比的意义教学设计

笔构网

2025-12-26教案

请欣赏比的意义教学设计(精选20篇),由笔构网整理,希望能够帮助到大家。

比的意义教学设计 篇1

教学目标:

1、使学生经历比的。概念的抽象过程,理解比的意义,感悟数学知识之间的内在联系,培养观察、比较、抽象、概括以及合情推理的能力。

2、使学生掌握比的读法、写法,知道比的各部分名称,理解并掌握比与除法、分数的关系,掌握求比值的方法,会正确求比值。

教学重点、难点:建构比的意义。

教学课件:多媒体课件。

教学过程:

一、激情导课

1、根据情境写除法算式。

师:同学们,你们好!谁愿意告诉老师你们今年多大了?

师:大多数同学都是12岁,如果李老师今年24岁。(板书:生12师24)

师:你能根据老师年龄和同学年龄这两个信息,提一个用除法来解决的数学问题吗?

生:老师的年龄是同学年龄的几倍?怎样列式?

生:24÷12(板书)

生:同学的年龄是老师年龄的几分之几?又该怎样列式?

生:12÷24(板书)

2、揭示课题,引出比。

师:上面的两个问题都是用除法算式来表示两种数量的关系的。其实这种两数相除的关系我们数学上还有一种新的表示形式,这就是我们今天所要研究的新内容比。(板书:比)

二、民主导学

任务(一)根据概念理解比。

1、任务呈现:师:那么什么叫做比呢?请大家打开数学书第68页,书上已经有了说明,找一找,齐读这句话。

师:你是怎样理解这句话的?

2、自主学习

独立思考后小组合作

3、展示交流:

生:两个数相除又可以写成这两个数的比。

师:你认为这句话里哪个词是最重要的?

师:正如大家所说,两数相除又叫做这两个数的比。(板书:两数相除又叫做这两个数的比。)这就是比的意义。(板书:的意义)齐读课题。

师:根据比的意义,能不能把刚才的除法算式改写成比呢?24÷12=24:12(板书:24:12),比的写法,在两个数中间点上两个小圆点,就像我们语文上写的冒号一样,在比中,我们把它叫做比号,也可以写成分数形式的比,都读作“24比12”。(板书)把12÷24改写成比的形式12:24(板书:12:24)。

师:我们继续来研究这个比,这里的24表示什么?12又表示什么?

生:这里的'24表示老师的年龄是24岁,(板书:老师年龄)12表示同学的年龄是12岁。(板书:同学年龄)

师:24:12表示谁和谁的比?

生:24:12表示老师年龄与同学年龄的比。

师:12:24表示谁和谁的比?

生:同学年龄与老师年龄的比。(板书:同学年龄:老师年龄)

师:24:12与12:24这两个比有什么区别?

生:它们的意义不一样,24:12表示老师年龄与同学年龄的比,12:24是同学年龄与老师年龄的比。

师:用比来表示两个数量关系的时候,我们一定要说清楚是谁和谁的比。谁在前,谁在后,不能颠倒位置,否则,比表示的具体意义就变了。

任务(二)比的分类。

1、任务呈现:

师:看来大家对于比都有了比较深刻的认识,下面请同学们根据例1的表格完成课本68页“试一试”。

2、自主学习:

独立思考后小组交流

3、展示交流

课件出示:李兰和张丽所用时间的比是4:5,张丽所行路程和时间的比是240:5

师:这里的4表示什么?5又表示什么?

生:4表示李兰所用时间是4分钟,(课件出示:时间)5表示张丽所用时间是5分钟。(课件出示:时间)

师:240:5这里的240表示什么?5又表示什么?

生:240表示张丽所行的路程是240米,(课件出示:路程)5表示张丽所用的时间是5分钟。(课件出示:时间)

师:你发现这两道题里面相比的两个量有什么不同吗?

1、同类量比。

前一题相比的两个量都是所用时间,这样的比是同类量的比。比出的结果是一个量是另一个量的几倍或几分之几。

2、不同类量比。

后一题相比的两个量是所行的路程和所用的时间,这样的比是不同类量的比,比出的结果表示速度。因此,不同类量的比要产生一种新的量。

3、练习。

师:下面每组信息中有两个数量,你能用比来表示它们的关系吗?

课件出示:(1)小汽车每小时行60千米,货车每小时行50千米。

师:60表示什么?50表示什么?60:50表示?小汽车的速度:货车的速度=60:50

(2)用12元买了4个杯子。总价:数量=12:4

(3)工人生产24个零件,需要3小时。工作总量:工作时间=24:3

生:12元买了4个杯子,12÷4=3元,也就是总价除以数量等于单价。所以总价和数量的比是12:4.24÷3=8个,8表示的是每小时生产零件的个数,24个零件叫做工作总量,3小时叫做工作时间,工作总量除以工作时间等于工作效率,所以工作总量和工作时间的比是24:3。

师:这3道题里哪些是同类量的比,哪些是不同类量的比?

任务(三)自学认识比各部分名称,求比值。

1、任务呈现:

师:请同学们带着自学提纲中的这些问题自学教材第68页,可以和同桌同学一起议一议。

2、自主学习:

自学提纲:

(1)比由几部分组成?

(2)比的各部分名称是什么?

(3)什么叫比值?比值是怎样求出来的?

3、展示交流:

师:谁愿意向大家汇报第一个问题?

生:比由3部分组成。

师:那比的这3部分名称分别是什么?

以24:12为例来介绍比各部分的名称。

师:前项在什么位置?后项在什么位置?

在比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。在24:12这个比中,24是比的前项,12是比的后项。

师:什么叫比值?比值是怎样求出来的?

生:比的前项除以后项,所得的商叫做这个比的比值。用比的前项除以比的后项。

师:24:12这个比的比值该怎样计算呢?

生:24÷12=2

师:你能用刚才计算比值的方法求出下面每个比的比值吗?

课件出示:求出下面每个比的比值。5:1=()÷()=()2、7:9=()÷()=()4:7=()÷()=()(学生口述答案,教师借助课件反馈)

师:你是怎样理解比值的?比值有几种表示形式?

生:比值是一个数,可以用分数表示,也可以用小数或整数表示。勾出书上的有关句子并齐读。

师:比和比值有什么区别?

生:比值是一个数,比表示两个数之间的一种关系。

任务(四)从分数、除法的角度深化比。

1、任务呈现

看课件:那么,比和除法、分数之间有着怎样的联系和区别呢?

2、小组合作

独立思考后小组交流

3、展示交流

比的前项相当于除法中的(),相当于分数中的(),比号相当于除法中的(),相当于分数中的(),比的后项相当于除法中的(),相当于分数中的(),比值相当于除法中的(),相当于分数中的(),除法、比、分数既有联系又有区别。它们的意义不同。分数是(数)的一种表现形式,除法是一种(运算),比表示两个数之间的相除(关系)。如果用字母a表示比的前项,用字母b表示比的后项,写出比是a:b,除法算式是a÷b,写成分数是,三者之间的内在关系是:a:b=a÷b=这里的b能等于0吗为什么?

生:b相当于除法当中的除数,因为除数不能为0所以(b≠0)。

师:那也就是说比的后项不能为0.20xx年10月16日,在一场国际足球热身赛中,巴西队主场4比0胜日本队,这里比的后项怎么是0了?4表示什么?0表示什么?4:0表示什么呢?

生:巴西队是4分,日本队是0分,看看他们谁赢了。4:0表示的是两队的分数。

师:与今天我们所讲的比的意义一样吗?

生:不一样,各类比赛中的比表示的是两队得分相差多少的关系,我们数学中的比表示两个数相除的关系。

三、检测导结

1、目标检测

写比。甲数是3,乙数是10。

(1)甲数与乙数的比是()。

(2)乙数与甲数的比是()。

(3)甲数与甲乙两数和的比是()。

(4)乙数与甲乙两数和的比是()。

2、求比值。6:36=()2、8:7=()0、4:0、4=()5:2、5=()

3、哪一杯糖水更甜?

4、图形中找比。

师:接下来咱们进行一场小小的比赛,看一看谁在这个图中发现的比最多。

师:刚才他们说的都是两个数的比,有三种颜色,你能不能找出一个与众不同的比呢?能不能说出三个数的比呢?比还能表示三个数的关系,生活中还真有这样的比!搅拌混凝土时,水泥、沙子和石子的比是2:3:5。

2、结果反馈:同桌互判,反馈对错情况。

3、反思总结

这节课你有哪些收获?今天我们大家共同认识了比,其实关于比的知识还有很多,有兴趣的同学课后可以继续研究它。

比的意义教学设计(集合)

作为一名辛苦耕耘的教育工作者,往往需要进行教学设计编写工作,借助教学设计可以促进我们快速成长,使教学工作更加科学化。教学设计要怎么写呢?下面是小编为大家整理的比的意义教学设计,欢迎阅读,希望大家能够喜欢。

比的意义教学设计 篇2

教学目标:

1、理解比的意义,掌握比的读法和写法,认识比的各部分名称。

2、掌握求比值的方法,并能正确求出比的比值。

3、培养学生抽象、概括能力。

教学重点:

理解比的意义,掌握求比值的方法。

教学难点:

理解比的意义,建立比的概 念

教学过程:

活动一:

同学们,在每个星期一的早晨我们学校都会举行一种什么仪式?我们学校为什么要经常举行这种升旗活动呢?其实在我们的国旗里面还隐藏着许多有趣的数学问题呢?今天,我们就一起去探究一下。

课件出示问题:一面红旗,长3分米,宽2分米,谁能用算式来表示长和宽的关系?

在学生的回答中,老师选取两个答案:3÷2表示长是宽的几倍?和2÷3表示宽是长的几分之几?告诉学生这种关系除了用除法算式表示外,还可以用另外一种方式来表达,那就是——比。引出本节课内容“比的意义”。

活动二;

(一)探究同类量的比;外,还可以表示长和宽的比为3比2。让学生依次说出2÷3还可以表示什么意思?

同学们,刚才我们都是把长和宽进行了比较,为什么一个是3比2,一个是2比3,让学生说说从中有什么收获?

让学生举出生活中这样的例子。

(二)探究非同类量的比

课件出示书中的第二个红点问题。

让学生用算式表示如何求速度?通过公式来列算式,引导学生写出路程和时间的比是多少?

再让学生举出生活中这样地例子。

活动三:

仔细观察上面的例子,对两个数量进行比较,既可以用除法,又可以用比的方法。那什么叫做比呢?(学生讨论交流)

通过刚才的学习,我们理解了比的意义,在课本的78~79页还涉及到一些关于“比”的其他知识,你们想自己研究、探索吗?老师有个小小的要求,请大家对照老师所给的问题,以四人小组为单位进行自学,可以在小组里讨论,然后汇报交流。

课件出示问题:

⑴、比的读、写法?比都有哪些表示形式?

⑵、比的'各部分名称?如何求比值?

⑶、比和除法、分数有哪些联系?

⑷、比的后项能不能是0?为什么?

引导学生起来交流,在学生交流的基础上有针对性的板书。

活动四:

1、填一填。

⑴、把2克盐溶解在100克水中,盐和水的比的( )。盐和盐水的比是( )。

⑵、一辆汽车来运货,一共运了5次,共运了20吨,写出运的吨数和次数比是( ),比值是( )。

活动五;

学生谈收获。

比的意义教学设计 篇3

教学目标:

1、在操作、探究活动中,逐步理解一个整体,建立单位“1”的概念,理解分数的意义。

2、在学习过程中,培养学生的思维能力和应用意识。

3、体会数学与生活的密切联系,进一步增强学好数学的信心。

教学重点:

理解单位“1”和分数的意义。

教学难点:

理解单位“1”和分数的意义。

教学准备:

教具准备:自制教学课件

学具准备:小棒

教学过程:

一、谈话导入

1.读一读下列分数

2、关于分数,你已经知道了什么? 分数是怎么产生的呢??

二、分数的产生

1、板书课题

师:课前我们一起聊到了分数,今天这节课我们继续来认识分数。

师:你知道古人是怎样表示分数的吗?让我们一起来看一看。

三、理解分数的意义

1.理解一个整体

(1)、你能举例生活中的四分之一吗?

