请欣赏函数数学教案(精选11篇),由笔构网整理,希望能够帮助到大家。
函数数学教案 篇1
教学目标
1.理解函数的概念,了解函数的三种表示法,会求函数的定义域.
(1)了解函数是特殊的映射,是非空数集a到非空数集b的映射.能理解函数是由定义域,值域,对应法则三要素构成的整体.
(2)能正确认识和使用函数的三种表示法:解析法,列表法,和图象法.了解每种方法的优点.
(3)能正确使用“区间”及相关符号,能正确求解各类函数的定义域.
2.通过函数概念的学习,使学生在符号表示,运算等方面的能力有所提高.
(1)对函数记号有正确的理解,准确把握其含义,了解(为常数)与的区别与联系;
(2)在求函数定义域中注意运算的合理性与简洁性.
3.通过函数定义由变量观点向映射观点的过渡,是学生能从发展的角度看待数学的学习.
教学建议
1.教材分析
(1)知识结构
(2)重点难点分析
本小节的重点是在映射的基础上理解函数的概念.,主要包括对函数的定义,表示法,三要素的作用的理解与认识.教学难点是函数的定义和函数符号的认识与使用.
①由于学生在初中已学习了函数的变量观点下的定义,并具体研究了几类最简单的函数,对函数并不陌生,所以在高中重新定义函数时,重要的`是让学生认识到它的优越性,它从根本上揭示了函数的本质,由定义域,值域,对应法则三要素构成的整体,让学生能主动将函数与函数解析式区分开来.对这一点的认识对于后面函数的性质的研究都有很大的帮助.
②在本节中首次引入了抽象的函数符号,学生往往只接受具体的函数解析式,而不能接受,所以应让学生从符号的含义认识开始,在符号中,在法则下对应,不是与的乘积,符号本身就是三要素的体现.由于所代表的对应法则不一定能用解析式表示,故函数表示的方法除了解析法以外,还有列表法和图象法.此外本身还指明了谁是谁的函数,有利于我们分清函数解析式中的常量与变量.如,它应表示以为自变量的二次函数,而如果写成,则我们就不能准确了解谁是变量,谁是常量,当为变量时,它就不代表二次函数.
2.教法建议
(1)高中对函数内容的学习是初中函数内容的深化和延伸.深化首先体现在函数的定义更具一般性.故教学中可以让学生举出自己熟悉的函数例子,并用变量观点加以解释,教师再给出如:是不是函数的问题,用变量定义解释显得很勉强,而如果从集合与映射的观点来解释就十分自然,所以有重新认识函数的必要.
(2)对函数是三要素构成的整体的认识,一方面可以通过对符号的了解与使用来强化,另一方面也可通过判断两个函数是否相同来配合.在这类题目中,可以进一步体现出三要素整体的作用.
(3)关于对分段函数的认识,首先它的出现是一种需要,可以给出一些实际的例子来说明这一点,对自变量不同取值,用不同的解析式表示同一个函数关系,所以是一个函数而不是几个函数,其次还可以举一些数学的例子如这样的函数,若利用绝对值的定义它就可以写成,这就是一个分段函数,从这个题中也可以看出分段函数是一个函数.
函数数学教案
作为一位杰出的教职工,常常需要准备教案,教案有助于学生理解并掌握系统的知识。来参考自己需要的教案吧!下面是小编帮大家整理的函数数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。
函数数学教案 篇2
教学目标:
①掌握对数函数的性质。
②应用对数函数的性质可以解决:对数的大小比较,求复
合函数的定义域、值 域及单调性。
③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高
解题能力。
教学重点与难点:对数函数的性质的应用。
教学过程设计:
⒈复习提问:对数函数的概念及性质。
⒉开始正课
1 比较数的大小
例 1 比较下列各组数的大小。
⑴loga5。1 ,loga5。9 (a>0,a≠1)
⑵log0。50。6 ,logЛ0。5 ,lnЛ
师:请同学们观察一下⑴中这两个对数有何特征?
生:这两个对数底相等。
师:那么对于两个底相等的对数如何比大小?
