平行四边形的面积教学反思

笔构网

2025-12-26教案

请欣赏平行四边形的面积教学反思(精选20篇),由笔构网整理,希望能够帮助到大家。

平行四边形的面积教学反思 篇1

1、深刻理解教材是有效课堂的基础

教师如果没有深入地解读教材、领会编者的意图,而为了追求新意而过度改编教材内容,替换学习材料,往往会把数学知识固有的内涵丢掉,无法有效完成教学任务。这节课作为传统的教学内容,有那么多种讲法,教材为什么要这样编排和设计呢?

教学之前,我觉得数方格对平行四边形面积公式的探究帮助不大,所以总想把它删去,节约出更多的时间来探究,但经过对教材的反复研读,我终于明白数方格在计算面积中的价值。

这是一种直观的计量面积的方法,同时也是本节课学生新旧知识的连接点,学生在数方格的过程中很容易发现平行四边形的底,高和面积与长方形有着联系,为进一步的探究提供了思路。所以,深挖教材是有效进行教学设计的第一步。

2、课堂环节的合理设计是有效课堂的保证

教师除了对教材的'准确把握,还要对学情进行深入的分析,只有对学生的认知起点和认识发展过程进行分析和研究,才能设计出有效促进学生发展的数学活动。

教师首先要用简约的情境带学生迅速进入课堂,并引发一系列的数学思维活动。

然后,教师要精心选择教学内容,合理设计教学形式,让课堂活动变繁为简,变杂为精在学生探究平行四边形面积公式时,教师放得多了,探究的效率必然低下,扶得多了,学生探究的空间会大大缩水,束缚学生的发展。

因此,对于教师应该给予什么样的指导,需要教师根据学情来合理预设。

3、数学思想方法的提炼是有效课堂的精髓

让学生获得基本的数学思想方法是一小学新课程改革的新视角之一。数学思想方法的孕育犹如胎儿的发育,有一个从模糊到清晰,从未成形到成形再到成熟的过程,至于转化的思想,在本册中多次用到。

如第一、二单元中,小数乘法和小数除法的计算,无不是把小数转化成学过的整数进行的。平行四边形在整个小学阶段的数学教学内容中是一个承上启下的图形,教师应该看到学生学习计算平行四边形的面积,方法的价值更大,通过学习割补转化的方法,为后面学习三角形面积、梯形面积、圆的面积埋下了伏笔。学生以获取知识为明线,以探究数学思想方法为暗线,明暗结合与总结时的画龙点睛。让数学思想方法该露脸时就露脸,使学生知其然,更知其所以然。

教学是一门有遗憾的艺术,虽然我在课前对教学的各个环节作了精心的预设,但面对生成的时候,自己的处理依然有些草率。在让学生展示自己剪拼的作品时,当让学生展示完平行四边形沿顶点向对边作高和作任意高两种方法剪拼一个长方形后,有一个学生兴致勃勃地展示他沿平行四边形对角线剪开,通过平移得到一个新的平行四边形的方法,由于没有达到我们拼成学过图形的目标,当即我就简单地否定了,那个学生也尴尬地坐下了。

课后,这个学生坐下时的表情还深深印在我的脑海中,这个学生有着大胆动手,敢于交流分享的学习态度。他让同学们更深刻地认识到为什么一定要沿高来剪开,这是多么值得表扬啊!细节成就完美,关注课堂细节,敏锐地发现教育契机,还需要我们教师不断学习,不断努力,不断总结。

平行四边形的面积教学反思 篇2

本节课内容在学生学习了长方形、正方形、平行四边形、三角形和梯形的特征以及长方形、正方形面积计算的基础上进行教学的,同时又是进一步学习三角形面积、梯形面积等知识的基础。

一、成功之处:

1、创设问题情境,引发矛盾冲突,激发学生的学习兴趣。在教学中,通过创设“这两个花坛哪一个大呢?”的情境,引发学生的思考,比较这两个花坛的大小,就是比较它们的面积大小,而长方形的面积学生已学过,非常简单就可以得出,但是平行四边形的面积学生没有学过,如何求平行四边形的面积呢?通过这样的疑问,引领学生探索平行四边形的面积计算公式。

2、渗透“转化”思想。转化思想是学生学习数学的非常重要的思维方式,利用转化思想学生可以把新知识转化为已学过的旧知识,利用旧知识解决新问题。在本课教学中,学生首先通过数方格的方法初步发现了长方形和平行四边形这两个图形的'面积是相等的,也发现长方形的面积是底乘高,平行四边形的面积是底乘高,但是如何验证这个计算公式呢?学生通过手中的平行四边形会联想到把它转化为长方形,这时教师放手让学生通过剪一剪、拼一拼,自己动手研究推到平行四边形的面积计算公式。这样设计教学过程由浅入深、由易到难、由具体到抽象,学生在探索的过程中逐步体会转化思想在学习中的重要作用。

二、不足之处:

学生虽然能够推导出平行四边形的面积计算公式,但是仍有个别学生在表述上还存在一些困难。

三、设计:

加强学生的语言表述能力,做到规范、严谨。

平行四边形的面积教学反思(精选5篇)

身为一位优秀的老师,我们都希望有一流的课堂教学能力,通过教学反思可以有效提升自己的课堂经验,教学反思我们应该怎么写呢?下面是小编精心整理的平行四边形的面积教学反思(精选5篇),希望能够帮助到大家。

平行四边形的面积教学反思 篇3

《平行四边形面积》是五年级上册的内容。教材设计的思路是:先通过数方格的方法数出平行四边形的底、高、面积与长方形的长、宽、面积,再通过对数据的观察,感悟长方形与平行四边形之间的特殊关系,并提出大胆的猜想。通过动手操作验证的方法推导出平行四边形面积的计算方法,再利用所学的公式解决问题。我认为让学生简单记忆公式并不难,难的是让学生理解公式,因此,必须让每个学生亲历知识的形成过程。在独立思索的基础上亲自动手剪一剪、拼一拼,并带着自己的操作经历进行小组内的讨论和交流。课堂是充满未知的,在课后我认真总结了这节课。