师:那就请同学们开动脑筋,好好想想

(2)、汇报交流

教师进行规范:

生:我把正方形平均分成4份,这样的一份就是这个正方形的1/4。

生:我是把这个圆平均分成4份,这样的一份就是这条圆的1/4。

突出整体:

师:谁能用分数表示被涂上颜色的'小喵咪?

生:把8个小喵咪看作一个整体,平均分成4份,这样的一份就是这个整体的1/4 。

师:说得不错。只要把这4个苹果看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。

(3)小结:

把这个整体平均分成4份,表示了这样的一份,得到了这个整体的四分之一。

2、理解单位“1”。

(1)深化理解一个整体

学生自主创作:

师:现在,老师为同学们准备了一些小棒。同桌合作,任选一些小棒,分一分、找一找他们的1/4。开始吧。

交流汇报:

师:你用几根小棒表示1/4?你把几根小棒看作一个整体?你能说说这个1/4的含义吗?(多说几个)

师:一根可以用四分之一表示、两根也可以用四分之一表示、三根、四根都可以用四分之一表示。也就是说把什么平均分成4份,每份就可以用1/4进行表示呢?——一个整体

学生说4根小棒、8根小棒,师:4根小棒、8根小棒都可以看作一个整体

(2)揭示单位“1”。

师:说的真好。在数学中,通常把一个整体叫做单位“1”。把单位“1”平均分成4份,这样的一份可以用1/4来表示。(板书单位1)

(2)、汇报交流

师:谁愿意和大家交流一下你所找到的分数?

生:把4个苹果看作单位1,平均分成4份,这样的2份就是2/4。

(3)比较:

师:在刚才同学们动手涂一涂,写一写的时候,老师发现,有些同学找到了,这几个分数。

4. 揭示分数的意义。

(1)逐步理解分数的意义

师:我们通过动手分一分,涂一涂等方法已经认识了很多的分数。

黑板上的三个分数,你能说说它的含义吗?

生:把单位“1”平均分成若干份,这样的的一份或几份的数,就是单位1的几份之几。

师:已经会用单位1来说了,真好。谁也愿意来试一试呢?

小结:像同学们所理解的,把单位“1”平均分成若干份,这样的一份或几份都可以用分数来表示。(板书)这就是我们今天所学的分数的意义。我们一起来读一读。

(2)理解分数单位

师:分数和整数一样,也有计数单位。像这样表示其中一份的数我们叫做分数单位。

生:分数单位就是表示一份的数

师:也就是说一个分数的分母是几,这个分数的分数单位就是——几分之一

四、练习巩固。

1、说出下列题中的单位‘1’。

2、学生汇报交流

五、布置作业

练习十一的习题

比的意义教学设计 篇4

(一)复习准备

1、在日常生活中,同学们会经常看到或听到这样一些数:(出示投影或小黑板)

介绍自己准备的百分数

2、谁知道这些数是什么数?你对百分数已经有了哪些了解?你还想了解什么?

师:在生产、工作和生活中,进行调查统计、分析比较时,经常要用到百分数。这节课就来研究。板书:百分数的意义和写法。

(二)探究新课

1、三名队员进行点球,提问:根据所得的数,你能一眼看出哪队员的技术好吗,你认为该派哪名队员?

你能直接比较它们的大小吗?为什么?(分子不同,分母也不同,不容易看出。)

讨论:怎样做才容易比较这两个分数的大小呢?(通分,化成分母相同的分数。)根据什么?(分数的基本性质。)

小结:像这样分母不同的分数进行比较时,一般要进行通分,使分母相同。尤其是在日常生活、生产、科研中,通常把分母化成是100的分数,这样便于比较。下面我们把这两个数变成分母是100的分数。

思考:17/100和15/100都表示什么?(表示三好学生和总人数之间的倍数关系)

教学设计

备注

根据学生的回答板书:六年级三好生占全年级的17/100五年级三好生占全年级的3/20

板书17/100=17/100 3/20=15/1002。练习。(出示投影)一个工厂从一批产品中抽出500件,经过检验,有490件合格。合格的比率是多少?思考并计算这批产品的合格率是多少?(490/500)改写成分母是100的分数是多少?(98/100)说说98/100表示什么?

3、概括百分数的意义。

师:通过以上的练习说一说17/100、15/100、98/100都表示什么?(表示一个数是另一个数的百分之几)

提问:什么是百分数?百分数表示两个量之间什么关系?小结:表示一个数是另一个数的百分之几的数叫做百分数,百分数也就叫做百分率或百分比。提问:百分数表示两个数之间什么关系?(倍数关系。)应不应该有单位名称?

4、学习百分数的读法和写法。

提问:百分数和分数比,相同点和不同点是什么?百分数应该用什么形式表示呢?

(1)写法:写百分数时,通常不写成分数形式,而采用(%)表示。写百分数时,去掉分数线和分母,在分子后面添上百分号。

(2)读法:读百分数时,只要把百分号看作分母是100,百分号前面的'数看作分子,就可以和分数一样读了。

5、百分数的读写练习

6、百分数与分数的联系和区别。

活动1:选择标签

A、饮料的果汁含量是B、饮料的果汁含量是40%

小结:

分数

百分数

表示一个数是另一个数的几分之几;

表示一个具体的数量。

只表示一个数是另一个数的百分之几。

活动2:练习

1、下面哪几个分数可以写成百分数?哪几个不能?为什么?

(1)鸡的只数是鸭的。

(2)一堆煤吨,运走了它的。

2、辩一辩:

(1)—张桌面的宽是长的。

—张桌面的宽是长的39% 。

(2)一张桌面的宽是米。

一张桌面的宽是39%米。

(三)巩固练习

1、基本练习:

(1)、选择合适的百分数填空。

45% 98% 108.1% 55% 100%

(1)这节课,同学们学得积极主动,老师希望理解百分数意义的同学占()。

(2)小明的爸爸是著名的牙科医生,经它诊治的牙病治愈率达到了()。

(3)某车间机器经过改良,现在的每月产量是原来每月的()。

(4)一本书已看了全书的(),还剩下全书的()。

(2)、说出下面各个百分数的意义。

(1)本班数学期中测试的优秀率是79%。

(2)一件毛衣中,羊毛占85.5%,化纤占15%。

(3)今年蔬菜产量比去年增加33%。

(4)电视机降价20%。

(3)、在成语找百分数:

十拿九稳——()%百发百中——()%

九死一生——()%和()%

2、综合练习:生活中的百分数

一次性筷子是日本人发明的,日本的森林覆盖率高达65%,但他们一次性筷子全靠进口;我国森林覆盖率不到14%,却是出口一次性筷子的大国。读了这个信息你联想到什么?

我国耕地面积占世界人口的7%,可我国的人口却占世界的22%。你想到什么?

(四)课堂总结

这节课我们学习了哪些知识?(百分数的意义、读法和写法。)你知道人们在日常生产和生活中都在什么时候用百分数吗?(在计算优秀率、合格率、体育达标率等方面。)师:百分数的应用十分广泛,所以希望同学们学好百分数并学会在实际中应用。

比的意义教学设计 篇5

教学内容:

义务教育课程标准实验教科书(人教版)六年级上册77至79页内容。

教学目标:

知识与技能:

(1)使学生认识百分数,知道百分数在生产、生活中的广泛应用。

(2)理解百分数的意义,能正确的读、写百分数。

(3)培养学生的比较、分析、综合能力和应用意识。

过程与方法:经历百分数的认识过程,体验比较、分析、综合应用的学习方法。让学生主动参与,学会讨论交流,与人合作。

情感态度和价值观:感受数学知识与日常生活的密切联系,激发学习兴趣,培养学生善于观察比较,勤于分析思考,勇于探索创新的精神。同时结合相关信息对学生进行思想品德教育。

教学重点、难点:

重点:理解百分数的意义。

难点:百分数和分数的区别和联系。

教法与学法:

教法:创设情境,质疑引导。

学法:合作探索,自主交流。

教学准备:多媒体课件、学生收集的百分数

教学过程:

一。创设情境,引入课题。

1。用多媒体课件出示主题图上几组信息。

教师:这里收集到了哪些数学信息,谁能向大家介绍一下?

随着学生的介绍,老师将其中的百分数圈出来,引起学生的注意。

提问:你们还在什么地方见过上面这样的数吗?

2。引导学生交流课前收集到的百分数。

3。引入课题:

教师:象上面这样的数,如18%、50%、64。2%等等都是百分数,大家收集到的百分数可真不少,

看来百分数在生产、生活、工作中的应用很广泛。那么人们为什么会喜欢百分数?用百分数有什么好处?今天我们一起来研究“百分数的意义和写法”。(板书课题)

二。探究新知:

1。理解百分数的具体含义。

(1)。以小组为单位讨论你们小组收集到的百分数表示什么意义。(教师参与学生的讨论。)

(2)。全班交流,理解百分数的意义。

刚才同学们已经在小组中讨论了一些百分数的意义,下面请各小组代表选择其中一个展示到展示台的表格里。

生活中的百分数

百分数的意义

金龙泉啤酒的酒精度是10%

金龙泉啤酒中的酒精含量是啤酒总量的10%

我的毛衣羊毛含量是70%

毛衣的羊毛含量是毛衣总量的70%

在全国每年的`意外死亡统计中,车祸约占37。3%。

在全国每年的意外死亡统计中,车祸占了死亡总量的37。3%

我国的耕地面积约占世界的7%。

我国的耕地面积约占世界耕地面积的7%。

你们能说出主题图中的百分数的具体含义吗?(学生自由的选择自己喜欢的百分数来说,同时课件出示下面两个百分数的具体含义。)

小学生的近视率为18%就是说小学生近视的人数占全体小学生人数的。

初中生的近视率为49%就是说初中生近视的人数占全体初中生人数的。同时向学生进行保护视力的教育。

(4)教师:这些百分数在意义上有什么相同点?

总结意义:表示一个数是另一个数的百分之几的数叫做百分数,百分数又叫做百分率或百分比。(板书)

(5)提问:为什么百分数又叫做百分率或百分比呢?学生各自发表自己的意见。

教师:百分数是一种特殊的倍比关系,它的后项是一个固定的数100,所以百分数又叫做百分率或百分比。

(6)提问:学习百分数有什么好处?(学生讨论)

小结:分母都是100,便于比较大小。

2、教学百分数的写法。

我们已经学习过百分数的意义,现在再来学习百分数的写法。写百分数时,通常不写成分数的形式,而采取一种专门的写法:去掉分数线和分母,在分子的后面写上百分号“%”。

(1)师在黑板上写几个百分数作为示范

百分之九十写作90%;

百分之六十四写作64%;

百分之一百零八点五写作108。5%。

(2)现在老师说百分数,请大家写出百分数。百分之一百分之二十八百分之零点五

教师巡视,及时纠正学生在写百分数时出现的一些问题。

(3)强调:在读和写百分数时,要注意以下几点:

①写法:百分号的两个圆圈要写得小一些,避免与百分号前面的数字混淆。

②读法:不读成“一百分之几”,而读成“百分之几”。

3、百分数与分数的联系和区别:

刚才我们通过合作交流,理解了百分数的意义和读、写法,那么百分数与我们学过的分数有什么联系和区别呢?

(1)。学生小组讨论。

(2)。汇报讨论结果。(同时完成电脑课件上的表格)

相同点

不同点

百分数

都可以表示一个数是另一个数的几分之几。(即:都可以表示两个数的倍数关系。)

只表示两个数的倍数关系,不能带单位。

分数

既可以表示两个数的倍数关系,也可以表示一个数,表示数是可以带单位。

4。学生看书质疑。

打开课本77至78页,认真看书,有不明白的问题提出来。

5、归纳小结:(1)表示一个数是另一个数的百分之几的数叫百分数,百分数也叫做百分率或百分比。(2)百分数通常不写成分数形式,而是在原来的分子后面加上百分号“%”来表示。

三、巩固练习

1、做第78页“做一做”中的题目。

第1题:学生填在书上,教师巡视。然后用投影显示个别学生的答案。

第2题:让学生开火车读出下面的百分数。

第3题:先指出:要知道百分数和分数在意义上有什么不同,首先要知道它们的概念各是什么。再让两名学生口述百分数和分数的概念:百分数是表示一个数是另一个数的百分之几的数,而分数是将单位“1”平均分成若干份,表示这样的一份或几份的数。

小结:由此我们可以清楚地看到,百分数的分母是固定的,而分数的分母是不固定的,所以百分数是一种特殊的分数。

2.课件演示

(1)写出下面百分数:百分之三十:();百分之五十点六:()

百分之二百:();百分之一点五:()

(2)判断题:①一杯水重300克,放入45克白糖后,糖的重量是糖水的15%。()

②37%;73%()

③一根电线长90%米。()

(3)比较大小,把下面百分数按从小到大的顺序排列。

62。5%、28。8%、13%、25%、26%

四、总结评价

1、这节课你有什么收获?你还有哪些问题?

