请欣赏解决问题教学设计(精选8篇),由笔构网整理,希望能够帮助到大家。
解决问题教学设计 篇1
教学目标:
1. 提高学生在具体情境中运用列举法解决实际问题的能力。
2. 使学生深入感受使用列举法时的有序性。
3. 培养学生运用数学方法解决生活问题的意识,提高解决问题的能力。
教学准备:
教学光盘。
教学过程:
一、复习导入
通过谈话,复习前两节课的`学习内容并了解学生的学习收获。
二、指导练习
1. 完成练习十一中的第6题。
让学生说出他们是怎么想的,然后总结出在使用列举法解决问题时需要注意的内容。
2. 完成练习十一中的第7题。
指名读题,让学生观察表格并回答问题:“48个1平方厘米的正方形拼成的长方形周长是多少?”
引导学生认真思考问题,然后给出解题方法。
3. 完成练习十一中的第8题。
指名读题,让学生理解“只是向东、向北走”的含义,并使用字母代替路线上的直线交点。
4. 完成练习路线十一中的第9题。
出示题目,并要求学生仔细阅读题目。
三、完成思考题。
出示思考题并让学生独立完成,并进行集体订正。
解决问题教学设计 篇2
教学内容:
义务教育课程标准实验教科书青岛版小学数学五年级下册P125、P127的内容。
教学目标:
1、通过复习,回顾梳理用算术法和方程解决问题的思路和方法,沟通它们之间的联系与区别。
2、通过练习对比,明确算术法与方程的解题特点,体会用方程解决问题的优势,并灵活的选择合适的方法正确解决问题。体会解决问题的策略。
3、培养学生审题、灵活选用解决问题方法的习惯,体会解决问题的策略和多样性。
教学重点:
明确解决问题的方法与步骤,找准等量关系。
教学难点:
灵活的选择合适的方法正确解决问题。
教学准备:
课件,投影,展台
教学过程:
一、小题引路,唤起回忆
1.谈话导入:
师:同学们前面我们复习了用字母表示数、方程、解方程的知识,今天我们就用这些知识来解决在庆六一准备活动中的数学问题。(板书:解决问题)
2.出示例题:
师:仔细观察这两道题中有哪些信息?要解决这两个问题应该怎么想呢?在审题时可以画画关键词语,也可以画线段图来帮助理解题意。请同学们把这两道题完整解答在1号作业纸上,学生独立完成。
3.汇报交流:
方法一:是先求出已完成的,再求剩下的。(画关键词语)
方法二:60x(1-2/5)。是先求剩下占总的()/(),再求剩下的。
(预设)方法三:完成的+剩下的=总数
检验:这道题结果是36对吗?请你来检验检验。生口头检验。
订正:同位相互批改一下吧。不对的改一改。
小结:同学们通过分析,找出了不同的关系式。用两种方法解决了这个问题。谁来说说第二题是怎么做的?
方法一:是根据“用舞蹈队人数-合比舞少的人数=合唱的人数”列方程解答。
方法二:根据“舞蹈队人数X合唱队人数占舞蹈队人数的()/()=合唱队人数”也是列方程解答的。
(预设)方法三:12÷(1-3/1)=18(人)。
师:对,这种方法还是利用“舞×(1-1/3)=合唱”这一数量关系倒过来想的。同学们比较这两种方法,用方程和算术法哪一个简单哪?是的。我们用方程解决问题,能使较复杂的思考过程变得简单。
追问:想一想,列方程解决问题的关键是什么?(找出题目中的等量关系式,根据等量关系列方程)
检验:这道题结果是18对吗?请你来检验检验,
注意:先检验是否是方程的解再检验是否符合题意。也可以用不同的方法检验第一种方法是否正确。
二、梳理交流、构建网络。
1.小组交流。
师:刚才同学们用算术法和方程解答了这两道题,仔细观察这两道题的条件和问题,回顾解决问题的过程,想一想,在解决问题的过程中有什么相同点?有什么不同点呢?小组讨论。
2.全班汇报交流。
师:这两道题在解决问题时都是按照什么步骤进行的?
汇报:生1:…….生2…….
师:无论用算术法还是用方程我们都要先读读题,画画关键句子,也就是先审题(板书),(说弄清题意)。再分析数量关系。(说:根据等量关系灵活的选择方法列式解答,有时用算数,有时用方程。),最后检验写答(板书)
师:用算术法和用方程解决问题时的不同点是什么?
生:汇报
小结:是的。根据题意,找出基本的数量关系。把已知信息带入关系式,未知量没有参与运算,用算术法,未知量参与了运算,用方程。(出示课件)
3.沟通联系与区别
师:同学们,用方程还是用算术法解决问题既有联系又有区别。(出示课件联系图)同位相互说说用算术法和方程解决问题有什么联系和区别。
追问:同学们想一想,什么情况下用方程解答可以使思考过程变得简单呢?第一题为什么不用算术法哪?