一、导入环节中的得与失

得:复习长方形的面积为新知探究做好铺垫。

失:从复习旧知到情境导入衔接不够自然,略显牵强。

二、探究新知环节中的得与失

得:先用数方格得方法探究平行四边形的面积时,处理的较为细致。动手操作时,也让学生提前准备了学具,初步回忆了其特点,充分发挥学生主体性。

失:在探究环节,不能很好的利用学生的.错误资源,来让学生纠其错误,达到巩固新知的效果,在学生说出其变化时引导不到位,导致学生得出平行四边形面积公式有些被动。

三、巩固练习环节中的得与失

得:最后一道题设计较好,让学生知道算平行四边形的面积时要选择高与相应的底。

失:时间安排的原因,处理的过于粗略。

之后的教学中,备课时,不仅要在备教材这下功夫,也要在备学生这多努力,多预设几种学生可能出现的情况,应该如何应对,做到全面把控课堂。

平行四边形的面积教学反思 篇4

新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”在《平行四边形的面积》一课的教学中,通过让学生动手实践,自主探究,让学生经历了知识的形成过程。现就上课时和课后的感受谈几点体会:

1.注重数学专业思想方法的渗透

在数学教学中,要注重数学专业思想方法的渗透。要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。我在这节课中,先让学生回忆长方形的面积是怎样求的?正方形的呢?引出你能求平行四边形的面积吗?做到用“旧知”引“新知”,把“旧知”迁移到“新知,有利于有能力的同学向转化的方法靠拢。重视转化思想的渗透,通过自主探究和合作学习解决实际问题。通过把不熟悉的图形转化成我们熟悉的图形来计算它的面积,这在数学学习中是一种好的方法。让学生进一步理解转化思想的好处。为学生解决关键性问题——把平行四边形转化为长方形奠定了数学思想方法的基础。我有意识的引导学生多种方法剪拼,想突破平行四边形高有无数条,拼法也有无数种,可是没有达到预想的效果。在充分动手操作的基础上采用小组合作的'方法比较平行四边形和长方形长和宽的关系,推导出平行四边形面积的计算公式。

2.本节课的教学重点是掌握平行四边形的面积计算公式,并能正确运用公式解决实际生活问题。教学难点是把平行四边形转化已学过的基本图形,通过找关系推导出平行四边形的面积公式。所以我在本课设计了让学生自己动手剪,移,拼,把平行四边形转化成一个长方形,接着小组合作完成推到过程:长方形的面积与原平行四边形的面积相等,长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。学生通过亲自动手实践,实现新旧图形的转化,有利于学生主动构建新的认知结构,使知识的掌握更长久、牢固。同时在动手操作的过程中,学生的主体地位得到确立,边操作边思考,边观察边寻思,从中有所觉。

3.分层练习,突破重点难点

巩固练习阶段是帮助学生掌握新知,形成技能、发展智力、培养能力的重要手段。心理实验证明:学生经过近三十分钟的紧张学习之后,注意力已经度过了最佳时期。此时,学生易疲劳,学习兴趣容易降低,差生的表现尤为明显。为了保持较好的学习状态,提高学生的练习兴趣,我除了注意练习的目的性、典型性、层次性和针对性以外,还特别注意在巩固新知识的基础上进行加强练习。选择合适的底和高计算面积、已知面积求高(逆向思维训练)、等底等高图形面积计算。

在学生初步掌握平行四边形面积计算公式的基础上,又设计了一组选择练习,使学生进一步明确,要求平行四边形的面积,不仅要知道底和高两个条件,而且底和高必须对应。这样,既体现了知识的有序性,又保证了重点,分散难点,便于学生理解与掌握,从而达到学习目标的全面落实。学生兴趣浓厚,攻克一个个难关,意犹未尽。学生练习中错误率低,取得了满意的效果。时间把握得不够,最后两道有针对性的练习没有得到训练,从而没有很好的达到巩固新知的作用。

4.我的遗憾

本节课还有一些不足之处。比如在进行把平行四边形转化为长方形时,让学生理解长方形的长、宽分别和平行四边形的底和高相等是学生推导平行四边形公式的关键,其中有两个学生到演示台上展示剪拼的方法的时候,说发现他们的面积相等,而我只强调了拼后的面积相等这个概念,为什么面积相等?这个关键的问题我却没有追问,本来准备好的演示粘贴过程,由于担心时间不够也省了。忽视了学生在动手操作中,即将探究出的知识薄而未发,这样就使得学生的操作只停留到了表面,而没有在操作的过程深层次经历知识的形成过程,正因为在这个关键问题上疏忽,导致了,学生对平行四边形面积推导过程茫然的情况。其次,学生在剪拼时,只注重结果,没有适时归纳过程。让学生理解只要沿着平行四边形的一条高剪下,都可以拼成一长方形。这一环节处理层次不够清晰,导致时间过长。

虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着不敢放手现象。课堂上有效的评价语言在本节课中也体现不够完善。自己觉得在引导和组织学生上欠缺一些,在引导学生把平行四边形“转化”成长方形的操作活动中,没有把学生的积极性调动起来,有些学生的操作活动没有很有效进行,导致那里的教学时间过于长。

教学是一门有着缺憾的艺术。作为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。

平行四边形的面积教学反思 篇5

我经过让学生自我动手用剪,平移,拼的方法进行问题转化,验证了用“底乘高”的猜测是正确的,经过观察图形的动态变化,从比较中发现用“相邻两边相乘”是错误的。得出平行四边形的面积=底×高。本节课因为是让学生自我动手操作,所以学生兴致很高,课堂气氛也较活跃。我认为本节课的练习设计也很合理。

第一、创设问题情景,引起矛盾冲突,激发了学生的学习兴趣。

第二、重视操作探究,发挥主体作用。为了引起学生的兴趣,我准备了一个可活动的长方形框架,如果把它拉成一个平行四边形,周长和面积有变化吗怎样变化如果任意拉这个平行四边形,你会发现什么什么情景下它的面积最大设计意图:经过这个拓展题目使学生体会平行四边形面积的变化,从而理解的更透彻,运用的'更灵活。使学生在练习中思维得到发展,培养学生分析问题和解决问题的本事。

第三、渗透“转化”的思想。“转化”是数学学习和研究的一种重要思想方法,在本节课的教学中,以学生的探究活动为主要形式,教学过程由浅入深,由易到难,由具体到抽象,由感性认识到理性认识,步步深入,紧扣主题。同时渗透“转化”的思想,让学生掌握学习的方法,学会利用旧知识解决新的问题,构成积极主动的探究氛围。

练习:

1、一个平行四边形的底是4厘米,高是3厘米,它的面积是多少?在练习纸上画底是4厘米高是3厘米的平行四边形。鼓励同学画几个不一样的平行四边形。

2、请你设计一个面积是12平方米的平行四边形花坛。可能有多少种情景,哪种比较合理。

第1、2两题看似无关,但却联系紧密,根据第1道题得出一个学生十分难理解的结论,等底等高的平行四边形面积必须相等。反过来第2题又让学生认识到这句话反过来说是错的,从而得出面积相等的平行四边形不必须等底等高。

平行四边形的面积教学反思 篇6

平行四边形面积的计算是在学生学习了长方形的面积和平行四边形认识的基础上教学的,平行四边形的面积公式推导方法的掌握,对学习后面三角形、梯形面积公式具有重要的作用,所有平行四边形面积公式的推导,是本节课的重点。教学中通过把一个可拉动长方形铁框拉成一个平行四边形,使学生看到长方形和平行四边形之间的内在联系,为后面学习新知识打下基础。新课突出了三个环节,一是引导学生初步探究,通过提出一个客观的实际问题,如果有一块很大很大的平行四边形草地,还能用数方格的方法计算它的面积吗?小组讨论。用问题激起学生再次探究,可以把要探究的平行四边形转化成我们学过的什么图形呢?二通过学生实际操作,用不同方法把平行四边形转化成长方形,并通过操作,观察,找出平行四边形与所拼的长方形的内在联系,在此基础上,推导出平行四边形的面积计算公式。三是引导学生会用公式正确计算平行四边形面积,解决实际问题,在练习中,一定要做到一练一小结,提醒学生要注意的问题。

平行四边形的面积公式是几何图形面积计算第一次运用“转化”思想方法推导得出的。因此,本节课让学生形象直观地明白什么是“转化”,深刻理解“转化”的本质,就显得尤为重要。对于“转化”思想,本节课不在是渗透的朦朦胧胧,而是把这种学习方法明朗化,让“转化”本领成为学生思维的“主角”,并当作学习的一个重点让学生掌握。我首先出示三个图形让学生通过比较,在直观的基础上,利用图形的转化,直接说出了它们的面积,渗透了转化的数学思想方法。这样,学生面对“计算平行四边形面积”这一新问题,就很自然地得到了两种猜想:用平行四边形相邻两边相乘(以前学习的长方形面积计算公式等知识的负迁移)和用平行四边形的底乘以高(转化思想方法的运用)。进而,教师提出问题:同一个平行四边形的面积怎么会有两个答案呢?激发学生进一步去探究。迫使学生动脑筋想办法,用割补方法进行问题转化,验证了用“底乘高”的猜测是正确的,通过观察图形的动态变化,从比较中发现用“相邻两边相乘”是错误的。学生在这一实践活动过程中获得割补转化的数学思想方法。在练习阶段的“你会求阴影部分的面积吗?”,不仅是巩固新知,而是将“转化”本领内化成解题技巧。

这节课,采用先让学生“大胆猜测”,再进行“小心求证”的教学思路,教师有意识地把经历“猜想与验证”蕴涵在探究平行四边形面积公式的数学活动中。当学生对平行四边形的面积计算获得两个合理的猜想后,教师不做否定,而是要求学生对自己的`想法进行检验,学生通过思维顿悟、教师的直观演示,自己发现错误的原因,这不但让学生对知识理解更透彻,影响更深刻,而且给学生学生探究发现知识的方法指导。这样的过程,既不同于由一般到特殊的演绎过程,也有别于由具体到一般的归纳过程。它是一种发现并填补认知的空隙,即定向探索解决问题的研究过程,这符合数学知识发现的一般规律,因而具有比较一般的方法论意义。这样的数学思维方法的运用,有效地训练了学生综合运用思维方法获取知识的能力,同时也受到了科学思想方法的启蒙。

平行四边形的面积教学反思 篇7

本节课我以学生已有的知识经验为基点,以学生的自主探究学习和多向思维发展为主线,以分层训练为手段,让学生经历了数学化探索和知识回归应用的过程,通过课后的深思,我认为本课教学力求体现以下三点:

、目标定位准确,教学思路清晰

本节课我的目标意识较强,以“创设情境——自主探究——操作验证——实践应用”为主线,探究过程细化为猜想、操作、推导和深化四个层次,教学思路清晰,重点难点突出,适时充分地创造条件,引导学生在参与探究知识形成的过程中想问题、寻方法、得结论,从而培养了学生的操作、观察、分析的能力和探究过程中用不同方法解决问题的能力。

二、模型建构合理,方法渗透有效

“转化”是数学学习和研究的一种重要思想方法,平行四边形面积公式的推导所蕴含的转化思想,对学生今后推导三角形、梯形面积公式具有重要意义。整个教学过程中我以学生为主体,鼓励学生自主探究,大胆质疑,不仅启发学生把研究的图形转化为已经会计算的面积的图形,渗透转化的数学思想方法,而且着重让学生通过画、剪、拼、摆等动手操作的活动来让学生亲历自主探究的过程。

同时引导学生去探究所研究的图形与转化后的图形之间存在的等量关系,从而导出面积计算方法,重视引领学生探索平行四边形面积计算公式背后所隐含的知识结构的提炼,从而让学生更好地建立起平行四边形面积计算公式这一数学模型。

、练习设计巧妙,知识应用深化

本节课练习的设计目标明确、形式多样、层层递进,第一题的基础练习从最基本的已知平行四边形的底和高直接计算面积开始,熟练运用计算公式计算。第二题要求学生认真审题,让学生发现多余条件的情况下需要选择相对应的底和高计算面积,进一步感悟底和高对应关系,并发挥此题的作用,进行逆向应用,由面积和高求出底,由面积和底求出高。第三题是开放练习题,让学生结合平行线间距离处处相等发现等底等高平行四边形面积相等;此题开放度广,为学生今后逻辑思维的发展和解题能力的提高打下了良好的基础。第四题是求出方格纸格中的平行四边形和三角形面积,在数三角形面积时,初步渗透它的`面积计算及其与平行四边形的关系,为三角形面积公式的推理埋下伏笔,同时回归学生原有的认知起点,通过用数格子方法弥补本课教学上一点缺失,以达到培养学生的多向思维能力的目的。

综上所述,整节课的教学力求体现“在探究活动中感悟——在操作活动中合作交流——在反馈发现中总结规律——在灵活运用中拓展延伸”这一基本课堂教学流程。学生在丰富的活动探究中体验到知识的产生、发展的过程,不仅增长了知识、提高了能力,而且获得了深层次的情感体验。

平行四边形的面积教学反思 篇8

这节课我们所学习的的内容主要是平行四边形面积的计算。是在学生以前学过的长方形的面积和平行四边形认识的基础上学习的,平行四边形的面积公式推导方法的掌握,对学习后面三角形、梯形面积公式具有重要的作用,所以平行四边形面积公式的推导,是本节课的重点。这节课的教学我们不但要让学生学会平行四边形面积计算公式的知识,而且能获得数学思想和方法;不仅能够正确地应用公式,而且能更好地理解这一公式的来源。

一、课程开始,我先让学生回忆学过了哪些平面图形,想一想长方形的面积是怎样求的?