2、送你一句话与同学们共勉:天才等于百分之九十九的汗水加百分之一的灵感。

五、作业:做练习十八的第1、2、3题。

板书设计:

百分数的意义和写法

表示一个数是另一个数的百分之几的数,叫做百分数,

也叫做百分率或百分比。

百分之九十写作90%

百分之六十四写作64%

百分之一百零八点五写作108。5%

比的意义教学设计 篇6

【新知识点】

分数的产生

分数的意义分数与意义

分数与除法

真分数

真分数与假分数假分数

带分数

假分数化带分数或整数

分数的基本性质

分数的基本性质

化成分母不同,大小不变的分数

最大公因数

约分求最大公因数

最简分数

约分及其方法

最小公倍数

通分求最小公倍数

分数比大小

通分及其方法

小数化分数

分数和小数的互化

分数化小数

【教学要求】

1.知道分数是怎样产生的,理解分数的意义,明确分数与除法的关系。

2.认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能把假分数化成带分数或整数。

3.理解和掌握分数的基本性质,会比较分数的大小。

4.理解公因数与最大公因数、公倍数与最小公倍数,能找出两个数最大公因数与最小公倍数,能比较熟练地约分和通分。

5.会进行分数与小数的互化。

【教学建议】

1.充分利用教材资源,用好直观手段。

本单元教材在加强教学与现实世界的联系上作了不少努力.同时,教材还运用了多种形式的直观图式,数形结合,展现了数学概念的几何意义。从而为老师与学生提供了丰富的学习资源。教学时,应充分利用这些资源,以发挥形象思维和生活体验对于抽象思维的支持作用。

本单元的特点之一就是概念较多,且比较抽象。而小学高年级学生的思维特点是他们的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。因此,在引入新的数学概念时,适当加大思维的形象性,化抽象为具体、化抽象为直观,对于顺利开展教学来说,是十分必要的'。所谓化抽象为具体,就是通过具体的现实情况,调动学生相关的生活经验来帮助理解。所谓化抽象为直观,就是运用适当的图形、图式来说明数学概念的含义,这是小学数学最常用的也是最主要的直观教学手段

2.及时抽象,在适当的水平上,建构数学概念的意义。为了搞好木单元的教学,在加强直观教学的同时,还要重视及时抽象,不能听任学生的认识停留在直观水平上。否则,同样会妨碍学生对所学知识的理解和应用。例如,比较和的大小,有的学生回答不一定谁大谁小,要看他们分的那个圆,哪个大,由此得出可能比大,也可能比小、,还可能和相等。造成这样错误的主要原因就在于过分依赖直观,而没有及时抽象。因此,在充分展开直观教学,让学生获得足够的感性认识的基础上,要不失时机地引导学生由实例、图式加以概括,建构概念的意义。

3.揭示知识与方法的内在联系,在理解的基础掌握方法。在本单元中,约分与通分、假分数化为带分数或整数、分数与小数的互化的方法,都是必须掌握的。这些方法看似头绪较多,但若归结为基础知识,就是揭示相关知识与方法的联系,就比较容易在理解的基础上掌握方法。以约分与通分为例,它们都是分数基本性质的应用。尽管约分时分子、分母同除以一个适当的数,通分时分子、分母同乘一个适当的数,但它们都是依据分数的基本性质,使分数的大小保持不变。因此,教学时不宜就方法论方法,而应凸显得出方法的过程,使学生明白操作方法背后的算理。这样就能依靠理解掌握方法,而不是依赖记忆学会操作。

[课时安排l

1.分数的意义……………………………………………5课时

2.真分数和假分…………………………………………4课时

3.分数的基本性质…………………………………………2课时

4.约分…………………………………………………6课时

5.通分…………………………………………………4课时

6.分数与小数的互化………………………………………3课时

整理和复习………………………………………………2课时

第四单元实力评价…………………………………………1课时

1.分数的意义

第一课时

一教学内容

分数的产生

教材第60页的内容。

二教学目标

1.使学生知道分数的产生过程。

2.使学生感受到数学知识同样是在人类的生产和生活实践中产生的。

三重点难点

理解分数的产生。

四教具准备

米尺,挂图,几张长方形、正方形的纸。

五教学过程

(一)导入

同学们,我们在三年级时已经初步认识了分数,还记得我们都学了分数的哪些知识吗?

比的意义教学设计 篇7

教学内容

教科书第46~47页和相应的“做一做”,练习十二的第1~4题。

教学目的

1、理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。

2、弄清比同除法、分数的关系。

教具准备

长3分米、宽2分米的红旗一面,投影仪。

教学过程

一、复习

教师:在日常生活和工农业生产中,常常需要对两个数量进行比较。比如这面红旗(教师出示红旗),它长3分米,宽2分米。要对这面红旗的长和宽进行比较,可以用什么方法?

引导学生回答:可以用减法,比较长比宽多多少或宽比长少多少。用除法,比较长是宽的几倍,或者宽是长的几分之几。

板书:3÷2==1……………长是宽的1倍

2÷3=……………………宽是长的

二、新课

1、导入新课。

教师:刚才我们用以前学过的方法对红旗的长、宽进行比较。这节课,我们要在用除法对两个数量进行比较的基础上,学习一种新的对两个数量进行比较的数学方法──比。(板书:比。)

教师:比表示什么意义呢?它怎么读,怎么写?各部分的名称是什么?比又和除法、分数有什么关系呢?这些都是我们这节课要学习的内容。下面我们先学习比的意义。(板书课题。)

2、教学比的意义。

教师:(指3÷2)看这个除法算式,长是宽的几倍需要哪个量和哪个量比较?

(长和宽比较。)

红旗的长是多少?宽呢?红旗的长和宽比较也就是几和几比?

(长和宽比较也就是3和2比。)

求红旗长是宽的几倍又可以说成长和宽的比是3比2.(板书:长和宽的比是3比2.)

(指2÷3)宽是长的几分之几是哪个量和哪个量比较?根据这个例子(指上例),想一想,宽是长的几分之几又可以说成什么?

引导学生说出:宽和长的比是2比3.教师板书。

小结:现在我们知道谁是谁的几倍或几分之几,又可以说成谁和谁的比。

教师:这两个例子都是对长、宽两个量进行比较,为什么一个比是3比2,而一个比是2比3呢?

引导学生回答:3比2是长和宽的比,2比3是宽和长的比。

这两个例子告诉我们:两个数量进行比较一定要弄清谁和谁比。谁在前、谁在后不能颠倒位置。

教师:刚才我们用除法和比的方法对红旗的长、宽进行了比较。在日常生活中,两个数量进行比较的事例有许多,请看这个例子(出示投影片):

“一辆汽车2小时行驶了100千米,这辆汽车的速度是每小时多少千米?

求汽车行驶的速度怎样计算?

学生回答时,板书:100÷2=50(千米)

100千米是汽车行驶的什么?2小时呢?汽车的速度需要哪个量和哪个量比较?

(路程和时间比较。)

那么汽车行驶的速度又可以说成路程和时间的比。

教师:在这个例子中,路程和时间的比是几比几?

学生回答后教师板书:路程和时间的比是100比2.

教师:现在看这些例子,都是用什么方法对两个数量进行比较的?(用除法。)那么表示两种量的两个数,它们之间具有什么关系?(相除关系。)是几个数相除?(两个数相除。)

学生回答后板书。

再看长和宽的比是3比2,宽和长的比是2比3,路程和时间的比是100比2,这又是用什么方法对两个数量进行比较的?(比的方法。)几个数的比?学生回答后教师板书:两个数的比。

(教师引导学生总结出比的意义:)通过这些例子可以清楚地看出:两个数相除又叫做两个数的比。

从比的意义看,两个数的比是表示两个数之间的什么关系?(相除关系。)学生回答后,教师在相除二字下面画上着重号,然后齐读。

3、教学比的读写法,各部分名称及求比值的方法。

教师:以上我们学习了比的意义,在数学中,比还有这样的记法。

3比2记作(板书:记作),先写3,再写“∶”,最后写2.(板书:3∶2)

提示学生比号的两个小圆点要写在两个数的正中间,它叫比号,读作“比”,那么这个比就读作3比2.让学生齐读一遍。

2比3记作(板书:记作),先写什么?再写什么?最后写什么?

教师提问,学生回答后教师板书。

100比2怎么写?学生回答后,教师板书:100∶2.

这两个比会读吗?齐读一遍,学生练习写比。

教师:在比中,每一部分都有它的名称。我们以3∶2为例(板书:3∶2),这叫什么符号?(学生答后板书:比号)比号前面的数叫做比的前项,(板书:前项)比号后面的数叫做比的后项。(板书:后项)

根据比的意义,比的前项和后项是什么关系?(相除关系。)在这个比中,用谁除以谁?(3除以2.)3除以2的商是多少?(1)

教师指出:我们把比的前项除以后项所得的商叫做比值。(板书:比值)1在这里就叫做3∶2的比值。

板书:3∶2=3÷2=1

┇ ┇ ┇┇

前比后比

项号项值

教师:从上面的式子可以看出,同除法比较,比的前项相当于除法中的被除数,比的后项相当于除法中的除数,比值相当于除法的商,可以用下表来表示。

前项

∶(比号)

后项

比值

除法

被除数

÷(除号)

除数

列完表后,教师指出:比和除法还是有区别的,不能完全混同起来,除法是一种运算,而比表示两个数的关系。

教师提问:那么,比和比值有什么区别和联系呢?

引导学生根据比的意义和比值的定义,弄清楚比值是一个数,是比的前后项相除所得的商,它通常用分数表示,也可以用小数表示,有时也可能是整数;而比是表示所比较的两个数的关系,如3∶2,也可以写成分数形式(但不能写成带分数,仍读作3比2.)

需要指出:比的后项不能是零。

让学生想一想这是为什么?引导学生联系比和除法的关系,由于比的.后项相当于除法的除数,而除数不能为零,所以比的后项也不能为0.同时还要进一步指出,在体育比赛中的“几比几”,也使用“∶”号。但这只表示哪一队对哪一队比赛,各得多少分,不表示两队所得分数的倍比关系,与数学中的比的意义不同。比赛中时常出现0∶0或几比0的情况,而数学中比的后项是不能为0的。另外,比赛中的几比几是不能化简的。

4、做教科书第62页上半部分“做一做”的题目。

(1)完成第1题。

指名一学生在黑板上板演,其他学生独立完成。教师注意巡视,并察看学生是否将比号的位置写得规范。

然后提问:每个比的前项是几?后项是几?能不能把比的前项和后项颠倒?

教师指出:正如前面所讲,求长是宽的几倍,用长÷宽;求宽是长的几分之几,用宽÷长;所以交换了比的前后项的位置,比的具体意义就变了。

(2)完成第2题。

让学生独立完成,教师巡视,做完后集体订正。

5、教学比与分数的关系。

教师:两个数的比也可以写成分数形式。例如:3∶2可以写作,在这里,它表示两个数的比,仍读作3比2.

让学生齐读。

进一步举例:2∶3可以写作,100∶2可以写作。然后让学生齐读。

提问:分数和除法有什么关系呢?(分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。)

提问:根据分数和除法的关系以及比和除法的关系,比和分数又有什么关系呢?

引导学生弄清楚:比的前项相当于分数的分子,比的后项相当于分数的分母,比值相当于分数值。列表如下:

前项

∶(比号)

后项

比值

除法

被除数

÷(除号)

除数

分数

分子

──(分数线)

分母

分数值

列完表后,提问:比和分数有没有区别呢?

