请欣赏《反比例》教学设计(精选16篇),由笔构网整理,希望能够帮助到大家。
《反比例》教学设计 篇1
教学内容:北师大版数学第十二册第二单元教材第24页反比例的教学内容 。
教学目标:
1、结合丰富的实际,认识反比例,能根据反比例的意义,判断两个相关的量是不是成反比例,利用反比例解决一些简单的生活问题,感受反比例在生活中的广泛应用。
2 、培养学生的逻辑思维能力。
3、渗透数学源于生活的观点。
重点难点
1、通过具体问题认识成反比例的量。
2、掌握成反比例的量得变化规律及其特征。
教具准备: 课件
教学过程
一、复习铺垫
师:上一节我们学习了正比例,请同学们回忆怎样判断两个相关联的量是否成正比例?(指名答)
师:简单概括两个相关联的量成正比例的关键是什么?生答,强调:他们的比值(商)一定。
二、谈话引题
师:看来大家对正比例知识理解掌握得非常好,学完正比例接下来我们就该学习什么了?(生答)是啊,有正就有反,的确这节课我们就来探究反比例的有关知识(板书:反比例)
三、猜想激趣
师:既然正与反意义是相反的,请同学们猜想成反比例的两个量的关系是怎样的呢?(生猜想)到底同学们的猜想是否正确?我们要用事实来验证。
四、验证归纳
师:1.研究情境(一)
让学生把汽车行驶的速度和时间的表填完整。
观察上表,思考下面的问题:
(1)表中有哪两种量?
(2)时间是怎样随着速度的变化而变化的?
(3)表中那个量没有变?
(4)写出三者的关系式
2.研究情境(二)
把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?哪一个没变?用自己的语言描述变化关系。
写出关系式:每杯果汁量×杯数=果汗总量(一定)
以上两个情境中有什么共同点?
3.反比例意义
引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系(板书)
4.情境(三)
认识加法表中和是12的直线及乘法表中积是12的曲线。
引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。
五、课堂练习
1、判断下面每题中的两个量是不是成反比例,并说明理由。
(1)圆柱体的体积一定,底面积和高。
(2)小林做10道数学题,已做的题和没有做的题。
(3)长方形的长一定,面积和宽。
(4)平行四边形面积一定,底和高。
2、判断下面每题中的两种量是不是成反比例,并说明理由。
(1)煤的总量一定,每天的'烧煤量和能够烧的天数。
(2)张伯伯骑自行车从家到县城,骑自行车的速度和所需的时间。
(3)生产电视机的总台数一定,每天生产的台数和所用的天数。
五、全课小结
今天同学们学到了什么知识?觉得还有什么地方感到困惑的吗?
六、作业:找一找生活中有哪些例子成反比例。
板书设计
反比例
速度×时间=路程(一定)
每杯的果汁量×分的杯数=果汁总量(一定)
两种相关联的量,一种量变化,另一种量也随着变化,变化时两种量中相对应的两个数的积一定,这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。
《反比例》教学设计 篇2
教学内容:
《反比例的意义》是六年制小学数学(人教版)第十二册第一单元《比例》中的内容。是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。
学生分析:
在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。
设计理念:
学习方式的转变是新课改的显著特征,就是把学习过程中的分析、发现、探究、创新等认识活动凸显出来。在设计《反比例的意义》时,根据学生的知识水平,对教学内容进行处理,克服教材的局限性,最大限度地拓宽探究学习的空间,提供自主学习的机会。
教学目标:
1.通过探究活动,理解反比例的意义,并能正确判断成反比例的量。
2.引导学生揭示知识间的联系,培养学生分析判断、推理能力
教学流程:
一、复习铺垫,猜想引入
师:(1)表格里有哪两个相关联的量?(2)这两个相关联的量成正比例关系吗?为什么?
2.猜想
师:今天我们要学习一种新的比例关系——反比例关系。(板书:反比例)
师:从字面上看“反比例”与“正比例”会是怎样的关系?
生:相反的。
师:既然是相反的,你能联系正比例关系猜想一下,在反比例关系中,一个量会怎样随着另一个量的变化而变化?它们的变化会有怎样的规律?
生:(略)
反思:根据学生认知新事物大多由猜而起的规律,从概念的名称“正、反”两宇为切入点,引导学生“顾名思义”,对反比例的意义展开合理的猜想,激起学生研究问题的愿望。
二、提供材料,组织研究
1.探究反比例的意义
师:大家的猜想是否合理,还需要进一步证明。下面我提供给大家几张表格,以小组为单位研究以下几个问题。
(1)表中有哪两个相关联的量?
(2)两个相关联的量,一个量是怎样随着另一个量的变化而变化的?变化规律是什么?
2.小组讨论、交流。(教师巡回查看,并做适当指导。)
3.汇报研究结果
(在汇报交流时,学生们纷纷发表自己的看法。当分析到表3时,大家开始争论起来。)
生1:剩下的路程随着已行路程的扩大而缩小,但积不一定。
生2:已行路程十剩下路程=总路程(一定)。
生3:我认为第一个同学的说法不准确,应该换成“增加”和“减小”……
(最后通过对比大家达成共识:只有表2和表3的变化规律有共性。)
师:表2和表3中两个量的变化规律有哪些共性?(生答略。)
师:这两个相关联的量叫做成反比例的量,它们的关系叫做反比例关系。(完成板书。)
师:如果用字母A和B表示两个相关联的量,用C表示它们的积,你认为反比例关系可以用哪个关系式表示?[板书]
反思:教材中两个例题是典型的反比例关系,但问题过“瘦”过“小”,思路过于狭窄,虽然学生易懂,但容易造成“知其然,而不知其所以然”。通过增加表3,更利于学生发现长×宽=长方形的面积(一定)这一关系式,有助于学生探究规律。同时还增加了表1、表4,把正比例关系、反比例关系、与反比例雷同(“和”一定)的情况混合在一起,给学生提供了甄别问题的机会。
4.做一做(略)
5.学习例6
师:刚才我们是参照表格中的具体数据来研究两个量是不是成反比例关系,如果这两个量直接用语言文字来描述,你还会判断它们成不成反比例关系吗?(投影出示例题。)
三、巩固练习,拓展应用
1.基本练习。(略)
2.拓展应用。
师:你能举一个反比例的例子吗?(先自己举例,写在本子上,再集体交流。)
交流时,学生们争先恐后,列举了许多反比例的例子。课正在顺利进行时,一个同学举的“正方形的边长×边长=面积(一定),边长和边长成反比例”的例子引起了学生们的争论。,教师没有马上做判断,而是问学生:“能说出你的理由吗?”有的学生说:“因为乘积一定,所以边长和边长成反比例关系。”对他的'意见有的同学点头称是,而有的同学却摇头……忽然,一名同学像发现新大陆一样大声叫起来:“不对!边长不随着边长的扩大而缩小!这是一种量!”一句话使大家恍然大悟:对啊!边长是一种量,它们不是相关联的两个量,所以边长和边长不成反比例。后来又有一名同学举例:“边长×4=正方形的周长(一定),边长和4成反比例。”话音刚落,学生们就齐喊起来:“不对!边长和4不是相关联的两个量。”
反思:通过“你能举一个反比例的例子吗?”这样一个开放性练习题,让学生联系已有的知识,使新旧知识有机结合,帮助学生建立起良好的认知结构,这同时也是对数量关系一次很好的整理复习机会,通过举例进一步明确如何判断两个量是否成反比例。
3.综合练习
四、总结
反思:
《数学课程标准》中指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”而现行的小学数学高年级教材,内容偏窄、偏深,部分知识抽象严密、逻辑性强、脱离学生的生活实际,与新教材相比明显滞后。如何将新的课改理念与旧教材有机整合,是我们每一个数学教师应该思考探索的课题。
《反比例》教学设计 篇3
教学目标:
1、使学生能正确判断应用题中涉及的量成什么比例关系。
2、使学生运用正、反比例的意义正确解答应用题。
3、渗透函数的初步思想,建立事物是相互联系的这一辨证观点,培养学生的判断推理能力和分析能力。
教学重点:让学生能正确判断应用题中的数量之间存在何种比例关系,并能利用正反比例的意义列出含有未知数的等式。
教学难点:利用正反比例意义正确列出等式,掌握用比例知识解答应用题的解题思路
教学准备:课件
教学步骤:(铺垫孕伏,建立表象;创设情境,探究新知;归纳总结,揭示意义;巩固练习,考考自己;分层练习,深化新知)
一、铺垫孕伏,建立表象
1、判断下面每题中的两种量成什么比例关系?
○1速度一定,路程和时间( ) ○2路程一定,速度和时间( )
○3单价一定,总价和数量( ) ○4每小时耕地公顷数一定,耕地的总公顷数和时间
○5全校学生做操,每行站的人数和站的行数
2、根据条件说出数学关系式,再说出两种相关联的量成什么比例,并列出相应的等式。
(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。
(2)一列火车行驶360千米,每小时行90千米,要行4小时;每小时行80千米,要行经X小时。
指名学生口答,老师板书。
二、创设情境,探究新知
从上面可以看出,日常生活生产的一些实际问题,应用比例的知识,也可根据题意列一个等式。我们以前学过的一些应用题,还可以应用比例的知识来解答,这节课我们学习比例的应用(板题)
1、教学例1
(1)出示例1(课件演示)让学生读题
一辆汽车2小时行140千米,照这样的速度,从甲地到乙地共行驶5小时,甲乙两地之间的公路长多少千米?