生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。
师:对,请叙述一下这道题的解题过程。
生:对数函数的单调性取决于底的大小:当0
调递减,所以loga5。1>loga5。9 ;当a>1时,函数y=logax单调递
增,所以loga5。1 板书: 解:Ⅰ)当0 ∵5。1loga5。9 Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数, ∵5。1<5。9 ∴loga5。1 师:请同学们观察一下⑵中这三个对数有何特征? 生:这三个对数底、真数都不相等。 师:那么对于这三个对数如何比大小? 生:找“中间量”, log0。50。6>0,lnЛ>0,logЛ0。51,log0。50。6<1,所以logЛ0。5< log0。50。6< lnЛ。 板书:略。 师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函 数 的单调性比大小,②借用“中间量”间接比大小,③利用对数 函数图象的位置关系来比大小。 2 函数的定义域, 值 域及单调性。 例 2 ⑴求函数y=的定义域。 ⑵解不等式log0。2(x2+2x-3)>log0。2(3x+3) 师:如何来求⑴中函数的定义域?(提示:求函数的定义域,就是要 使函数有意义。若函数中含有分母,分母不为零;有偶次根式, 被开方式大于或等于零;若函数中有对数的形式,则真数大于 零,如果函数中同时出现以上几种情况,就要全部考虑进去,求 它们共同作用的结果。) 生:分母2x-1≠0且偶次根式的被开方式log0。8x-1≥0,且真数x>0。 板书: 解:∵ 2x-1≠0 x≠0。5 log0。8x-1≥0 , x≤0。8 x>0 x>0 ∴x(0,0。5)∪(0。5,0。8〕 师:接下来我们一起来解这个不等式。 分析:要解这个不等式,首先要使这个不等式有意义,即真数大于零, 再根据对数函数的单调性求解。 师:请你写一下这道题的解题过程。 生: 解: x2+2x-3>0 x1 (3x+3)>0 , x>-1 x2+2x-3<(3x+3) -2 不等式的`解为:1 ⒊小结 这堂课主要讲解如何应用对数函数的性质解决一些问题,希望能通过这堂课使同学们对等价转化、分类讨论等思想加以应用,提高解题能力。 ⒋作业 ⑴解不等式 ①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a为常数) ⑵已知函数y=loga(x2-2x),(a>0,a≠1) ①求它的单调区间;②当0 ⑶已知函数y=loga (a>0, b>0, 且 a≠1) ①求它的定义域;②讨论它的奇偶性; ③讨论它的单调性。 ⑷已知函数y=loga(ax-1) (a>0,a≠1), ①求它的定义域; ②当x为何值时,函数值大于1; ③讨论它的单调性。 一、内容和内容解析; 1、内容:人教版八上第十四章一次函数14.22(2)一次函数的图像 2、内容解析:教材的地位和作用:本节课主要是在学生学习了函数图象的基础上,通过动手操作接受一次函数图象是直线这一事实,在实践中体会两点法的简便,向学生渗透数形结合的数学思想,以使学生借助直观的图形,生动形象的变化来发现两个一次函数图象在直角坐标系中的位置关系。培养学生主动学习、主动探索、合作学习的能力。本节课为探索一次函数性质作准备。 二、目标和目标解析 1、教学目标的确定 教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标。 知识目标 (1)能用两点法画出一次函数的图象。 (2)结合图象,理解直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响。 能力目标 (1)通过操作、观察,培养学生动手和归纳的能力。 (2)结合具体情境向学生渗透数形结合的数学思想。 情感目标 (1)通过动手操作,观察探索一次函数的特征,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。 (2)让学生通过直观感知、动手操作去经历、体会规律形成的过程。 2、教学重点、难点 用两点法画出一次函数的图象是研究一次函数的'性质的基础,是本节课的重点。直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响,是本节课的难点。关键是通过学生的直观感知、动手操作、合作交流归纳其规律。 三、教学问题诊断分析 1、由用描点法画函数的图象的认识,学生能接受一次函数的图象是直线,结合两点确定一条直线,学生能画出一次函数图象。 2、根据学生抽象归纳能力较差,学习直线y=kx+b(k、b是常数,k0)常数k和b的取值对于直线的位置的影响有难度。所以教学中应尽可能多地让学生动手操作,突出图象变化特征的探索过程,自主探索出其规律。 3、抓住初中学生的心理特征,运用直观生动的形象,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。 四、教学支持条件分析 恰当运用现代教育技术手段,采用自主探究合作交流式教学,让学生动手操作,主动去探索,小组合作交流。而互动式教学将顾及到全体学生,让全体学生都参与,达到优生得到培养,后进生也有所收获的效果。 五、教学过程设计 (一)、设疑,导入新课(2分钟) 通过前面的学习我们可以发现,一次函数是一种特殊的函数,那么一次函数的图象是什么形状呢? 一次函数的图象。(板书课题) 一、教材分析及处理 函数是高中数学的重要内容之一,函数的基础知识在数学和其他许多学科中有着广泛的应用;函数与代数式、方程、不等式等内容联系非常密切;函数是近一步学习数学的重要基础知识;函数的概念是运动变化和对立统一等观点在数学中的具体体现;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,《函数》教学设计。 