勾股定理教案

笔构网

2025-12-26教案

请欣赏勾股定理教案(精选13篇),由笔构网整理,希望能够帮助到大家。

勾股定理教案 篇1

一、教学目标

1、体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。

2、探究勾股定理的逆定理的证明方法。

3、解原命题、逆命题、逆定理的概念及关系。

二、重点、难点

1、重点:掌握勾股定理的逆定理及证明。

2、难点:勾股定理的逆定理的证明。

3、难点的突破方法:

先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法。充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受。

为学生搭好台阶,扫清障碍。

⑴如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角。

⑵利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决。

⑶先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证。

三、课堂引入

创设情境:⑴怎样判定一个三角形是等腰三角形?

⑵怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想。

四、例习题分析

例1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?

⑴同旁内角互补,两条直线平行。

⑵如果两个实数的平方相等,那么两个实数平方相等。

⑶线段垂直平分线上的点到线段两端点的距离相等。

⑷直角三角形中30°角所对的直角边等于斜边的一半。

分析:⑴每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用。

⑵理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假。

本题意图在于使学生了解命题,逆命题,逆定理的概念,及它们之间的关系。

例2(P82探究)证明:如果三角形的'三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形。

分析:⑴注意命题证明的格式,首先要根据题意画出图形,然后写已知求证。

⑵如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角。

⑶利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决。

⑷先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证。

⑸先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法。充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受。

证明略。

通过让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,锻炼学生的动手操作能力,再通过探究理论证明方法,使实践上升到理论,提高学生的理性思维。

例3(补充)已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,a=n2-1,b=2n,c=n2+1(n>1)

求证:∠C=90°。

分析:⑴运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大。②分别用代数方法计算出a2+b2和c2的值。③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形。

⑵要证∠C=90°,只要证△ABC是直角三角形,并且c边最大。根据勾股定理的逆定理只要证明a2+b2=c2即可。

⑶由于a2+b2=(n2-1)2+(2n)2=n4+2n2+1,c2=(n2+1)2= n4+2n2+1,从而a2+b2=c2,故命题获证。

本题目的在于使学生明确运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大。②分别用代数方法计算出a2+b2和c2的值。③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形。

勾股定理教案范文

作为一名教职工,常常要根据教学需要编写教案,借助教案可以让教学工作更科学化。我们该怎么去写教案呢?下面是小编为大家整理的勾股定理教案范文,欢迎大家借鉴与参考,希望对大家有所帮助。

勾股定理教案

作为一名默默奉献的教育工作者,往往需要进行教案编写工作,教案有利于教学水平的提高,有助于教研活动的开展。教案应该怎么写才好呢?以下是小编为大家收集的勾股定理教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

勾股定理教案 篇2

教学 目标:

(1)理解通分的意义,理解最简公分母的意义;

(2)掌握分式的通分法则,能熟练掌握通分运算。

教学 重点:

分式通分的理解和掌握。

教学 难点:

分式通分中最简公分母的确定。

教学 工具:

投影仪

教学 方法:

启发式、讨论式

教学 过程 :

(一)引入

(1)如何计算:

由此让学生复习分数通分的意义、通分的根据、通分的法则以及最简公分母的概念。

(2)如何计算:

(3)何计算:

引导学生思考,猜想如何求解?

(二)新课

1、类比分数的通分得到分式的通分:

把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的 通分 .

注意:通分保证

(1)各分式与原分式相等;

(2)各分式分母相等。

2.通分的依据:分式的基本性质.

3.通分的关键:确定几个分式的最简公分母.

通常取各分母的所有因式的最高次幂的积作最简公分母,这样的公分母叫做 最简公分母 .

根据分式通分和最简公分母的定义,将分式xx ,xx,xx 通分:

最简公分母为:xx ,然后根据分式的`基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为xx。通分如下:

通过本例使学生对于分式的通分大致过程和思路有所了解。让学生归纳通分的思路过程。

例1 通分:

(1)xx,xx,xx ;

分析:让学生找分式的公分母,可设问“分母的系数各不相同如何解决?”,依据分数的通分找最小公倍数。

解:∵ 最简公分母是12xy 2

小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数.

解:∵最简公分母是10a 2 b 2 c 2

由学生归纳最简公分母的思路。

分式通分中求最简公分母概括为:

(1)取各分母系数的最小公倍数;

(2)凡出现的字母为底的幂的因式都要取;

(3)相同字母的幂的因式取指数最大的。

取这些因式的积就是最简公分母。

勾股定理教案

作为一名人民教师,有必要进行细致的教案准备工作,教案是教学活动的总的组织纲领和行动方案。怎样写教案才更能起到其作用呢?以下是小编为大家收集的勾股定理教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

勾股定理教案 篇3

一、内容和内容解析

1。内容

应用勾股定理及勾股定理的逆定理解决实际问题。

2。内容解析

运用勾股定理的逆定理可以从三角形边的数量关系来识别三角形的形状,它是用代数方法来研究几何图形,也是向学生渗透“数形结合”这一数学思想方法的很好素材。综合运用勾股定理及其逆定理能帮助我们解决实际问题。

基于以上分析,可以确定本课的教学重点是灵活运用勾股定理的逆定理解决实际问题。

二、目标和目标解析

1。目标

(1)灵活应用勾股定理及逆定理解决实际问题。

(2)进一步加深性质定理与判定定理之间关系的认识。

2。目标解析

达成目标(1)的标志是学生通过合作、讨论、动手实践等方式,在应用题中建立数学模型,准确画出几何图形,再熟练运用勾股定理逆定理判断三角形状及求边长、面积、角度等;

目标(2)能先用勾股定理的逆定理判断一个三角形是直角三角形,再用勾股定理及直角三角形的性质进行有关的计算和证明。

三、教学问题诊断分析

对于大部分学生将实际问题抽象成数学模型并进行解析与应用,有一定的困难,所以在教学时应该注意启发引导学生从实际生活中所遇到的问题出发,鼓励学生以勾股定理及逆定理的知识为载体建立数学模型,利用数学模型去解决实际问题。

本课的教学难点是灵活运用勾股定理及逆定理解决实际问题。

四、教学过程设计

1。复习反思,引出课题

问题1 通过前面的学习,我们对勾股定理及其逆定理的知识有一定的了解,请说出勾股定理及其逆定理的内容。

师生活动:学生回答勾股定理的内容“如果直角三角形的两条直角边长分别为,斜边长为,那么;勾股定理的逆定理“如果三角形的三边长满足,那么这个三角形是直角三角形。

追问:你能用勾股定理及逆定理解决哪些问题?