让学生明确分数是一种数,而比表示两个数相除的关系。

总结比、除法、分数三者在意义上的区别:比是指两个数相除,表示两个数的关系;除法是一种运算;分数是一种数。它们的意义是不同的。

6、做教科书第62页下半部分“做一做”的题目。

让学生独立完成,教师巡视。

集体订正时,指名学生说说自己用分数表示的比,并强调指出:虽然写的是分数形式,但不能读作几分之几,而应读作几比几。

三、巩固练习

1、做练习十二的第1题。

(1)做第(1)题。

教师提问:路程和时间的比是两个同类量的比,还是不同类量的比?(不同类量的比。)

路程和时间的比,得到的是什么量?(速度。)

教师指出:路程和时间的比表示的意义就是速度。

然后让学生独立做在练习本上,最后集体订正。

(2)做第(2)题。

先让学生独立完成,教师巡视。

集体订正时,让学生说说模型总数和人数的比表示的意义是什么。(表示的是平均每人做的模型数。)

(3)做第(3)题。

让学生独立完成,集体订正。

2、做练习十二的第2题。

让学生独立完成,教师注意巡视。完成后集体订正。

3、做练习十二的第3题。

让学生独立完成。集体订正时,可以让学生对比一下两个比值的关系,指出这种关系是一种反比例关系,今后要进一步学习。

4、做练习十二的第4题。

先让同桌的两名同学讨论对不对,教师注意旁听学生的讨论情况,然后指名学生回答自己的讨论结果。

教师指出:小强和爸爸身高的比属于同类量相比,同过去求一个数是另一个数的几倍或几分之几一样,相比的同类量的单位大小不一致时,比就失去了它的意义。因此,要求小强和爸爸身高的比,就要先把两个数量化成同单位的数。所以小强和爸爸身高的比应该是100∶173.

比的意义教学设计 篇8

一、教学目标

(一)知识目标

1.通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵、2.通过函数图象直观了解导数的几何意义、

(二)能力目标

掌握用定义法求函数的导数的一般步骤,并能利用函数的导数知识解决一些应用性问题、

(三)情感目标

通过“极限法”的学习,提高学生的数学素质,加强学生分析问题和解决问题的能力,认识事物之间的相互联系,会用联系的观点看问题、

二、教学重点

导数的定义与求导的方法、

三、教学难点

对导数概念的理解、

四、教学过程:

(一)复习引入

师:前面我们研究了两类问题,一类来自物理学,涉及平均速度和瞬时速度;另一类问题来自几何学,涉及割线斜率和切线斜率、你们能否将这两类问题所涉及的共性表述出来?

生:这两类问题都涉及到以下几件事:(1)一个函数f(x);(2)f(x+d)-f(x);

f(xd)f(x)(3);

df(xd)f(x)趋于一个确定的常数、

d师:很好,我们发现上述两类问题虽然来自的学科领域,但有着相同的数学模型,今天我们就一起来研究这个数学模型——导数的概念和几何意义、

(二)探求新知

1、增量、变化率的概念(4)当d趋于0时,对于函数yf(x),P0(x0,y0)是函数图象上的一点,Q(x1,y1)是另一点,自变量从x0变化为x1时,相应的函数值有y0变为y1,其中x1-x2叫做自变量x的增量,记为△x,y1-y0叫做函数的增量(也叫函数的差分),记为△y,则yf(x1)f(x0)、y叫做函数的

x变化率(或函数f(x)在步长为△x的差商)、★光滑曲线上某点切线的斜率的本质——函数平均变化率的极限、★物体运动的瞬时速度的本质——位移平均变化率的极限、2.导数定义

f(x0d)f(x0)设函数f(x)在包含x0的某个区间上有定义,如果比值在d趋于0时,

d(d≠0)趋于确定的极限值,则称此极限值为函数f(x)在x=x0处的导数或微商,记做f'(x)、上述定义的符号表示为:f(x0d)f(x0)f'(x0)(d0)、

d这个表达式读作“d趋于0时,f(x0d)f(x0)趋于f'(x0)、

d简单地说:函数的瞬时变化率,在数学上叫做函数的导数或微商、★f'(x)也是关于x的函数,叫做函数f(x)的导函数、3.求导数的步骤

(1)求函数的增量yf(x0x)f(x0)、;(2)求平均变化率

yf(x0x)f(x0)=;xx(3)令△x→0,差商→f'(x0)、4.导数的几何意义

函数yf(x)在点x0处的导数的几何意义,就是曲线yf(x)在点P(x0,f(x0))处的切线的斜率f'(x0)、5.导数的物理意义

函数ss(t)在点t0处的导数s'(t0)的物理意义是运动物体在时刻t0处的瞬时速度、

(三)讲解例题

例1国家环保局在规定的排污达标的日期前,对甲、乙两家企业进行检查,其连续检测结果如图所示(图中W1(t),W2(t)分别表示甲、乙企业在时刻t的排污量)、试问哪个企业的治污效果较好?

分析:本题主要体现差商(即差分和对应步长的比)定义在现实生活中的运用,要想知道哪个企业的治污效果好,关键看平均治污率,平均治污率越大,治污效果越好、解:在时刻t1处,虽然W1(t)=W2(t),排即排污量相同,但是考虑到一开始

污量有W1(t0)>W2(t0),所以有W1(t)W1(t1)W1(t0)W2(t1)W2(t0)

t1t0t1t0W2(t)标准t1t2说明在单位时间里企业甲比企业乙的平均治污率大、即企业甲的治污效果要好一些、例2投石入水,水面产生圆形波纹区、

圆的面积随着波纹的传播半径r的增大而增大(如图),

Ar=ar=a+h计算:

(1)半径r从a增加到a+h时,圆面积相对于r的平均变化率;

(2)半径r=a时,圆面积相对于r的瞬时变化率、分析:本例中的题(1)是求变化中的几何图形(圆)面积的平均变化率。它同例1及我们前面讨论过的运动物

体的平均速度,以及函数曲线的割线斜率一样,从数学的角度看,都是函数值的改变量与对应的自变量的改变量的比,即差商。而题(2)则是求圆面积的瞬时变化率,实际实际上就是求函数Sa的瞬时变化率、而它与我们已经较为熟悉的瞬时速度,切线的斜率等都是相应函数的瞬时变化率。利用本例,课本给出了函数导数的概念,而学生则又一次体验寻求瞬时变化率(即平均变化率在某点处的极限)的过程、有利于学生更深刻理解导数的概念、解:(1)半径r从a增加到a+h时,圆面积从a增加到(ah)2,其改变量为

22[(ah)2a2],而半径r的改变量为h,两者的比就是所求的圆面积相对于半径r的平均变化率:[(ah)2a2]h(2ahh2)h(2ah)

(2)在上面得到的平均变化率表达式中,让r的改变量h趋于0,得到半径r=a时,圆面积相对于r的瞬时变化率为2a、

at

2例3在初速度为零的匀加速运动中,路程s和时间t的关系为ss(t)、

2(1)求s关于t的'变化率,并说明其物理意义;

(2)求运动物体的瞬时速度关于t的变化率,说明其物理意义、

分析:本题是导数概念在物理学中的运用,题(1)直接利用导数的定义运算得出位移函数s关于时间t的导数(即运动物体的瞬时速度),而题(2)则是求瞬时速度关于时间t的瞬时变化率(运动物体的加速度)、通过本例,一方面加深学生对导数定义的理解,另一方面则从数学的角度对加速度作了较为严格的定义、

at2解:(1)s关于t的变化率就是函数ss(t)的导数s'(t)、按定义计算有

2a(td)2at2d2a(td)s(td)s(t)ad222,当d趋于0时,此式趋于at,atddd2即s'(t)at、从物理上看,s关于t的变化率at就是运动物体的瞬时速度、(2)运动物体的瞬时速度关于t的变化率,就是s'(t)at的导数s"(t)、按定义运算有

s'(td)s'(t)a(td)atada,当d趋于0时,a还是a,所以s"(t)=a,它ddd是运动物体的加速度、

(四)应用新知

课本P95——练习1,2解:1.函数y=x2-3x在区间[-1,1]上的平均变化率为-3、

3(2d)22(2d)13222212.[2,2+d]上的平均速度143d,当d=

1d时,平均速度为17,当d=0、1时,平均速度为14、3,当d=0、01时,平均速度为14、03,令d趋向于0,得到在t=2时的瞬时速度为14、

(五)课堂小结

1.导数的定义是什么?

2.用定义求解函数的导数的步骤有几步?

五、布置作业

课本P95—习题3

比的意义教学设计6篇【集合】

在教学工作者实际的教学活动中,时常需要准备好教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。那么教学设计应该怎么写才合适呢?以下是小编收集整理的比的意义教学设计,欢迎大家分享。

比的意义教学设计 篇9

教学目标:

1、知识目标:使学生在经历实际测量的活动中,了解小数的产生。学生能理解小数的意义,认识小数的计数单位和相邻两个计数单位之间的进率。

2、能力目标:培养学生动手操作,观察,分析,推理能力和抽象概括能力。

3、情感目标:通过学习小数的产生和发展过程,提高学生学习数学的兴趣;增强对数学的理解和应用数学的信心。

学情分析:

小数的意义是一节概念教学课,是在学生学习了“分数的初步认识”和“元角分与小数”的知识下,以已有的经验为背景,让学生经历认、读、写小数的学习过程并理解小数的意义,体会小数与生活的'密切联系,从而实现认识的提升。

教学重点:认识小数的产生和意义。认识小数的计数单位和相邻两个计数单位之间的进率。

教学难点:理解小数的意义。

教学过程:

一、创设情境,了解小数的产生。

1、回忆一下:我们学过什么长度单位?

2、请同学们看一下这条绳子,谁来估一估绳子的长度呢?请同学们都来量一量,验证一下结果。再来看看这根绳子,谁来估计一下它的长度,也请同学们上来量一量。刚才同学量的绳子的长度是30厘米,就是3分米,如果老师让大家用米来作单位。怎么表示呢?

3、刚才我们在测量这条绳子的时候,如果用米作单位,就得不到整数的结果。其实像这样得不到整数结果的例子在生活中还有很多很多,于是聪明的人们除了发明用分数来表示之外,还发明了用小数来表示,于是小数就产生了。

4、揭题。(板书:小数的意义)

二、自主探讨,理解小数的意义。

(一)研究一位小数

1、出示米尺:这是什么?这是一把一米长的尺子,请同学们仔细看看,老师把这把米尺平均分成了多少份呢?每一份是多长?如果用米作单位,写成分数是多少?写成小数又是多少?

这样的3份是多长?写成分数是多少?写成小数是多少?这样的7份呢?

2、请同学们看,这几个小数的小数部分都只有一位,这样的小数我们把它叫做一位小数。

3、小结:我们把1米的尺子平均分成10份,这样的一份或几份可以用一位小数来表示。

4、说说你发现了什么?(分母是10的分数可以用一位小数来表示。)

(二)研究两位小数(自助探究)

1、如果我把1米的尺子平均分成了100份,1份是多长?用米作单位,写成分数是多少?写成小数是多少?4份呢?这样的8份呢?

2、像这样的小数,小数点后面有几位数,这样的小数我们叫做几位小数。

3、小结:我们把1米的尺子平均分成100份,可以用两位小数来表示。

4、说发现。

(三)研究三位小数。(自主探究)

1、如果我把这每一段再平均分成10份,那么整条米尺我把它分成了几份?1份是多长?用米作单位,写成分数是多少?写成小数是多少?6份呢?13份呢?请同学们再说2个用毫米作单位的长度。刚才这两位同学说出了5毫米,23毫米,请同学们拿出草稿本,把这两个长度用分数表示,再用小数表示。

2、像这样的小数,小数点后面有几位数?这样的小数我们叫做三位小数。

3、小结:我们把1米的尺子平均分成1000份,可以用三位小数来表示。

4、说发现。

(四)推导

1、如果我把1米的尺子平均分成了10000份,写成分数应该是几位小数呢?看来同学们的学习能力很强是,能够通过前面的知识,推出后面所学的知识。

1、讨论:分数和小数有怎样的联系呢?请同学们小组讨论,概括出分数和小数的联系。

刚才同学们通过讨论得出,分母是十的分数可以用一位小数来表示。分母是一百的分数可以用两位小数来表示。分母是一千的分数可以用三位小数来表示。这个就是小数的意义。

三、合作交流,探讨小数的计数单位。

1、填一填。

(1)0.3里有()个1/10,0.7里有()个1/10。0.04里有()个1/100,0.08里有()个1/100。

填一填,说说你是怎么想的。

像这样,0.3、0.7这样的一位小数,我们都可以看成是由若干个0.1来组成的,那么我们就说十分之一是一位小数的计数单位。读作十分之一,写作0.1。(板书:一位小数的计数单位时十分之一,写作:0.1)

同样的道理,像这样,0.04、0.08这样的两位小数,我们都可以看成是由若干个0.01来组成的,那么我们就说百分之一是两位小数的计数单位。读作百分之一,写作0.01。(板书:两位小数的计数单位时百分之一,写作:0.01)

请同学们猜一猜,三位小数的计数单位是什么?写作什么?(板书:三位小数的计数单位是千分之一,写作:0.001)

2、0.1里有()个0.01,0.01里有()0.001。小组讨论,汇报。

0.1里有10个0.01,我们就说0.1与0.01的进率是10,同样道理,0.01里有10个0.001,说明他们的进率也是多少?