对函数概念本质的理解,首先应通过与初中定义的比较、与其他知识的联系以及不断地应用等,初步理解用集合与对应语言刻画的函数概念.其次在后续的学习中通过基本初等函数,引导学生以具体函数为依托、反复地、螺旋式上升地理解函数的本质。 教学重点是函数的概念,难点是对函数概念的本质的理解。 学生现状 学生在第一章的时候已经学习了集合的概念,同时在初中时已学过一次函数、反比例函数和二次函数,那么如何用集合知识来理解函数概念,结合原有的知识背景,活动经验和理解走入今天的课堂,如何有效地激活学生的学习兴趣,让学生积极参与到学习活动中,达到理解知识、掌握方法、提高能力的目的,使学生获得有益有效的学习体验和情感体验,是在教学设计中应思考的。 二、教学三维目标分析 1、知识与技能(重点和难点) (1)、通过实例让学生能够进一步体会到函数是描述变量之间的依赖关系的重要数学模型。并且在此基础上学习应用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。不但让学生能完成本节知识的学习,还能较好的复习前面内容,前后衔接。 (2)、了解构成函数的三要素,缺一不可,会求简单函数的定义域、值域、判断两个函数是否相等等。 (3)、掌握定义域的表示法,如区间形式等。 (4)、了解映射的概念。 2、过程与方法 函数的概念及其相关知识点较为抽象,难以理解,学习中应注意以下问题: (1)、首先通过多媒体给出实例,在让学生以小组的形式开展讨论,运用猜想、观察、分析、归纳、类比、概括等方法,探索发现知识,找出不同点与相同点,实现学生在教学中的主体地位,培养学生的创新意识。 (2)、面向全体学生,根据课本大纲要求授课。 (3)、加强学法指导,既要让学生学会本节知识点,也要让学生会自我主动学习。 3、情感态度与价值观 (1)、通过多媒体给出实例,学生小组讨论,给出自己的结论和观点,加上老师的辅助讲解,培养学生的实践能力和和大胆创新意识,教案《《函数》教学设计》。 (2)、让学生自己讨论给出结论,培养学生的自我动手能力和小组团结能力。 三、教学器材 多媒体ppt课件 四、教学过程 教学内容教师活动学生活动设计意图 《函数》课题的引入(用时一分钟)配着简单的音乐,从简单的例子引入函数应用的广泛,将同学们的视线引入函数的学习上听着悠扬的音乐,让同学们的视线全注意在老师所讲的内容上从贴近学生生活入手,符合学生的认知特点。让学生在领略大自然的美妙与和谐中进入函数的世界,体现了新课标的理念:从知识走向生活 知识回顾:初中所学习的函数知识(用时两分钟)回顾初中函数定义及其性质,简单回顾一次函数、二次函数、正比例函数、反比例函数的性质、定义及简单作图认真听老师回顾初中知识,发现异同在初中知识的基础上引导学生向更深的内容探索、求知。即复习了所学内容又做了即将所学内容的铺垫 思考与讨论:通过给出的问题,引出本节课的主要内容(用时四分钟)给出两个简单的问题让同学们思考,讲述初中内容无法给出正确答案,需要从新的高度来认识函数结合老师所回顾的知识,结合自己所掌握的知识,思考老师给出的问题,小组形式作讨论,从简单问题入手,循序渐进,引出本节主要知识,回顾前一节的集合感念,应用到本节知识,前后联系、衔接 新知识的讲解:从概念开始讲解本节知识(用时三分钟)详细讲解函数的知识,包括定义域,值域等,回到开始提问部分作答做笔记,专心听讲讲解函数概念,由知识讲解回到问题身上,解决问题 对提问的回答(用时五分钟)引导学生自己解决开始所提的两个问题,然后同个互动给出最后答案通过与老师共同讨论回答开始问题,总结更好的掌握函数概念,通过问题来更好的掌握知识 函数区间(用时五分钟)引入函数定义域的表示方法简洁明了的方法表示函数的定义域或值域,在集合表示方法的基础上引入另一种方法 注意点(用时三分钟)做个简单的的回顾新内容,把难点重点提出来,让同学们记住通过问题回答,概念解答,把重难点给出,提醒学生注意内容和知识点 习题(用时十分钟)给出习题,分析题意在稿纸上简单作答,回答问题通过习题练习明确重难点,把不懂的地方记住,课后学生在做进一步的联系 映射(用时两分钟)从概念方面讲解映射的意义,象与原象在新知识的基础上了解更多知识,映射的学习给以后的知识内容做更好的铺垫 小结(用时五分钟)简单讲述本节的知识点,重难点做笔记前后知识的连贯,总结,使学生更明白知识点 五、教学评价 为了使学生了解函数概念产生的背景,丰富函数的感性认识,获得认识客观世界的体验,本课采用"突出主题,循序渐进,反复应用"的方式,在不同的场合考察问题的不同侧面,由浅入深。本课在教学时采用问题探究式的教学方法进行教学,逐层深入,这样使学生对函数概念的理解也逐层深入,从而准确理解函数的概念。函数引入中的三种对应,与初中时学习函数内容相联系,这样起到了承上启下的作用。这三种对应既是函数知识的生长点,又突出了函数的本质,为从数学内部研究函数打下了基础。 在培养学生的能力上,本课也进行了整体设计,通过探究、思考,培养了学生的实践能力、观察能力、判断能力;通过揭示对象之间的内在联系,培养了学生的辨证思维能力;通过实际问题的解决,培养了学生的分析问题、解决问题和表达交流能力;通过案例探究,培养了学生的创新意识与探究能力。 虽然函数概念比较抽象,难以理解,但是通过这样的教学设计,学生基本上能很好地理解了函数概念的本质,达到了课程标准的要求,体现了课改的教学理念。 一、学生起点分析 在七年级上期学习了用字母表示数,体会了字母表示数的意义,学会了探索具体事物之间的关系和变化的规律,并用符号进行了表示;在七年级下期又学习了“变量之间的关系”,使学生在具体的情境中,体会了变量之间的相依关系的普遍性,感受了学习变量之间的关系的必要性和重要性,并且积累了一定的研究变量之间关系的一些方法和初步经验,为学习本章的函数知识奠定了一定的基础。 