师生活动:学生通过思考举手回答,教师板书课题。

【设计意图】通过复习勾股定理及其逆定理来引入本课时的学习任务——应用勾股定理及逆定理解决有关实际问题。

2。 点击范例,以练促思

问题2 某港口位于东西方向的海岸线上。“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里。它们离开港口一个半小时后相距30海里。如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?

师生活动:学生读题,理解题意,弄清楚已知条件和需解决的问题,教师通过梯次性问题的展示,适时点拨,学生尝试画图、估测、交流中分化难点完成解答。

追问1:请同学们认真审题,弄清已知是什么?解决的问题是什么?

师生活动:学生通过思考举手回答,教师在黑板上列出:已知两种船的航速,它们的航行时间以及相距的路程, “远航”号的航向——东北方向;解决的问题是“海天”号的航向。

追问2:你能根据题意画出图形吗?

师生活动:学生尝试画图,教师在黑板上或多媒体中画出示意图。

追问3:在所画的图中哪个角可以表示“海天”号的航向?图中知道哪个角的度数?

师生活动:学生小组讨论交流回答问题“海天”号的航向只要能确定∠QPR的大小即可。组内讨论解答,小组代表展示解答过程,教师适时点评,多媒体展示规范解答过程。

解:根据题意,

因为

,即

,所以

由“远航”号沿东北方向航行可知

。因此

,即“海天”号沿西北方向航行。

课堂练习1。 课本33页练习第3题。

课堂练习2。 在

港有甲、乙两艘渔船,若甲船沿北偏东

方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度前进,1小时后甲船到达

岛,乙船到达

岛,且

岛与

岛相距17海里,你能知道乙船沿哪个方向航行吗?

【设计意图】学生在规范化的解答过程及练习中,提升对勾股定理逆定理的认识以及实际应用的能力。

3。 补充训练,巩固新知

问题3 实验中学有一块四边形的空地

若每平方米草皮需要200元,问学校需要投入多少资金购买草皮?

师生活动:先由学生独立思考。若学生有想法,则由学生先说思路,然后教师追问:你是怎么想到的?对学生思路中的合理成分进行总结;若学生没有思路,教师可引导学生分析:从所要求的结果出发是要知道四边形的面积,而四边形被它的一条对角线分成两个三角形,求出两个三角形的面积和即可。启发学生形成思路,最后由学生演板完成。

【设计意图】引导学生利用辅助线解决问题,进一步养成利用勾股定理的'逆定理解决实际问题的意识。

4。 反思小结,观点提炼

教师引导学生参照下面两个方面,回顾本节课所学的主要内容,进行相互交流:

(1)知识总结:勾股定理以及逆定理的实际应用;

(2)方法归纳:数学建模的思想。

【设计意图】通过小结,梳理本节课所学内容,总结方法,体会思想。

5。布置作业

教科书34页习题17。2第3题,第4题,第5题,第6题。

五、目标检测设计

1。小明在学校运动会上负责联络,他先从检录处走了75米到达起点,又从起点向东走了100米到达终点,最后从终点走了125米,回到检录处,则他开始走的方向是(假设小明走的每段都是直线) ( )

A。南北 B。东西 C。东北 D。西北

【设计意图】考查运用勾股定理的逆定理解决实际生活问题。

2。甲、乙两船同时从

港出发,甲船沿北偏东

的方向,以每小时9海里的速度向

岛驶去,乙船沿另一个方向,以每小时12海里的速度向

岛驶去,3小时后两船同时到达了目的地。如果两船航行的速度不变,且

两岛相距45海里,那么乙船航行的方向是南偏东多少度?

【设计意图】考查建立数学模型,准确画出几何图形,运用勾股定理的逆定理解决实际生活问题。

3。如图是一块四边形的菜地,已知

求这块菜地的面积。

【设计意图】考查利用勾股定理及逆定理将不规则图形转化为直角三角形,巧妙地求解。

勾股定理教案 篇4

教学课题:

勾股定理的应用

教学时间(日期、课时):

教材分析:

学情分析:

教学目标:

能运用勾股定理及直角三角形的判定条件解决实际问题.

在运用勾股定理解决实际问题的过程中,感受数学的“转化”思想(把解斜三角形问题转化为解直角三角形的问题),进一步发展有条理思考和有条理表达的能力,体会数学的应用价值。

教学准备

《数学学与练》

集体备课意见和主要参考资料

页边批注

教学过程

一.新课导入

本课时的教学内容是勾股定理在实际中的应用。除课本提供的情境外,教学中可以根据实际情况另行设计一些具体情境,也利用课本提供的素材组织数学活动。比如,把课本例2改编为开放式的问题情境:

一架长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑0.5m,你认为梯子的底端会发生什么变化?与同学交流.

创设学生身边的问题情境,为每一个学生提供探索的空间,有利于发挥学生的主体性;这样的问题学生常常会从自己的生活经验出发,产生不同的思考方法和结论(教学中学生可能的结论有:

底端也滑动0.5m;如果梯子的顶端滑到地面上,梯子的顶端则滑动8m,估计梯子底端的滑动小于8m,所以梯子的顶端下滑0.5m,它的底端的滑动小于0.5m;构造直角三角形,运用勾股定理计算梯子滑动前、后底端到墙的垂直距离的差,得出梯子底端滑动约0.61m的结论等)。

通过与同学交流,完善各自的想法,有利于学生主动地把实际问题转化为数学问题,从中感受用数学的眼光审视客观世界的乐趣。

二.新课讲授

问题一在上面的情境中,如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?