平行四边形的面积怎么求呢?猜想平行四边形与长方形是否存在联系。引导学生用“转化”的方法思考。

二、注重学生数学思维的发展

在探究的过程中,我给了学生充足的时间让学生通过剪一剪、拼一拼等学习活动发现平行四边形和长方形的关系。在这个基础上利用学习提纲进行提示:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?让学生在动手操作中发现图形之间的关系,根据它们之间的关系推导出平行四边形的。面积。并且让学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。最后利用多媒体课件形象、直观的演示。通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的`求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。

三、不足之处

本节课还有一些不足之处。在进行把平行四边形转化为长方形时,让学生利用学习提纲理解长方形的长、宽分别和平行四边形的底和高相等是学生推导平行四边形公式的关键。其中有两个学生到演示台上展示剪拼的方法的时候,说发现他们的面积相等。而我只强调了拼后的面积相等这个概念,为什么面积相等?这里应该将学生的图形粘在在黑板上,让学生交流出自己的原因。没有往更深的地方挖掘,所以学生的思维只停留只要沿着平行四边形的一条高剪下,都可以拼成一个长方形。而没有在操作的过程深层次经历知识的形成过程。

虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着不敢放手现象。课堂上有效的评价语言在本节课中也体现不够完善等等。

平行四边形的面积教学反思 篇9

《平行四边形面积》的教学目标是经过操作活动,经理推导平行四边形的面积计算公式的过程,能运用平行四边形面积公式计算相关图形的面积并解决一些实际的问题。

教材是直接出示一块平行四边形的空地,要求计算面积,这样安排的目的是让学生应对一个新的问题,思考如何解决新问题。教材这样的安排对学生来讲,供给了很好培养学生独自思考本事的素材,但对学生的要求较高,鉴于本班的学生情景,可能有一部分中下层生没能参与其中,于是我灵活地进行了基于本班实际情景的教学设计,我是这样设计的:

1、先出示两个不规则图形,要求学生说出面积。这两个不规则图形学生在前面的课里已经学习过,能够经过数格子的方法去计算面积,也能够转化为规则图形去计算的,课堂上不少学生就是用转化的`方法去解决的,这就为新课埋下伏笔。

2、上一环节不规则图形转化后为正方形和长方形,那里就复习下正方形和长方形面积公式。

3、比较等底等高的平行四边形和长方形面积谁大?经过图形出示。学生讨论得出结论:能够把平行四边形转化成长方形,这样就能够用底X高得出面积。

4、补充其他转化策略,明确平行四边形面积=底X高。

5、练习巩固。

先出示不规则图形让学生想到转化为熟悉的规则图形进行计算面积,就是课堂里要求掌握的转化思想,有了课始的铺垫,后面的探索活动是顺理成章的,其中的道理学生也是清楚的,包括中下层生也能掌握,改变了以往直接出示公式,让学生套公式进行计算来得科学贴合学习规律。

平行四边形的面积教学反思 篇10

《平行四边形的面积》一课,是北师大版数学五年级上册第四单元第三课的内容。在这节课中,我主要讲授的第一课时的内容。在教学中,我通过让学生动手做一做,感受“转化”的思想,进而理解平行四边形的面积计算方法。反思这节课,我总结了成功的经验以及不足之处,具体概括为以下几点:

优点:

一、注重学生的课前预习工作,让学生做好了学习新知的准备

在教学前,我先让学生预习《平行四边形的面积》一课。通过预习,学生知道了这节课的学习重点(掌握平行四边形的面积计算方法)。在学习时,每位学生都准备好了学具(平行四边形卡纸、剪刀)。

二、注重课堂上学生的自主学习,让学生成为学习新知的主人

在探究平行四边形的面积计算方法时,我引导学生思考“如何将平行四边形转化成已经学过的图形,再来求面积?”然后组织学生独立操作(剪、拼),进而引导学生思考“拼好后的长方形与原平行四边形有什么关系?”在这些活动中,学生都认认真真地动手剪拼,并在小组内交流各自的想法。每位学生的动手操作能力、语言表达能力、逻辑思维能力都得到充分的锻炼。再组织在全班交流中,学生的语言表达能力、逻辑思维能力又得到了进一步的提高。由此,对平行四边形的面积计算方法的由来也就理解的相当透彻。教学效果很好。

三、注重多媒体辅助教学设施的'应用,让学生在各种新奇的环境下主动学习。

在课前,我编辑了切合学生心理特征的教学课件。在课堂上,极大的吸引了学生的注意力。使学生纷纷主动地在课件中寻找问题,解决问题。

不足与相应措施:

学生之间的评价太少,以至于学生看不到自己与他人的差距。在今后的教学中,要优化教学环节,在教学中,适当的组织学生进行生生之间的评价。

平行四边形的面积教学反思 篇11

20xx年10月24日,我参加了经开区数学基本功比赛,执教《平行四边形的面积》这节课,实施教学后一些问题让我陷入思考。下面从我备课及执教的经历谈起。

首先,对于内容的分析,我在教学设计中已经阐明,因此不再赘述。对于学情,我以本校五年级学生为参照,调研了本校学生对此知识的想法,根据学生问卷的回答情况发现了这样的问题:

1、长方形的面积公式学生基本都能写对,但出现与算周长混淆的情况,并且已经想不起来长方形的面积是由数方格推导出来的。

2、求平行四边形的面积时出现这样几类情况。

(1)用算周长的方法计算,占15%;

(2)用邻边相乘的方法计算,占35%;

(3)知道转化成长方形,但不能正确计算,占23%;