二、教学任务分析 《函数》是义务教育课程标准北师大版实验教科书八年级(上)第四章《一次函数》第一节的内容。教材中的函数是从具体实际问题的数量关系和变化规律中抽象出来的,主要是通过学生探索实际问题中存在的大量的变量之间关系,进而抽象出函数的概念。与原传统教材相比,新教材更注重感性材料,让学生分析了大量的问题,感受到在实际问题中存在两个变量,而且这两个变量之间存在一定的关系,它们的表示方式是多样地,如可以通过列表的方法表示,可以通过画图像的方法表示,还可以通过列解析式的方法表示,但都有着共性:其中一个变量依赖于另一个变量。 本节内容是在七年级知识的基础上,继续通过对变量间的关系的考察,让学生初步体会函数的概念,为后续学习打下基础。同时,函数的学习可以使学生体会到数形结合的思想方法,感受事物是相互联系和规律的变化。一次本节课教学目标定位为: 1、初步掌握函数概念,能判断两个变量间的关系是否可以看成函数; 2、根据两个变量之间的关系式,给定其中一个量,相应的会求出另一个量的值; 3、了解函数的三种表示方法。 4、通过函数概念的学习,初步形成学生利用函数观点认识现实世界的意识和能力; 5、在函数概念形成的过程中,培养学生联系实际、善于观察、乐于探索和勤于思考的精神 对学生来讲本节课的难点在于对函数概念的理解; 四、教学准备 教具:教材,课件,电脑 学具:教材,笔,练习本 五、教学过程设计 本节课设计了六个教学环节:第一环节:创设情境、导入新课;第二环节:展现背景,提供概念抽象的素材;第三环节:概念的抽象;第四环节:概念辨析与巩固;第五环节:课时小结;第六环节:布置作业 第一环节:创设情境、导入新课 内容: 展示一些与学生实际生活有关的图片,如心电图片,天气随时间的变化图片,抛掷铅球球形成的轨迹,k线图等,提请学生思考问题。 意图: 承接上一学期变量关系的学习,让学生感受到变量之间关系的是通过多种形式表现出来的,感受研究函数的必要性。 效果: 生活实例,激发了学生的研究热情,起到很好的导入效果。 第二环节:展现背景,提供概念抽象的素材 内容: 问题1、你去过游乐园吗?你坐过摩天轮吗?你能描述一下坐摩天轮的感觉吗? 当人坐在摩天轮上时,人的高度随时间在变化,那么变化有规律吗? 摩天轮上一点的高度h与旋转时间t之间有一定的关系,右图就反映了时间t(分)与摩天轮上一点的高度h(米)之间的关系。你能从上图观察出,有几个变化的量吗?当t分别取3,6,10时,相应的h是多少?给定一个t值,你都能找到相应的h值吗? 问题2、瓶子或罐头盒等圆柱形的物体,常常如下图这样堆放。随着层数的增加,物体的总数是如何变化的? 问题3、一定质量的气体在体积不变时,假若温度降低到—273℃,则气体的压强为零。因此,物理学把—273℃作为热力学温度的零度。热力学温度T(K)与摄氏温度t(℃)之间有如下数量关系:T=t+273,T≥0。 (1)当t分别等于—43,—27,0,18时,相应的热力学温度T是多少? (2)给定一个大于—273℃的t值,你能求出相应的T值吗? 意图: 通过上面三个问题的展示,使学生们初步感受到:现实生活中存在大量的变量间的关系,并且一个变量是随着另一个变量的变化而变化的;变量之间的关系表示方式是多样的(图象、列表和解析式等)。 效果: 通过图片展示和三个问题的探究,使学生感受生活中的确存在大量的两个变量之间的关系,并且这两个变量之间的关系可以通过三种不同的方式表现,初步了解三种方式表示两个变量之间关系的各自特点。 第三环节:概念的抽象 内容: 1、引导学生思考以上三个问题的共同点,进而揭示出函数的概念: 在上面的问题中,都有两个变量,给定其中一个变量(自变量)的值,相应的就确定了另一个变量(因变量)的.值。 4、1函数:同步检测 1、张爷爷晚饭以后外出散步,碰到老邻居,交谈了一会儿,返回途中在读报栏前看了一会儿报,如图是据此情境画出的图象,请你回答下面的问题: (1)张爷爷是在什么地方碰到老邻居的,交谈了多长时间? (2)读报栏大约离家多远? (3)图中反映了哪些变量之间的关系?其中哪个是自变量?哪个是因变量? 案例背景: 对数函数是函数中又一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础. 案例叙述: (一).创设情境 (师):前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数. 反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数. (提问):什么是指数函数?指数函数存在反函数吗? (学生): 是指数函数,它是存在反函数的. (师):求反函数的步骤 (由一个学生口答求反函数的过程): 由 得 .又 的值域为 , 所求反函数为 . (师):那么我们今天就是研究指数函数的反函数-----对数函数. (二)新课 1.(板书) 定义:函数 的反函数 叫做对数函数. (师):由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么? (教师提示学生从反函数的三定与三反去认识,学生自主探究,合作交流) (学生)对数函数的定义域为 ,对数函数的值域为 ,且底数 就是指数函数中的 ,故有着相同的限制条件 . (在此基础上,我们将一起来研究对数函数的图像与性质.) 2.研究对数函数的图像与性质 (提问)用什么方法来画函数图像? (学生1)利用互为反函数的两个函数图像之间的关系,利用图像变换法画图. (学生2)用列表描点法也是可以的。 