过渡:刚才我们对解决问题的方法进行了梳理,下面请同学们选择合适的方法继续解决六一准备活动中的其他问题。
三、综合练习、提升技能。
1.基本练习:只列式,不计算。
师:请同学们先仔细审题,想一想这些数量之间存在着怎样的数量关系,解答时选用哪种方法比较简便,请在作业纸上只列式不计算。
订正:请大家看大屏幕,出示学生的。大家同意吗?说说你是怎么想的?
T1要求一共?用扇子价钱+花价钱……(体现摘录条件解题策略,板书摘录条件)
T2要求h△?先想公式:ah÷2=S△。用方程解答。
出示:错例……为什么错?用算术法怎么改?像这种题目用方程简便还是用算术法简便?互相检查检查,看同位有错误吗?错在哪里?
师:是的,在这里公式就是等量关系式。(板书:数量关系)追问:同学们想一想,在已经学过的知识中,像这种知道S△,求a或h。根据公式列方程解决问题比较简单的还有哪些知识?(S梯形、V锥、C长方形)
小结:做这类题目时要注意什么?(认真审题,分析数量关系选择合适的方法)
过渡:刚才同学们选择合适的方法解决了道具问题。现在来看看学生演员人数中的数学问题:
2.综合练习:连线。
师:请同学们认真审题把问题和相对应的算式连一连。请完成在3#作业纸上。
订正:请大家看大屏幕,出示学生的。认真对照一下,跟你的一样吗?
(预设)错例:这个对吗?错在哪里?(你发现了,来说说……应怎么改?……)怎样能够直观的看出数量间相等的关系?(出示线段图分析题意)板书(线段图)
质疑:想一想我们是怎么解决这道题的?(生:通过分析数量关系找出等量关系列出算式再与正确的算式连起来)
小结:我们可以根据信息分析后与正确的`算式相连,也可以根据算式选择相对应的信息和问题。
过渡:刚才我们通过分析给每个问题找到了正确的算式,现在你能根据要求补充信息提出合适的问题吗?(出示)
3、拓展练习:补充信息和问题。
师:请同学们完成在作业纸上,独立完成。
订正:如果想用算术法解答,可以补充什么信息?提什么问题呢?2人说,大家同意吗?
师:同学们,如果用算术法解答,补充的都是那一类信息?提出的都是哪一类的问题?(生答:)如果用方程解答,补充的都是那一类信息?提出的又是哪一类的问题呢?
师:你发现什么规律了吗?(关键句相同,标准量知道用算术法,标准量不知道用方程)
师:你编对了吗?同位交换你编的题互相做一做,相互看看同位做得符合你的意思吗?(如果出现了数据除不尽时,想想应该怎么结合实际情况合理选择数据呢?)
小结:通过这道题,我们知道了要联系题中的数量关系,弄清条件和问题的配搭关系。
2、提升练习:选择你喜欢的方式解答。
师:节目组为小演员做演出服,他们也遇到了数学问题。出示:课件
师:独立思考,认真审题,你想出几种方法就用几种方法?
学生独立完成。
订正:
①方程:x+3x=120
②比:120÷(2+3)×2
③120×2/5
小结:同学们真不简单,从不同角度思考,灵活的选用学过的知识用多种方法解决同一个问题。真佩服你们。
四、总结:
师:通过今天对解决问题的整理和复习,你们又有了哪些新的认识和收获?(畅所欲言话收获)相信在解决问题时会更加的得心应手!
板书设计:
解决问题
策略步骤
1.画关键句
2.审题
3.找等量关系
4.分析算术
5.画线段图
6.列式计算
7.摘录条件
8.检验写答方程
解决问题教学设计 篇3
教学内容:
教材第l00页的例2及”做一做”,练习二十三的第10、14、15、16题。
教学目标:
1、掌握用除法两步计算解决问题的方法,并理解解决问题的每一步过程。
2、让学生经历解决问题的过程,培养学生解决问题的能力和应用数学知识的意识。
3、培养学生观察能力,在不断探索和创造的.气氛中努力发展学生的创新意识。
教学难点:
学会用除法两步计算解决问题。理解每一步过程解决的问题。
教学过程:
一、复习引入
1、计算。
72÷4÷3 96÷2÷6 135÷3÷5 168÷7
2、解答问题。
(1)学校图书馆买来《海底世界》系列丛书24本,放在3张阅览桌上,平均每张放几本?
(2)商店里有90千克苹果,平均分装在6个水果箱里,每个水果箱装多少千克?