组织学生尝试用勾股定理解决问题,对有困难的学生教师给予及时的帮助和指导.

问题二从上面所获得的信息中,你对梯子下滑的变化过程有进一步的思考吗?与同学交流.

设计问题二促使学生能主动积极地从数学的`角度思考实际问题.教学中学生可能会有多种思考.比如:

①这个变化过程中,梯子底端滑动的距离总比顶端下滑的距离大;

②因为梯子顶端下滑到地面时,顶端下滑了8m,而底端只滑动4m,所以这个变化过程中,梯子底端滑动的距离不一定比顶端下滑的距离大;

③由勾股数可知,当梯子顶端下滑到离地面的垂直距离为6m,即顶端下滑2m时,底端到墙的垂直距离是8m,即底端电滑动2m等。

教学中不要把寻找规律作为这个探索活动的目标,应让学生进行充分的交流,使学生逐步学会运用数学的眼光去审视客观世界,从不同的角度去思考问题,获得一些研究问题的经验和方法。

3.例题教学

课本的例1是勾股定理的简单应用,教学中可根据教学的实际情况补充一些实际应用问题,把课本习题2.7第4题作为补充例题.通过这个问题的讨论,把“32+b2=c2”看作一个方程,设折断处离地面x尺,依据问题给出的条件就把它转化为熟悉的会解的一元二次方程32+x2=(10—x)2,从中可以让学生感受数学的“转化”思想,进一步了解勾股定理的悠久历史和我国古代人民的聪明才智。

三.巩固练习

1.甲、乙两人同时从同一地点出发,甲往东走了4km,乙往南走了6km,这时甲、乙两人相距__________km。

2.如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(取3)是()。

(A)20cm(B)10cm(C)14cm(D)无法确定

3.如图,一块草坪的形状为四边形ABCD,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m.求这块草坪的面积.

四.小结

我们知道勾股定理揭示了直角三角形的三边之间的数量关系,已知直角三角形中的任意两边就可以依据勾股定理求出第三边.从应用勾股定理解决实际问题中,我们进一步认识到把直角三角形中三边关系“a2+b2=c2”看成一个方程,只要依据问题的条件把它转化为我们会解的方程,就把解实际问题转化为解方程.

勾股定理教案 篇5

教学目标

知识与技能:

了解勾股定理的一些证明方法,会简单应用勾股定理解决问题

过程与方法:

在充分观察、归纳、猜想的基础上,探究勾股定理,在探究的过程中,发展合情推理,体会数形结合、从特殊到一般等数学思想。

情感态度价值观:

通过对我国古代研究勾股定理的成就介绍,培养学生的民族自豪感。

教学过程

1、创设情境

问题1国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”。2002年在北京召开了第24届国际数学家大会。下图就是大会会徽的图案。你见过这个图案吗?它由哪些我们学习过的基本图形组成?这个图案有什么特别的含义?

师生活动:教师引导学生寻找图形中的`直角三角形和正方形等,并引导学生发现直角三角形的全等关系,指出通过今天的学习,就能理解会徽图案的含义。

设计意图:本节课是本章的起始课,重视引言教学,从国际数学家大会的会徽说起,设置悬念,引入课题。

2、探究勾股定理

观看洋葱数学中关于勾股定理引入的视频,让我们一起走进神奇的数学世界

问题2相传2500多年前,毕达哥拉斯有一次在朋友家作客时,发现朋友家用转铺成的地面图案反应了直角三角形三边的某种数量关系,请你观察下图,你从中发现了什么数量关系?

师生活动:学生先独立观察思考一分钟后,小组交流合作分析图形中两个蓝色正方形与橙色正方形有哪些数量关系,教师参与学生的讨论

追问:由这三个正方形的边长构成的等腰直角三角形三条边长之间又有怎么样的关系?

师生活动:教师引导学生发现正方形的面积等于边长的平方,归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方。

设计意图:从最特殊的等腰直角三角形入手,便于学生观察得到结论

问题3:数学研究遵循从特殊到一般的数学思想,既然我们得到了等腰直角三角形三边的这种特殊的数量关系,那我们不妨大胆猜测在一般的直角三角形(在下图的方格纸中,每个方格的面积是1)中,这种特殊的数量关系也同样成立。

师生活动:学生独立思考后小组讨论,难点是如何证明求以斜边为边长的正方形的面积,可由师生共同总结得出可以通过割、补两种方法,求出其面积。

勾股定理教案 篇6

教学课题:勾股定理的应用

教学时间(日期、课时):

教材分析

学情分析

教 学目标:

能运用勾股定理及直角三角形的判定条件解决实际问题。

在运用勾股定理解决实际问题的过程中,感受数学的“转化” 思想(把解斜三角形问题转化为解直角三角形的问题),进一步发展有条理思考和有条理表达的能力,体会数学的应用价值。

教学准备

《数学学与练》

集体备课意见和主要参考资料

页边批注

教学过程

一、 新课导入

本课时的教学内容是勾股定理在实际中的应用。除课本提供的情境外,教学中可以根据实际情况另行设计一些具体情境,也利用课本提供的素材组织数学活动。比如,把课本例2改编为开放式的问题情境:

一架长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m。如果梯子的顶端下滑0.5m,你认为梯子的底端会发生什么变化?与同学交流 。

创设学生身边的问题情境,为每一个学生提供探索的空间,有利于发挥学生的主体性;这样的问题学生常常会从自己的生活经验出发,产生不同的思考方法和结论(教学中学生可能的.结论有:底端也滑动 0.5m;如果梯子的顶端滑到地面 上,梯子的顶端则滑动8m,估计梯子底端的滑动小于8m,所以梯子的顶端 下滑0.5m,它的底端的滑动小于0.5m;构造直角三角形,运用勾股定理计算梯子滑动前、后底端到墙的垂直距离的差,得出梯子底端滑动约0.61m的结论等);通过与同学交流,完善各自的想法,有利于学生主动地把实际问题转化为数学问题 ,从中感受用数学的眼光审视客观世界的乐趣 。

二、新课讲授

问题一 在上面的情境中,如果梯子的顶端下滑 1m,那么梯子的底端滑动多少米?