请学生从中上述方法中选出一种,大家最终确定用图像变换法画图. (师)由于指数函数的图像按 和 分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况 和 ,并分别以 和 为例画图. 具体操作时,要求学生做到: (1) 指数函数 和 的图像要尽量准确(关键点的位置,图像的变化趋势等). (2) 画出直线 . (3) 的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近 轴对称为逐渐靠近 轴,而 的图像在翻折时可提示学生分两段翻折,在 左侧的先翻,然后再翻在 右侧的部分. 学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出 和 的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图: 教师画完图后再利用电脑将 和 的图像画在同一坐标系内,如图: 然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明) 3. 性质 (1) 定义域: (2) 值域: 由以上两条可说明图像位于 轴的右侧. (3)图像恒过(1,0) (4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称. (5) 单调性:与 有关.当 时,在 上是增函数.即图像是上升的 当 时,在 上是减函数,即图像是下降的. 之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况: 当 时,有 ;当 时,有 . 学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来. 最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性) 对图像和性质有了一定的了解后,一起来看看它们的应用. (三).简单应用 1. 研究相关函数的性质 例1. 求下列函数的定义域: (1) (2) (3) 先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制. 2. 利用单调性比较大小 例2. 比较下列各组数的大小 (1) 与 ; (2) 与 ; (3) 与 ; (4) 与 . 让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程. 三.拓展练习 练习:若 ,求 的取值范围. 四.小结及作业 案例反思: 本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,因而在教学上采取教师逐步引导,学生自主合作的方式,从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质. 在教学中一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地以反函数这条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣. 重点难点教学: 1.正确理解映射的概念; 2.函数相等的两个条件; 3.求函数的定义域和值域。 一.教学过程: 1.学生熟练掌握函数的概念和映射的定义; 2.使学生能够根据已知条件求出函数的定义域和值域; 3.使学生掌握函数的三种表示方法。 二.教学内容:1.函数的定义 设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数()fx和它对应,那么称:fAB为从集合A到集合B的一个函数(function),记作: (),yfxxA 其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{()|}fxxA叫值域(range)。显然,值域是集合B的子集。 注意: ①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”; ②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x. 2.构成函数的三要素定义域、对应关系和值域。 3、映射的定义 设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意 一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。 4.区间及写法: 设a、b是两个实数,且a (1)满足不等式axb的实数x的集合叫做闭区间,表示为[a,b]; (2)满足不等式axb的实数x的集合叫做开区间,表示为(a,b); 5.函数的三种表示方法①解析法②列表法③图像法 本文题目:高一数学教案:对数函数及其性质 2.2.2 对数函数及其性质(二) 内容与解析 (一) 内容:对数函数及其性质(二)。 (二) 解析:从近几年高考试题看,主要考查对数函数的性质,一般综合在对数函数中考查.题型主要是选择题和填空题,命题灵活.学习本部分时,要重点掌握对数的运算性质和技巧,并熟练应用. 一、 目标及其解析: (一) 教学目标 (1) 了解对数函数在生产实际中的简单应用.进一步理解对数函数的图象和性质; (2) 学习反函数的概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质.. (二) 解析 (1)在对数函数 中,底数 且 ,自变量 ,函数值 .作为对数函数的三个要点,要做到道理明白、记忆牢固、运用准确. (2)反函数求法:①确定原函数的值域即新函数的定义域.②把原函数y=f(x)视为方程,用y表示出x.③把x、y互换,同时标明反函数的定义域. 