请欣赏《有理数》的教学设计(精选10篇),由笔构网整理,希望能够帮助到大家。
《有理数》的教学设计 篇1
教学目标:
1.使学生理解有理数加法的意义,掌握有理数加法法则,能准确地进行有理数的加法运算.
2.通过有理数加法的教学,体现化归的意识、数形结合和分类的思想方法,培养学生观察、比较和概括的思维能力.
3.在传授知识、培养能力的同时,注意培养学生勇于探索的精神.教学重点:有理数的加法法则,能准确地进行有理数的加法运算.教学难点:异号两数相加的法则.
教学程序设计:
一.类比联想提出问题
通过引导学生回忆小学算术运算的学习过程,类比联想到在认识了有理数之后,必然要首先学习有理数的加法.
又通过提问,复习具有相反意义的量和用负数表示的量的实际意义,并通过实际问题,提出质疑导入新课.
具体问题是:在下列问题中用负数表示量的实际意义是什么?
(1)某人第一次前进了5米,接着按同一方向又向前进了3米;
(2)某地气温第一天上升了3°C,第二天上升了-1°C;
(3)某汽车先向东走4千米,再向东走-2千米。紧接着,回答:
(1)某人两次一共前进了多少米?
(2)某地气温两天一共上升了多少度?
(3)某汽车两次一共向东走了多少千米?
组织学生展开讨论,在此基础上指出:这三个问题都是求物体两次向同一方向运动的和的问题,同小学一样,可以用加法来做。但是,这些数中出现了负有理数,怎样进行有理数的加法运算呢?引出课题.
在刚才的教学中,通过复习,加强了铺垫,刻意去引导学生回忆和复习前面学过的有关知识和方法,在旧知识的复习中找到新知识的生长点。这样,既了解了学生的认知基础,带领学生做好学习新课的`知识准备,又使学生认识到本课学习的重要性,引起学生的注意,激发他们的求知个欲望,让每个学生都进行积极的思维参与.
二.直观演示归纳法则
用6个实例讲两个有理数相加的问题:
(1)向东走5米,再向东走3米,两次一共向东走了多少米?
(2)向西走5米,再向西走3米,两次一共向东走了多少米?
(3)向东走5米,再向西走5米,两次一共向东走了多少米?
(4)向东走5米,再向西走3米,两次一共向东走了多少米?
(5)向东走3米,再向西走5米,两次一共向东走了多少米?
(6)向西走5米,再向东走0米,两次一共向东走了多少米?
点拨:“一共”的含义是什么?通过小学的学习知道,就是两个数相加.
探究:若设向东为正,向西为负,你能写出算式吗?
(1)(+5)+(+3)=+8;(2)(-5)+(-3)=-8;
(3)(+5)+(-5)=0;(4)(+5)+(-3)=+2;
(5)(+3)+(-5)=-2;(6)(-5)+(+0)=-5;
以上六个问题的设置运用了数学中分类的思想方法,因为两数相加,按符号异同划分为三大类。即:
这样自然就把问题归结为三种情况:问题(1)和(2)是同号两数相加的情况;
问题(3)、(4)、(5)是异号两数相加的情况;
问题(6)有是有一个加数为零的情况.
这6个问题,都借助于数轴,先规定了向东为正,向西为负,通过电教手段具体演示验证两次运动的结果,由在数轴上表示结果的点所处的方向,确定和的符号,由表示结果的点与原点的距离,确定和的绝对值。引导学生认真观察,积极思考,通过分类、观察,最后师生共同归纳总结出有理数的加法法则.
有理数的加法法则:
一般步骤为:
(1)根据有理数的加法法则确定和的符号;
(2)根据有理数的加法法则进行绝对值的加减运算.
前面已经分析过,异号两数相加的法则是学生学习的难点。因此,我抓住突破难点的关键,一是借助于数轴的直观演示,引导学生认真观察、积极思考,自己归纳法则;二是引导学生分析法则特点,总结规律,在此基础上加以记忆,从而使难点化解,并在化解难点的过程中培养学生的思维能力.
总结出法则之后,可进一步提问:在算术里,两个不都是零的数相加,和一定大于加数,那么,对于两个有理数,相加后和还一定大于加数吗?