(3)学校有60个同学参加运动会团体操表演。表演时平均分成二个方块,每个方块有多少人?
二、经历探究,获取新知
1、教学例2
出示例题图,让学生在情境中观察解决问题。
(1)观察图像,收集信息数据。
①一共有60人表演团体操,②平均分成2个方块,③每个方块里又分成5个小圈。(或一共有10个小圈),④也可能出现,每个小圈有6人。
(2)提出问题。
让学生自己提出数学问题。
学生依据以往的知识,结合”旧知铺垫”的准备题,可能提出:①每个方块有多少人?②每个小圈有多少人?③也可能提一共有多少个小圈?
(3)探索解决问题的方法。
让学生对同学们刚才提出的问题,寻找解决的方法。然后教师引导学生重点解决“每个小圈有多少人?”这个问题,说说自己是怎么想的。
①60÷2=30……每个方块有多少人。
30÷5=6……每个小圈有多少人。
可以把两个算式合并成一个算式吗?通过引导,得出60÷2÷5=6(人)
②5×2=10……每个方块有5个小圈,2个方块有10个小圈。
60÷lO=6每个小圈有多少人。
(4)组织交流。
请学生说一说解决问题的过程和结果。在说的过程中,加深理解,并获得成功体验。
三、巩固运用
1、课本第100页的“做一做”。
这是一个图文结合的情境题,要提醒学生认真观察画面。
(1)收集信息数据。
(2)明确要解决什么问题,确定第一步要解决什么问题。
960÷6÷8=20 960÷(6×8)=20
先解决“一共可以装多少盒”,或先解决“一箱装多少个杯子”,再解决可以装几箱。
2、练习二十三的第10、14、15、16题。
①认真审题,收集信息数据。②独立解决问题,并能说出每一步解决了什么问题。③列综合算式计算。完成后,展示解决方法。
四、课堂练习
课本练习二十三的第14、15、16题。
五、课堂小结
本节课我们学习了什么?你有什么收获?
解决问题教学设计 篇4
教学内容:
P100例2、做一做及练习二十三P103第10题、P105第14—16题。
教学目标:
1、进一步培养学生收集、分析信息的能力,并学会用除法两步计算解决问题。
2、在解决问题的过程中,感受到同一个问题可以用不同的方法来解决,体验解决问题策略的多样性。
3、通过解决生活中的实际问题,感受到数学在日常生活中的作用。
教学重点:
培养学生收集、分析信息的能力,并学会用除法两步计算解决实际问题。
教学难点:
能正确分析连除实际问题的数量关系,找出中间问题,并用数学语言叙述解决问题的思路。能掌握解决此类问题的基本思路。
教学准备:
课件、练习纸
教学过程:
一、复习引入,揭示课题
上节课我们已经学习了用连乘的方法来解决一些实际问题,还记得吗?考考你:
1、根据问题选择条件解答。
条件:
①、同学们植树,分成了3组。
②、每组都有12人。
③、一共植树144棵。
问题:
①、一共有多少人参加植树?
②、平均每组植树多少棵?
2、六一儿童节快到了,为了庆祝六一,我们学校从每班挑选部分同学参加集体舞表演。(出示P100例2情景图:)看!这是他们新编的造型:
(1)从图中你得到哪些数学信息?
(2)出示:集体舞新造型,把同学们分成2大组,每组有5个小圈,每个小圈有6人,学校共挑选了多少人参加这次集体舞表演?
3、其实生活中还有许多的数学问题,只是用乘法两步计算解决不了的。今天我们继续来学习有关用除法解决实际问题的.知识。(板书:解决问题)
二、创设情境,探索新知。
1、现在,老师将这题变一变。看!你发现哪儿不一样了吗?(后面一个条件和问题交换了)现在要你解决什么数学问题?
(1)学生齐读题目。谁来说说:从题中你得到哪些数学信息?要解决什么数学问题?
(2)要解决“每个小圈有多少人?”,能一步求出来吗?
(3)那需要先求什么,再求什么?请根据你的想法列出算式,做完后互相说说,互相说一说你是先算什么,再算什么?(叫解法不同的同学板演)
(4)小组讨论,指名汇报,评价、鼓励正确的想法和不同的想法。
2、反馈(理解算理)(让学生在黑板上板演)
方法一:60÷2=30(人)
30÷5=6(人)
(1)哪些同学跟他一样?能说说你是怎么想的?(先算每大组几人,再算每小圈几人)
60÷2表示什么?(每个组有几人?)
30÷5表示什么?(每个小圈有几人)
(2)、先算:平均每个组有多少人?60÷2=30(人)
再算:平均每个小圈有多少人?30÷5=6(人)
(3)这种方法也可以用一个综合算式表示,意义一样,谁再来说一说?