四、巩固练习。

课件出示练习。

五、总结。

这节课你有什么收获?

比的意义教学设计 篇10

教学目标:

1、掌握本课重点字词,背诵重点段。

2、学习本文环境描写和抒情言志的手法,体会环境描写对揭示主题、表现人物情感的作用。

3、理解保尔的人生态度,引导学生深入理解生命的意义。

教学重点:

1、学习本文环境描写和抒情言志的手法,体会环境描写对揭示主题、表现人物情感的作用。

2、熟读背诵“人最宝贵的是生命……”。

教学难点:

环境描写的作用

教学安排:

一课时

课前准备:

1、朗读课文,掌握重点字词

踱着步子()碌碌无为()岔路口()高耸()如茵()栅栏()

2、收集作者资料,阅读《钢铁是怎样炼成的》一书。

教学过程:

一、导入新课

提问学生熟知的身残志坚,与命运抗争的英雄人物。

学生回答后,引出保尔。

“人,最宝贵的是生命,生命对每个人只有一次,这仅有的一次生命应当怎样度过呢?这样告诉我们:每当回忆往事的时候,能够不为虚度年华而悔恨,不因碌碌无为而羞耻;在临死的时候,他能够说:我的整个生命和全部精力,都已经献给了世界上最壮丽的事业——为人类解放而进行的斗争。”今天我们就来学习《生命的意义》这一课,看看我们应该如何度过自己的一生。

二、介绍作者及作品

学生先介绍自己所了解的关于作品和作者的有关情况,然后教师补充。

奥斯特洛夫斯基(1904—1936),前苏联作家,出生于工人家庭,家境贫寒,只念过三年书。十月革命时,积极投身于保卫苏维埃政权的斗争,右眼失明。25岁时全身瘫痪,双目失明。但他却以惊人的毅力顽强斗争,创作了《钢铁是怎样炼成的》。

三、整体感知

1、学生自由朗读课文。教师提出朗读要求,读准字音,注意节奏,读出感情。

2、教师找学生读课文,检查课文的朗读情况,其他学生仔细听,然后评价指正。

3、再次自由朗读课文,画出文中表示人物行踪的句子,画出环境描写中表示肃杀气氛和新春气氛的词句。

4、让学生说说画出的表示人物行踪的词句,然后教师引导着学生明确本文的结构布局。

四、把握主旨

让学生说说,读了全文,你感受到主人公保尔怎样的内心世界,怎样的人生态度?

(学生可以小组讨论,交流后给出答案,教师引导明确:文章通过对保尔瞻仰烈士公墓的所见所思,一方面表达出他对牺牲的革命烈士深沉的哀思,另一方面,通过对烈士们崇高革命理想的沉思,表达出自己为共产主义事业献身的坚定信念和人生态度。)

五、探究赏析

1、本文最有特色的是地方就是将景与情巧妙的结合在一起,主要写了没有生命力和有生命力两种不同的环境,体现两种不同的气氛:一种是肃杀的气氛,具体表现在哪些地方?作用是什么?一种是欣欣向荣,充满生机的。具体表现在哪里,作用是什么?

(学生自己找出来之后,先独立思考,然后小组进行交流,教师提问后,引导学生明确:

(1)肃杀:“冷冷清清的”街道监狱“阴森森的” “空寂”的广场小镇的尽头“阴郁而冷清”

作用:这种气氛渲染,主要突出遭白匪破坏后的萧条冷落,也寄托对烈士的哀思。

(2)欣欣向荣,充满生机:“陡坡外高耸着挺拔的青松”“谷地里满铺着如茵的嫩草”“四野里复苏的大地散发出新春的气息”“松林轻声地沙沙作响”“墓地周围”是“一圈苍翠的小树”

作用:展示的是胜利后充满生机的景象,也暗示了烈士们用鲜血和生命换来了苏维埃的新春。)

2、请同学们有感情地来朗读第七自然段,细细品味保尔的这段传世名言的深刻含义。

教师给出示例,如“人,最宝贵的是生命。”在“生命”之前用了副词“最”,可见革命是多么的'珍爱。

请同学们再从课文中保尔充满哲理性的抒情中找出相关语句进行品读。

(学生自己找,然后回答。

“生命对每个人只有一次”显而易见,失去了的生命就再也没有了,它提醒人们要珍惜生命,珍惜它的价值。

“我的整个生命和全部精力,这两个修饰语,表现出一种毫不含糊,不折不扣的信念。)

3、课文内容比较简短,主人公保尔在去公墓的路上以及在公墓前内心发生了巨大的涟漪,试从课文中找出能表现保尔内心活动的句子,体会保尔的心理变化。

(学生找出,并回答,教师引导学生明确。

如:第七自然段,保尔站在烈士墓前的心理描写,写出了保尔对生命意义的思考。)

4、让学生再次朗读文章第七段,能够背诵,从而加深对课文的理解。

六、拓展延伸

文中提到“不为虚度年华而悔恨”,“不因碌碌无为而羞耻”。我们在生活中接触的都是一些平平凡凡的人,或工人,或农民,或做小生意的人,他们在为生计忙碌,他们似乎也没有保尔一样的崇高理想,你们说他们是“虚度年华”和“碌碌无为”的吗?

(学生思考,然后教师提问,没有固定答案,言之成理即可。)

七、课堂小结

八、布置作业:

课下读《钢铁是怎样炼成的》这部小说,再次感受一下永远的保尔精神,理解生命的意义。

九、板书设计

比的意义教学设计 篇11

教材分析

1、要求学生认识百分数,理解百分数的意义,会读写百分数;在认识百分数的基础上,会读写百分数;本节内容在教材中是独立的,是学生新认识的,与前后内容无关联。

2、百分数在现实生活中有着广泛的应用,因此认识百分数势在必行。

学情分析

1、本节课的内容是学生初步接触的知识,老师若充分调动学生的积极性,学生会学的很有兴趣的。学生在课后的作业中表现的'也不错,都能正确的读、写百分数。

2、学生认知发展分析:由于我们是农村的学生,他们对百分数的了解不是太多,因此在教学百分数的意义时学生理解起来是有难度的。

3、学生认知障碍点:学生对百分数意义的理解有困难。

教学目标

1、知识与技能:

(1)、联系生活实际,理解百分数的意义,能够正确读写百分数。

(2)、了解分数与百分数的区别与联系。

2、过程与方法:

通过观察思考、比较分析、综合概括,经历百分数意义的探索过程,让学生主动参与,学会交流讨论。

3、情感态度与价值观:

通过学习培养学生自主探究的学习欲望,充分感受数学知识在生活中的应用价值。

教学重点和难点

教学重点:

理解百分数的意义。

教学难点:

了解百分数与分数的区别与联系。

比的意义教学设计 篇12

教学内容:

人教版小学数学教材五年级上册第62~63页及练习十四第1~3题。

教学目标:

1.借助天平及式子的分类操作,使学生初步了解方程的意义;能从形式上判别一个式子是否是方程;理清方程与等式的关系。

2.能根据简单的线段图、情境图列出方程,并能在教师引导下找到等量关系,经历利用等量关系进行方程模型建构的过程。

3.在对式子的分类、整理的教学活动中培养学生观察、描述、分类、抽象、概括及应用等能力。

教学重点:

抓住“等式”“含有未知数”两个关键词初步建立方程的概念。

教学难点:

方程与等式的关系;方程中等量关系的建立。

教学准备:

课件、写式子的卡片、磁钉。

教学过程:

一、认识天平,谈话铺垫

教师(出示天平图):这是什么?同学们知道天平的用途吗?

一般在称东西时,我们在天平的左边放上要称的东西,右边放上砝码。如果天平左右两边达到平衡,左边东西的质量就等于右边砝码的质量。这种平衡的状态如果用一个数学符号来表达,就是──等号。

二、探究新知

(一)天平演示,初步感知等与不等。

1.出示天平图1。

现在这种状态,你能用一个式子来表示吗?(板书:50+50=100)

2.(出示天平图2和图3)天平向左倾斜表示什么?如果水的质量用

g表示,那么杯子和水共重多少呢?(100+ )

3.如果老师在天平右边再加一个100 g的砝码,可能会出现什么样的情况?用式子来表示。

这三个式子体现在天平上分别是什么样的情况?咱们用手势来表示一下。

4.来看看究竟是哪种情况?(先出示天平图4,后出示天平图5)用式子来表示一下。

5.(出示教材第63页最上面的图)这样的图你能用一个式子表示它们的关系吗?

【设计意图】通过直观演示,感受等与不等。同时通过反馈和追问,帮助学生感受等式的意义。为下一环节中式子的分类及理解等式和不等式做好准备。从天平到式,再从式到天平图,在学生的头脑中利用天平建立左右相等的等式模型,为突破建立方程中的等量关系这一难点做好铺垫。

(二)分类整理,建构概念

1.观察黑板上出现的式子,尝试根据式子的特点进行分类(先请学生独立思考,再同桌进行交流。)

2.学生反馈,教师根据反馈在黑板上移动式子。

预设1:按左右相等和不等分类(补充等式和不等式);

预设2:按是否含有未知数分类。

注:教师在按照两种分类方式摆放式子时整理成如下表格所示:

3.(指表格)像这样,含有未知数的等式称为方程(揭题)。

4.写方程:根据你的理解写2~3个方程,写完之后给同桌看看其是否为方程(教师在巡视过程中选择一些学生到黑板上写一写。)

5.说说黑板上同学写的是否为方程,并说说判断理由(主要使学生明确,判断一个式子是不是方程,一看是不是等式,二看有没有未知数。)

(三)概念辨析,理清等式与方程之间的关系

1.“做一做”第1题:请学生说说哪些式子是方程,并说说为什么(可以选择其中几个不是方程的式子,请学生说说怎样改一下就可以将其变成方程。)

2.这两个式子是否是方程呢?

反馈分析:

(1)式1:一定是。为什么?

(2)式2:一定是等式,可能是方程。

(3)思考:等式和方程有什么联系呢?

(4)引导画集合图,并引导得出:方程一定是等式,等式不一定是方程。

【设计意图】方程与等式的关系是本节课的`教学难点,教学时,先通过分类整理让学生对等式与方程的关系产生直观、正确的感知;然后通过被蘸了墨水的式子的判别,进一步体会两者的关系;最后,通过韦恩图帮助学生加以明确。不仅突破了教学的难点,而且渗透了初步的集合思想。

三、实践反思,巩固提高

1.“做一做”第2题及练习十四第2题:看图列出方程。

学生练习并进行反馈。

反馈侧重:使学生明确,可以根据量相等来列出方程。

2.练习十四第3题:看情境图,思考数量关系再列方程。

(1)从图上你知道了什么?

(2)你能根据你知道的数量关系列出方程吗?

(3)学生自行根据数量关系列出方程,并进行反馈。

【设计意图】能用方程表达简单情境中的数量关系,也是《义务教育数学课程标准(20xx年版)》对本内容的要求,为从数量关系到等量关系的转变做好准备,这对于学生理解和掌握方程的知识至关重要。

四、总结回顾,介绍历史

1.你对方程印象最深的是什么?(每个同学说一点,后面的同学要和前面同学不一样。)

2.教师介绍方程的相关知识。(课件出示教材第63页“你知道吗?”的内容)

【设计意图】把数学史融入课堂教学当中,一方面可以拓展学生的视野,让学生对方程的产生过程产生比较清晰的认识,知道数学是一个动态成长的科学,体会到数学的每一个理论和发展是一个漫长的过程。让学生在体会数学文化的价值的同时,产生探索的欲望。

比的意义教学设计 篇13

教材分析

约数和倍数的意义是在学生已经学过整除知识的基础上进行教学的,这部分内容是后面学习质数和合数、质因数、分解质因数、求最大公约数、求最小公倍数等知识必须具备的基础知识,所以是本单元中最基本的概念.