二、 问题诊断分析 在本节课的教学中,学生可能遇到的问题是不易理解反函数,熟练掌握其转化关系是学好对数函数与反函数的基础。 三、 教学支持条件分析 在本节课一次递推的教学中,准备使用PowerPoint 20xx。因为使用PowerPoint 20xx,有利于提供准确、最核心的文字信息,有利于帮助学生顺利抓住老师上课思路,节省老师板书时间,让学生尽快地进入对问题的分析当中。 四、 教学过程 问题一. 对数函数模型思想及应用: ① 出示例题:溶液酸碱度的测量问题:溶液酸碱度pH的计算公式 ,其中 表示溶液中氢离子的浓度,单位是摩尔/升. (Ⅰ)分析溶液酸碱读与溶液中氢离子浓度之间的关系? (Ⅱ)纯净水 摩尔/升,计算纯净水的酸碱度. ②讨论:抽象出的函数模型? 如何应用函数模型解决问题? 强调数学应用思想 问题二.反函数: ① 引言:当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function) ② 探究:如何由 求出x? ③ 分析:函数 由 解出,是把指数函数 中的自变量与因变量对调位置而得出的. 习惯上我们通常用x表示自变量,y表示函数,即写为 . 那么我们就说指数函数 与对数函数 互为反函数 ④ 在同一平面直角坐标系中,画出指数函数 及其反函数 图象,发现什么性质? ⑤ 分析:取 图象上的几个点,说出它们关于直线 的对称点的坐标,并判断它们是否在 的图象上,为什么? ⑥ 探究:如果 在函数 的图象上,那么P0关于直线 的对称点在函数 的图象上吗,为什么? 由上述过程可以得到什么结论?(互为反函数的两个函数的图象关于直线 对称) ⑦练习:求下列函数的反函数: ; (师生共练 小结步骤:解x ;习惯表示;定义域) (二)小结:函数模型应用思想;反函数概念;阅读P84材料 五、 目标检测 1.(20xx全国卷Ⅱ文)函数y= (x 0)的反函数是 A. (x 0) B. (x 0) C. (x 0) D. (x 0) 1.B 解析:本题考查反函数概念及求法,由原函数x 0可知A、C错,原函数y 0可知D错,选B. 2. (20xx广东卷理)若函数 是函数 的反函数,其图像经过点 ,则 ( ) A. B. C. D. 2. B 解析: ,代入 ,解得 ,所以 ,选B. 3. 求函数 的反函数 3.解析:显然y0,反解 可得, ,将x,y互换可得 .可得原函数的反函数为 . 【总结】20xx年已经到来,新的一年数学网会为您整理更多更好的文章,希望本文高一数学教案:对数函数及其性质能给您带来帮助! 教学目标: 知识与技能 1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。 2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。 3、会对一个具体实例进行概括抽象成为数学问题。 过程与方法 1、通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。 2、经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。 情感与价值观 1、经历函数概念的抽象概括过程,体会函数的模型思想。 2、让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。 教学重点: 1、掌握函数概念。 2、判断两个变量之间的关系是否可看作函数。 3、能把实际问题抽象概括为函数问题。 教学难点: 1、理解函数的概念。 2、能把实际问题抽象概括为函数问题。 教学过程设计: 一、创设问题情境,导入新课 『师』:同学们,你们看下图上面那个像车轮状的物体是什么? 教学目标 1、知识与技能 ①理解正比例函数的概念及正比例函数图象特征。 ②知道正比例函数图象是直线,会画正比例函数的图象;进一步熟悉作函数图象的主要步骤。 2、过程与方法 ①通过“燕鸥飞行路程问题”的探究和学习,体会函数模型的思想。 ②经历运用图形描述函数的过程,初步建立数形结合,经历探索正比例函数图象形状的过程,体验“列表、描点、连线”的内涵。 3、情感态度与价值观 ①结合描点作图培养学生认真细心严谨的学习态度和习惯。 ②培养学生积极参与数学活动,勇于探究数学现象和规律,形成良好的质疑和独立思考的习惯。 教学重点: 探索正比例函数图形的形状,会画正比例函数图象。 教学难点: 正比例函数解析式的理解教学方法:探索归纳,启发式讲练结合 教学准备: 多媒体课件 教学过程 一、提出问题,创设情境,激发学生的学习兴趣情境 1、(1)你知道候鸟吗? (2)它们在每年的迁徙中能飞行多远? (3)燕鸥的飞行路程与时间之间有什么样的数量关系?教师用课件展示问题。让学生观察图片中的燕鸥,然后思考并解答课本上的问题。学生自主解决三个问题。教师在学生得到结论的基础上提醒:这里用函数y=200x对燕鸥飞行路程和时间规律进行了刻画。 【设计意图】从具体情境入手,让学生从简单的实例中不断抽象出建立数学模型、数学关系的方法。 二、出示本节课的学习目标 ①理解正比例函数的概念及正比例函数图象特征。 ②知道正比例函数图象是直线,会画正比例函数的图象;进一步熟悉作函数图象的主要步骤。 教师用课件展示学习目标,学生齐声朗读,记忆。 【设计意图】首先让学生了解本节课的学习任务,有目的的进行本节课的学习。 三、自学质疑: 自学课本86——87页,并尝试完成下列问题 1、写出下列问题中的函数表达式 (1)圆的周长|随半径r的大小变化而变化 (2)汽车在公路上以每小时100千米的速度行驶,怎样表示它走过的路程S(千米)随行驶时间t(小时)变化的关系? (3)每个练习本的'厚度为,一些练习本摞在一起的总厚度h(单位:cm)随这些练习本的本数n的变化而变化 (4)冷冻一个0度的物体,使它每分下降2度,物体的温度T(单位:度)随冷冻时间t(单位:分)的变化而变化 2、这些函数有什么共同点?