综合算式:60÷2÷5=6(人)
(4)请学生说说每一步所表示的意思。
方法二:5×2=10(个)
60÷10=6(人)
(1)这样列式的同学请举手,能说说你是怎么想的?
2×5表示?(2组共有几个小圈)
60÷10表示?(每小圈有几人)
(2)分析:先求两大组共有多少个小圈?引导学生明确:已知平均分成2大组,每组有5个小圈,要求每个小圈有多少人,可以先算一算分成多少个小圈,再求每个小圈有多少人?
(3)、先求:一共分了多少个小圈?5×2=10(个)
再求:平均每个小圈有多少人?60÷10=6(人)
(4)能列出综合算式吗?综合算式:60÷(5×2)=6(人)
(5)请学生说说每一步所表示的意思。
方法三:60÷5÷2(若没有同学用这种方法就不讲)
(1)你是怎么想的?
60÷5表示什么?(2小圈为一组,每组有12人)
12÷2表示什么?(每小圈有6人)
(2)你真聪明,会想到用这种方法。
3、讨论比较:说一说这题的两种解题思路有什么不同?
引导学生说出:因为第一种解法先把60人分成两个大圈,每个大圈再分5个小圈,求出每个小圈有多少人?而第二种解法是每个大圈有5个小圈,两个大圈一共有10小圈,求出每个小圈有多少人?第一种解法第一步用除法,第二种解法第一步用的是乘法;所以:第一种解法是用连除,第二种解法是先乘再除;虽然列式不相同:但结果都是一样的,都是求的是“每小圈有多少人?”。都要两步来计算,第二步都是用除法,
4、小结:其实,有很多数学问题都能用多种方法解答,虽然解法不同,但目的却是一样的。所以在解决问题时,我们应该学会从不同的角度去思考,选取相应的信息、选用自己喜欢的、容易理解的方法去解决问题。但不管用什么方法算,我们都应该弄清楚每一步算式所表示的意思,并正确写出单位名称。像今天所学的这类问题,在解题时我们可以用连除,当然有的时候也可以用先乘后除的方法来解决。
5、指导看书,梳理知识
(1)独立阅读教材P100例2,然后同桌互相说说每一个算式分别表示什么意思。
(2)质疑提出自己还不懂的地方。
6、现在我们就用这样的方法来解决生活中的实际问题吧!
三、巩固应用,拓展提高
1、把问题和相对应的算式连起来
学校有3层教学楼,每层8个教室,一共安装了168台风扇。
①平均每层安装风扇多少台?3×8
②平均每个教室安装风扇多少台?168÷3
③一共有多少个教室?168÷3÷8
2、(课件出示:P100做一做:)看,这是我们在活动中为家长、同学们准备的杯子,你能帮忙解决吗?
解决问题教学设计 篇5
教学内容:
课本第91页例4、“试一试”和“练一练”,练习十五第1~3题。
教学目标:
1.使学生在具体情境中理解“求一个数是另一个数的百分之几实际问题的数量关系,掌握这类实际问题的解题思路和解题方法,能正确解决相关的实际问题。
2.使学生经历解决求一个数的百分之几实际问题的过程,进一步积累解决问题的经验,培养分析问题、解决问题的能力,发展数学思维。
3.使学生进一步体会现实生活中的百分数问题,感受探索问题的成功,培养独立思考、主动交流的学习习惯。
教学重点:
解决求一个数是另一个数的百分之几的实际问题。
教学难点:
理解求一个数是另一个数的百分之几实际问题的数量关系。
教学准备:
课件
教学过程:
一、创设情境
1.激活旧知
(1)解答下列问题。(口答)
一根铁丝长6米,一根铜铁丝长8米。
①铁丝长是铜丝的几分之几?
②铜丝的长是铁丝的几分之几?
学生口答,教师板书算式和结果。
提问:解决这类问题用什么方法计算的,是怎样想的?
指出:解决这类问题,可以用除法计算,其中要找准单位“1“的量,单位”1“的数量是除数。
(2)一根铁丝长10米,剪下3米。
剪下的占全长的( ),也就是( )%;
剩下的占全长的( ),也就是( )%;
学生口答。
提问:怎样求剪下的和剩下的各占全长的百分之几?又是怎样得到剪下的和剩下的各占全长的百分之几的?
指出:求出一个数是另一个数的几分之几,在把分数改写成百分之几,就得到一个数是另一个数的百分之几。
2.引入新课
引入:这里问题的结果都有表示一个数是另一个数的几分之几,如果几分之几改写成百分之几,就能表示为一个数是另一个数百分之。这几科我们一起学习求一个数是另一数的百分之几的简单实际问题。
二、尝试交流,探究新知
1.课件出示:让学生说说题中的条件和问题,根据条形比一比三人跑的`路程哪个最多或最少。提问:求李芳跑的路程是王红的百分之几,是把那个量看做单位“1“的量?