师:你用什么方法解答,给大家介绍一下如何?(自由回答)
(提问:我们怎样解答的?(板式)先求什么,是按怎样的数量关系式来求的?这道题里哪个数量是不变的量)
学生解答如下几种:
解法一:140÷2×5=70×5=350千米
解法二:140×(5÷2)=140×2.5=350千米
如果有学生用比例方法解,老师及时给以肯定,如果没有,老师给以引导性的问题:
A题中涉及哪三种量?(路程、时间和速度三种量),其中哪两种是相关联的量?
B哪一种量是一定的?(固定不变),你是怎么知道的?(照这样的速度,就是说速度是一定的)
C它们有什么关系?(行驶的路程和时间成正比例关系)
D题中“照这样的速度”就是说 一定,那么 和 成 比例关系?因此 和 的 是相等的。
教师板书:速度一定,路程和时间成正比例。
师追问:两次行驶的路程和时间的什么相等(比值相等)
解法三:(用比例方法,怎样列式)
解:设甲乙两地间的总路长X千米
140 X 或 140:2=X:5
2 5 2X=140×5
X=350
答:甲乙两地之间公路长350千米。
小结:这一类型题,我们不仅可用过去的归一法、倍比法来解,还可用比例方法来解。
2、怎样检验这道题做得是否正确呢?
3、变式练习改编题
出示改编的问题,让学生说一说题意,请同学们按照例1的方法自己在练习本上解答,指名一人板演,然后集体订证,指名说一说是怎样想的,列等式的依据是什么?
4、教学例2(课件演示)
(1)出示例2,学生读题
例2:一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果4小时到达,每小时要行多少千米?
提问:
(1)以前我们怎样解答的?(板书算式)这样解答先求什么?是按怎样的数量关系式来求的?(板书:速度×时间=路程)这道题里哪个数量是不变的量?
(2)谁能仿照例1的解题过程,用比例的知识解答例2来试试,指名板演,其余学生做在练习本上,练习后提问怎样想的?速度和时间的对应关系怎样?检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。
学生利用以前的方法解答。
70×5÷4=350÷4=87.5(千米)
(3)提问:按过去的方法先求什么再解答的?先求总路程的应用题现在用什么比例关系解答的?谁来说说,用反比例关系解答这道应用题怎样想,怎样做的?(课件演示)
这道题里的.路程是一定的, 和 成 比例,所以两次行驶的 和 的 是相等的。
指出:解答例2要先按题意列出关系式,判断成反比例,再找出两种关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次行驶相对应数值的乘积相等,列式。
(4)设每小时行驶X千米(根据反比例的意义,谁能列出方程
4X=70×5 X=70×5/4 X=87.5
答:每小时行驶87.5千米。
师:A)该题中三个量有什么关系?其中哪两种量是相关联的量?
B)题中哪一种是固定不变的?从哪里看出来?
C)它们有什么关系?
D)这道题的 一定, 和 成 比例关系,所以两次行驶的和是相等的。
(5)变式练习(改编题)
出示改变的条件和问题,让学生说一说题意,指名一人板演,其余在练习本上独立解答,集体订证,说说怎样想,根据什么列式。
一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果每小时行87.5千米,需要几小时到达?
解:设需要x小时到达
87.5x=70×5 x=4
答:需要4小时到达。
三、归纳总结,揭示意义
想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可互相讨论一下,然后告诉大家,指名说解题思路。
指出:用比例解答应用题的关键,正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。(正确判断成什么比例,正比例比值相等,反比例乘积相等)
四、巩固练习,考考自己(课件演示)
请你们按照刚才学习例题的方法去分析,只要列出式子就行。
1、食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)
2、同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?
以上1、2两题,学生做完将鼠标移到“看看做对了没有”进行自我判断。
3、先想想下面各题中存在什么比例关系?再填上条件和问题,并用比例知识解答。
(1)王师傅要生产一批零件,每小时生产50个,需要4小时完成 , ?
(2)王师傅4小时生产了200个零件,照这样计算 ?
4、四选一,每题只能选一次
(1)体积是30立方分米的钢体重150千克,重1200千克的这种钢材,体积是多少立方分米?(d)
a.150×30=1200x b.30:150=1200:x
c.150x=30×1200 d.150:30=1200:x
(2)机器厂制造一个零件所用的时间由原来8分钟减少到3分钟,过去每天生产零件60个,现在每天生产多少个?(a)
a.60×8=3x b.60:8=3:x
c.60×8=(8-3)x d.3:x=8:60
(3)机器厂生产一种零件,每制造5个零件需要40分钟,一天工作480分钟,能制造多少个零件?(b)
a.5×40=480x b.5:40=x:480
c.40x=5×480 d.40:5=x:480
(4)托儿所给小朋友分糖,原来中班24人每人可分5块,最近又调进6人,每人可分多少块糖?(c)
a.24×5=6x b.24:5=6:x
c.(24+6)x=24×5 d.(24+6):x=24:5
(5)小红从甲地到乙地,3小时行了全程的75%,几小时可以走一个来回?(b)
a.3×75%=2x b.75%:3=2:x
c.75%x=2×3 d.3:75%=2:x
五、分层练习,深化新知
○1修一条长6400米的公路,修了20天后,还剩下4800米,照这样计算,剩下的路要修多少天?(6400-4800):20=4800:x
○2工人装一批电杆,每天装12根,30天可以完成,如果每天多装6根,几天能够完成?
12×30=(12+6)×X
○3农具厂生产一批小农具,原计划每天生产120件,28天可完成任务,实际每天多生产了20件,可以提前几天完成任务?
120×28=(120+20)×X
六、全课总结,温故知新
解比例应用题的一般步骤是什么?(学生自己用语言叙述)
一般方法和步骤:
1、判断题目中两种相关联的量是成正比例还是反比例;
2、设未知量为x,注意写明计量单位;
3、列出比例式,并解比例式;
4、检查后写出答案;
5、特别注意所得答案是否符合实际。
七、课后反馈,挑战难题
小明受老师委托,编一些比例应用题,于是他前往“数学超市”选购了一些条件:
“计划每天生产30辆”、“实际每天生产40辆”、“计划25天完成”、“实际20天完成”、“计划一共生产了900辆”、“实际一共生产了1000辆”
小明需要你的帮助,你会怎样编题?
《反比例》教学设计 篇4
一、知识与技能
1.从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解.
2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.
二、过程与方法
1.经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点.
2.经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识.
三、情感态度与价值观
1.经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣.
2.通过分组讨论,培养学生合作交流意识和探索精神.
教学重点:
理解和领会反比例函数的概念.
教学难点:
领悟反比例的概念.
教学过程:
一、创设情境,导入新课
活动1
问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?
(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;
(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;
(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.
师生行为:
先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的`表达形式.
教师组织学生讨论,提问学生,师生互动.
在此活动中老师应重点关注学生:
①能否积极主动地合作交流.
②能否用语言说明两个变量间的关系.
③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象.
分析及解答:(1);(2);(3)
其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;
上面的函数关系式,都具有的形式,其中k是常数.
二、联系生活,丰富联想
活动2
下列问题中,变量间的对应关系可用这样的函数式表示?
(1)一个游泳池的容积为20xxm3,注满游泳池所用的时间随注水速度u的变化而变化;
(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;
(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化.
师生行为
学生先独立思考,在进行全班交流.
教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:
(1)能否从现实情境中抽象出两个变量的函数关系;
(2)能否积极主动地参与小组活动;
(3)能否比较深刻地领会函数、反比例函数的概念.
分析及解答:(1);(2);(3)
概念:如果两个变量x,y之间的关系可以表示成的形式,那么y是x的反比例函数,反比例函数的自变量x不能为零.
活动3
做一做:
一个矩形的面积为20cm2, 相邻的两条边长为xcm和ycm.那么变量y是变量x的函数吗?是反比例函数吗?为什么?
师生行为:
学生先进行独立思考,再进行全班交流.教师提出问题,关注学生思考.此活动中教师应重点关注:
①生能否理解反比例函数的意义,理解反比例函数的概念;
②学生能否顺利抽象反比例函数的模型;
③学生能否积极主动地合作、交流;
活动4
问题1:下列哪个等式中的y是x的反比例函数?
问题2:已知y是x的反比例函数,当x=2时,y=6
(1)写出y与x的函数关系式:
(2)求当x=4时,y的值.
师生行为:
学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导.在此活动中教师应重点关注:
①学生能否领会反比例函数的意义,理解反比例函数的概念;
②学生能否积极主动地参与小组活动.
分析及解答:
1.只有xy=123是反比例函数.
2.分析:因为y是x的反比例函数,所以,再把x=2和y=6代入上式就可求出常数k的值.