(4)其他(包括不知道怎么算),占27%。

虽然我深知读懂教材、读懂学生的重要性,但理解有限,在设计与执教过程中,反映出以下三个问题。

一、学情分析能力不足

我虽然进行了学情分析,但由于自己的理解有限,我没有分析到其实学生对于找原来的平行四边形与转化后的长方形之间的等量关系其实是不理解的,是一个难点,导致我以如何向学生渗透转化思想为重心了。

二、课堂调控能力有限

在实施教学的时候由于学生的学情不同,执教班级学生基本已经知道平行四边形的面积等于底乘高,加之我的现场调控能力有限,因此并不能顺着学生的思维进行教学,跟我设计的初衷产生了水土不服的.现象,但后来我仔细回想了执教过程中的一些学生表现,优等生知道公式,并不代表所有学生都知道,应该具备一些调控能力让所有学生经历验证的过程,但错过了,这一点也说明我的课堂调控能力是需要加强的。

另外一个问题是找等量关系时,我由于时间的限制,代替了学生的观察发现,带领学生直接演示了原来的平行四边形与转化后的长方形之间的关系,推导出了公式,这点挺遗憾的。

三、数学语言不严谨

在此次教学中,我的数学语言不够严谨,比如数学上专业的术语“平移”等说得不规范。

针对以上问题我想教师的调控能力这些非一日之功,在以后的课堂教学中我会尽量注意记录自己的问题与语言,不断反思,从而慢慢提高,增强自己上现场课的经验。

对《平行四边形的面积》的设计,我没实现的是,找等量关系过程对学生是一个难点,我对突破这个难点的想法如下。

预设教学片段:

师:同学们,把我们的长方形还原为平行四边形,你能标出平行四边形的底和对应的高吗?请同学们动手标一标吧。

师:同学们,把平行四边形转化成长方形,你能找出原来的平行四边形和转化后的长方形有哪些相等的关系吗?小组讨论并相互说说你的发现。

当然,这是我的初步想法还没有进行实际教学,因此不知道这些能不能突破难点。

通过本次讲课,让我真正乐趣无穷的是对课不断地思考,发现课的奥妙,有遗憾,有困惑、有思考……我想这些都是成长,教学时间那么长,我想读懂教材,读懂学生,这不容易的事总会慢慢理清,然后,不断成长!

平行四边形的面积教学反思 篇12

《平行四边形的面积》是人教版五年级上册第五单元《多边形的面积》第一课时的教学内容。本节课是学生掌握并运用“转化”思想的关键,更是学生进一步探究其它平面图形面积计算的基础。课前,我带着如何有效实践“图形与几何”领域的新课标理念,如何更好地让学生获得基本活动经验,形成基本数学思想等问题,反复研读课标,揣摩教材,力求让学生在学习中不仅能够获得平行四边形面积计算公式的知识,而且能够体会和运用数学思想和方法,不仅能够正确地应用公式,而且能更好地理解这一公式的来源,力争在教学中,展示探究平行四边形面积计算方法的真实思维过程,凸显“重知识更重方法,重结果更重过程”的价值追求。以下是我在设计与执教“平行四边形的面积”一课中获得的一些启示,可能还不够成熟,可能还存在这样那样的问题,真诚地希望您能够提出宝贵意见。

一、注重 “转化”思想的渗透。

在数学教学中,要注重数学思想方法的渗透,要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。平行四边形的面积计算公式是几何图形面积计算第一次运用“转化”的思想方法推导得出的,这无疑增加了学生学习的难度。本节课的教学,长方形的面积计算是平行四边形面积计算的生长点,是认知前提,所以新课伊始,我首先复习长方形的面积计算公式,并通过计算不规则多边形的面积,引导学生初步体会运用剪、移、拼的方法把不熟悉的未知图形转化成我们熟悉的已知图形来计算它的面积,渗透“等积变形”,实现用“旧知”引“新知”,把“旧知”迁移到“新知”的教学预设,让学生对“转化”有所熟悉,不再陌生。同时,在潜移默化中,引导学生明确转化是一种很好的数学学习的方法,为学生进一步理解转化思想奠定基础。

在探究平行四边形的面积计算公式的教学环节中,我首先让学生通过数方格的方法分别求出平行四边形和长方形的面积,然后观察表格中的数据,感知平行四边形与长方形的内在联系,当发现用数方格的方法计算实际生活中图形的面积不太适宜时,引导学生大胆猜测平行四边形的面积计算公式,并运用“转化”的方法将平行四边形转化成长方形,从而验证猜测,推导出公式,也让学生更深刻地理解了转化的本质。

二、注重学生数学思维的发展。

数学教学的核心是促进学生思维的发展。在这节课中,我设计了求不规则多边形的面积、运用剪一剪、拼一拼的方法进行图形转化等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与原平行四边形底和高有什么关系?充分利用多种媒体形象、直观的教学辅助作用,使学生在动手操作,交流研讨中得出结论。同时引导学生发现底与高的一一对应关系。在一系列的教学活动中,学生通过观察、交流、讨论、练习等形式,在理解公式推导的过程中学会解决问题,在亲自尝试,亲身体验中掌握了平行四边形面积公式的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。

三、注重培养学生的问题意识。

问题是数学的心脏,能给学生的'思维以方向和动力,不善于发现、提出和解决问题的学生是不可能具有创新精神的。要培养学生的问题意识,首先教师要精心设计具有探索性的问题,在教学中,为了引导学生进行自主探究,我设计了这样一系列问题:“请你猜测平行四边形面积的计算公式?为了验证猜测,你想把平行四边形转化成我们学过的哪个已知图形?怎样转化呢?”这些问题的指向不在于公式本身,而在于探究公式的来源,这样学生的思维方向自然聚焦在探究的方法上,于是学生就开始思索、猜想,并进行实践。当学生运用割补平移的方法将平行四边形成功地转化成长方形后,我又及时出示问题,引导学生在小组内讨论原平行四边形与转化后的长方形之间的关系,从而达到公式推导的目的。学生在独立思考、动手操作、相互交流、相互评价的过程中,增强发现问题、提出问题、分析问题和解决问题的意识和能力。

四、注重学生学习方式的多样化。

动手实践,自主探索与合作交流是学生学习数学的重要方式。教学中,我为学生创设了民主、宽松、和谐的学习氛围,给了学生充分的思考问题的时间与空间,充分地调动了学生的学习主动性。让每一个学生亲自动手操作,边操作边观察边思考,在自主探究与合作交流过程中,经历知识的形成。课堂上,学生们乐想、善思、敢说,他们自由地思考、猜想、实践、推理、验证……