组织学生尝试用勾股定理解决问题,对有困难的学生教师给予及时的帮助和指导。

问题二 从上面所获得的信息中,你对梯子下滑的变化过程有进一步的思考吗?与同学交流。

设计问题二促使学生能主动积 极地从数学的角度思考实际问题。教学中学生可能会有多种思考、比如,①这个变化过程中,梯子底端滑动的距离总比顶端下滑的距离大;②因为梯子顶端 下滑到地面时,顶端下滑了8m,而底端只滑动4m,所以这个变化过程中,梯子底端滑动的距离不一定比顶端下滑的距离大;③由勾股数可知,当梯子顶端下滑到离地面的垂直距离为6m,即顶端下滑2m时,底端到墙的垂直距离是8m,即底端电滑动2m等。教学中不要把寻找规律作为这个探索活动的目标,应让学生进行充分的交流,使学生逐步学会运用数学的眼光去审视客观世界,从不同的角度去思考问题,获得一些研究问题的经验和方法、

3、例题教学

课本的例1是勾股定理的简单应用,教学中可根据教学的实际情况补充一些实际应用问题,把课本习题2.7第4题作为补充例题。通过这个问题的讨论,把“32+b2=c2”看作一个方程,设折断处离地面x尺,依据问题给出的条件就把它转化为熟悉的会解的一元二次方程32+x2=(10—x)2,从中可以让学生感受数学的“转化”思想,进一步了解勾股定理的悠久历史和我国古代人民的聪明才智、

三、巩固练习

1、甲、乙两人同时从同一地点出发,甲往东走了4km,乙往南走了6km,这时甲、乙两人相距__________km。

2、如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是( )。

(A)20cm (B)10cm (C)14cm (D)无法确定

3、如图,一块草坪的形状为四边形ABCD,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m。求这块草坪的面积。

四、小结

我们知道勾股定理揭示了直角三角形的三边之间的数量关系,已知直角 三角形中的任意两边就可以依据勾股定理求出第三边。从应用勾股定理解决实际问题中,我们进一步认识到把直角三角形中三边关系“a2+b2=c2”看成一个方程,只要 依据问题的条件把它转化为我们会解的方程,就把解实际问题转化为解方程。

勾股定理教案 篇7

一、内容和内容解析

1。内容

应用勾股定理及勾股定理的逆定理解决实际问题。

2。内容解析

运用勾股定理的逆定理可以从三角形边的数量关系来识别三角形的形状,它是用代数方法来研究几何图形,也是向学生渗透“数形结合”这一数学思想方法的很好素材。综合运用勾股定理及其逆定理能帮助我们解决实际问题。

基于以上分析,可以确定本课的教学重点是灵活运用勾股定理的逆定理解决实际问题。

二、目标和目标解析

1。目标

(1)灵活应用勾股定理及逆定理解决实际问题。

(2)进一步加深性质定理与判定定理之间关系的认识。

2。目标解析

达成目标(1)的标志是学生通过合作、讨论、动手实践等方式,在应用题中建立数学模型,准确画出几何图形,再熟练运用勾股定理逆定理判断三角形状及求边长、面积、角度等;

目标(2)能先用勾股定理的逆定理判断一个三角形是直角三角形,再用勾股定理及直角三角形的性质进行有关的计算和证明。

三、教学问题诊断分析

对于大部分学生将实际问题抽象成数学模型并进行解析与应用,有一定的困难,所以在教学时应该注意启发引导学生从实际生活中所遇到的问题出发,鼓励学生以勾股定理及逆定理的知识为载体建立数学模型,利用数学模型去解决实际问题。

本课的教学难点是灵活运用勾股定理及逆定理解决实际问题。

四、教学过程设计

1。复习反思,引出课题

问题1通过前面的学习,我们对勾股定理及其逆定理的知识有一定的了解,请说出勾股定理及其逆定理的内容。

师生活动:学生回答勾股定理的内容“如果直角三角形的两条直角边长分别为,斜边长为,那么;勾股定理的逆定理“如果三角形的三边长满足,那么这个三角形是直角三角形。

追问:你能用勾股定理及逆定理解决哪些问题?

师生活动:学生通过思考举手回答,教师板书课题。

【设计意图】通过复习勾股定理及其逆定理来引入本课时的学习任务——应用勾股定理及逆定理解决有关实际问题。

2。点击范例,以练促思

问题2某港口位于东西方向的海岸线上。“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里。它们离开港口一个半小时后相距30海里。如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?

师生活动:学生读题,理解题意,弄清楚已知条件和需解决的问题,教师通过梯次性问题的展示,适时点拨,学生尝试画图、估测、交流中分化难点完成解答。

追问1:请同学们认真审题,弄清已知是什么?解决的问题是什么?

师生活动:学生通过思考举手回答,教师在黑板上列出:已知两种船的航速,它们的航行时间以及相距的路程,“远航”号的航向——东北方向;解决的问题是“海天”号的航向。

追问2:你能根据题意画出图形吗?

师生活动:学生尝试画图,教师在黑板上或多媒体中画出示意图。

追问3:在所画的图中哪个角可以表示“海天”号的航向?图中知道哪个角的度数?

师生活动:学生小组讨论交流回答问题“海天”号的航向只要能确定∠QPR的大小即可。组内讨论解答,小组代表展示解答过程,教师适时点评,多媒体展示规范解答过程。

解:根据题意,

因为

,即

,所以

由“远航”号沿东北方向航行可知

。因此

,即“海天”号沿西北方向航行。

课堂练习1。课本33页练习第3题。

课堂练习2。在

港有甲、乙两艘渔船,若甲船沿北偏东

方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度前进,1小时后甲船到达

岛,乙船到达

岛,且

岛与

岛相距17海里,你能知道乙船沿哪个方向航行吗?

【设计意图】学生在规范化的解答过程及练习中,提升对勾股定理逆定理的认识以及实际应用的能力。

3。补充训练,巩固新知

问题3实验中学有一块四边形的空地

若每平方米草皮需要200元,问学校需要投入多少资金购买草皮?