引导:怎样求李芳跑的路程是王红的百分之几呢?自己想一想,试着做一做。
学生尝试解答,教师巡视。
集体反馈,让学生介绍自己的方法,教师引导理解并板书。
追问:为什么用4÷5来计算?
引导学生说出那两个量在比,应把哪个来那个看做单位“1”。
小结:求李芳跑的路程是王红的百分之几,是班王红跑的路程作为单位“1”,解题方法与就李芳跑的路程是王红的百分之几是一样的,用李芳侧路程除以王红的路程,知识最后的结果是要用百分数表示。
2,教学试一试
提问:怎样求王红跑的路程是林小刚的百分之呢?
学生独立解答,指名板演。
交流:这里是怎样计算出71.4%的?
通过讨论使学生明确,当除不尽时,商要保留三位小数,也就是百分号前面保留一位小数。
3.反思归纳
提问:这两个问题是用什么方法计算的?为什么在问题中用王红的路程做除数,而在试一试中用林小刚跑的路程作除数?
小结:求一个数是另一个数的百分之几的解题思路和方法,其实与求一个数是另一个数的百分之几是一致的,可以直接用除法计算,注意找准单位“1”的来那个,用单位“1”的量作除数。
三、巩固练习,深化提高
1.五年级一班有女生44名,男生36名。男生人数是女生人数的百分之几?女生人数是全班人数的百分之几?
2.苗圃种植了一批新品杨树共2450棵,结果死亡了49棵,求这批树苗的成活率。
3.五年级一班今天出勤48人,缺勤2人,求五年级一班今天的出勤率。
4.服装厂有职工250人,今天出勤248人,分别求今天的出勤率和今天的缺勤率。
5.把25克盐溶解在100克水中,求盐水的含盐率是百分之几。
6.一块锡和铅的合金重45千克,其中铅重27千克,求这块合金的含铅率。
7.电视机厂去年计划生产彩电20万台,结果生产了25万台。完成了计划的百分之几?
8.李兵参加数学竞赛,做对了18题,做错了2题。求李兵的正确率。
9.清水湖春季植树400棵,未成活的有10棵。求成活率。
四、总结
通过今天的学习,你有哪些收获?
五、布置作业
补充习题
解决问题教学设计 篇6
教学内容:
义务教育课程标准实验教科书三年级下册第99页例1和做一做,练习二十三第1、4题。
教学目标:
1.使学生理解连乘问题的数量关系,明确解决问题的思路,会用不同的方法解决连乘问题。感受解决问题策略的多样化。
2.培养学生从不同角度观察问题和解决问题的能力。
3.体验数学在生活中的应用价值,感受数学与生活的密切联系,激发学生学数学、用数学的兴趣。
教学重点:学会用连乘的方法解决问题。
教学难点:理解数量关系,灵活解决有关问题。
教学用具:多媒体课件
教学过程:
一、情景激趣,复习铺垫。
1. 谈话导入:大家刚参加完学校的大课间检查,三年1班的同学都表现得很好。
2. 复习迁移:
我们班在大课间中分组活动,每组5个同学,分了9组,共有多少个同学参与?怎么算?
3.小结:求几个相同加数的和,用乘法计算比较简便。
二、合作学习,探究新知
1、教学例1:
⑴ 创造情景,
师:操场上同学们正在认真训练,体育老师打算按图这样安排,同学们算算要多少人?提出问题“3个方阵一共有多少人?”
⑵ 让学生独立收集数学信息。
师:仔细观察这幅图,你能找到哪些数学信息?
信息:a:每行有10人 ,有8行。
b:每列有8人,有10列。
C: 3个方阵
小结:我们都是观察同样一个方阵,可以从这样一行一行来看,知道了每行有10人,有这样的8行。也可以这样一列一列来看,知道了每列有8人,有这样的10列。
⑶ 整理数学信息,分析数量关系。明确先求1个方阵有多少人,再求3个方阵一共有多少人。
要求:3个方阵一共有多少人?你应该怎样思考?请同位同学互相说一说。
我们抓住每行有10人,有8行这2个数学信息可以先求出1个方阵有多少人?
这是一行一行的观察,我们还可以一列一列的看能不能根据这两个信息每列有8人,有10列要求3个方阵一共有多少人,你该怎样想呢?