提出问题后,让学生去思考、去分析,最终要让学生明白:在有理数运算中,算术中的某些结论不一定再成立,即对于两个有理数,相加的和不一定大于加数,这是有理数的加法与算术运算的一个很大的区别.
三.应用迁移巩固提高
为了解决从掌握知识到运用知识的转化,使知识教学和智能培养结合起来,设计了例题和练习题,选题遵循由浅入深,循序渐进的原则.
类型:同号、异号、0与一个数相加的三种情况的有理数相加
例1:计算下列各题:
(1)(+7)+(+4)
(2)(-3)+(-9)11
(3)4+(-4)
(4)()+(-))23
(5)(-10.5)+(+1.5)
(6)(+5)+0
(7)(-7)+0
(8)0+(-8)
分析:先确定符号,在进行绝对值加减运算.
解:(2)(-3)+(-9) (两个加数同号,用加法法则的第1条计算) =-(3+9) (和取负号,把绝对值相加)
=-12.
通过此例,训练学生对法则的理解和直接应用,进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.
变式题1:填空(口答,并说明理由)
(1)(-4)+(-7)=____()(2)(+4)+(-7)=_____()
(3)7+(-4)=_____()(4)4+(-4)=_____()
(5)9+(-2)=_____()(6)(-9)+2 =_____()
(7)(-9)+0 =_____()(8)0+(-3)=_____()
变式题2:今年,我国南方部分地区发生了严重的洪涝灾害。某地水库的水位在某天当中每一次上升了a厘米,第二次上升了b厘米,问:
(1)两次一共上升了多少厘米?
(2)计算当a、b为下列各数时的值:
① a= 4 , b=3 ② a= -3 , b= 7 ③ a= 5 ,b= -5 ④ a= 4, b= -1 ⑤ a = 3 , b=0
(3)说出以上运算结果的实际意义
四. 总结反思拓展升华
为了使学生对所学知识有一个完整而深刻的印象,利用提问形式,从以下三方面小结。学生先回答,进而教师归纳总结,体现学生为主体,教师为主导的教学思想.
(1)本节所学习的主要内容有哪些?
(2)有理数的加法法则在应用时应注意的哪些问题?(确定“和”的符号,计算“和”的绝对值两件事)
(3)本节课涉及的数学思想方法主要有哪些?五.作业课本第19页练习2、3题.
补充:
1.计算:
(1)(-10)+(+6);
(2)(+12)+(-4);
(3)(-5)+(-7);
(4)(+6)+(+9);
(5)67+(-73);
(6)(-84)+(-59);
(7)33+48;
(8)(-56)+37.
2.计算:
(1)(-0.9)+(-2.7);
(2)3.8+(-8.4);
(3)(-0.5)+3;
(4)3.29+1.78;
(5)7+(-3.04);
(6)(-2.9)+(-0.31);
(7)(-9.18)+6.18;
(8)4.23+(-6.77);
(9)(-0.78)+0.
《有理数》的教学设计 篇2
今天我说课的题目是“有理数的加法(一)”,“有理数的加法”说课教案、课堂设计及教后反思。本节课选自华东师范大学出版社出版的《义务教育课程标准实验教科书》七年级(上),。这一节课是本册书第二章第六节第一课时的内容。下面我就从以下四个方面一一教材分析、教材处理、教学方法和教学手段、教学过程的设计向大家介绍一下我对本节课的理解与设计。
一、教材分析
分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。
1、有理数的加法在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习。
2、就第二章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分----有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的`符合和绝对值),关键是这一节的学习。
从以上两点不难看出它的地位和作用都是很重要的。
接下来,介绍本节课的教学目标、重点和难点。(结合微机显示)
教学大纲是我们确定教学目标,重点和难点的依据。教学大钢规定,在有理数的加法的第一节要使学生理解有理数加法的意义,理解有理数的加法法则,并运用法则进行准确运算。因此根据教学大纲的要求,确定了本节课的教学目标。1、知识目标是:“(1)理解有理数加法的意义;(2)理解并掌握有理数加法的法则;(3)应用有理数加法法则进行准确运算;(4)渗透数形结合的思想。2、能力目标是:(1)培养学生准确运算的能力;(2)培养学生归纳总结知识的能力;3、德育目标是:(1)渗透由特殊到一般的辩证唯物主义思想;(2)培养学生严谨的思维品质。有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可,有理数的加法法则的理解与运用是本节的重点内容。因此本节课的重点是:有理数加法法则的理解与运用。由于本阶段的学生很难把握住事物主要特征:如异号两数、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。因此我确定本节课的难,是是;有理数加法法则的理解。
二、教材处理