教材在复习“整除”的基础上概括出“整除”这个概念,然后引出约数和倍数的概念.在整数范围内,除法算式可以分为整除和不能整除两大类.引入了小数以后,除法算式又可以分除尽和除不尽两大类.这里的除尽,不但包含了整除的情况,还包含了被除数、除数或商是有限小数的情况,所以在教学中要列举各种有代表性的实例,让学生通过对算式中被除数、除数与商各种不同情况的观察、比较,使整除的概念从除尽的概念中分化出来.从而理解整除的意义,明白整除与除尽的关系.

学生学过约数和倍数的意义后往往把“倍数”和“几倍”混同起来,所以教学时应通过对比练习,使学生悟出两者的.区别(可以说8是4的倍数,也可以说8是4的2倍;但是不可以说0.8是0.4的倍数,只能说0.8是0.2的2倍),从而进一步理解和掌握约数和倍数的本质.

教法建议

约数和倍数的意义是在学生已经学过整除知识的基础上进行教学的,这部分内容是后面学习质数和合数、质因数、分解质因数、求最大公约数、求最小公倍数等知识必须具备的基础知识,是本单元中最基本的概念.

复习引入时,教师要通过新旧知识的联系,抓住生长点, 对已掌握的“整除”的意义进行复习,通过观察算式的特征和结果,首先将算式分为除尽和除不尽两大类,然后再对算式中被除数、除数与商各种不同情况的观察、比较,使整除的概念从除尽的概念中分化出来.从而理解整除的意义,明白整除与除尽的关系.

约数和倍数是建立在整除的基础上的,所以教学求一个数的约数和倍数的时候,首先要利用整除式帮助学生理解除数和商是被除数的一对约数,进而发现约数可以一对一对的找,在学生学会找约数的基础上,教师可以给学生创设一个研讨,发现约数特点的情景.学生掌握了约数的特点,更能提高找约数的能力.找倍数的方法学生很容易理解,难点是对一个数的倍数是无限的这个特点的认识,教师可以在练习中设计集合圈中加省略号和不加省略号两种题目,让学生通过对比讨论加深认识.

教学设计示例

约数和倍数的意义

教学目标

1、掌握整除、约数、倍数的概念.

2、知道约数和倍数以整除为前提及约数和倍数相互依存的关系.

教学重点

1、建立整除、约数、倍数的概念.

2、理解约数、倍数相互依存的关系.

3、应用概念正确作出判断.

教学难点

理解约数、倍数相互依存的关系.

比的意义教学设计 篇14

教学目标:

1、使学生经历比的。概念的抽象过程,理解比的意义,感悟数学知识之间的内在联系,培养观察、比较、抽象、概括以及合情推理的能力。

2、使学生掌握比的读法、写法,知道比的各部分名称,理解并掌握比与除法、分数的关系,掌握求比值的方法,会正确求比值。

教学重点、难点:建构比的意义。

教学课件:多媒体课件。

教学过程:

一、激情导课

1、根据情境写除法算式。

师:同学们,你们好!谁愿意告诉老师你们今年多大了?

师:大多数同学都是12岁,如果李老师今年24岁。(板书:生12师24)

师:你能根据老师年龄和同学年龄这两个信息,提一个用除法来解决的数学问题吗?

生:老师的年龄是同学年龄的几倍?怎样列式?

生:24÷12(板书)

生:同学的年龄是老师年龄的几分之几?又该怎样列式?

生:12÷24(板书)

2、揭示课题,引出比。

师:上面的两个问题都是用除法算式来表示两种数量的关系的。其实这种两数相除的关系我们数学上还有一种新的表示形式,这就是我们今天所要研究的新内容比。(板书:比)

二、民主导学

任务(一)根据概念理解比。

1、任务呈现:师:那么什么叫做比呢?请大家打开数学书第68页,书上已经有了说明,找一找,齐读这句话。

师:你是怎样理解这句话的?

2、自主学习

独立思考后小组合作

3、展示交流:

生:两个数相除又可以写成这两个数的比。

师:你认为这句话里哪个词是最重要的?

师:正如大家所说,两数相除又叫做这两个数的比。(板书:两数相除又叫做这两个数的比。)这就是比的意义。(板书:的意义)齐读课题。

师:根据比的意义,能不能把刚才的除法算式改写成比呢?24÷12=24:12(板书:24:12),比的写法,在两个数中间点上两个小圆点,就像我们语文上写的冒号一样,在比中,我们把它叫做比号,也可以写成分数形式的比,都读作“24比12”。(板书)把12÷24改写成比的形式12:24(板书:12:24)。

师:我们继续来研究这个比,这里的24表示什么?12又表示什么?

生:这里的24表示老师的年龄是24岁,(板书:老师年龄)12表示同学的年龄是12岁。(板书:同学年龄)

师:24:12表示谁和谁的比?

生:24:12表示老师年龄与同学年龄的比。

师:12:24表示谁和谁的比?

生:同学年龄与老师年龄的比。(板书:同学年龄:老师年龄)

师:24:12与12:24这两个比有什么区别?

生:它们的意义不一样,24:12表示老师年龄与同学年龄的比,12:24是同学年龄与老师年龄的比。

师:用比来表示两个数量关系的时候,我们一定要说清楚是谁和谁的比。谁在前,谁在后,不能颠倒位置,否则,比表示的具体意义就变了。

任务(二)比的分类。

1、任务呈现:

师:看来大家对于比都有了比较深刻的认识,下面请同学们根据例1的表格完成课本68页“试一试”。

2、自主学习:

独立思考后小组交流

3、展示交流

课件出示:李兰和张丽所用时间的比是4:5,张丽所行路程和时间的比是240 :5

师:这里的4表示什么?5又表示什么?

生:4表示李兰所用时间是4分钟,(课件出示:时间)5表示张丽所用时间是5分钟。(课件出示:时间)

师:240 :5这里的.240表示什么?5又表示什么?

生:240表示张丽所行的路程是240米,(课件出示:路程)5表示张丽所用的时间是5分钟。(课件出示:时间)

师:你发现这两道题里面相比的两个量有什么不同吗?

1、同类量比。

前一题相比的两个量都是所用时间,这样的比是同类量的比。比出的结果是一个量是另一个量的几倍或几分之几。

2、不同类量比。

后一题相比的两个量是所行的路程和所用的时间,这样的比是不同类量的比,比出的结果表示速度。因此,不同类量的比要产生一种新的量。

3、练习。

师:下面每组信息中有两个数量,你能用比来表示它们的关系吗?

课件出示:(1)小汽车每小时行60千米,货车每小时行50千米。

师:60表示什么?50表示什么?60:50表示?小汽车的速度:货车的速度=60:50

(2)用12元买了4个杯子。总价:数量=12:4

(3)工人生产24个零件,需要3小时。工作总量:工作时间=24:3

生:12元买了4个杯子,12÷4=3元,也就是总价除以数量等于单价。所以总价和数量的比是12:4.24÷3=8个,8表示的是每小时生产零件的个数,24个零件叫做工作总量,3小时叫做工作时间,工作总量除以工作时间等于工作效率,所以工作总量和工作时间的比是24:3。

师:这3道题里哪些是同类量的比,哪些是不同类量的比?

任务(三)自学认识比各部分名称,求比值。

1、任务呈现:

师:请同学们带着自学提纲中的这些问题自学教材第68页,可以和同桌同学一起议一议。

2、自主学习:

自学提纲:

(1)比由几部分组成?

(2)比的各部分名称是什么?

(3)什么叫比值?比值是怎样求出来的?

3、展示交流:

师:谁愿意向大家汇报第一个问题?

生:比由3部分组成。

师:那比的这3部分名称分别是什么?

以24:12为例来介绍比各部分的名称。

师:前项在什么位置?后项在什么位置?

在比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。在24:12这个比中,24是比的前项,12是比的后项。

师:什么叫比值?比值是怎样求出来的?

生:比的前项除以后项,所得的商叫做这个比的比值。用比的前项除以比的后项。

师:24:12这个比的比值该怎样计算呢?

生:24÷12=2

师:你能用刚才计算比值的方法求出下面每个比的比值吗?

课件出示:求出下面每个比的比值。5:1=()÷()=()2、7:9=()÷()=()4:7=()÷()=()(学生口述答案,教师借助课件反馈)

师:你是怎样理解比值的?比值有几种表示形式?

生:比值是一个数,可以用分数表示,也可以用小数或整数表示。勾出书上的有关句子并齐读。

师:比和比值有什么区别?

生:比值是一个数,比表示两个数之间的一种关系。

任务(四)从分数、除法的角度深化比。

1、任务呈现

看课件:那么,比和除法、分数之间有着怎样的联系和区别呢?

2、小组合作

独立思考后小组交流

3、展示交流

比的前项相当于除法中的(),相当于分数中的(),比号相当于除法中的(),相当于分数中的(),比的后项相当于除法中的(),相当于分数中的(),比值相当于除法中的(),相当于分数中的(),除法、比、分数既有联系又有区别。它们的意义不同。分数是(数)的一种表现形式,除法是一种(运算),比表示两个数之间的相除(关系)。如果用字母a表示比的前项,用字母b表示比的后项,写出比是a:b,除法算式是a÷b,写成分数是,三者之间的内在关系是:a:b=a÷b=这里的b能等于0吗为什么?

生:b相当于除法当中的除数,因为除数不能为0所以(b≠0)。

师:那也就是说比的后项不能为0.20xx年10月16日,在一场国际足球热身赛中,巴西队主场4比0胜日本队,这里比的后项怎么是0了?4表示什么?0表示什么?4:0表示什么呢?

生:巴西队是4分,日本队是0分,看看他们谁赢了。4:0表示的是两队的分数。

师:与今天我们所讲的比的意义一样吗?

生:不一样,各类比赛中的比表示的是两队得分相差多少的关系,我们数学中的比表示两个数相除的关系。

三、检测导结

1、目标检测

写比。甲数是3,乙数是10。

(1)甲数与乙数的比是()。

(2)乙数与甲数的比是()。

(3)甲数与甲乙两数和的比是()。

(4)乙数与甲乙两数和的比是()。

2、求比值。6:36=()2、8:7=()0、4:0、4=()5:2、5=()

3、哪一杯糖水更甜?

4、图形中找比。

师:接下来咱们进行一场小小的比赛,看一看谁在这个图中发现的比最多。

师:刚才他们说的都是两个数的比,有三种颜色,你能不能找出一个与众不同的比呢?能不能说出三个数的比呢?比还能表示三个数的关系,生活中还真有这样的比!搅拌混凝土时,水泥、沙子和石子的比是2:3:5。

2、结果反馈:同桌互判,反馈对错情况。

3、反思总结

这节课你有哪些收获?今天我们大家共同认识了比,其实关于比的知识还有很多,有兴趣的同学课后可以继续研究它。

比的意义教学设计 篇15

教学内容:

人教版课标教材六年级上

教学目标:

1. 理解比的意义,知道比是表示两个数之间的一种关系。

2. 会读比、写比、知道比的各个部分名称。

3. 渗透“变与不变”的函数思想。

教学重点:

理解比的意义,知道比是表示两个数之间的一种关系。

教学难点:

沟通比与倍数、分数(百分数)、除法之间的内在联系。

教学过程:

一、初步理解比是一种关系

1、引入比。

(1) 问题:一个摸球游戏,在盒子里要放黄球和红球两种球,要求黄球和红球按4比1,应该怎么放?

方案1:黄球4个,红球1个。

方案2:黄球8个,红球2个。

讨论:8个对2个应该是8:2,为什么也可以说成4:1,你能说明理由吗?

学生独立思考。交流:1个看作1份,4个就是4份,2个红球也可以看作1份,黄球有这样的4份,所以是4:1。黄球个数是红球个数的4倍。

方案3:红球12个、白球3个;红球16个、白球4个;......