师生活动:先由学生独立思考。若学生有想法,则由学生先说思路,然后教师追问:你是怎么想到的?对学生思路中的合理成分进行总结;若学生没有思路,教师可引导学生分析:从所要求的结果出发是要知道四边形的面积,而四边形被它的`一条对角线分成两个三角形,求出两个三角形的面积和即可。启发学生形成思路,最后由学生演板完成。

【设计意图】引导学生利用辅助线解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识。

4。反思小结,观点提炼

教师引导学生参照下面两个方面,回顾本节课所学的主要内容,进行相互交流:

(1)知识总结:勾股定理以及逆定理的实际应用;

(2)方法归纳:数学建模的思想。

【设计意图】通过小结,梳理本节课所学内容,总结方法,体会思想。

5。布置作业

教科书34页习题17。2第3题,第4题,第5题,第6题。

五、目标检测设计

1。小明在学校运动会上负责联络,他先从检录处走了75米到达起点,又从起点向东走了100米到达终点,最后从终点走了125米,回到检录处,则他开始走的方向是(假设小明走的每段都是直线)()

A。南北B。东西C。东北D。西北

【设计意图】考查运用勾股定理的逆定理解决实际生活问题。

2。甲、乙两船同时从港出发,甲船沿北偏东的方向,以每小时9海里的速度向岛驶去,乙船沿另一个方向,以每小时12海里的速度向岛驶去,3小时后两船同时到达了目的地。如果两船航行的速度不变,且两岛相距45海里,那么乙船航行的方向是南偏东多少度?

【设计意图】考查建立数学模型,准确画出几何图形,运用勾股定理的逆定理解决实际生活问题。

3。如图是一块四边形的菜地,已知求这块菜地的面积。

【设计意图】考查利用勾股定理及逆定理将不规则图形转化为直角三角形,巧妙地求解。

勾股定理教案 篇8

能运用勾股定理及直角三角形的判别条件解决简单的实际问题.

勾股定理及直角三角形的判别条件的运用.

直角三角形模型的建立.

一.课前复习

勾股定理及勾股定理逆定理的区别

二.新课学习

探究点一:蚂蚁沿圆柱侧面爬行的最短路径问题

1.3如图,有一个圆柱,它的高等于12cm,底面圆的周长是18cm.在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,沿圆柱侧面爬行的最短路程是多少?

思考:

1.利用学具,尝试从A点到B点沿圆柱侧面画出几条线路,你认为

这样的线路有几条?可分为几类?

2.将右图的圆柱侧面剪开展开成一个长方形,B点在什么位置?从

A点到B点的最短路线是什么?你是如何画的?

1.33.蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?你是如何解答这个问题的?画出图形,写出解答过程。

4.你是如何将这个实际问题转化为数学问题的?

小结:

你是如何解决圆柱体侧面上两点之间的最短距离问题的?

探究点二:利用勾股定理逆定理如何判断两线垂直?

1.31.31.3李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直底边AB,但他随身只带了卷尺。(参看P13页雕塑图1-13)

(1)你能替他想办法完成任务吗?

1.31.3(2)李叔叔量得AD的长是30cm,AB的长是40cm,BD长是50cm.AD边垂直于AB边吗?你是如何解决这个问题的?

(3)小明随身只有一个长度为20cm的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?

小结:通过本道例题的探索,判断两线垂直,你学会了什么方法?

探究点三:利用勾股定理的方程思想在实际问题中的应用

例图1-14是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB一样长.已知滑梯的`高度CE=3m,CD=1m,试求滑道AC的长.

1.3

思考:

1.求滑道AC的长的问题可以转化为什么数学问题?

2.你是如何解决这个问题的?写出解答过程。

小结:

方程思想是勾股定理中的重要思想,勾股定理反应的直角三角形三边的关系正是构建方程的基础.

四.课堂小结:本节课你学到了什么?

三.新知应用

1.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离.

1.3

2.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()

1.3

五.作业布置:习题1.41,3,4题

一、教师我的体会:

①、我根据学生实际情况认真备课这节课,书本总共两个例题,且两个例题都很难,如果一节课就讲这两题难题,那一方面学生的学习效率会比较低,另一方面会使学生畏难情绪增加。所以,我简化教材,使教材易于操作,让学生易于学习,有利于学生学习新知识、接受新知识,降低学习难度。

把教材读薄,②、除了备教材外,还备学生。从教案及授课过程也可以看出,充分考虑到了学生的年龄特点:对新事物有好奇心,但对新知识的钻研热情又不够高,这样,造成教学难度较大,为了改变这一状况,在处理教材时,把某些数学语言转换成通俗文字来表达,把难度大的运用能力降低为难度稍细的理解能力,让学生乐于面对奥妙而又有一定深度的数学,乐于学习数学。

③、新课选用的例子、练习,都是经过精心挑选的,运用性强,贴近生活,与生活实际紧密联系,既达到学习、巩固新知识的目的,同时,又充分展现出数学教学的重大特征:数学源于生活实际,又服务于生活实际。勾股定理源于生活,但同时它又能极大的为生活服务。

④、使用多媒体进行教学,使知识显得形象直观,充分发挥现代技术作用。

二、学生体会:

课前,我们也去查阅了一些资料,关于勾股定理的证明以及有关的一些应用,通过这节课,真真发现勾股定理真真来源于生活,我们的几何图形和几何计算对于勾股定理来说非常广泛,而且以后更要用好它。对于勾股定理都应用时,我觉得关键是找到相关的三角形,并且分清直角边或斜边,灵活机智地进行计算和一些推理。另外与同学间在数学课上有自主学习的机会,有相互之间的讨论、争辩等协作的机会,在合作学习的过程中共同提高我觉得都是难得的机会。锻炼了能力,提高了思维品质,并且勾股定理的应用中我觉得图形很美,古代的数学家已经有了很好的研究并作出了很大的贡献,现代的艺术家们也在各方面用到很多,同时在课堂中渐渐地培养了我们的数学兴趣和一定的"思维能力。