不管用哪种方法,我们都是先求1个方阵的人数。还可以写成综合算式。
2、探寻其他解决问题策略。
不同的策略:1.先求:3个方阵的一大行一共有多少人,再求8行一共有多少人。
2.先求:3个方阵的一列一共有多少人,再求10列一共有多少人。
3.先求:一共有多少行,再求3个方阵一共有多少人。
4.先求:一共有多少列,再求3个方阵一共有多少人。
例1的小结:同一个问题从不同的角度去观察去思考,得出解决问题的不同策略,结果却是一样的。今天我们运用所学的数学知识来解决问题。
【引出课题:解决问题】
三、分层练习,巩固提高。
1、P.99做一做
⑴ 出示题目。
⑵ 让学生独立思考,解决问题。
⑶ 全班反馈:明确解决问题的思路:先求1盒有多少个,再求8盒一共有多少个。
2、练习二十三的第1题
⑴ 出示题目:P.101⑴
⑵ 让学生独立思考,解决问题。
⑶ 分小组交流。每个学生说说自己是怎样想的`。重点让学生从不同角度观察问题和解决问题。
⑷ 全班反馈解决该问题的思路与方法。
3、练习二十三的第4题
⑴ 出示题目。P.102⑷
⑵ 让学生审题,独立思考解决问题的方法。
⑶ 给出三个算式,由学生选择出正确算式并表述出解决问题 的思路,重点理解“来回”的含义。
四、全课小结: 强调解决问题的思维方式。
五、拓展练习:第一步,先请同学了解一节数学课的上课时间,一个星期在校几天?如果一个学期按20周计算,同学们在学校待多少分钟?合多少小时?第二步,根据自己计算出来的结果,你有什么感想?记录下来。第三层次是学生在生活中现实问题,极大地调动了学生的积极性,同时,本题又是一道开放题,所有的信息都需要学生自己去寻找,给学生的思维带来了极大的挑战性,很好地培养了学生搜集、处理信息的能力。
六 、布置作业: 练习二十三的2、3、5、6题
教学反思:
1、 收集和整理信息,形成数学思考。
新教材的解决问题,其题材更贴近学生的实际生活,用图画、对话、表格等形式呈现现实的生活场景。这一节课的例1既是一幅情境图,又是一道应用题。例1的图呈现给学生一幅广播操表演的情境图。小精灵明明提出“3个方阵一共有多少人?”的问题。教学时要引导学生进入情境、了解情境,从情境中明确要解决的问题,收集解决问题的必要信息。这一步要求学生仔细地看,充分的讲,观察同一个方阵既可以横着看找到的信息有“每行有10人,有8行”,又可以竖着看找到的信息有“每列有8人,有10列”。从不同的角度观察收集和整理信息,让学生形成数学思考。
2、 分析数量关系,构思解决问题的思路。
应用题教学的目的不仅仅在于找到问题的答案,更重要的在于通过解决实际问题学会思考,体会问题里的数量关系,要突出数量关系的分析,帮助学生形成解题思路。我们用不同的数量关系解决问题的方法不同。如:抓住“每行有10人,有8行”这两个信息就可以先求出1个方阵的人数,再求3个方阵的人数。还能抓住“每列有8人,有10列”这两个信息也可以先求出1个方阵的人数,再求3个方阵的人数。分析数量之间的不同组合的关系,就形成了解决问题的策略不同。如:抓住“每行有10人,3个方阵”这两个信息可以先求出3个方阵一大行一共有多少人,再求8行一共有多少人。这里解决问题的策略就有所不同了。
3、 正确选择算法,独立解决问题。
根据解题思路仔细准确地选择相关的条件,正确的选择算法。
这节课我觉得我可能是急进了点,应该先让学生先从“行”去观察进行列式计算,让后进生理解后再进行“列”的观察从多角度去解决问题可能这样会更好些。而且因为这样导致学生的练习还不够充分。
解决问题教学设计 篇7
教学目标:
1.使学生精力解决问题的完整过程,学会用找出中间问题的方法解决需要两步解决的问题,丰富学生解决问题的策略。
2.再分步列式解决问题的基础上,逐步学会列综合算式解决问题,会合理运用小括号改变运算顺序。
3.运用小组合作逐步培养孩子自主学习、合作探究的能力。
教学重点:掌握解决需要两步解决的问题的步骤和方法。
教学难点:会找出隐藏的中间问题,并合理利用小括号列综合算式解决问题。
教学过程:
一、准备练习
在昨天的卫生中,由于大家的分工明确,团结协作,所以教室被打扫的干干净净,整整齐齐,看,小组的力量多大,只要我们每个人心往一处想,劲儿往一处使,我们小组就会越来越强大,想不想让自己的小组成为最棒的小组,一个优秀的小组离不开每个人的付出,只有每个人在纪律、学习上严格要求自己,我们的小组才会越来越好,每个组都有可能成为最优秀的小组,接下来就看你的表现了!上课!