教学是一门有着缺憾的艺术。作为教者的我们,往往在执教后,都会留下或多或少的遗憾,但只要我们用心思考,不断改进,我们的课堂就会更加精彩。

北师大版平行四边形的面积教学反思

平行四边形的面积计算式教学是在学生掌握了平行四边形的特征以及长方形面积计算基础上进行的,它同时又是进一步学习三角形面积、梯形面积的计算的基础。下面我们来看看北师大版平行四边形的面积教学反思,欢迎阅读借鉴。

平行四边形的面积教学反思 篇13

在教学设计时,我创设一个把长方形变成平行四边形,猜测面积是否变化的情境,激发学生的探究欲望。学生根据以前学过的知识自然会想到用数方格的方法求面积,但我没想到学生在数平行四边形的底和高时,有些难度,此时我进行了适当的指导,体现了教师的主导作用。

新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师是要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”本节课的教学重点为“探究平行四边形的面积公式”,难点设立为“理解平等四边形的面积计算公式的推导过程”。为了突出重点,突破难点,我先引导学生自主探索,然后让学生交流,对学生难以理解的平行四边形与长方形的关系,我又利用课件演示,并让学生在观察的基础上交流评议,最后学生分组边剪拼边说平行四边形面积公式的推导过程。这样让学生亲身经历操作过程,在交流演示中理解掌握了平行四边形面积的求法,在语言描述过程中锻炼了自己的语言表达能力。在这个环节里我注重的是让学生动手实践和自主探索发现规律,让学生经历知识的形成过程,使学生空间观念得到进一步发展。这样不仅让学生学到知识,更重要的是对学生渗透了平移和转化的`数学思想方法,培养了学生观察、分析、概括和能力。

我认为本节课的不足之处是:

(1)在学生把平行四边形转化成长方形时,没有给学生充裕的时间展示不同的割补方法,局限了学生的思维。应让学生充分展示,从而明确不同的割补方法,其结果是一样的。三种剪法。

(2)在学生汇报时,当学生的语言罗嗦时,我有点过急,常把学生的话打断,应允许学生用自己的语言去表达或让学生自己修改语言。

(3)对知识的巩固运用做的不够。本打算在基本练习之后,让学生探究把长方形框架拉成平行四边形后什么变了,什么没变,以此拓展学生的能力。但由于在用数格子的方法求面积时,教师应变能力不强,耽误了时间,此题没来得及做,教师本人的能力还需多锻炼。

平行四边形的面积教学反思 篇14

1、深刻理解教材是有效课堂的基础

教师如果没有深入地解读教材、领会编者的意图,而为了追求新意而过度改编教材内容,替换学习材料,往往会把数学知识固有的内涵丢掉,无法有效完成教学任务。这节课作为传统的教学内容,有那么多种讲法,教材为什么要这样编排和设计呢?

教学之前,我觉得数方格对平行四边形面积公式的探究帮助不大,所以总想把它删去,节约出更多的时间来探究,但经过对教材的反复研读,我终于明白数方格在计算面积中的价值。

这是一种直观的计量面积的方法,同时也是本节课学生新旧知识的连接点,学生在数方格的过程中很容易发现平行四边形的底,高和面积与长方形有着联系,为进一步的探究提供了思路。所以,深挖教材是有效进行教学设计的第一步。

2、课堂环节的合理设计是有效课堂的保证

教师除了对教材的准确把握,还要对学情进行深入的分析,只有对学生的认知起点和认识发展过程进行分析和研究,才能设计出有效促进学生发展的数学活动。

教师首先要用简约的情境带学生迅速进入课堂,并引发一系列的数学思维活动。

然后,教师要精心选择教学内容,合理设计教学形式,让课堂活动变繁为简,变杂为精在学生探究平行四边形面积公式时,教师放得多了,探究的效率必然低下,扶得多了,学生探究的空间会大大缩水,束缚学生的发展。

因此,对于教师应该给予什么样的指导,需要教师根据学情来合理预设。

3、数学思想方法的提炼是有效课堂的精髓

让学生获得基本的数学思想方法是一小学新课程改革的新视角之一。数学思想方法的孕育犹如胎儿的发育,有一个从模糊到清晰,从未成形到成形再到成熟的过程,至于转化的思想,在本册中多次用到。

如第一、二单元中,小数乘法和小数除法的计算,无不是把小数转化成学过的整数进行的。平行四边形在整个小学阶段的数学教学内容中是一个承上启下的图形,教师应该看到学生学习计算平行四边形的面积,方法的价值更大,通过学习割补转化的`方法,为后面学习三角形面积、梯形面积、圆的面积埋下了伏笔。学生以获取知识为明线,以探究数学思想方法为暗线,明暗结合与总结时的画龙点睛。让数学思想方法该露脸时就露脸,使学生知其然,更知其所以然。

教学是一门有遗憾的艺术,虽然我在课前对教学的各个环节作了精心的预设,但面对生成的时候,自己的处理依然有些草率。在让学生展示自己剪拼的作品时,当让学生展示完平行四边形沿顶点向对边作高和作任意高两种方法剪拼一个长方形后,有一个学生兴致勃勃地展示他沿平行四边形对角线剪开,通过平移得到一个新的平行四边形的方法,由于没有达到我们拼成学过图形的目标,当即我就简单地否定了,那个学生也尴尬地坐下了。

课后,这个学生坐下时的表情还深深印在我的脑海中,这个学生有着大胆动手,敢于交流分享的学习态度。他让同学们更深刻地认识到为什么一定要沿高来剪开,这是多么值得表扬啊!细节成就完美,关注课堂细节,敏锐地发现教育契机,还需要我们教师不断学习,不断努力,不断总结。

平行四边形的面积教学反思 篇15

《平行四边形的面积》这一课自己感触颇多,有成功中的喜悦,也有不足中的遗憾,总结本节课的教学,有以下体会。反思这节课,具体概括为以下几点:

第一、创设问题情景,引起矛盾冲突,激发了学生的学习兴趣。

第二、重视操作探究,发挥主体作用。

为了引起学生的兴趣,我准备了一个可活动的长方形框架,如果把它拉成一个平行四边形,周长和面积有变化吗?怎样变化?如果任意拉这个平行四边形,你会发现什么?什么情况下它的面积最大?设计意图:通过这个拓展题目使学生体会平行四边形面积的变化,从而理解的更透彻,运用的更灵活。使学生在练习中思维得到发展,培养学生分析问题和解决问题的能力。