讨论:为什么这些方法都是4:1?

(2) 红球和黄球的比呢?

(3) 小结:黄球个数除以红球个数等于4,黄球除以红球等于1/4。两个数的比其实就是两个数相除,4:1就是4除以1,1:4就是1除以4。

2、认识比的`各个部分的名称。

中间象冒号的叫做“比号”,前面的数叫做比的“前项”,后面叫做比的“后项”。

二、进一步认识比的意义

1、出示羊毛衫图。

(1) 讨论:从这个2:3中,你可以得到哪些信息?

交流:兔毛是羊毛的2/3;羊毛是兔毛的1.5倍;兔毛是这件衣服的2/5。羊毛是这件衣服的3/5。……

(2)2:3是羊毛和兔毛的比,那么,3:2是谁和谁的比?

2、出示新生儿图。

(1)讨论:这里的1:4是什么意思?

交流:1:4是指新生儿的头长是身长的1/4,身长是头长的4倍。

(2) 如果新生儿的头长是10厘米,那么身长是多少?头长是15厘米呢?新生儿的头长是1米呢?

说明新生儿的头长是有一定范围的。一般新生儿的身高在40到60之间。

(3) 讨论:(指名以为学生)这位学生的头长与身长的比是:4吗?那么你估计大概是多呢?也就是说这个1:4是特指新生儿的。

3、举例。

三、完善比的意义

1、出示:我坐飞机从杭州出发到成都,飞行的路程大约上1800千米,大约飞行了3小时。

(1)你看出了什么?

交流:飞机飞行的速度是1800÷3=600千米/小时。

1800:3,这是路程和时间的比。

(2)我们以前学的路程除以时间等于速度,其实就是路程和时间的比,结果就是速度。我们称它为“比值”,这里的600千米就是这个比的比值。

2、出示:嘉兴的特产是五方斋的粽子,花20元可以买4个。

讨论:你看到比了吗?

交流:总价和单价的比是20:4=5元/个。这里的比值就是单价。

四、总结提升

1、 总结

(1) 今天我们研究了什么?说说什么是比?

(2) 比和我们以前学习的很多知识有联系,你能说说吗?

2、 应用。(机动)

(1) 出示:地球储水量中,淡水与海水的比是4:141。

从杭州坐火车到成都,路程约是2480千米,需要行驶41小时。

今年流行16:9的宽频数字电视。

最新统计显示:我们在新生的婴儿中,男女人数的比约为119:100。

(2)说说你看懂了什么意思?

比的意义教学设计 篇16

一、今天老师有幸和大家一起学习,你们欢迎我吗?欢迎的话举手表示,感到很高兴,既然欢迎,你在上课时怎样表现?

二、引入

常州,历史悠久,人文荟萃,绿树芳草,将我们的家乡装点得秀丽多姿,近几年市政府投入更多资金,要把常州建设为美丽的园林城市。消息一传出,许多植树公司纷纷表示愿意承担此项工程。

提问:你觉得市政府在选择公司时会考虑哪些因素呢?

学生回答:如实力、服务质量、完成工期、诚信度、公司规模等。

三、自主探究

1、初读信息,形成认知矛盾

经过调查,市政府发现有三家公司在资金、工期、诚信度等方面的条件旗鼓相当,所以派人去他们以前的工程现场进行了实施调查,采集回了以下信息:

(课件呈现)

甲公司负责的1号路段中,现在成活树苗有24棵。

乙公司负责的2号路段中,现在成活树苗有19棵。

丙公司负责的3号路段中,现在成活树苗有47棵。

看着这组信息,你会选择哪个植树公司呢?让学生展开讨论。

引出:只了解成活的棵树这一个数量还不行,还需要知道树苗的总棵树是多少。(板书:成活棵树 总棵树)

2、查阅资料,同学们需要的数据找到了。

甲公司负责的1号路段中,共种树苗25棵,现在成活树苗有24棵。

乙公司负责的2号路段中,共种树苗20棵,现在成活树苗有19棵。

丙公司负责的3号路段中,共种树苗50棵,现在成活树苗有47棵。

提问:现在,你会建议市政府选择哪个公司呢?(小组讨论,并请一个代言人作好发言准备)交流发布。

板书:成活棵树是总棵数的几分之几?怎样比较可以快一些?(通分)

现在同学们很快可以做出判段选哪个公司比较好。黑板上改一下,成活棵树是总棵数的百分之几?引出:百分数

%→这个符号叫百分号。

甲:24÷25=24/25=96/100=96%

乙:19÷20=19/20=95/100=95%

丙:47÷50=47/50=94/100=94%

我们还可以写成这样:96%让学生上黑板写下面两个,其余同学写在自己的本子上。

提问:谁能用自己的话来说说96%95%94%表示什么意思?

交流信息,进一步体会百分数在生活中的应用。学生小组交流一下收集到的信息。进一步体会百分数的意义。

3、小结归纳

了解这么多的百分数,你能用自己的话说说什么叫做百分数?

①阅读课本:你还有什么疑问吗?

百分数与分数有什么不同?

(形式、意义、作用、书写方法都存在不同的地方)

四、应用提高

1、下面哪几个分数可以写成百分数,哪几个不能?

(1)一堆煤97/100吨,运走它的75/100

(2)23/100米相当于46/100米的.50/100

小结:数量不能写成百分数,分率可以写成百分数。

2、(课件呈现)

出示肯得基图片,你爱吃吗?猜一猜我们班爱吃人占全班的百分之几,看一段小资料,说说你的想法。引出洋快餐营业额比中式快餐多了百分之几?

(课件呈现)

2004年雅典奥运会,中国健儿取得了32枚金牌的优异成绩,夺

得令全世界瞩目的成绩。人们纷纷认为2008年北京奥运会将是中国体育健儿再创辉煌的时刻。中国奥委会在北京投入了1800亿进行城市基础设施建设,包括进行快速交通网络、环境整治、生活设施改造与信息化建设。各项投资比例如图:

游戏:石头、剪刀、布让学生收集信息,计算百分数。

五、小结收获,自我反思

这节课快结束了,老师对同学们的表现是100%的满意,老师想了解一下你的学习情绪如何?特别是愉快、紧张和遗憾这三种情绪。你能用百分数来告诉大家这节课的各部分学习情绪所占的比率吗?

愉快()%

紧张()%

遗憾()%

学了今天这节课,你想用百分数干些什么?

比的意义教学设计 篇17

教学内容:

人教版数学四年级下册P50-51

内容分析:

本节教学内容是在三年级“分数的初步认识”和“小数的初步认识”的基础上进行教学的,是学生系统学习小数的开始。

小数实质上是十进分数的另一种表示形式,其依据是十进制位值原则。教材着重从“小数是十进分数的另一种表示形式”来说明小数的意义,使学生明确“分母是10、100、1000……的分数可以用小数来表示。”

教学设想:

三年级学生已经初步认识了分数和小数,再次基础上,课前让学生进行复习。在课堂上通过练习题进行新知的教学,先由教师指导学生认识一位小数,在学习两位小数和三位小数的时候,放手让学生小组探究,体现学习的自主性。通过直观的图形帮助学生理解小数的意义,知道分母是10、100、1000……的分数可以用小数表示。通过想一想、说一说、议一议等活动使学生认识小数的计数单位和数位,掌握小数的计数单位间的进率是10。通过一系列练习巩固认识小数的意义。

教学目标:

1、利用米尺和面积图研究分数和小数之间的关系,感悟小数的意义:分母是10、100、1000……的分数可以用小数表示。理解小数是十进分数的另一种表示形式。

2、认识小数的数位和计数单位。

3、知道小数每相邻两个计数单位间的进率是10。

教学重点:

理解小数的意义

教学难点:

小数每相邻两个计数单位间的进率是10

教学过程:

课前谈话:三年级我们已经认识了小数,课前也带领大家根据学案复习了小数的知识,并要求大家把你写的小数进行了分类。

下面请同学们给同桌读一读你写的分数和小数,并互相说一说分类结果

课件出示学案内容

一.复习导入

(出示一位学生的分类结果)

师:请这位同学来回答,你把这些小数分成了几类?

生:三类

师:你是怎么想的?

生:小数点后面只有一位的是一类,小数点后面是两位的是一类,小数点后面三位的是一类

师:你们分的和他一样吗?

小数点右边的部分是小数部分(板书补充数位顺序表)

小数部分只有一位的小数叫做一位小数,那小数部分只有两位的小数呢?

生:两位小数

师:三位的呢?

生:三位小数

师:今天我们一起来探究小数的意义(板书:小数的意义)

【设计意图:三年级已经初步认识了小数,会写以米、元作单位的小数,并理解其意义。在此基础上,也能用小数表示面积图和线段图中给定部分,因此利用课前复习关于小数的知识,为本节课的学习做准备】

二、新授

(一)认识一位小数

1、出示尺子图

师:看这幅图,你是怎样填的?

生:分数:1/10米,小数:0.1米

师:你是怎么想的?

生:把1米平均分成10份,其中的一份是1/10米,用小数表示是0.1米。

师:谁再来说一说?

2、出示面积图

师:再看这个图,你还能用分数和小数表示吗?

生:分数是1/10,小数是0.1

师:为什么它也能用0.1表示?

生:涂色部分表示把正方形平均分成10份,取其中的一份,用分数表示是1/10,用小数表示是0.1.

师:其他同学同意吗?也就是说它们都表示1/10。即1/10=0.1

(出示课件:1/10=0.1)

3、出示第二幅面积图

师:那现在涂色部分是多少?

生:分数是3/10,小数是0.3

师:0.3表示什么意思?

生:把正方形平均分成10份,取其中的3份,就是3/10,分数是0.3

师:0.3里面有几个0.1?

生:0.3里面有3个0.1

4、出示

师:你还能用分数和小数表示涂色部分吗?给同桌说一说,并且说一说每个小数表示的意义

(同桌互说)

汇报:

师:第一个谁来说?

生:分数是6/10,小数是0.6

师:0.6里面有几个0.1?

生:0.6里面有6个0.1

师:第二个是多少?

生:分数是9/10,小数是0.9

师:0.9表示什么?

生:把正方形平均分成10份,取其中的9份,就是9/10,小数是0.9

师:0.9里面有几个0.1?

生:0.9里面有9个0.1

5、课件出示

师:这是我们刚才得到的几组小数和分数,观察这些分数,有什么特点?

生:分母都是10,都是平均分成了10份得到的

师:也就是十分之几的数,十分之几的数我们可以用几位小数表示?

生:一位小数

师:十分之几的数用一位小数表示(课件出示)

给同桌读一读这句话

6、课件出示

师:我们再回到这个图,现在涂色部分是0.9,也就是9个0.1,如果再添一份是多少?

出示

生:10/10、1

师:十分之十就是1

1里面有几个0.1?

生:1里面有10个0.1(课件出示)

7、出示

师:这个图怎么表示?

生:1.2

师:1.2里面有几个0.1?

生:1.2里面有12个0.1(课件出示)

8、出示

师:同学们仔细看,你发现了吗?一位小数都可以看做几个0.1(引导学生说)

0.1就是一位小数的计数单位,读作十分之一(补充数位顺序表)

十分之一所占的数位就是十分位(补充数位顺序表)

师问:十分位的计数单位是什么?

生:十分之一

师:十分位所占的数位是?

生:十分位

师:老师在说一个小数:0.8

8在哪一位?(生:十分位)

它的计数单位是什么?(生:十分之一)

有几个这样的计数单位?(生:8个)

【从直观的尺子图入手到较抽象的面积图,在对比中理解0.1的`意义,逐渐递进,在不断理解几个0.1的基础上,认识一位小数的计数单位和数位。在老师的引导下,问题的深入中帮助学生理解】

(二)认识两位小数、三位小数

1、自主探究

师:刚刚我们认识了一位小数的意义、数位和计数单位。那两位小数、三位小数呢?

接下来请同学们根据学案内容,结合老师给你的问题进行自主探究。

先请一位同学读一读

学生活动

2、练习反馈

师:同学刚才讨论的很积极,这几个问题都解决了吗?

那老师出几个问题考考大家

3、出示

师:涂色部分是多少?

生:分数是1/100,小数是0.01

师:你怎么想的?