(出示练习题)读题,说出先算什么,再算什么?每组6号回答,答对加1分。
每个小组的表现都很棒,而且精神饱满,我们继续往下看。
二、自主尝试,探索新知
1.(1)自学课本
今天我们请了两位手艺高处的厨师为大家做美食,看,(出示例题情境图)原来他们带来了美味面包,先别急,请同学们看书P53,仔细观察这幅图,读一读上面的'文字,你知道了什么?请你用自己的话把你知道的完整地说出来。(教师板书:知道了什么?)(1分钟)如果看明白了可以把你的想法和同组的同学说一说,一会儿请每组派一名代表回答,几号加几分。
(2)小组交流答案,抽组号,几号加几分。
2.(1)自学课本
下面问题变多了,难度也变大了,敢不敢挑战?继续出示课件呈现问题:1.根据题意,你还能提出一个其它的数学问题吗?2. 要求“剩下的还要烤几次”需要知道哪些信息?3.可以怎样列式计算?你是怎么想的?请仔细看书P53“怎样解答”部分,思考这三个问题。
(2)小组交流答案,每组选三名代表共同汇报,每人回答完整得全分,不完整的小组帮助补充的得一半分,不正确不得分。教师根据学生回答板书算式。这三个问题实际上就是我们解决问题的第二部分(板书:怎样解答?)
3.(1)自学课本
解答完,还有一步是什么?(板书:解答正确吗?)请你自己看书P54检验正不正确?看书中是用什么方法检验的?
(2)谁找到了,读给大家听(+1分)把问题当作已知条件,把第一个已知条件当做问题,由问题推出已知条件,和原题相符,说明我们的解答是正确的。
三、教师讲解
就像同学们所说的,(出示线段图)解决一个问题需要两个和它有关的信息,如果其中的一个信息直接给了,另一个信息没有直接告诉我们,我们要先求出它来,再解决最后的问题。
四、巩固练习
1.这道题我们解决了,下面这道题更有难度,你们有没有信心迎接挑战?(出示做一做要求)
2.P55 4题
各组统计分数,评出优胜小组。
解决问题教学设计 篇8
教学内容:
义务教育课程标准实验教科书青岛版小学数学五年级下册P125、P127的内容。
教学目标:
1、通过复习,回顾梳理用算术法和方程解决问题的思路和方法,沟通它们之间的联系与区别。
2、通过练习对比,明确算术法与方程的解题特点,体会用方程解决问题的优势,并灵活的选择合适的方法正确解决问题。体会解决问题的策略。
3、培养学生审题、灵活选用解决问题方法的习惯,体会解决问题的策略和多样性。
教学重点:明确解决问题的方法与步骤,找准等量关系。
教学难点:灵活的选择合适的方法正确解决问题。
教学准备:课件,投影,展台
教学过程:
一、小题引路,唤起回忆
1.谈话导入:
师:同学们前面我们复习了用字母表示数、方程、解方程的知识,今天我们就用这些知识来解决在庆六一准备活动中的数学问题。(板书:解决问题)
2.出示例题:
师:仔细观察这两道题中有哪些信息?要解决这两个问题应该怎么想呢?在审题时可以画画关键词语,也可以画线段图来帮助理解题意。请同学们把这两道题完整解答在1号作业纸上,学生独立完成。
3.汇报交流:
方法一:是先求出已完成的,再求剩下的。(画关键词语)
方法二:60x(1-2/5)。是先求剩下占总的()/(),再求剩下的。
(预设)方法三:完成的`+剩下的=总数
检验:这道题结果是36对吗?请你来检验检验。生口头检验。
订正:同位相互批改一下吧。不对的改一改。
小结:同学们通过分析,找出了不同的关系式。用两种方法解决了这个问题。谁来说说第二题是怎么做的?
方法一:是根据“用舞蹈队人数-合比舞少的人数=合唱的人数”列方程解答。
方法二:根据“舞蹈队人数X合唱队人数占舞蹈队人数的()/()=合唱队人数”也是列方程解答的。
(预设)方法三:12÷(1-3/1)=18(人)。
师:对,这种方法还是利用“舞×(1-1/3)=合唱”这一数量关系倒过来想的。同学们比较这两种方法,用方程和算术法哪一个简单哪?是的。我们用方程解决问题,能使较复杂的思考过程变得简单。
追问:想一想,列方程解决问题的关键是什么?(找出题目中的等量关系式,根据等量关系列方程)
检验:这道题结果是18对吗?请你来检验检验,
注意:先检验是否是方程的解再检验是否符合题意。也可以用不同的方法检验第一种方法是否正确。
二、梳理交流、构建网络。
1.小组交流。
师:刚才同学们用算术法和方程解答了这两道题,仔细观察这两道题的条件和问题,回顾解决问题的过程,想一想,在解决问题的过程中有什么相同点?有什么不同点呢?小组讨论。
2.全班汇报交流。
师:这两道题在解决问题时都是按照什么步骤进行的?