第三、渗透“转化”的思想。

“转化”是数学学习和研究的一种重要思想方法,在本节课的教学中,以学生的探究活动为主要形式,教学过程由浅入深,由易到难,由具体到抽象,由感性认识到理性认识,步步深入,紧扣主题。同时渗透“转化”的思想,让学生掌握学习的方法,学会利用旧知识解决新的问题,形成积极主动的探究氛围。

第四、联系实际设计习题,学习内容始终充满生活气息。

存在的一些问题和困惑:

1、应变课堂能力的教学机智不够灵活需要多锻炼。如新知猜想时耗时过多。

2、学生数学知识的底蕴要加强。

学生拿着平行四边形,不知道如何动手操作,把平行四边形转化成长方形。这也与我前面的铺垫、启发不到位有关,当学生不能独立作出来时,老师要及时给予指导和启发,可以这样启发:同学们看一看,平行四边形的高与底边是什么位置关系?如果能利用这一点来转化呢?沿着什么剪?

就“平行四边形的面积”的教学而言,平行四边形的面积公式是什么,不是什么?平行四边形的面积为什么是“底×高”,为什么不是“底×邻边”?通过把平行四边形不断“拉扁”,引导学生逐步了解高与面积之间的.内在联系,理解高对平行四边形面积的影响,在让学生获取知识的同时,悄然无声地渗透了函数思想。

其实,澄清错误与建立正确认识同样重要。不急于引导学生对正确情况的接受,而更多地让学生自己在尝试解决问题的过程中发现问题,产生矛盾冲突,并引导学生参与对问题和错误的剖析。平行四边形面积为何是“底×高”,为何不是“底乘邻边”?疑问的解答,需要的是观察、比较、分析等充满挑战性的过程,在这样的过程中,学生一步步澄清平行四边形的面积“是什么,不是什么”,明白“这样才是正确的,那样为什么是错误的”,就会获得真正的数学理解,推理能力也能得到发展。“推拉转化后,面积发生变化”的表象得到强化,进一步澄清学生潜意识中“平行四边形的面积=底边×邻边”的错误认识。在不断地对比、交流过程中,错误经验得以纠正,模糊认识得以澄清,数学思维得以发展,创新意识和学习能力得以提升。

但是在澄清与对比分析中,时间运用的也较多,对于“精讲多练”的目的没能达到。这种剖析,在日常教学中都是分多个课时进行,完全揉入一节课,甚至微型课,需要我思考如何从别处挪出时间出来,精心雕琢方有进步。

平行四边形的面积教学反思 篇16

孩子们已经认识了三角形、平行四边形和梯形,理解了面积的概念,会计算长方形、正方形面积了。在学习了平行四边形、三角形和梯形的面积后,就要求孩子掌握有关多边形面积的系统知识。这一单元,孩子们要探索并体会所学多边形的特征、图形之间的关系、图形之间面积的转化,要掌握平行四边形、三角形、梯形的面积计算公式及公式之间的关系,要体验图形平移、旋转等变化……感觉任务非常艰巨。

平行四边形面积一课,重点是“转化”。但为什么要转化,如何转化,需要让孩子经历一个思考的过程。

邻边相乘(长×宽)的面积计算方法是学生掌握的已有经验。如何让停留于“邻边相乘”这一概念上的学生悟到“剪拼转化”呢?如何仅仅提问“你能通过剪一剪、拼一拼的方法,将一个平行四边形变成长方形吗?”并加以引导,学生注意力会更多地停留在正确实施剪拼的活动上,难以深入理解“平行四边形的面积、底、高、邻边与长方形的面积、长、宽”之间的联系和区别。

经验出现差异式断层,就必须让学生发现差异、感悟差异,并追本溯源,以经验原点的同一性助推再认性经验的.改造,沟通“教”与“学”的通道。

在学生坚信这个平行四边形面积=底×邻边=9×6=54平方厘米时,呈现格子图。于是学生将平行四边形的面积锁定在(8×4)32平方厘米和(10×4)40平方厘米之间。这一过程不仅学生认识到长方形面积和平行四边形面积的差异,也让学生在面积的度量层面沟通了平行四边形面积与长方形面积的计算方法,即“每行摆的单位面积数×摆的行数”。接下来,让学生自己利用格子图探究得到平行四边形的面积计算公式就水到渠成了。

平行四边形的面积教学反思 篇17

平行四边形的面积计算式教学是在学生掌握了平行四边形的特征以及长方形面积计算基础上进行的,它同时又是进一步学习三角形面积、梯形面积的计算的基础。教材首先提出:公园准备在一块平行四边形空地上铺草坪,如何计算这块空地的面积?这是学生在学习了长方形、正方形的面积后,提出的如何计算平行四边形面积的问题。

教材这样安排的目的是让学生面对一个新的问题,思考如何去解决教材提供了两种提示性的方法:一种是通过数格子的方法,数出这个平行四边形的面积;一种是通过剪与拼的'活动,将平行四边形的面积转化为长方形,然后计算出面积。通过本节课的使学生通过剪切、平移的方法理解平行四边形公式的推导过程,并能够运用公式解决实际问题。

本节课教学中,用长方形面积公式导入,由学生猜测、验证、再猜测、再验证的方法推导出平行四边形的面积公式。在此次过程中教师充分调动学生已有的知识经验,通过小组合作,把学习的主动权交给学生,最后通过习题巩固,使学生灵活运用平行四边形的面积公式。

平行四边形的面积教学反思 篇18

、深刻理解教材是有效课堂的基础

教师如果没有深入地解读教材、领会编者的意图,而为了追求新意而过度改编教材内容,替换学习材料,往往会把数学知识固有的内涵丢掉,无法有效完成教学任务。这节课作为传统的教学内容,有那么多种讲法,教材为什么要这样编排和设计呢?