不过课堂上老师在最后一题的画图中能放一放,让我们有时间去思考怎么画,那会更好些,自然思维也得到了发展。课上老师鼓励我们尝试不完善的甚至错误的意见,大胆发表自己的见解,体现了我们是学习的主人。数学课堂里充满了智慧。

勾股定理教案 篇9

一、内容和内容解析

1。内容

应用勾股定理及勾股定理的逆定理解决实际问题。

2。内容解析

运用勾股定理的逆定理可以从三角形边的数量关系来识别三角形的形状,它是用代数方法来研究几何图形,也是向学生渗透“数形结合”这一数学思想方法的很好素材。综合运用勾股定理及其逆定理能帮助我们解决实际问题。

基于以上分析,可以确定本课的教学重点是灵活运用勾股定理的逆定理解决实际问题。

二、目标和目标解析

1。目标

(1)灵活应用勾股定理及逆定理解决实际问题。

(2)进一步加深性质定理与判定定理之间关系的认识。

2。目标解析

达成目标(1)的标志是学生通过合作、讨论、动手实践等方式,在应用题中建立数学模型,准确画出几何图形,再熟练运用勾股定理逆定理判断三角形状及求边长、面积、角度等;

目标(2)能先用勾股定理的逆定理判断一个三角形是直角三角形,再用勾股定理及直角三角形的性质进行有关的计算和证明。

三、教学问题诊断分析

对于大部分学生将实际问题抽象成数学模型并进行解析与应用,有一定的困难,所以在教学时应该注意启发引导学生从实际生活中所遇到的问题出发,鼓励学生以勾股定理及逆定理的知识为载体建立数学模型,利用数学模型去解决实际问题。

本课的教学难点是灵活运用勾股定理及逆定理解决实际问题。

四、教学过程设计

1。复习反思,引出课题

问题1 通过前面的学习,我们对勾股定理及其逆定理的知识有一定的了解,请说出勾股定理及其逆定理的内容。

师生活动:学生回答勾股定理的内容“如果直角三角形的两条直角边长分别为,斜边长为,那么;勾股定理的逆定理“如果三角形的三边长满足,那么这个三角形是直角三角形。

追问:你能用勾股定理及逆定理解决哪些问题?

师生活动:学生通过思考举手回答,教师板书课题。

【设计意图】通过复习勾股定理及其逆定理来引入本课时的学习任务——应用勾股定理及逆定理解决有关实际问题。

2。 点击范例,以练促思

问题2 某港口位于东西方向的海岸线上。“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里。它们离开港口一个半小时后相距30海里。如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?

师生活动:学生读题,理解题意,弄清楚已知条件和需解决的`问题,教师通过梯次性问题的展示,适时点拨,学生尝试画图、估测、交流中分化难点完成解答。

追问1:请同学们认真审题,弄清已知是什么?解决的问题是什么?

师生活动:学生通过思考举手回答,教师在黑板上列出:已知两种船的航速,它们的航行时间以及相距的路程, “远航”号的航向——东北方向;解决的问题是“海天”号的航向。

追问2:你能根据题意画出图形吗?

师生活动:学生尝试画图,教师在黑板上或多媒体中画出示意图。

追问3:在所画的图中哪个角可以表示“海天”号的航向?图中知道哪个角的度数?

师生活动:学生小组讨论交流回答问题“海天”号的航向只要能确定∠QPR的大小即可。组内讨论解答,小组代表展示解答过程,教师适时点评,多媒体展示规范解答过程。

解:根据题意,

因为

,即

,所以

由“远航”号沿东北方向航行可知

。因此

,即“海天”号沿西北方向航行。

课堂练习1。 课本33页练习第3题。

课堂练习2。 在

港有甲、乙两艘渔船,若甲船沿北偏东

方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度前进,1小时后甲船到达

岛,乙船到达

岛,且

岛与

岛相距17海里,你能知道乙船沿哪个方向航行吗?

【设计意图】学生在规范化的解答过程及练习中,提升对勾股定理逆定理的认识以及实际应用的能力。

3。 补充训练,巩固新知

问题3 实验中学有一块四边形的空地

若每平方米草皮需要200元,问学校需要投入多少资金购买草皮?

师生活动:先由学生独立思考。若学生有想法,则由学生先说思路,然后教师追问:你是怎么想到的?对学生思路中的合理成分进行总结;若学生没有思路,教师可引导学生分析:从所要求的结果出发是要知道四边形的面积,而四边形被它的一条对角线分成两个三角形,求出两个三角形的面积和即可。启发学生形成思路,最后由学生演板完成。

【设计意图】引导学生利用辅助线解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识。

4。 反思小结,观点提炼

教师引导学生参照下面两个方面,回顾本节课所学的主要内容,进行相互交流:

(1)知识总结:勾股定理以及逆定理的实际应用;

(2)方法归纳:数学建模的思想。

【设计意图】通过小结,梳理本节课所学内容,总结方法,体会思想。

5。布置作业

教科书34页习题17。2第3题,第4题,第5题,第6题。

五、目标检测设计

1。小明在学校运动会上负责联络,他先从检录处走了75米到达起点,又从起点向东走了100米到达终点,最后从终点走了125米,回到检录处,则他开始走的方向是(假设小明走的每段都是直线) ( )

A。南北 B。东西 C。东北 D。西北

【设计意图】考查运用勾股定理的逆定理解决实际生活问题。

2。甲、乙两船同时从

港出发,甲船沿北偏东

的方向,以每小时9海里的速度向

岛驶去,乙船沿另一个方向,以每小时12海里的速度向

岛驶去,3小时后两船同时到达了目的地。如果两船航行的速度不变,且

两岛相距45海里,那么乙船航行的方向是南偏东多少度?