解:(1)设,因为x=2时,y=6,所以有解得k=12
三、巩固提高
活动5
1.已知y是x的反比例函数,并且当x=3时,y= ?8.
(1)写出y与x之间的函数关系式.
(2)求y=2时x的值.
2.y是x的反比例函数,下表给出了x与y的一些值:
(1)写出这个反比例函数的表达式;
(2)根据函数表达式完成上表.
学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”.
四、课时小结
反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.
《反比例》教学设计 篇5
教学内容:
《反比例的意义》是六年制小学数学(人教版)第十二册第一单元《比例》中的内容。是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。
学生分析:
在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。
设计理念:
学习方式的转变是新课改的显著特征,就是把学习过程中的分析、发现、探究、创新等认识活动凸显出来。在设计《反比例的意义》时,根据学生的知识水平,对教学内容进行处理,克服教材的局限性,最大限度地拓宽探究学习的空间,提供自主学习的机会。
教学目标:
1.通过探究活动,理解反比例的意义,并能正确判断成反比例的量。
2.引导学生揭示知识间的联系,培养学生分析判断、推理能力
教学流程:
一、复习铺垫,猜想引入
师:(1)表格里有哪两个相关联的量?(2)这两个相关联的量成正比例关系吗?为什么?
2.猜想
师:今天我们要学习一种新的比例关系——反比例关系。(板书:反比例)
师:从字面上看“反比例”与“正比例”会是怎样的关系?
生:相反的。
师:既然是相反的,你能联系正比例关系猜想一下,在反比例关系中,一个量会怎样随着另一个量的变化而变化?它们的变化会有怎样的规律?
生:(略)
反思:根据学生认知新事物大多由猜而起的规律,从概念的名称“正、反”两宇为切入点,引导学生“顾名思义”,对反比例的意义展开合理的猜想,激起学生研究问题的愿望。
二、提供材料,组织研究
1.探究反比例的.意义
师:大家的猜想是否合理,还需要进一步证明。下面我提供给大家几张表格,以小组为单位研究以下几个问题。
(1)表中有哪两个相关联的量?
(2)两个相关联的量,一个量是怎样随着另一个量的变化而变化的?变化规律是什么?
2.小组讨论、交流。(教师巡回查看,并做适当指导。)
3.汇报研究结果
(在汇报交流时,学生们纷纷发表自己的看法。当分析到表3时,大家开始争论起来。)
生1:剩下的路程随着已行路程的扩大而缩小,但积不一定。
生2:已行路程十剩下路程=总路程(一定)。
生3:我认为第一个同学的说法不准确,应该换成“增加”和“减小”……
(最后通过对比大家达成共识:只有表2和表3的变化规律有共性。)
师:表2和表3中两个量的变化规律有哪些共性?(生答略。)
师:这两个相关联的量叫做成反比例的量,它们的关系叫做反比例关系。(完成板书。)
师:如果用字母A和B表示两个相关联的量,用C表示它们的积,你认为反比例关系可以用哪个关系式表示?[板书]
反思:教材中两个例题是典型的反比例关系,但问题过“瘦”过“小”,思路过于狭窄,虽然学生易懂,但容易造成“知其然,而不知其所以然”。通过增加表3,更利于学生发现长×宽=长方形的面积(一定)这一关系式,有助于学生探究规律。同时还增加了表1、表4,把正比例关系、反比例关系、与反比例雷同(“和”一定)的情况混合在一起,给学生提供了甄别问题的机会。
4.做一做(略)
5.学习例6
师:刚才我们是参照表格中的具体数据来研究两个量是不是成反比例关系,如果这两个量直接用语言文字来描述,你还会判断它们成不成反比例关系吗?(投影出示例题。)
三、巩固练习,拓展应用
1.基本练习。(略)
2.拓展应用。
师:你能举一个反比例的例子吗?(先自己举例,写在本子上,再集体交流。)
交流时,学生们争先恐后,列举了许多反比例的例子。课正在顺利进行时,一个同学举的“正方形的边长×边长=面积(一定),边长和边长成反比例”的例子引起了学生们的争论。,教师没有马上做判断,而是问学生:“能说出你的理由吗?”有的学生说:“因为乘积一定,所以边长和边长成反比例关系。”对他的意见有的同学点头称是,而有的同学却摇头……忽然,一名同学像发现新大陆一样大声叫起来:“不对!边长不随着边长的扩大而缩小!这是一种量!”一句话使大家恍然大悟:对啊!边长是一种量,它们不是相关联的两个量,所以边长和边长不成反比例。后来又有一名同学举例:“边长×4=正方形的周长(一定),边长和4成反比例。”话音刚落,学生们就齐喊起来:“不对!边长和4不是相关联的两个量。”
反思:通过“你能举一个反比例的例子吗?”这样一个开放性练习题,让学生联系已有的知识,使新旧知识有机结合,帮助学生建立起良好的认知结构,这同时也是对数量关系一次很好的整理复习机会,通过举例进一步明确如何判断两个量是否成反比例。
3.综合练习
四、总结
反思:
《数学课程标准》中指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”而现行的小学数学高年级教材,内容偏窄、偏深,部分知识抽象严密、逻辑性强、脱离学生的生活实际,与新教材相比明显滞后。如何将新的课改理念与旧教材有机整合,是我们每一个数学教师应该思考探索的课题。
《反比例》教学设计 篇6
教学要求:
使学生进一步理解和掌握正、反比例中每个概念的含义;更熟练地判断两种相关联的量是不是成比例的量。如果成比例,成什么比例。
进一步提高解决简单实际问题的能力。
教学过程:
提出本课复习题
基本概念的复习
什么叫两种相关联的量?
下面两种相关联的量哪些量成比例?成比例的是成正比例还需成反比例?
什么样的两种量成正比例关系?什么样的'两种量成反比例关系?
成正比例关系的量与成反比例关系的量有什么异同点?
应用练习
完成教材97页的“做一做”。
第3题在完成时可先把题中的等式变一变形,像y=8x变成y/x=8;把y=8/y变成xy=8,这样判断起来就方便了。
巩固练习
完成教材99页第6~7题。
全课总结(略)
教学目标:
使学生进上步理解和掌握比和比例的意义与性质。
区别有关易混概念,进上步提高运用所学知识能力,为今后的学习打下良好的基础。
教学过程:
讲述本课复习课题并板书
基本概念的复习
比和比例的意义与性质。
什么叫比?什么叫比例?(就学生所举的例子再让学生说说比和比例中各部分的名称),比的后项为什么不能是0?
比和分数、除法有什么联系?
说说比的基本性质的比例的基本性质?
比的基本性质与比例的基本性质各有什么用处?
看教材95页的归纳整理,并把基本性质栏中的空填上,说说根据什么填写的?
完成教材95的“做一做”。
结合第3题让学生说说什么叫做解比例?根据是什么?
示比值和化简比。
独立完成教材96页上的题目。
说说求比值与化简比的区别?
(求比值是根据比的意义。用前项除以后项,得到结果是一个数;化简比是根据比的基本性质,把比的前项和后项,同时乘以(或除以)相同的数(0除外),得到的结果是一个最简整数比)。
看书中的表,总结方法。
完成教材96页的“做一做”
比例尺
问题:1)什么叫做比例尺?说说“图距”、“实距”、“比例尺”三者之间的关系。
2)一幢教学大楼平面图的比例尺是1/100,这比例尺表示的是什么意思?
比例尺除写成数字化形式处,还可怎样表示?
完成教材97页上的“做一做”。(理解比例尺实质上是一个比,此比的前项与后项表示的意义是什么。)
练习巩固
完成教材十九页第1~4题。
全课总结(略)
《反比例》教学设计 篇7
一、教学内容:
《反比例的意义》是六年制小学数学(人教版)下册的内容。是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。
二、学生分析:
在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。
三、设计理念:
学习方式的转变是新课改的显著特征,就是把学习过程中的分析、发现、探究、创新等认识活动凸显出来。在设计《反比例的意义》时,根据学生的知识水平,对教学内容进行处理,克服教材的局限性,最大限度地拓宽探究学习的空间,提供自主学习的机会。
四、教学目标:
1.通过探究活动,理解反比例的意义,并能正确判断成反比例的量。
2.引导学生揭示知识间的联系,培养学生分析判断、推理能力。
3.培养学生热爱数学的激情。
五、教学重难点:
教学重点:理解反比例的意义。教学难点:能正确判断成反比例的量。
六、教学流程:
(一)、复习铺垫,猜想引入
师:(1)表格里有哪两个相关联的量?(2)这两个相关联的量成正比例关系吗?为什么?
2.猜想
师:今天我们要学习一种新的比例关系——反比例关系。(板书:反比例)师:从字面上看“反比例”与“正比例”会是怎样的关系?生:相反的。
师:既然是相反的,你能联系正比例关系猜想一下,在反比例关系中,一个量会怎样随着另一个量的变化而变化?它们的变化会有怎样的规律?