生:把正方形平均分成100份,其中的一份是1/100,小数是0.01

师:谁再来说一说?

出示

师:这一个呢?

生:分数是4/100,小数是0.04

师:0.04里面有几个0.01?

生:有4个0.01

出示

师:这是多少?

生:分数是21/100,小数是0.21

师:0.21里面有几个0.01?

生:有21个0.01

4、认识两位小数的计数单位和数位

师:两位小数的计数单位是什么?(生:0.01)

也可以说是百分之一(补充数位顺序表)

百分之一所占的数位是?(生?百分位)(补充顺序表)

两位小数表示的是?(生:百分之几的数)

5、三位小数的意义

出示

师:再看这个图,涂色部分是多少?

生:分数是1/1000,小数是0.001

师:0.001表示什么?

生:把一个物体平均分成1000分,取其中的一份,就是1/1000,也就是0.001

师:谁再来说?

出示:0.125

师:再看这个数,是多少?(生:零点一二五)

没有图了,你还能说出他的意义吗?

生:把一个物体平均分成1000份,取其中的125份就是125/1000,用小数表示是0.125

师:0.125里面有几个0.001?

生:有125个

6、三位小数的计数单位和数位

师:三位小数的计数单位是什么?(生:0.001)

也可以读作千分之一

千分之一所占的数位是?(生:千分位)

(补充数位顺序表)

三位小数表示的是什么数?(生:千分之几的数)

【设计意图:在认识一位小数时,由教师带领学习,而在认识两位小数和三位小数时,则放手让学生自主探究,利用认识一位小数时的学习经验进行学习】

7、延伸

师:那四位小数呢?(生:万分之几)

计数单位是?(生:万分之一)

往下说的完吗?(生:说不完)

我们可以用省略号表示(补充数位顺序表)

8、拓展

师:小数部分有没有最小的计数单位?

生:有

师:有不同意见吗?

生:没有最小的计数单位,因为我们把物体平均分成10份,又平均分成100份,1000份,越分越小

师:你们听懂了吗?

想一想,0.1是怎么得到的?

生:平均分成10份,1份是0.1

师:那0.01就是平均分成100份,取其中的一份。0.001就是平均分成1000份,取其中的一份,随着分的分数越来越多,一份就越来越小,如果我继续分下去能分完吗?越往下分越小,那有没有最小的计数单位?

生:没有最小的计数单位。

师:小数部分有没有最大的计数单位?

生:十分之一

9、修改数位顺序表

师:拿出你刚才写的数位顺序表,看一看你写的对吗?

有问题的修改一下

(三)计数单位间的进率

1、出示:

师:第一个图的涂色部分用小数表示是?(生:0.1)

第二个图的涂色部分用小数表示是?(生:0.10)

你发现了什么?

生:两个图的涂色部分一样大

师:也就是他们大小相同。(出示:0.1=0.10)

有什么不同吗?

生:平均分的份数不同,一个平均分成了10分,一个平均分成了100份

师:对不对?第一个平均分成了10份,取其中的一份,第二个平均分成100份,取其中的10份

第一个表示1个0.1,第二个表示10个0.01

你还有什么发现?

生:10个0.01是0.1(板书)

师:一起读一遍

2、出示(由1个0.1增加到10个0.1)

生一起数到1

师:你发现了什么?

生:10个0.1是1

师:(板书)再读一读

3、小结

师(指数位顺序表):你有什么发现?

生:进率是10

师:对,小数和整数一样,相邻两个计数单位间的进率是10

比的意义教学设计 篇18

教学目标:

1、在操作、探究活动中,逐步理解一个整体,建立单位“1”的概念,理解分数的意义。

2、在学习过程中,培养学生的思维能力和应用意识。

3、体会数学与生活的密切联系,进一步增强学好数学的信心。

教学重点:

理解单位“1”和分数的意义。

教学难点:

理解单位“1”和分数的意义。

教学准备:

教具准备:自制教学课件

学具准备:小棒

教学过程:

一、谈话导入

1.读一读下列分数

2、关于分数,你已经知道了什么? 分数是怎么产生的呢??

二、分数的产生

1、板书课题

师:课前我们一起聊到了分数,今天这节课我们继续来认识分数。

师:你知道古人是怎样表示分数的吗?让我们一起来看一看。

三、理解分数的意义

1.理解一个整体

(1)、你能举例生活中的四分之一吗?

师:那就请同学们开动脑筋,好好想想

(2)、汇报交流

教师进行规范:

生:我把正方形平均分成4份,这样的一份就是这个正方形的1/4。

生:我是把这个圆平均分成4份,这样的一份就是这条圆的1/4。

突出整体:

师:谁能用分数表示被涂上颜色的小喵咪?

生:把8个小喵咪看作一个整体,平均分成4份,这样的一份就是这个整体的1/4 。

师:说得不错。只要把这4个苹果看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。

(3)小结:

把这个整体平均分成4份,表示了这样的一份,得到了这个整体的四分之一。

2、理解单位“1”。

(1)深化理解一个整体

学生自主创作:

师:现在,老师为同学们准备了一些小棒。同桌合作,任选一些小棒,分一分、找一找他们的1/4。开始吧。

交流汇报:

师:你用几根小棒表示1/4?你把几根小棒看作一个整体?你能说说这个1/4的含义吗?(多说几个)

师:一根可以用四分之一表示、两根也可以用四分之一表示、三根、四根都可以用四分之一表示。也就是说把什么平均分成4份,每份就可以用1/4进行表示呢?——一个整体

学生说4根小棒、8根小棒,师:4根小棒、8根小棒都可以看作一个整体

(2)揭示单位“1”。

师:说的真好。在数学中,通常把一个整体叫做单位“1”。把单位“1”平均分成4份,这样的一份可以用1/4来表示。(板书单位1)

(2)、汇报交流

师:谁愿意和大家交流一下你所找到的分数?

生:把4个苹果看作单位1,平均分成4份,这样的2份就是2/4。

(3)比较:

师:在刚才同学们动手涂一涂,写一写的时候,老师发现,有些同学找到了,这几个分数。

4. 揭示分数的意义。

(1)逐步理解分数的.意义

师:我们通过动手分一分,涂一涂等方法已经认识了很多的分数。

黑板上的三个分数,你能说说它的含义吗?

生:把单位“1”平均分成若干份,这样的的一份或几份的数,就是单位1的几份之几。

师:已经会用单位1来说了,真好。谁也愿意来试一试呢?

小结:像同学们所理解的,把单位“1”平均分成若干份,这样的一份或几份都可以用分数来表示。(板书)这就是我们今天所学的分数的意义。我们一起来读一读。

(2)理解分数单位

师:分数和整数一样,也有计数单位。像这样表示其中一份的数我们叫做分数单位。

生:分数单位就是表示一份的数

师:也就是说一个分数的分母是几,这个分数的分数单位就是——几分之一

四、练习巩固。

1、说出下列题中的单位‘1’。

2、学生汇报交流

五、布置作业

练习十一的习题

比的意义教学设计 篇19

教学目标

1、使学生认识比的意义和各部分的名称,学会比的读写方法,理解和认识比与除法、分数之间的联系。

2、培养学生比较、分析和概括等思维能力。

教学重难点

使学生认识比的意义和各部分的名称,学会比的读写方法,理解和认识比与除法、分数之间的联系

教学准备

幻灯片

教学过程设计

教学内容

师生活动

备注

一、 引入新课

二、教学新课

三、巩固联系

四、作业

1、口答(幻灯出示两道除法到分数,两道分数到除法的换算题)

引入新课

2、出示两道文字题

(!)3千米是5千米的`几分之几?

(2)8吨是4吨的几倍?

学生回答后,教师说明:在数学上我们把这两种类型同意为一个数与另一个数的比。今天我们就来学习比的意义。

1、学生用十分钟自习书本52到53页

2、问:通过自习你知道了哪些知识?还有哪些疑问?

3、小组内互相说,解决问题。

4、教师请个别同学说,然后师生一起探讨、研究。

5、幻灯出示例1、例2,让学生解答,以便知识得到进一步巩固。

6、说明相关注意点。如:单位、比值、名称、写法、读法......

1、书本53页练一练

2、练习十二1、2

练习十二3、4、5

比的意义教学设计 篇20

教学目标:

1、经历从生活情境到方程模型的建构过程。

2、理解方程概念,感受方程思想。

3、通过观察、描述、分类、抽象、概括、应用的学习活动过程达到学习水平的提高。

教学过程:

一、情境创设,初建相等关系模型。

1、师出示天平图,

认识吗?

师:天平可以称出物体的质量是多少。

2、(媒体出示三幅图)下面的三幅图中,哪一幅能称出两只苹果的质量?

(左右倾斜各一幅,平衡的一幅。图略)

学生会选择图3,老师顺着学生的思路出示图3天平平衡图

图3为什么能称出两只苹果的质量?

你能用一个式子表示出天平两边物体的质量关系么?

100+100=200

图1和图2为什么不能称出两只苹果的质量呢?

你也能用一个式子表示出天平两边物体的质量关系吗?

100+100>100、100+100<500

3、三个式子都是表示物体之间质量的关系,数学上把这样表示两边相等的关系的式子叫做等式。

你的小脑袋里有等式吗?说一个试试。

除了用加法表示的还有不一样的吗?(师板书学生说的其它的一些式子)

师:没想到,同学们对等式是这么的熟悉。

二、借助基础,拓展等式外延。

1、下面的几幅图中,天平两边物体的质量关系,哪些可以用等式表示?能表示的试着把它写下来,不能的思考可以用一个什么样的式子表示呢?

(书上四幅图略)

选一个等式说一说它表示什么意思?

天平两边物体的质量关系,一种是用语言表达,一种是用数学式子表示,你愿意选择哪一种?说说你的理由。(突出简洁、清楚)

2、师:的确,这样的一些数学式子能清楚、简洁地表示出天平左、右两边物体质量之间的关系。

3、比较:现在写的这些等式与刚才我们说的那些等式有什么不同吗?

突出含有未知数的等式

这些含有未知数的等式你见过吗?

生:没见过;也可能见过,如:用字母表示数中、求未知数x等。

三、进一步拓宽对等式的理解。

1、顺着学生的思路组织教学:李老师就为同学们准备了一些生活中同学们常见的一些现象,仔细看一看,这些生活中的现象之间的关系是不是也能用含有未知数的'等式来表示呢?

(师出示四幅生活情境图)

(1)铅笔盒与笔记本共20元。

(2)借出的书与剩下的书共150本。

(3)3瓶相同的色拉油,每瓶x元,共8元。

三、明确特征,归纳概念。

其实呀,数学上给这样一些含有未知数的等式起了个很特别的名字叫方程,这就是我们今天要研究的方程的意义。(板书)

揭示数学上我们把含有未知数的等式叫做方程。

四、深刻领悟,挖掘内涵。

1、黑板上的其它式子为什么不是方程?

2、师:现在同学们知道什么是方程了吗?下面哪些是等式,哪些是方程?(是等式的男生举手,是方程的女生举手)

36-7=29、60+x>70、8+x

6+x=14、7+15=22、5y=40

活动结束了,但思考却刚刚开始,就等式和方程的关系你现在有什么话想说的吗?

(在活动中理解等式与方程的关系)

五、实践应用,拓展外延。

1、你能看图列出方程吗?

图1:天平(2x=500)

图2:四个物体16.8元

图3: 两杯水共有450毫升

2、从文字表述中找出方程

(1)小明从家到学校有500米,他每分钟走50米,走了x分钟。

(2)张师傅每天做x个零件,用了6天做了780个零件。

(3)王涛放学回家后,去商店买了3本精装笔记本,每本y元。他付给售货员阿姨20元,找回2元。

3、李老师头脑中有一幅图,我把它用方程表示了出来,猜一猜,老师头脑中可能会是一幅什么样的图?

出示:5x=200(可提示:如天平图等)

个别交流的基础上同桌互说。

六、全课总结:学习到现在你有哪些收获?

从不能用方程表示到能用方程表示图中的数量关系的一种演变。

图1:买4个小熊猫玩具,每个x元,120元不够

图2:买3个,每个x元,120元还不够

图3:买2个,每个x元,120元正好

延伸:使两只水杯一样多你能有哪些办法?用方程表示,你能吗?

大家都在看