【设计意图】考查建立数学模型,准确画出几何图形,运用勾股定理的逆定理解决实际生活问题。

3。如图是一块四边形的菜地,已知

求这块菜地的面积。

【设计意图】考查利用勾股定理及逆定理将不规则图形转化为直角三角形,巧妙地求解。

勾股定理教案 篇10

学习目标

1、通过拼图,用面积的方法说明勾股定理的正确性。

2、探索勾股定理的过程,发展合情推理的能力,体会数型结合的思想。

重点难点

或学习建议学习重点:用面积的方法说明勾股定理的正确。

学习难点:勾股定理的应用。

学习过程教师

二次备课栏

自学准备与知识导学:

这是1955年希腊为纪念一位数学家曾经发行的邮票。

邮票上的图案是根据一个著名的数学定理设计的。

学习交流与问题研讨:

1、探索

问题:分别以图中的直角三角形三边为边向三角形外

作正方形,小方格的面积看做1,求这三个正方形的面积?

S正方形BCED=S正方形ACFG=S正方形ABHI=

发现:

2、实验

在下面的'方格纸上,任意画几个顶点都在格点上的三角形;并分别以这个三角形的各边为一边向三角形外做正方形并计算出正方形的面积。

请完成下表:

S正方形BCEDS正方形ACFGS正方形ABHIS正方形BCED、S正方形ACFG、S正方形ABHI的关系

112

145

41620

91625

发现:

如何用直角三角形的三边长来表示这个结论?

这个结论就是我们今天要学习的勾股定理:

如图:我国古代把直角三角形中,较短的直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦”,所以勾股定理可表示为:弦股还可以表示为:或勾

练习检测与拓展延伸:

练习1、求下列直角三角形中未知边的长

练习2、下列各图中所示的线段的长度或正方形的面积为多少。

(注:下列各图中的三角形均为直角三角形)

例1、如图,在四边形中,∠,∠,,求。

检测:

1、在Rt△ABC中,∠C=90°(1)若a=5,b=12,则c=________;

(2)b=8,c=17,则S△ABC=________。

2、在Rt△ABC中,∠C=90,周长为60,斜边与一条直角边之比为13∶5,则这个三角形三边长分别是()

A、5、4、3、;B、13、12、5;C、10、8、6;D、26、24、10

3、若等腰三角形中相等的两边长为10cm,第三边长为16cm,那么第三边上的高为()

A。12cmB。10cmC。8cmD。6cm

4、要登上8m高的建筑物,为了安全需要,需使梯子底端离建筑物6m,至少需要多长的梯子?(画出示意图)

5、飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4千米处,过了20秒,飞机距离这个男孩5千米,飞机每小时飞行多少千米?

课后反思或经验总结:

1、什么叫勾股定理;

2、什么样的三角形的三边满足勾股定理;

3、用勾股定理解决一些实际问题。

勾股定理教案 篇11

重点、难点分析

本节内容的重点是勾股定理的逆定理及其应用.它可用边的关系判断一个三角形是否为直角三角形.为判断三角形的形状提供了一个有力的依据.

本节内容的难点是勾股定理的逆定理的应用.在用勾股定理的逆定理时,分不清哪一条边作斜边,因此在用勾股定理的逆定理判断三角形的形状时而出错;另外,在解决有关综合问题时,要将给的边的数量关系经过代数变化,最后达到一个目标式,这种“转化”对学生来讲也是一个困难的地方.

教法建议:

本节课教学模式主要采用“互动式”教学模式及“类比”的教学方法.通过前面所学的垂直平分线定理及其逆定理,做类比对象,让学生自己提出问题并解决问题.在课堂教学中营造轻松、活泼的课堂气氛.通过师生互动、生生互动、学生与教材之间的互动,造成“情意共鸣,沟通信息,反馈流畅,思维活跃”,达到培养学生思维能力的目的.具体说明如下:

(1)让学生主动提出问题

利用类比的学习方法,由学生将上节课所学习的勾股定理的逆命题书写出来.这里分别找学生口述文字;用符号、图形的形式板书逆命题的内容.所有这些都由学生自己完成,估计学生不会感到困难.这样设计主要是培养学生善于提出问题的习惯及能力.

(2)让学生自己解决问题

判断上述逆命题是否为真命题?对这一问题的解决,学生会感到有些困难,这里教师可做适当的点拨,但要尽可能的让学生的发现和探索,找到解决问题的思路.

(3)通过实际问题的解决,培养学生的数学意识.

教学目标:

1、知识目标:

(1)理解并会证明勾股定理的`逆定理;

(2)会应用勾股定理的逆定理判定一个三角形是否为直角三角形;

(3)知道什么叫勾股数,记住一些觉见的勾股数.

2、能力目标:

(1)通过勾股定理与其逆定理的比较,提高学生的辨析能力;

(2)通过勾股定理及以前的知识联合起来综合运用,提高综合运用知识的能力.

3、情感目标:

(1)通过自主学习的发展体验获取数学知识的感受;

(2)通过知识的纵横迁移感受数学的辩证特征.

教学重点:勾股定理的逆定理及其应用

教学难点:勾股定理的逆定理及其应用

教学用具:直尺,微机

教学方法:以学生为主体的讨论探索法

教学过程:

1、新课背景知识复习(投影)

勾股定理的内容

文字叙述(投影显示)

符号表述

图形(画在黑板上)

2、逆定理的获得

(1)让学生用文字语言将上述定理的逆命题表述出来

(2)学生自己证明

逆定理:如果三角形的三边长 有下面关系:

那么这个三角形是直角三角形

强调说明:(1)勾股定理及其逆定理的区别

勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理.

(2)判定直角三角形的方法:

①角为 、②垂直、③勾股定理的逆定理

2、 定理的应用(投影显示题目上)

例1 如果一个三角形的三边长分别为

则这三角形是直角三角形

例2 如图,已知:CD⊥AB于D,且有

求证:△ACB为直角三角形。

以上例题,分别由学生先思考,然后回答.师生共同补充完善.(教师做总结)

4、课堂小结:

(1)逆定理应用时易出现的错误:分不清哪一条边作斜边(最大边)

(2)判定是否为直角三角形的一种方法:结合勾股定理和代数式、方程综合运用。

5、布置作业:

a、书面作业P131#9

b、上交作业:已知:如图,△DEF中,DE=17,EF=30,EF边上的中线DG=8

求证:△DEF是等腰三角形

勾股定理教案 篇12

教学目标:

一知识技能

1.理解勾股定理的逆定理的证明方法和证明过程;

2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是直角三角形;

二数学思考

1.通过勾股定理的逆定理的探索,经历知识的发生发展与形成的过程;

2.通过三角形三边的数量关系来判断三角形的形状,体验数形结合法的应用.