生:(略)
设计意图:根据学生认知新事物大多由猜而起的规律,从概念的名称“正、反”两宇为切入点,引导学生“顾名思义”,对反比例的意义展开合理的猜想,激起学生研究问题的愿望。
(二)、提供材料,组织研究1.探究反比例的意义
师:大家的猜想是否合理,还需要进一步证明。下面我提供给大家几张表格,以小组为单位研究以下几个问题。
(1)表中有哪两个相关联的量?(2)两个相关联的量,一个量是怎样随着另一个量的变化而变化的?变化规律是什么?
2.小组讨论、交流。(教师巡回查看,并做适当指导。)3.汇报研究结果
(在汇报交流时,学生们纷纷发表自己的看法。当分析到表3时,大家开始争论起来。)生1:剩下的路程随着已行路程的扩大而缩小,但积不一定。
生2:已行路程十剩下路程=总路程(一定)。生3:我认为第一个同学的`说法不准确,应该换成“增加”和“减小”
(最后通过对比大家达成共识:只有表2和表3的变化规律有共性。)师:表2和表3中两个量的变化规律有哪些共性?(生答略。)师:这两个相关联的量叫做成反比例的量,它们的关系叫做反比例关系。(完成板书。)师:如果用字母a和b表示两个相关联的量,用c表示它们的积,你认为反比例关系可以用哪个关系式表示?[板书]设计意图:教材中两个例题是典型的反比例关系,但问题过“瘦”过“小”,思路过于狭窄,虽然学生易懂,但容易造成“知其然,而不知其所以然”。通过增加表3,更利于学生发现长×宽=长方形的面积(一定)这一关系式,有助于学生探究规律。同时还增加了表
1、表4,把正比例关系、反比例关系、与反比例雷同(“和”一定)的情况混合在一起,给学生提供了甄别问题的机会。
4.做一做(略)5.学习例6师:刚才我们是参照表格中的具体数据来研究两个量是不是成反比例关系,如果这两个量直接用语言文字来描述,你还会判断它们成不成反比例关系吗?(投影出示例题。)
(三)、巩固练习,拓展应用1.基本练习。(略)2.拓展应用。
师:你能举一个反比例的例子吗?(先自己举例,写在本子上,再集体交流。)交流时,学生们争先恐后,列举了许多反比例的例子。课正在顺利进行时,一个同学举的“正方形的边长×边长=面积(一定),边长和边长成反比例”的例子引起了学生们的争论。,教师没有马上做判断,而是问学生:“能说出你的理由吗?”有的学生说:“因为乘积一定,所以边长和边长成反比例关系。”对他的意见有的同学点头称是,而有的同学却摇头忽然,一名同学像发现新大陆一样大声叫起来:“不对!边长不随着边长的扩大而缩小!这是一种量!”一句话使大家恍然大悟:对啊!边长是一种量,它们不是相关联的两个量,所以边长和边长不成反比例。后来又有一名同学举例:“边长×4=正方形的周长(一定),边长和4成反比例。”话音刚落,学生们就齐喊起来:“不对!边长和4不是相关联的两个量。”
设计意图:通过“你能举一个反比例的例子吗?”这样一个开放性练习题,让学生联系已有的知识,使新旧知识有机结合,帮助学生建立起良好的认知结构,这同时也是对数
量关系一次很好的整理复习机会,通过举例进一步明确如何判断两个量是否成反比例。
3.综合练习
(四)、总结
七、板书设计
反比例关系判断两个量x×y=k(一定)
八、教学反思
《数学课程标准》中指出:“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。”而现行的小学数学高年级教材,内容偏窄、偏深,部分知识抽象严密、逻辑性强、脱离学生的生活实际,与新教材相比明显滞后。如何将新的课改理念与旧教材有机整合,是我们每一个数学教师应该思考探索的课题。
《反比例》教学设计 篇8
一、教学内容:
反比例。(教材第47页例2)。
二、教学目标:
1、使学生理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。
2、让学生经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。
三、重点难点:
引导学生总结出成反比例的量的特点,进而抽象概括出反比例的关系式。利用反比例的意义,正确判断两个量是否成反比例。
四、教学准备:
投影仪。
五、教学过程:
(一)复习导入
1、让学生说说什么是正比例,然后用投影出示下面的题。下面各题中哪两种量成正比例?为什么?
(1)每公顷产量一定,总产量和公顷数。
(2)一袋大米的重量一定,吃了的和剩下的。
(3)修房屋时,粉刷的面积和所需涂料的数量。
2、说出每小时加工零件数、加工零件总数和加工时间三者之间的关系。在什么条件下,其中两种量成正比例?
教师:如果加工零件总数一定,每小时加工数和加工时间会成什么变化?关系怎样?这就是我们这节课要学习的内容。
(二)目标解读:
1、学生认真度学习目标。
2、理解目标。
(三)自主预习:
理解:哪两种量叫做成反比例的量?什么是反比例关系?请举例说明。
(四)检查预习。
(五)合作探究
活动一:
1、学习例2:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?出示教材第47页例2的情境图和表格。
请学生认真观察表中数据的变化情况,组织学生分小组讨论:
(1)水的高度和底面积变化有关系吗?
(2)水的高度是怎样随着底面积变化的?
(3)水的高度和底面积的变化有什么规律?
2、发现规律:(底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。)即:30×10=20×15=15×20=?=300
3、高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。
活动二:
1、归纳反比例的意义。
像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
2、用字母表示。
如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系的式子怎么表示?学生探讨后得出结果。x×y=k(一定)
3、生活中还有哪些成反比例的量?学生举例说明。如:
(1)大米的质量一定,每袋质量和袋数成反比例。
(2)教室地板面积一定,每块地砖的面积和块数成反比例。
(3)长方形的面积一定,长和宽成反比例。
活动三:
1、组织学生将例1与例2进行比较,小组内讨论:正比例与反比例的相同点和不同点有哪些?
学生交流、汇报后,引导学生归纳:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。
不同点:正比例关系中比值一定,反比例关系中乘积一定。
2、你还有什么疑问?如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的图像。
反比例关系也可以用图像来表示,表示两个量的点不在同一条直线上,点所连接起来的图像是一条曲线,图像特征不要求掌握。课堂作业
1、教材第48页的'“做一做”。
2、教材第51页第9、10题。课堂小结
说一说成反比例关系的量的变化特征。
(六)当堂检测:
1、完成练习册中本课时的练习。
2、教材51~52页第8、14题。
(七)总结归纳:
反比例
两种相关联的量
变化
xy=k(一定)
积一定
学习例2:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?出示教材第47页例2的情境图和表格。
请学生认真观察表中数据的变化情况,组织学生分小组讨论:
(1)水的高度和底面积变化有关系吗?
(2)水的高度是怎样随着底面积变化的?
(3)水的高度和底面积的变化有什么规律?
