐标是0,y轴上点的横坐标0.由此可求x轴上点的横坐标值和y轴上点的纵坐标值.

解因为x轴上点的纵坐标是0,y轴上点的横坐标0,所以当y=0时,x=-1.5,点(-1.5,0)就是直线与x轴的交点;当x=0时,y=-3,点(0,-3)就是直线与y轴的交点.

过点(-1.5,0)和(0,-3)所作的直线就是直线y=-2x-3.

所以一次函数y=kx+b,当x=0时,y=b;当y=0时,.所以直线y=kx+b与y轴的交点坐标是(0,b),与x轴的交点坐标是.

三、实践应用

例1若直线y=-kx+b与直线y=-x平行,且与y轴交点的纵坐标为-2;求直线的表达式.

分析直线y=-kx+b与直线y=-x平行,可求出k的值,与y轴交点的纵坐标为-2,可求出b的值.

解因为直线y=-kx+b与直线y=-x平行,所以k=-1,又因为直线与y轴交点的'纵坐标为-2,所以b=-2,因此所求的直线的表达式为y=-x-2.

例2求函数与x轴、y轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积.

分析求直线与x轴、y轴的交点坐标,根据x轴、y轴上点的纵坐标和横坐标分别为0,可求出相应的横坐标和纵坐标?

大家都在看