三解决问题

通过勾股定理的逆定理的证明及其应用,体会数形结合法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题.

四情感态度

1.通过三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一关系;

2.在探究勾股定理的逆定理的'证明及应用的活动中,通过一系列富有探究性的问题,渗透与他人交流合作的意识和探究精神.

教学重难点:

一重点:勾股定理的逆定理及其应用.

二难点:勾股定理的逆定理的证明.

教学方法

启发引导分组讨论合作交流等。

教学媒体

多媒体课件演示。

教学过程:

一复习孕新,引入课题

问题:

(1) 勾股定理的内容是什么?

(2) 求以线段ab为直角边的直角三角形的斜边c的长:

① a=3,b=4

② a=2.5,b=6

③ a=4,b=7.5

(3) 分别以上述abc为边的三角形的形状会是什么样的呢?

二动手实践,检验推测

1.把准备好的一根打了13个等距离结的绳子,按3个结4个结5个结的长度为边摆放成一个三角形,请观察并说出此三角形的形状?

学生分组活动,动手操作,并在组内进行交流讨论的基础上,作出实践性预测.

教师深入小组参与活动,并帮助指导部分学生完成任务,得出勾股定理的逆命题.在此基础上,介绍:古埃及和我国古代大禹治水都是用这种方法来确定直角的.

2.分别以2.5cm6cm6.5cm和4cm7.5cm8.5cm为三边画出两个三角形,请观察并说出此三角形的形状?

3.结合三角形三边长度的平方关系,你能猜一猜三角形的三边长度与三角形的形状之间有怎样的关系吗?

三探索归纳,证明猜想

问题

1.三边长度分别为3 cm4 cm5 cm的三角形与以3 cm4 cm为直角边的直角三角形之间有什么关系?你是怎样得到的?

2.你能证明以2.5cm6cm6.5cm和4cm7.5cm8.5cm为三边长的三角形是直角三角形吗?

3.如图18.2-2,若△ABC的三边长

满足

,试证明△ABC是直角三角形,请简要地写出证明过程.

教师提出问题,并适时诱导,指导学生完成问题3的证明.之后,归纳得出勾股定理的逆定理.

四尝试运用,熟悉定理

问题

1例1:判断由线段

组成的三角形是不是直角三角形:

(1)

(2)

2三角形的两边长分别为3和4,要使这个三角形是直角三角形,则第三条边长是多少?

教师巡视,了解学生对知识的掌握情况.

特别关注学生在练习中反映出的问题,有针对性地讲解,学生能否熟练地应用勾股定理的逆定理去分析和解决问题

五类比模仿,巩固新知

1.练习:练习题13.

2.思考:习题18.2第5题.

部分学生演板,剩余学生在课堂练习本上独立完成.

小结梳理,内化新知

六1.小结:教师引导学生回忆本节课所学的知识.

2.作业:

(1)必做题:习题18.2第1题(2)(4)和第3题;

(2)选做题:习题18.2第46题.

勾股定理教案 篇13

一、创设问属情境,引入新课

活动1(1)总结直角三角形有哪些性质.(2)一个三角形,满足什么条件是直角三角形?

设计意图:通过对前面所学知识的归纳总结,联想到用三边的关系是否可以判断一个三角形为直角三角形,提高学生发现反思问题的能力.

师生行为学生分组讨论,交流总结;教师引导学生回忆.

本活动,教师应重点关注学生:①能否积极主动地回忆,总结前面学过的旧知识;②能否“温故知新”.

生:直角三角形有如下性质:(1)有一个角是直角;(2)两个锐角互余,(3)两直角边的平方和等于斜边的平方:(4)在含30°角的直角三角形中,30°的角所对的直角边是斜边的一半.

师:那么,一个三角形满足什么条件,才能是直角三角形呢?

生:有一个内角是90°,那么这个三角形就为直角三角形.

生:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.

师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b斜边c具有一定的数量关系即a2+b2=c2,我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人如何做?

二、讲授新课

活动2问题:据说古埃及人用下图的方法画直角:把一根长蝇打上等距离的13个结,然后以3个结,4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.

这个问题意味着,如果围成的三角形的三边分别为3、4、5.有下面的.关系“32+42=52”.那么围成的三角形是直角三角形.

画画看,如果三角形的三边分别为2.5cm,6cm,6.5cm,有下面的关系,“2.52+62=6.52,画出的三角形是直角三角形吗?换成三边分别为4cm、7.5cm、8.5cm.再试一试.

设计意图:由特殊到一般,归纳猜想出“如果三角形三边a,b,c满足a2+b2=c2,那么这个三角形就为直免三角形的结论,培养学生动手操作能力和寻求解决数学问题的一般方法.

师生行为让学生在小组内共同合作,协手完成此活动.教师参与此活动,并给学生以提示、启发.在本活动中,教师应重点关注学生:①能否积极动手参与.②能否从操作活动中,用数学语言归纳、猜想出结论.③学生是否有克服困难的勇气.

生:我们不难发现上图中,第(1)个结到第(4)个结是3个单位长度即AC=3;同理BC=4,AB=5.因为32+42=52.我们围成的三角形是直角三角形.

生:如果三角形的三边分别是2.5cm,6cm,6.5cm.我们用尺规作图的方法作此三角形,经过测量后,发现6.5cm的边所对的角是直角,并且2.52+62=6.52.

再换成三边分别为4cm,7.5cm,8.5cm的三角形,目标可以发现8.5cm的边所对的角是直角,且也有42+7.52=8.52.

是不是三角形的三边只要有两边的平方和等于第三边的平方,就能得到一个直角三角形呢?

活动3下面的三组数分别是一个三角形的三边长?

大家都在看