发现规律:(底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。)
教师板书配合说明这一规律: 30×10=20×15=15×20=?=300 教师根据学生的汇报说明:高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。
2、归纳反比例的意义。
组织学生小组内讨论:反比例的意义是什么?学生小组内交流,指名汇报。
教师总结:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
3、用字母表示。
如果用字母x和y表示两种相关联的量,用k表示它们的乘积(一定),反比例关系的式子怎么表示?学生探讨后得出结果。x×y=k(一定)
4、师:生活中还有哪些成反比例的量?在教师的引导下,学生举例说明。如:
(1)大米的质量一定,每袋质量和袋数成反比例。
(2)教室地板面积一定,每块地砖的面积和块数成反比例。
(3)长方形的面积一定,长和宽成反比例。
5、组织学生将例1与例2进行比较,小组内讨论:正比例与反比例的相同点和不同点有哪些?学生交流、汇报后,引导学生归纳:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。不同点:正比例关系中比值一定,反比例关系中乘积一定。
6、你还有什么疑问?如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的图像。
反比例关系也可以用图像来表示,表示两个量的点不在同一条直线上,点所连接起来的图像是一条曲线,图像特征不要求掌握。
课堂作业
1、教材第48页的“做一做”。
2、教材第51页第9、10题。
课堂小结
说一说成反比例关系的量的变化特征。
课后作业
1、完成练习册中本课时的练习。
2、教材51~52页第8、14题。
反比例教学反思
(六年级)今天用《反比例的意义》作为校内的研究课,这节课是上周六临时决定的,本来是要用复习单元《量的计量》来上的,但是担心毕业班后面的时间会很紧,所以临时决定提前。不过,我想不管什么的课,只要教师的素质高,一样能上出精彩,不能因为内容好上而选来作为公开课,相反,越是难上的课就越要拿出来研究研究,因为研究课就是供大家来讨论研究的,这样,以后上到同样的内容时就不会不知所措了,再者,越是难上才越能体现功底,并且这样的课上过之后,其他内容的课就会显得不是很难了,因为在信心上占有了优势。
周六决定了这节课后,我便整理了一份草案请师傅过目,在和师傅及其他几位老师研究过后,大家的意见是:这节课的内容比较多,要上好不容易,以往上到这个内容时是最麻烦的,因为这个内容十分抽象,所以,这节课的容量不宜太大。我虽然没有教过六年级,但是看过教材之后,也觉得这部分内容容量比较大,其实也不能说是容量大,就是比较抽象,如果学生学不好、说不出来其中的道理,就比较麻烦,就会影响到这节课能否上完。所以,在修改教案时,我十分注意容量问题,能精简的精简,尽量不在碎小的地方拌足。下面是我设计的思路。
首先简单回顾正比例的概念知识,然后给出单价、总价、数量,问:怎样组合才能符合正比例的要求?接着小结:“既然有正比例,那就有…”(学生说:反比例)引出课题《反比例》,引出课题后,我让学生先根据正比例的意义猜一猜什么是反比例,或者说,你认为什么是反比例。通过猜想,先初步的感知反比例,不管学生猜的对与错,最起码调动了学生的积极性和质疑心理,为后面的学习先奠定一定的基础。因为,后面我们要通过学习来验证猜想的对不对,通过验证后,之前猜对的学生在情感体验上就会得到满足,同时也培养了估计的能力,这也符合《课程标准》培养估计能力和推理的要求。在初步的猜想之后,用了一段小动画来直观的经历、感受反比例的建构过程(这个动画我做错了,后来经大家的提醒,我把这个动画作了修改),这个动画是这样的:有一堆黄沙,先用载重量大一些的货车运,然后换成载重量小一些的货车运,接着再换一辆载重量还要小的货车运,并提问:从动画中能想到什么?让学生知道,每次运的越少,运的次数就越多,每次运的越多,运的次数就越少,初步经历、感受反比例的建构过程。有了这样的一个基础,接下来出示例4和例5并按要求回答,然后把例4和例5放在一起比较,寻找这两道例题的共同点:都有两种相关联的量、都是一种量随着另一种量的变化而变化、两种量里对应数值的乘积一定。找出共同点之后,分步出示反比例的意义,然后用反比例的意义在回去解释例4,接着要求学生用这一知识解释例5,然后学会用字母x、y和k来表示它们之间的关系,接着实际运用,做练一练第1题和练习八的第4题,到这里我都是教要用一句话来判断两个量是否成反比例的,接下来出示例6,跟学生说明,我们也可以列数量关系式来判断,如果要列数量关系式判断的话,它们的乘积就要一定。至此,课的内容已经基本上完,后面就做了两组相关的练习,一组是判断两种量是否成反比例,其中有一题不成比例,有一题成正比例,有两题成反比例,另外一组题目是先把数量关系式填写完整,然后根据数量关系式回答问题。
最后总结本课内容,总结时,学生提到了和正比例的区别的联系,这是我备课时所没有想到的,而正好时间又多(因为担心不能上完,所以一直赶着上的),我就顺着学生的思路,要大家比较它们之间的区别和联系,由于前面学的比较好,学生很清楚地找出了它们之间的区别和联系,其中有个学生说到了它们之间的联系时是这样说的:它们相同点都是一种量随着另一种量的变化而变化,但是如果要讲具体怎么变化的就有区别了。为学生的精彩回答而感到高兴,看来他们今天学的比较好。同时,我也暗自为自己庆幸,不是庆幸上的好,而是庆幸课的内容按预计的上完了,也改掉了一直伴随我的老毛病——课堂上罗罗嗦嗦。下午教研活动时大家发表了意见,其中那个动画大家讲的最多,我也知道动画做错了,所以已经做了修改,另外大家提的比较多的是后面的总结,大家认为这节课没有必要进行正比例和反比例的比较,这节课的内容就是理解反比例的意义,但是我却不这样想,首先这部分内容不是我的预设生成,而是非预设生成,学生能想到为什么不趁热打铁比较一下呢?虽然这部分内容是下节课要专门讲的,在这里为什么不可提一提?学生能掌握不是更好吗?所以,在修改教案时,我决定把这个环节添上去。另外大家还认为这节课光练习说了,没有什么写的练习,光会说,那作业怎么写?没有经历写的练习,学生会吗?我想,这的确是有必要的,所以,在修改教案时也增添了进去。这样一来,这节课的内容满满当当,不多不少了。
《反比例》教学设计 篇9
教学目标:
1、使学生能正确判断应用题中涉及的量成什么比例关系。
2、使学生运用正、反比例的意义正确解答应用题。
3、渗透函数的初步思想,建立事物是相互联系的这一辨证观点,培养学生的判断推理能力和分析能力。
教学重点:让学生能正确判断应用题中的数量之间存在何种比例关系,并能利用正反比例的意义列出含有未知数的等式。
教学难点:利用正反比例意义正确列出等式,掌握用比例知识解答应用题的解题思路
教学准备:课件
教学步骤:(铺垫孕伏,建立表象;创设情境,探究新知;归纳总结,揭示意义;巩固练习,考考自己;分层练习,深化新知)
一、铺垫孕伏,建立表象
1、判断下面每题中的两种量成什么比例关系?
○1速度一定,路程和时间( ) ○2路程一定,速度和时间( )
○3单价一定,总价和数量( ) ○4每小时耕地公顷数一定,耕地的总公顷数和时间
○5全校学生做操,每行站的人数和站的行数
2、根据条件说出数学关系式,再说出两种相关联的量成什么比例,并列出相应的等式。
(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。
(2)一列火车行驶360千米,每小时行90千米,要行4小时;每小时行80千米,要行经X小时。
指名学生口答,老师板书。
二、创设情境,探究新知
从上面可以看出,日常生活生产的一些实际问题,应用比例的知识,也可根据题意列一个等式。我们以前学过的一些应用题,还可以应用比例的知识来解答,这节课我们学习比例的应用(板题)
1、教学例1
(1)出示例1(课件演示)让学生读题
一辆汽车2小时行140千米,照这样的速度,从甲地到乙地共行驶5小时,甲乙两地之间的公路长多少千米?
师:你用什么方法解答,给大家介绍一下如何?(自由回答)
(提问:我们怎样解答的?(板式)先求什么,是按怎样的数量关系式来求的?这道题里哪个数量是不变的量)
学生解答如下几种:
解法一:140÷2×5=70×5=350千米
解法二:140×(5÷2)=140×2.5=350千米
如果有学生用比例方法解,老师及时给以肯定,如果没有,老师给以引导性的问题:
A题中涉及哪三种量?(路程、时间和速度三种量),其中哪两种是相关联的量?
B哪一种量是一定的?(固定不变),你是怎么知道的?(照这样的速度,就是说速度是一定的)
C它们有什么关系?(行驶的路程和时间成正比例关系)
D题中“照这样的速度”就是说 一定,那么 和 成 比例关系?因此 和 的 是相等的。
教师板书:速度一定,路程和时间成正比例。
师追问:两次行驶的路程和时间的什么相等(比值相等)
解法三:(用比例方法,怎样列式)
解:设甲乙两地间的总路长X千米
140 X 或 140:2=X:5
2 5 2X=140×5
X=350
答:甲乙两地之间公路长350千米。
小结:这一类型题,我们不仅可用过去的归一法、倍比法来解,还可用比例方法来解。
2、怎样检验这道题做得是否正确呢?
3、变式练习改编题
出示改编的问题,让学生说一说题意,请同学们按照例1的方法自己在练习本上解答,指名一人板演,然后集体订证,指名说一说是怎样想的,列等式的依据是什么?
4、教学例2(课件演示)
(1)出示例2,学生读题
例2:一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果4小时到达,每小时要行多少千米?
提问:
(1)以前我们怎样解答的?(板书算式)这样解答先求什么?是按怎样的数量关系式来求的?(板书:速度×时间=路程)这道题里哪个数量是不变的量?
(2)谁能仿照例1的解题过程,用比例的知识解答例2来试试,指名板演,其余学生做在练习本上,练习后提问怎样想的?速度和时间的对应关系怎样?检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。
学生利用以前的方法解答。
70×5÷4=350÷4=87.5(千米)
(3)提问:按过去的方法先求什么再解答的?先求总路程的应用题现在用什么比例关系解答的?谁来说说,用反比例关系解答这道应用题怎样想,怎样做的?(课件演示)
这道题里的'路程是一定的, 和 成 比例,所以两次行驶的 和 的 是相等的。
指出:解答例2要先按题意列出关系式,判断成反比例,再找出两种关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次行驶相对应数值的乘积相等,列式。
(4)设每小时行驶X千米(根据反比例的意义,谁能列出方程
4X=70×5 X=70×5/4 X=87.5
答:每小时行驶87.5千米。
师:A)该题中三个量有什么关系?其中哪两种量是相关联的量?
B)题中哪一种是固定不变的?从哪里看出来?
C)它们有什么关系?
D)这道题的 一定, 和 成 比例关系,所以两次行驶的和是相等的。
(5)变式练习(改编题)
出示改变的条件和问题,让学生说一说题意,指名一人板演,其余在练习本上独立解答,集体订证,说说怎样想,根据什么列式。
一辆汽车从甲地开往乙地,每小时行70千米,5小时到达,如果每小时行87.5千米,需要几小时到达?