教学之前,我觉得数方格对平行四边形面积公式的探究帮助不大,所以总想把它删去,节约出更多的时间来探究,但经过对教材的反复研读,我终于明白数方格在计算面积中的价值。

这是一种直观的计量面积的方法,同时也是本节课学生新旧知识的连接点,学生在数方格的过程中很容易发现平行四边形的底,高和面积与长方形有着联系,为进一步的探究提供了思路。所以,深挖教材是有效进行教学设计的第一步。

、课堂环节的合理设计是有效课堂的保证

教师除了对教材的准确把握,还要对学情进行深入的分析,只有对学生的认知起点和认识发展过程进行分析和研究,才能设计出有效促进学生发展的数学活动。

教师首先要用简约的情境带学生迅速进入课堂,并引发一系列的数学思维活动。

然后,教师要精心选择教学内容,合理设计教学形式,让课堂活动变繁为简,变杂为精在学生探究平行四边形面积公式时,教师放得多了,探究的效率必然低下,扶得多了,学生探究的空间会大大缩水,束缚学生的发展。

因此,对于教师应该给予什么样的指导,需要教师根据学情来合理预设。

三、数学思想方法的提炼是有效课堂的精髓

让学生获得基本的数学思想方法是一小学新课程改革的新视角之一。数学思想方法的孕育犹如胎儿的发育,有一个从模糊到清晰,从未成形到成形再到成熟的过程,至于转化的思想,在本册中多次用到。

如第一、二单元中,小数乘法和小数除法的计算,无不是把小数转化成学过的整数进行的。平行四边形在整个小学阶段的数学教学内容中是一个承上启下的图形,教师应该看到学生学习计算平行四边形的面积,方法的价值更大,通过学习割补转化的方法,为后面学习三角形面积、梯形面积、圆的'面积埋下了伏笔。学生以获取知识为明线,以探究数学思想方法为暗线,明暗结合与总结时的画龙点睛。让数学思想方法该露脸时就露脸,使学生知其然,更知其所以然。

教学是一门有遗憾的艺术,虽然我在课前对教学的各个环节作了精心的预设,但面对生成的时候,自己的处理依然有些草率。在让学生展示自己剪拼的作品时,当让学生展示完平行四边形沿顶点向对边作高和作任意高两种方法剪拼一个长方形后,有一个学生兴致勃勃地展示他沿平行四边形对角线剪开,通过平移得到一个新的平行四边形的方法,由于没有达到我们拼成学过图形的目标,当即我就简单地否定了,那个学生也尴尬地坐下了。

课后,这个学生坐下时的表情还深深印在我的脑海中,这个学生有着大胆动手,敢于交流分享的学习态度。他让同学们更深刻地认识到为什么一定要沿高来剪开,这是多么值得表扬啊!细节成就完美,关注课堂细节,敏锐地发现教育契机,还需要我们教师不断学习,不断努力,不断总结。

平行四边形的面积教学反思 篇19

《平行四边形的面积》一课是多边形面积的起始课,是后续三角形面积、梯形面积的基础。本课是在学生学习过长方形面积的基础上学习的,由于学生有了长方形面积的计算基础,只要学生能找到利用割补法把平行四边形转化成长方形的方法,这节课的重点就突破了。本节课我利用让学生比较两张纸片的大小,引出平行四边形面积的计算,让学生探究平行四边形面积的计算方法。

在以往的教学过程中,很多学生会出现“底×邻边”的`错误做法,所以在教学设计时,我把这种情况进行了预设,但是在课堂上全班学生没有一个学生这么回答。由于担心学生在以后的练习中会出现类似错误,同时为了让学生明白不能用“底×邻边”的错误做法,在课堂上我主动提问学生为什么要用“底×高”而不能用“底×邻边”的方法呢?通过利用平行四边形框架进行演示,让学生明白,在平行四边形框架拉伸的过程中,底和邻边的长度没有变,但是平行四边形的面积在逐渐缩小。说明平行四边形的面积和底、邻边的长度没有关系。

为了让学生明白计算平行四边形的面积时底和高的对应关系,我设计了三个动手操作的环节。首先给学生出示一个底是5厘米、高是3厘米高的平行四边形,让学生思考,看到这个平行四边形你想到了什么图形?学生很容易就想到了长是5厘米,宽是3厘米的长方形。第二次给学生出示一个底为7.5厘米,高为4厘米,另一条邻边的高是6厘米,再让学生思考并动手操作这个平行四边形可以转化成什么样长方形,大部分学生直接说出是长是7.5厘米,宽是4厘米的长方形。有几个同学说可以沿着6厘米的高剪下来,也可以拼成长方形,只能说出长是6厘米,但不知道宽是多少。让学生明白不可能剪出长是7.5厘米,宽是6厘米的长方形。第三次给学生出示一个底是30厘米,高是15厘米,另一组边是18厘米,高是25厘米的平行四边形。学生分别想出了剪成长30厘米,宽是15厘米和长是25厘米,宽是18厘米的长方形。通过这三个环节,让学生明白计算平行四边形的面积时必需是底和高是对应关系,不能随便计算。

本节课的不足之处是,在课堂上自己说的太多,让学生思考回答的少,学生回答时还总是怕学生说不好,帮助学生说,在以后的教学中要多放手,学会耐心等待,学生的能力得到锻炼了,学生的积极性也会大大提高的。

平行四边形的面积教学反思 篇20

反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:

一、创设有效的问题情景

在课的开始就以我校要建设两块绿地,一个是长方形,一个是平行四边形,现在要将种植任务平均分给五年级的四个班,如果让你来分配任务,你打算先解决什么问题?这一生活中的实际问题引出平行四边形面积的计算问题。让学生带着浓厚的兴趣开展新知的探究。这样的设计有助于学生感受数学与生活的密切联系,有助于学生学会用数学的眼光审视我们的生活,激发学生的情感体验,提高学生理解数学并运用数学解决问题的能力。

二、注重学生数学思维的发展

在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生将平行四边形转化成长方形,在学生体会转化这一数学思想方法的同时,引导学生进一步观察、思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观,使学生易于得出结论。

三、注重优化练习,拓展思维

练习设计的优化是优化教学过程的一个重要方面。本课教学过程中,我注重学练结合,习题的设计既有梯度又注重变式,同时利用教具和多媒体课件进行直观演示,帮助学生理解和掌握。

本节课的不足之处:

1、在公式的推导环节的教学中应该再强调一下转化后的长方形的长和宽与原来平行四边形的底和高之的关系,从而便于那些学习能力稍差的学生更好地理解平行四边形面积公式的`推导过程。

2、教师的语言应该再精炼一些,避免重复自己的问话或是重复学生的回答,从而可以节省一部分时间。

3、在练习中应再多给学生留一些思考的时间,尽量使每个学生都能有正确解题的体验,增强自信心。

在今后的教学中我会注意以上问题,不断改进,使我的课堂教学更加精彩。

大家都在看