汇报:生1:…….生2…….
师:无论用算术法还是用方程我们都要先读读题,画画关键句子,也就是先审题(板书),(说弄清题意)。再分析数量关系。(说:根据等量关系灵活的选择方法列式解答,有时用算数,有时用方程。),最后检验写答(板书)
师:用算术法和用方程解决问题时的不同点是什么?
生:汇报
小结:是的。根据题意,找出基本的数量关系。把已知信息带入关系式,未知量没有参与运算,用算术法,未知量参与了运算,用方程。(出示课件)
3.沟通联系与区别
师:同学们,用方程还是用算术法解决问题既有联系又有区别。(出示课件联系图)同位相互说说用算术法和方程解决问题有什么联系和区别。
追问:同学们想一想,什么情况下用方程解答可以使思考过程变得简单呢?第一题为什么不用算术法哪?
过渡:刚才我们对解决问题的方法进行了梳理,下面请同学们选择合适的方法继续解决六一准备活动中的其他问题。
三、综合练习、提升技能。
1.基本练习:只列式,不计算。
师:请同学们先仔细审题,想一想这些数量之间存在着怎样的数量关系,解答时选用哪种方法比较简便,请在作业纸上只列式不计算。
订正:请大家看大屏幕,出示学生的。大家同意吗?说说你是怎么想的?
T1要求一共?用扇子价钱+花价钱……(体现摘录条件解题策略,板书摘录条件)
T2要求h△?先想公式:ah÷2=S△。用方程解答。
出示:错例……为什么错?用算术法怎么改?像这种题目用方程简便还是用算术法简便?互相检查检查,看同位有错误吗?错在哪里?
师:是的,在这里公式就是等量关系式。(板书:数量关系)追问:同学们想一想,在已经学过的知识中,像这种知道S△,求a或h。根据公式列方程解决问题比较简单的还有哪些知识?(S梯形、V锥、C长方形)
小结:做这类题目时要注意什么?(认真审题,分析数量关系选择合适的方法)
过渡:刚才同学们选择合适的方法解决了道具问题。现在来看看学生演员人数中的数学问题:
2.综合练习:连线。
师:请同学们认真审题把问题和相对应的算式连一连。请完成在3#作业纸上。
订正:请大家看大屏幕,出示学生的。认真对照一下,跟你的一样吗?
(预设)错例:这个对吗?错在哪里?(你发现了,来说说……应怎么改?……)怎样能够直观的看出数量间相等的关系?(出示线段图分析题意)板书(线段图)
质疑:想一想我们是怎么解决这道题的?(生:通过分析数量关系找出等量关系列出算式再与正确的算式连起来)
小结:我们可以根据信息分析后与正确的算式相连,也可以根据算式选择相对应的信息和问题。
过渡:刚才我们通过分析给每个问题找到了正确的算式,现在你能根据要求补充信息提出合适的问题吗?(出示)
3、拓展练习:补充信息和问题。
师:请同学们完成在作业纸上,独立完成。
订正:如果想用算术法解答,可以补充什么信息?提什么问题呢?2人说,大家同意吗?
师:同学们,如果用算术法解答,补充的都是那一类信息?提出的都是哪一类的问题?(生答:)如果用方程解答,补充的都是那一类信息?提出的又是哪一类的问题呢?
师:你发现什么规律了吗?(关键句相同,标准量知道用算术法,标准量不知道用方程)
师:你编对了吗?同位交换你编的题互相做一做,相互看看同位做得符合你的意思吗?(如果出现了数据除不尽时,想想应该怎么结合实际情况合理选择数据呢?)
小结:通过这道题,我们知道了要联系题中的数量关系,弄清条件和问题的配搭关系。
2、提升练习:选择你喜欢的方式解答。
师:节目组为小演员做演出服,他们也遇到了数学问题。出示:课件
师:独立思考,认真审题,你想出几种方法就用几种方法?
学生独立完成。
订正:
①方程:x+3x=120
②比:120÷(2+3)×2
③120×2/5
小结:同学们真不简单,从不同角度思考,灵活的选用学过的知识用多种方法解决同一个问题。真佩服你们。
四、总结:
师:通过今天对解决问题的整理和复习,你们又有了哪些新的认识和收获?(畅所欲言话收获)相信在解决问题时会更加的得心应手!
板书设计:
解决问题
策略步骤
1.画关键句
2.审题
3.找等量关系
4.分析算术
5.画线段图
6.列式计算
7.摘录条件
8.检验写答方程