解:设需要x小时到达
87.5x=70×5 x=4
答:需要4小时到达。
三、归纳总结,揭示意义
想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可互相讨论一下,然后告诉大家,指名说解题思路。
指出:用比例解答应用题的关键,正确找出题中的两种相关联的量,判断它们成哪种比例关系,然后根据正反比例的意义列出方程。(正确判断成什么比例,正比例比值相等,反比例乘积相等)
四、巩固练习,考考自己(课件演示)
请你们按照刚才学习例题的方法去分析,只要列出式子就行。
1、食堂买3桶油用780元,照这样计算,买8桶油要用多少元?(用比例知识解答)
2、同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?
以上1、2两题,学生做完将鼠标移到“看看做对了没有”进行自我判断。
3、先想想下面各题中存在什么比例关系?再填上条件和问题,并用比例知识解答。
(1)王师傅要生产一批零件,每小时生产50个,需要4小时完成 , ?
(2)王师傅4小时生产了200个零件,照这样计算 ?
4、四选一,每题只能选一次
(1)体积是30立方分米的钢体重150千克,重1200千克的这种钢材,体积是多少立方分米?(d)
a.150×30=1200x b.30:150=1200:x
c.150x=30×1200 d.150:30=1200:x
(2)机器厂制造一个零件所用的时间由原来8分钟减少到3分钟,过去每天生产零件60个,现在每天生产多少个?(a)
a.60×8=3x b.60:8=3:x
c.60×8=(8-3)x d.3:x=8:60
(3)机器厂生产一种零件,每制造5个零件需要40分钟,一天工作480分钟,能制造多少个零件?(b)
a.5×40=480x b.5:40=x:480
c.40x=5×480 d.40:5=x:480
(4)托儿所给小朋友分糖,原来中班24人每人可分5块,最近又调进6人,每人可分多少块糖?(c)
a.24×5=6x b.24:5=6:x
c.(24+6)x=24×5 d.(24+6):x=24:5
(5)小红从甲地到乙地,3小时行了全程的75%,几小时可以走一个来回?(b)
a.3×75%=2x b.75%:3=2:x
c.75%x=2×3 d.3:75%=2:x
五、分层练习,深化新知
○1修一条长6400米的公路,修了20天后,还剩下4800米,照这样计算,剩下的路要修多少天?(6400-4800):20=4800:x
○2工人装一批电杆,每天装12根,30天可以完成,如果每天多装6根,几天能够完成?
12×30=(12+6)×X
○3农具厂生产一批小农具,原计划每天生产120件,28天可完成任务,实际每天多生产了20件,可以提前几天完成任务?
120×28=(120+20)×X
六、全课总结,温故知新
解比例应用题的一般步骤是什么?(学生自己用语言叙述)
一般方法和步骤:
1、判断题目中两种相关联的量是成正比例还是反比例;
2、设未知量为x,注意写明计量单位;
3、列出比例式,并解比例式;
4、检查后写出答案;
5、特别注意所得答案是否符合实际。
七、课后反馈,挑战难题
小明受老师委托,编一些比例应用题,于是他前往“数学超市”选购了一些条件:
“计划每天生产30辆”、“实际每天生产40辆”、“计划25天完成”、“实际20天完成”、“计划一共生产了900辆”、“实际一共生产了1000辆”
小明需要你的帮助,你会怎样编题?
《反比例》教学设计 篇10
教学内容:北师大版数学第十二册第二单元教材第24页反比例的教学内容 。
教学目标:
1、结合丰富的实际,认识反比例,能根据反比例的意义,判断两个相关的量是不是成反比例,利用反比例解决一些简单的生活问题,感受反比例在生活中的广泛应用。
2 、培养学生的逻辑思维能力。
3、渗透数学源于生活的观点。
重点难点
1、通过具体问题认识成反比例的量。
2、掌握成反比例的量得变化规律及其特征。
教具准备: 课件
教学过程
一、复习铺垫
师:上一节我们学习了正比例,请同学们回忆怎样判断两个相关联的量是否成正比例?(指名答)
师:简单概括两个相关联的量成正比例的.关键是什么?生答,强调:他们的比值(商)一定。
二、谈话引题
师:看来大家对正比例知识理解掌握得非常好,学完正比例接下来我们就该学习什么了?(生答)是啊,有正就有反,的确这节课我们就来探究反比例的有关知识(板书:反比例)
三、猜想激趣
师:既然正与反意义是相反的,请同学们猜想成反比例的两个量的关系是怎样的呢?(生猜想)到底同学们的猜想是否正确?我们要用事实来验证。
四、验证归纳
师:1.研究情境(一)
让学生把汽车行驶的速度和时间的表填完整。
观察上表,思考下面的问题:
(1)表中有哪两种量?
(2)时间是怎样随着速度的变化而变化的?
(3)表中那个量没有变?
(4)写出三者的关系式
2.研究情境(二)
把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?哪一个没变?用自己的语言描述变化关系。
写出关系式:每杯果汁量×杯数=果汗总量(一定)
以上两个情境中有什么共同点?
3.反比例意义
引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系(板书)
4.情境(三)
认识加法表中和是12的直线及乘法表中积是12的曲线。
引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。
五、课堂练习
1、判断下面每题中的两个量是不是成反比例,并说明理由。
(1)圆柱体的体积一定,底面积和高。
(2)小林做10道数学题,已做的题和没有做的题。
(3)长方形的长一定,面积和宽。
(4)平行四边形面积一定,底和高。
2、判断下面每题中的两种量是不是成反比例,并说明理由。
(1)煤的总量一定,每天的烧煤量和能够烧的天数。
(2)张伯伯骑自行车从家到县城,骑自行车的速度和所需的时间。
(3)生产电视机的总台数一定,每天生产的台数和所用的天数。
五、全课小结
今天同学们学到了什么知识?觉得还有什么地方感到困惑的吗?
六、作业:找一找生活中有哪些例子成反比例。
板书设计
反比例
速度×时间=路程(一定)
每杯的果汁量×分的杯数=果汁总量(一定)
两种相关联的量,一种量变化,另一种量也随着变化,变化时两种量中相对应的两个数的积一定,这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。
《反比例》教学设计 篇11
【教材分析】
本课教学内容是苏教版义务教育课程标准实验教科书六年级(下册)第64页到第65的“认识成反比例的量”。这部分内容是在学生已经学习了比和比例以及成正比例的量,认识常见数量关系的基础上进行教学的,通过对两种数量保持积一定的变化,理解反比例关系,渗透初步的函数思想。通过学习这部分知识,可以帮助学生加深对过去学过的数量关系的认识,同时这部分知识在日常生活和工农业生产中有着广泛的应用,还是今后进一步学习中学数学、物理、化学等知识的重要基础。
【教学目标】
1、使学生结合实际情境认识成反比例的量,能根据反比例的意义判断两种相关联的量是否成反比例;
2、使学生在认识成反比例的量过程中,进一步体会数量之间相依互变的关系,感受有效表示数量关系及其变化的不同数学模型,提升思维水平;
3、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动地参与学习活动的习惯,提高学好数学的自信心。
【教学重点】掌握反比例的意义。
【教学难点】有条理地思考、判断成反比例的量。
【教学准备】多媒体课件
【教学过程】
一、联系生活,导入新课
1、同学们,前两节课我们认识了正比例,怎样的两种量成正比例呢?
(结合回答板书:相关联、比值一定、y/x=k)
2、判断下表中的两种量是否成正比例,为什么?
表1:成正比例。买的数量扩大,总价也随之扩大,总价和买的数量的比值一定。
表2:成正比例。飞行时间缩小,航程也随之缩小,航程和买的飞行时间的比值一定。
表3:不成正比例。数量和单价的比值不是一定的。
二、自主合作,探究发现
1、设疑引入(购买笔记本问题)
(1)(出示表格)谈话:除了观察到这两个量的比值不是一定,这两个量还存在其他关系吗?咋们不妨一起来研究研究。
(2)四人小组合作研究:
1、观察表格中的两个量有什么变化?
2、这种变化有什么规律?
3、这种规律与成正比例的量的规律有什么不同?
(3)全班交流。
1、观察表格中的两个量有什么变化?
单价变化(扩大),数量也随之变化(缩小)
2、这种变化有什么规律?
这两个量的乘积总是一定的。
板书:单价×数量=总价(一定)
指出:都是用60元购买笔记本
3、这种规律与成正比例的量的规律有什么不同?
①成正比例的量,一个量扩大,另一个量也随之扩大,表3中,单价扩大,数量反而随之缩小。
②成正比例的量,它们的比值一定,表3中,单价和数量的乘积一定。
(4)谈话:刚才,咋们研究了数量和单价的变化规律,猜一猜,单价和数量是什么关系呢?
请同学们打开课本65页,自学“试一试”上面的一段话,可以轻声读一读,圈圈重要的词字。
(5)交流:学生结合投影说说单价和数量之间的关系。(2到3人)
单价和数量是两种相关联的量,单价变化,数量也随着变化。当单价和对应数量的积总是一定(也就是总价一定)时,我们就说笔记本的单价和购买的数量成反比例,笔记本的单价和购买的`数量是成反比例的量。
这就是我们今天要认识的成反比例的量。(揭示课题)
2、试一试
师:我们继续来学习反比例,请看大屏幕:
(1)(出示表格)学生读一读题目,交流:表格中有哪两种量,他们相关联吗?根据已知条件把表格填完整。
然后指名口答,全班校对。
(2)同桌合作讨论(出示要求)
算一算:相对应的两个数的乘积各是多少?