这样的函数我们把它们称为正比例函数。由上得到的启发,你能试着给正比例函数下个定义吗?学生先自主探究,后分组讨论,然后教师让各小组代表回答问题。师生互动对回答的问题进行分析评价。 【设计意图】通过这些实际问题使学生进一步加深对函数概念的理解,也为导出正比例函数概念做好铺垫。 教师引导学生观察分析上面的四个表达式的共性:都是常数与自变量乘积的形式。教师口述并板书正比例函数的概念。 一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。 教师让学生看书,在定义处画上记号,并提出问题:这里为什么强调k是常数,k≠0? 上述问题中各正比例函数的比例系数分别是什么?(由学生一一说出) 做一做:下面的函数是不是正比例函数?y=3x y=2/x y=x/2 s=πr2 通过上面的例子,师生共同总结正比例函数须满足下面两个条件: 1、比例系数不能为0 2、自变量X的次数是一次的。 表示下列问题中的y与x的函数关系,并指出哪些是正比例函数。 (1)正方形的边长为xcm,周长为ycm; (2)某人一年内的月平均收入为x元,他这年的总收入为y元; (3)一个长方体的长为2cm,宽为,高为xcm,体积为ycm3 【设计意图】通过归纳、分析使学生明白正比例函数的特征、理解其解析式的特点。 我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢?自学课本87——89页,并尝试回答下列问题:[活动] 1、各小组合作回顾函数图象的画法,画出下列函数的图象 (1)y=2x(2)y=—2x 【设计意图】:通过活动,了解正比例函数图象特点及函数变化规律,让学生自己动手、动口、动脑,经历规律发现的整个过程,从而提高各方面能力及学习兴趣。 教师活动:引导学生正确画图、积极探索、总结规律、准确表述。学生活动:利用描点法正确地画出两个函数图象,在教师的引导下完成函数变化规律的探究过程,并能准确地表达出,从而加深对规律的理解与认识。活动过程与结论: 1、函数y=2x中自变量x可以是任意实数。列表表示几组对应值:x—3—2—1 0 1 2 3 y—6—4—2 0 2 4 6画出图象如图P1242、y=—2x的自变量取值范围可以是全体实数,列表表示几组对应值:x—3—2—1 0 1 2 3 y 6 4 2 0—2—4—6画出图象如图P112 问:①观察两个函数图象,能得到那些信息?教师指导:观察函数图象从以下几个方面进行: (1)自变量 (2)函数值 (3)升降性 (4)特殊点 (5)过了那几个象限 (6)图象的形状 ②总结正比例函数图象的性质 3、两个图象的共同点:都是经过原点的直线。不同点:函数y=2x的图象从左向右呈状态,即随着x的增大y也增大;经过第一、三象限。函数y=—2x的图象从左向右呈下降状态,即随x增大y反而减小;y=—2x图象经过第二、四象限,从左向右呈状态,即随x增大y反而减小 三、巩固练习: 1、判断下列函数哪些是正比例函数 (1)y=2x (2)y=kx(k≠0) (3)y=—1/3x(4)y=1/2x+2 (5)y=3x2 (6)y=—3x2 2、教材练习题 比较两个函数图象可以看出:两个图象都是经过原点的直线。函数的图象从左向右上升,经过三、一象限,即随x增大y也增大;函数的图象从左向右下降,经过二、四象限,即随x增大y反而减小。 四、总结归纳正比例函数解析式与图象特征之间的规律: 正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线,我们可称它为直线y=kx。当k>0时,直线y=kx经过一、三象限,从左向右上升,即y随x的增大而增大;当k二、四象限,从左向右下降,即y随x的增大而减小。 五、巩固深化 1、画正比例函数时,怎样画最简便?为什么?教师活动:引导学生从正比例函数图象特征及关系式的联系入手,寻求转化的方法。从几何意义上理解分析正比例函数图象的简单画法。学生活动:在教师引导启发下完成由图象特征到解析式的转化,进一步理解数形结合思想,找出正比例函数图象的简单画法,并知道原由。 2、活动过程及结论:经过原点与点(1,k)的直线是函数y=kx的图象。画正比例函数图象时,只需在原点外再确定一个点,即找出一组满足函数关系式的对应数值即可,如(1,k)。因为两点可以确定一条直线。 随堂练习:用你认为最简单的方法画出下列函数的图像:(1)y=3/2x,(2)y=—3x 六、总结归纳,布置作业 1、在本节课中,我们经历了怎样的过程,有怎样的收获? 2、你还有什么困惑? 作业:P98习题19.2─1、2题。 教学设计说明: 本节教学设计以“自学质疑,教师指导阅读,咬文嚼字;合作释疑,查漏补缺;展示评价,培养学生的概括能力;巩固深化,细心读题,学生说题,培养学生的语言表达能力”四个步骤强化了学生的阅读意识,提高了学生的阅读兴趣,培养了学生的阅读能力。较好的完成了本节课的学习目标。 一、教材的地位和作用 本 节课主要是在学生学习了函数图象的基础上,通过动手操作接受一次函数图象是直线这一事实,在实践中体会“两点法”的简便,向学生渗透数形结合的数学思想, 以使学生借助直观的图形,生动形象的变化来发现两个一次函数图象在直角坐标系中的位置关系。培养学生主动学习、主动探索、合作学习的能力。本节课为探索一 次函数性质作准备。 (一)教学目标的确定 教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标。 1、知识目标 (1)能用“两点法”画出一次函数的图象。 (2)结合图象,理解直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的.