想一想:这个乘积表示的是什么?你能用式子表示它与每天运的吨数和需要的天数之间的关系吗?
说一说:每天运的吨数和需要的天数成反比例吗?为什么?
(3)全班交流。
算一算:相对应的两个数的乘积各是多少?
(乘积都是72)
想一想:这个乘积表示的是什么?你能用式子表示它与每天运的吨数和需要的天数之间的关系吗?
(这个乘积表示一共运的水泥吨数,每天运的吨数×天数=总吨数(一定)板书)
说一说:每天运的吨数和需要的天数成反比例吗?为什么?
(略)
3、小结:刚才我们学习了两个反比例的例子,想一想,怎样的两个量是反比例关系?(板书:相关联、乘积一定)
4、用字母式子表示反比例的意义。
教师:根据上面两个例子,你也能像学习正比例的意义时那样用一个字母式子来表示反比例的意义吗?
根据学生回答,教师板书:x×y=k(一定)
三、巩固应用,深化发展
1、完成“练一练”
让学生判断每袋糖果的粒数和装的袋数是否成反比例。
(1)出示题目和要求
(2)把自己的想法和同桌互相说一说
(3)再全班交流、评议。
2、根据情况选择完成练习十三第6题
出示题目,学生独立思考后依次交流3个问题
3、根据情况选择完成练习十三第7题
(1)出示题目
(2)学生独立思考
(3)全班交流、评议。
4、判断下面每题中的两个量,哪些成反比例?
(1)用同样多的钱购买不同的笔记本的单价和数量。
(2)一个人的年龄与体重。
(3)长方形的面积一定,长方形的长与宽。
(4)长方形的周长一定,长方形的长与宽。
(5)X和Y是两种相关联的量。(机动)
X×Y=5 5×X=Y
四、全课总结,拓展延伸
今天这节课你收获了什么?生活中有许多成反比例的量,只要注意观察,用心思考,我们就会发现数学就在我们身边,用我们的聪明和智慧去探索其中的奥秘吧。
《反比例》教学设计 篇12
教学内容
教科书第58-59页例1,课堂活动及练习十三1-3题。
教学目标
1.使学生理解反比例的意义,能正确判断成反比例关系的量。
2.经历反比例意义的构建过程,培养学生的探索发现能力和归纳概括能力。
3.使学生体会反比例与生活的联系,进行辩证唯物主义观点的启蒙教育。
教学重点
引导学生正确理解反比例的意义。
教学难点
正确判断两种量是否成反比例。
教学过程
一、复习旧知,感受新知
情景游戏:对口令
(1)同样的面包单价:2元∕个。老师说个数,学生对总价(对口令的同时用课件展示出下表)。
表1买同样的面包
买的数量(个) 1 2 3 4 5……
总价(元) 2 4 6 8 10……
教师:面包总价与个数之间有什么关系呢?它们成什么比例?为什么?
反馈:面包的总价与个数成正比例。因为它们是两种相关联的量,面包个数扩大或缩小若干倍,总价也随着扩大或缩小相同的倍数,并且它们的比值(单价)一定。
根据学生的回答板书,成正比例的量所具有的三个特征:
①两种相关联的量②变化有规律③一定的量
(2)共有30个苹果分给小朋友。老师说出小朋友的人数,学生回答分得的苹果个数。(对口令的同时用课件展示出下表)
表2 30个苹果分给小朋友
小朋友的人数(人) 1 3 5 10……
每个小朋友分得个数(个)30 10 6 3……
从这个表中,你有什么发现?
反馈:小朋友的人数与每个小朋友分的个数的乘积都是30;它们是相关联的两种量;小朋友的人数越多,每个小朋友分得的苹果个数就越少……
提问:小朋友的人数与每个小朋友分得的苹果个数成正比例吗?为什么?
教师:那么这两种量到底是一种什么关系呢?今天我们就一起来学习新的知识。
二、对比探究,获取新知
1.感知几种不同的变化规律
(1)某旅游公司的导游带领60名游客来到井冈山游览,准备分组活动,提出的分组建议如下表。
表3 60名游客在井冈山游览
每组人数 3 5 6 15
组数 20 12 10 4
教师:谁来说说,你是怎样算每组人数和组数的?
抽几名学生说出自己的计算方法。
教师:从这个表中你发现了什么规律?
反馈:总人数60人没变,每组人数和组数的乘积是一定的;每组的人数在扩大,组数反而缩小……
(2)游览的第一天晚上,导游写了一篇情况总结,要把它存入电脑。
表4打一篇稿子
每分打字(个) 120 100 75 50
所需时间(分) 25 30 40 60
教师:必须先算出哪个量?为什么?学生独立计算,然后集体订正。
(3)第二天,导游将带领这批游客,行一段路程。
表5行一段路程
已行的路程(km) 1 2 3 4
剩下的路程(km) 19 18 17 16
填这个表时,你是怎样想的?集体订正。
表6行一段路程
路程(km) 12 20 24 36
时间(时) 3 5 6 9
集体订正。
2.分类区别,概括意义
(1)教师:请同学们把这6张表进行分类,你会怎么分?为什么这样分?带着这个问题,请同学们分组讨论。
教师巡视,听取各小组意见,加强指导。
(2)汇报交流
反馈1:表1,6分一类,表2,3,4,5分一类。
反馈2:表1,6分一类,表2,3,4分一类,表5单独分成一类。
教师:为什么这样分类?
引导学生说出:表1,6成正比例分一类;不成正比例的表2,3,4它们的乘积一定,分成一类;表5是和一定,单独分成一类。
教师:现在我们一起来找出表2,3,4的共同特征。
学生1:每个表中的两种量都相关联。(板书:相关联)
学生2:一种量变化另一种量也随着变化。
学生3:从变化规律上看,表2中,人数越多,每人分得的个数越少,人数越少,每人分得的'个数越多。
学生4:表3中,每组的人数扩大,组数反而缩小;表4中,每分打字的个数越少,所需要的时间反而越多……
教师简单概括:一种量扩大或缩小若干倍,另一种量反而缩小或扩大相同的倍数。两种量的变化方向正好相反。(板书:反)
学生5:表中两种量相对应的两个数的乘积是一定的。(板书:积)
正比例是一种量扩大或缩小若干倍,另一种量也随着扩大或缩小相同的倍数;而表2,3,4中,是一种量扩大或缩小若干倍,另一种量反而缩小或扩大相同的倍数。
(3)概括得出反比例的意义
教师根据学生的回答,引导学生概括得出:
两种相关联的量。
一种量扩大或缩小若干倍,另一种量反而缩小或扩大相同的倍数。
两种量相对应的两个数的乘积是一定的。
这是你们自己总结概括出来的结论,那么,你能给它们取个名字吗?
(揭示课题:反比例的意义)
像这样的两种量,叫做成反比例的量,它们的关系叫做反比例关系。
4.举例
抽生说一说生活中还有哪些成反比例的量。
学生1:路程一定,所行的时间与速
5.区分
表5中,一段路程20km一定时,已行的路程和剩下的路程成比例吗?为什么?
引导学生明确:虽然这也是两种相关联的量,但是它们的变化规律是增加或减少相同的数,而不是扩大或缩小相同的倍数;它们的和一定,而不是商一定或积一定。所以,它们不成比例。
三、直观操作,加深理解
1、完成第60页课堂活动1题
教师:请同学们看第1题的要求。哪位同学愿意说说你看了题目后的想法?
2、完成第60页课堂活动2题
3、完成第61页课堂活动3题
四、巩固练习,深化认识
练习十三1-3题,主要抓住正比例的本质属性“商一定”,反比例的本质属性“积一定”,要求学生独立完成,再集体订正。
五、课堂总结
今天,我们一起学习了什么?你有什么收获?
《反比例》教学设计
作为一名教职工,就有可能用到教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。怎样写教学设计才更能起到其作用呢?下面是小编整理的《反比例》教学设计,仅供参考,欢迎大家阅读。
《反比例》教学设计 篇13
教学内容:
九年义务教育六年制小学数学第十二册P69——70
教学目标:
1、使学生进一步理解正比例和反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能够正确地判断成正、反比例的关系。
2、进一步提高学生的分析、比较、抽象、概括等能力。
3、进一步感知数学与生活的联系。
教学重点:
弄清正比例和反比例的量的意义
教学难点:
找生活中成正、反比例量的实例
设计理念:
课堂教学中引导学生回忆正、反比例意义,从学生的已有的生活经验出发,观察、比较、分析,从而在生活中寻找、发现成正、反比例量的.实例,弄清正比例、反比例量的意义及其之间的联系与区别,进一步感知数学与生活的联系。
教学步骤教师活动学生活动
一、揭示课题
回顾整理1、师:前几节课,我们学习了什么内容?这节课,我们练习正比例和反比例的有关知识。(板书课题)
2、回忆正、反比例意义。
提问:什么叫做正比例关系,什么叫做反比例关系?用字母的式子怎样表示正、反比例的关系?
学生口答,相互补充
二、比较分析
区分特征1、出示练习十三第9题
观察两张表格并思考回答书中第69页的问题。(表略)
2、全班交流
3、引导比较、总结正、反比例的特点(根据学生回答,板书)
4、讨论:判断两种相关联的量成不成正比例或者反比例关系的关键是什么?
学生观察、思考
小组讨论、交流
相互补充与完善
讨论、交流
三、巩固练习
感知应用
1、出示练习十三第11题
先填一填、想一想,再组织讨论和交流。
要求学生完整地说出判断的思考过程。
2、练习十三第10题
看图填表。
根据题中的图像,你能说出这幅地图的比例尺是多少吗?图上距离和实际距离成什么比例?为什么?
在这幅地图上,量得甲、乙两地的图上距离是12厘米,两地的实际距离是多少米?你是怎样想的?
3、练习十三第12题
先独立判断,再交流判断理由
4、A、B、C三种量的关系是:A×B=C。
如果A一定,那么B和C成()比例
如果B一定,那么A和C成()比例
如果C一定,那么A和B成()比例
5、判断
(1)两种相关联的量,不成正比例就成反比例。
()
(2)在一定的距离内,车轮周长和它转动的圈数成反比例。
()
(3)X和Y表示两种变化的相关联的量,同时5X-7Y=0,X和Y不成比例。
()
6、练习十三第13题
找出生活中成正比例和成反比例的量的实例,用表格表示出来。
小组讨论完成表格
说说是怎样想的?
7、思考:如果X和Y成正比例,当X=16时,Y=0.8,,如果X=10时,Y是多少?
独立完成,集体评讲
填一填,议一议
判断、讨论
独立思考
大组交流
判断并说明理由
小组讨论完成表格
四、总结评价
质疑反思
通过这节课的练习,你进一步认识和掌握了哪些知识?还有哪些疑问?你能在生活中找到一些成正比例和成反比例的量的实例,介绍给爸爸、妈妈吗?
《反比例》教学设计 篇14
一、教学目标:
(一)、知识目标:
(1)(1)通过回顾与交流,鼓励学生自己独立整理知识,形成系统。
(2)(2)通过具体问题的认识进一步认识正比例、反比例的量。
(3)(3)通过复习与整理加深对正、反比例意义的理解。并运用正、反比例的知识解决一些实际问题,为以后学习函数打下基础。
(二)、情感目标:
(1)培养学生善于与人合作、和人分享的意识。
教学重、难点:
(1)一步认识正、反比例的意义,并能运用正、反比例的意义解决实际问题。
(2)培养学生的问题意识,不断积累活动经验,体会重要的数学思想。
教学准备:课件、计算机
教学过程:
一、自主整理知识
二、交流与分享
(1)小组内交流
(2)全班分享
(3)形成知识系统
变化的量———正比例(意义、图象、应用)——反比例(意义、图象、应用)———形的放缩———比例尺
三、解决问题:
1、一辆汽车在高速路上行驶,速度保持在100千米/时,说一说汽车行驶的路程随时间变化的情况,并用多种方式表示这两个量之间的关系。
(1)学生独立思考
(2)同桌交流
(3)全班交流
a、自然语言b、列表c、画图d 、关系式
2、举出生活中正、反比例的例子
3、判断并说明理由
(1)出油率一定,香油的质量与芝麻的质量。
(2)一捆100米长的电线,用去的长度与剩下的长度。
(3)三角形的面积一定,它的底和高。
(4)一个数与它的倒数。
三、总结与反思:这节课你有什么收获?
课后反思:教学中不但关注知识的传授,更关注知识的发生、发展过程;注重知识的学习,更注重培养学生的情感、态度、价值观。
教材解读:正比例和反比例是刻画变量之间关系的两个重要的`模型,是小学阶段学习的两个重要的“关系”(既函数)。对它们的学习也为以后学习函数奠定了重要的基础和经验。由于这两个内容是本期才学习的,因此回顾与反思时,鼓励学生自己独立整理,在此基础上和同伴交流与分享。教材创设了寻找实例、列表、画图等丰富的活动,帮助学生再次体会两个变量之间相互依赖的关系,加深对正、反比例关系的认识。学情分析:通过学习学生已经认识了生活中的一些变量,理解了正比例、反比例的意义,并能运用正、反比例的知识解决一些简单的实际问题。
设计理念:本节课为复习课,由于学生已是高年级,应该能够自主对知识进行整理,让其形成系统,因此我在整理与回顾时尽量放手,让学生在独立整理的基础上小组交流和全班分享。在这个过程中,老师应该为学生提供自主梳理知识的时间和空间,使学生体会数学知识、方法之间的密切联系。并注重发展学生提出问题、解决问题的能力,在回顾、整理、巩固、应用的过程中帮助学生再次经历重要概念和方法的形成过程,使学生不断积累活动经验,体会一些重要的数学思想。
《反比例》教学设计【精华15篇】
作为一名老师,总归要编写教学设计,教学设计是实现教学目标的计划性和决策性活动。我们应该怎么写教学设计呢?以下是小编为大家收集的《反比例》教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
《反比例》教学设计 篇15
教学目标:
通过比较,使学生进一步理解正比例和反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能够正确地判断正、反比例的关系,进一步发展学生的分析、比较、抽象、概括等能力。
教学过程:
一复习
判断下面每题中的两种量是成正比例还是成反比例?
1.速度一定,路程和时间。
2.正方形的边长和它的面积。
3.生产总时间一定,生产一个零件所用时间和零件总数。
4.中国儿童报的订数和钱数。
二引导练习
这节课我们要通过比较弄清成正、反比例的量有什么相同点和不同点。
板书课题:正、反比例的比较
出示表格。
表一:
路程/千米4080160200320
时间/时12458
表二
速度/每时行多少千米12090604030
时间/时346912
1.说一说。
提问:从表1中,你怎样发现速度是一定的?根据什么判断路程和时间成正比例?从表2中,你怎样发现路程是一定的?根据什么判断速度和时间成反比例?
2.想一想:路程、速度和时间这三个量中每两个量之间有什么样的.比例关系?
师板书:速度时间=路程
师:当速度一定时,路程和时间成什么比例关系?
当路程一定时,速度和时间成什么比例关系?
当时间一定时,路程和速度成什么比例关系?
3.比较正比例和反比例关系。
通过前面的例子,比较正比例关系和反比例关系。你能写出它们的相同点和不同点吗?
学生同桌或前后桌讨论,教师提问并板书如下:
相同点:都有两种相关联的量,一种量变化,另一种量也随着变化。
不同点:正比例:两种量中相对应的两个数的积一定。关系式XY=K(一定)
4.小结;正比例和反比例有什么相同点和不同点?判断两种量是否比例,成什么比例的,方法是什么?
《反比例》教学设计 篇16
教学要求:
使学生进一步理解和掌握正、反比例中每个概念的含义;更熟练地判断两种相关联的量是不是成比例的量。如果成比例,成什么比例。
进一步提高解决简单实际问题的能力。
教学过程:
提出本课复习题
基本概念的复习
什么叫两种相关联的量?
下面两种相关联的量哪些量成比例?成比例的是成正比例还需成反比例?
什么样的两种量成正比例关系?什么样的两种量成反比例关系?
成正比例关系的量与成反比例关系的量有什么异同点?
应用练习
完成教材97页的`“做一做”。
第3题在完成时可先把题中的等式变一变形,像y=8x变成y/x=8;把y=8/y变成xy=8,这样判断起来就方便了。
巩固练习
完成教材99页第6~7题。
全课总结(略)
教学目标:
使学生进上步理解和掌握比和比例的意义与性质。
区别有关易混概念,进上步提高运用所学知识能力,为今后的学习打下良好的基础。
教学过程:
讲述本课复习课题并板书
基本概念的复习
比和比例的意义与性质。
什么叫比?什么叫比例?(就学生所举的例子再让学生说说比和比例中各部分的名称),比的后项为什么不能是0?
比和分数、除法有什么联系?
说说比的基本性质的比例的基本性质?
比的基本性质与比例的基本性质各有什么用处?
看教材95页的归纳整理,并把基本性质栏中的空填上,说说根据什么填写的?
完成教材95的“做一做”。
结合第3题让学生说说什么叫做解比例?根据是什么?
示比值和化简比。
独立完成教材96页上的题目。
说说求比值与化简比的区别?
(求比值是根据比的意义。用前项除以后项,得到结果是一个数;化简比是根据比的基本性质,把比的前项和后项,同时乘以(或除以)相同的数(0除外),得到的结果是一个最简整数比)。
看书中的表,总结方法。
完成教材96页的“做一做”
比例尺
问题:1)什么叫做比例尺?说说“图距”、“实距”、“比例尺”三者之间的关系。
2)一幢教学大楼平面图的比例尺是1/100,这比例尺表示的是什么意思?
比例尺除写成数字化形式处,还可怎样表示?
完成教材97页上的“做一做”。(理解比例尺实质上是一个比,此比的前项与后项表示的意义是什么。)
练习巩固
完成教材十九页第1~4题。
全课总结(略)