影响。 2、能力目标 (1)通过操作、观察,培养学生动手和归纳的能力。 (2)结合具体情境向学生渗透数形结合的数学思想。 3、情感目标 (1)通过动手操作,观察探索一次函数的特征,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。 (2)让学生通过直观感知、动手操作去经历、体会规律形成的过程。 (二)教学重点、难点 用“两点法”画出一次函数的图象是研究一次函数的性质的基础,是本节课的重点。直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响,是本节课的难点。关键是通过学生的直观感知、动手操作、合作交流归纳其规律。 二、学情分析 1、由用描点法画函数的图象的认识,学生能接受一次函数的图象是直线,结合“两点确定一条直线”,学生能画出一次函数图象。 2、根据学生抽象归纳能力较差,学习直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响有难度。所以教学中应尽可能多地让学生动手操作,突出图象变化特征的探索过程,自主探索出其规律。 3、抓住初中学生的心理特征,运用直观生动的形象,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。 三、教学方法 我采用自主探究—→合作交流式教学,让学生动手操作,主动去探索,小组合作交流。而互动式教学将顾及到全体学生,让全体学生都参与,达到优生得到培养,后进生也有所收获的效果。 四、教学设计 一、设疑,导入新课(2分钟) 师:同学们,上节课我们学习了一次函数,你能说一说什么样的函数是一次函数吗? 生1:函数的解析式都是用自变量的一次整式表示的,我们称这样的函数为一次函数。 生2:一次函数通常可以表示为y=kx+b的形式,其中k、b为常数,k≠0。 生3:正比例函数也是一次函数。 师:(同学们回答的都很好)通过前面的学习我们可以发现,一次函数是一种特殊的函数,那么一次函数的图象是什么形状呢? 这节课让我们一起来研究 “一次函数的图象”。(板书) 二、自主探究——小组交流、归纳——问题升华: 1、师:问(1)你们知道一次函数是什么形状吗?(4分钟) 生:不知道。 师:那就让我们一起做一做,看一看:(出示幻灯片) 用描点法作出下列一次函数的图象。 (1)y= 0.5x (2) y= 0.5x+2 (3)y= 3x (4) y= 3x + 2 师:(为了节约时间)要求:用描点法时,最少5个点;以小组为单位,由小组长分配,每人画一个图象。画完后,小组订正,看是否画的正确? 然后讨论解决问题(1):观察你和你的同伴画出的图象,你认为一次函数的图象是什么形状? 小组汇报:一次函数的图象是直线。 师:所有的一次函数图象都是直线吗? 生:是。 师:那么一次函数y=kx+b(其中k、b为常数,k≠0),也可以称为直线y=kx+b(其中k、b为常数,k≠0)。(板书) 师:(出示幻灯片)问(2):观察你和你的同伴所画的图象在位置上有没有不同之处?(2分钟) 讨论正比例函数的图象与一般的一次函数图象在位置上有没有不同之处。 小组1:正比例函数图象经过原点。 小组2:正比例函数图象经过原点,一般的一次函数不经过原点。 师出示幻灯片3(使学生再一次加深印象) 师:问(3):对于画一次函数y=kx+b(其中k)b为常数,k≠0)的图象——直线,你认为有没有更为简便的方法? (一边思考,可以和同桌交流)(2分钟) 生1:用3个点。 生2:老师我这个更简单,用两个点。因为两点确定一条直线嘛! 生3:如画y=0.5x的图象,经过(0,0)点和(2,1)点这两个点做直线就行。 师:我们都认为画一次函数图象,只过两个点画直线就行。 (幻灯片4:师,动画演示用“两点法”画一次函数的过程) 师:做一做,请你用“两点法”在刚才的直角坐标系中,画出其余三个一次函数的图象。(比一比谁画的既快又好)(4分钟) 师:问(4):和你的同伴比一比,看谁取的那两个点更为简便一些? 组1:若是正比例函数,我们组先取(0,0)点,如画y=0.5x的图象,我们再了取(2, 1)点。这样找的坐标都是整数。 组2:我们组认为尽量都找整数。 组3:我们组认为都从两条坐标轴上找点,这样比较准确。如y=3x+2,我们取点(0,3)和点(-2/3,0) 组4:我们组认为,正比例函数经过(0,0)点和(1,k)点;一般的一次函数经过(0,b)点和(-b/k,0)点。 师:同学们说的都很好。我觉得可以根据情况来取点。 2、师:我们现在已经用:“两点法”把四个一次函数图象准确而又迅速地画在了一个直角坐标系中,这四个函数图象之间在位置上有没有什么关系呢? 问(1):(由自己所画的图象)观察下列各对一次函数图象在位置上有什么关系?(独自观察——学生回答)(3分钟) ①y=0.5x与y=0.5x+2;②y=3x与y=3x+2;③y=0.5x与y=3x;④y=0.5x+2与y=3x+2。 生1:①y=0.5x与y=0.5x+2;两直线平行。 生2:②y=3x与y=3x+2;两直线平行。 生3:③y=0.5x与y=3x;两直线相交。 生4:④y=0.5x+2与y=3x+2;两直线相交。 师:其他同学有没有补充? 生5:③y=0.5x与y=3x都是正比例函数;两直线相交,并且交点是点(0,0)点。 生6:老师,我也发现了④y=0.5x+2与y=3x+2的图象相交,并且交点是点(0,2)。 师:(出示幻灯片5)同学们回答都不错,我们要向生5和生6学习,学习他们的细致思考。函数数学教案 篇3
函数数学教案 篇4
函数数学教案 篇5
函数数学教案 篇6
函数数学教案 篇7
函数数学教案 篇8
函数数学教案 篇9
函数数学教案 篇10
函数数学教案 篇11