本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当指挥官的角色,亲身参加探索发现,从而获取知识。在法则的得出过程中,我引进了现代化的教学工具微机,让学生在微机演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力。而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。
三、教学方法和数学孚段
在教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。
四、教学过程的设计。
1、引入:再课堂的引入上,开始我本打算选择教材上的例子,但是它过于简单。并且不宜于引起学生的注意,所以我选择了学生们感兴趣的军事问题,让学生在充当指挥官的同时,有一种解决问题的成就感,从而使学生积极主动的学习,并且营造了良好的学习氛围。
2、探索规律:法则的得出重要体现知识的发生,发展,形成过程。我通过了一个小人在坐标轴上来回的移动,使学生在小人的移动过程中体会两个数相加的变化规律。由于采用了形式活泼的教学手段,学生能够全副身心的投入到思考问题中去,让学生亲身参加了探索发现,获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则。
3、巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由难而易,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用男生出题,女生回答;女生出题,男生回答,活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。
4、归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。
以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。
课堂设计及课后反思
我9月19号在阿城市第五中学上了一堂数学公开课,由于得到通知的时间比较仓促,所以准备的不算充分。在各个方面一定存在着疏漏和缺陷,在这里请大家多多指教。我主要从以下几个方面加以说明。
一、问题的引入:在问题的引入上。新课标规定应从实际情景入手,并且使学生能够对问题产生强烈的求知欲。我采用了敌军对我军进行小规模军事侦察的问题,使学生处在一个指挥官的角色。对问题提出解决的办法,并且在对学生提出的各种情况,作出实际的操作,使学生明白数学在解决实际问题中的应用。我感觉在问题的引入上问题过于简单,使学生思考的范围过于局限。没有出现比较热烈的学习气氛。所以问题的引入应加大深度,应具有一定的挑战性。
二、问题的探索:在问题的探索上,我采用了一个小人在坐标轴上来回行走,产生一种动态效果,使学生在充满好奇心的状态下,在老师提供的情景下,在具有较多的时间和空间的条件下,亲身参加探索发现,主动的获取知识和技能。但在整个的实施过程中出现了一些问题,比如:在法则的得出上学生的总结出现了一些问题,我再处理时由于怕时间不够充裕所以学生出现的问题我给作出了解答,其实这里应由学生自己来解决,这样对学生能力的提高非常有帮助。
三、习题的配备:整个习题的配备大致是按从易到难的顺序排列的,面向全体学生,采用多种形式,使不同层次的学生都有所得,并且采用循序渐进的方法,使学生对加法法则的理解进一步的加强。在讲解完例题后,让学生互相提问,以促使学生积极踊跃的参与到教学活动中来,创造一种轻松的学习氛围。在最后的习题配备上,让学生对两个加数及和之间的关系作出判断,并且对各种情况作出讨论,达到本节课的一个高潮。促使学生的思路得到进一步的加强。但我总体感觉习题的量不够充足,学生的练习机会较少。
四、总之在整个教学过程的实施中,出现了一些问题,也有一些不尽人意的地方。希望大家批评指正。
《有理数》的教学设计 篇3
一.教材分析
“有理数的加法”是北师大版七年级数学上册第二章有理数及其运算的第四节内容,本节内容安排三个课时,本课时是本节内容的第一课时,本课设计主要是通过知识竞赛中得分的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。“有理数加法”的教学,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(20分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计.注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识.这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法.所以根据这个情况本节课的设计就采取了第二种方案。
二.学情分析
学生刚升入初中不久,对于新的教学方法还不太熟悉,在新时期下,学习过程更注重对于学生能力的培养,而不是单纯的强调学生掌握一些定式的法则,学习知识是为了解决实际问题,而学生又缺少分析问题的能力,所以小组讨论就是学生锻炼能力的重要方式,但小组讨论往往不知道从何说起,这就需要老师给学生设定合适的话题,让学生有的放矢,而学生在课前已经进行了教材的阅读,对于教材内容没有新鲜感,所以这时我从问题入手,举出一个看似搞笑的结果,让学生产生兴趣,积极参与,培养学生归纳及自主探索和合作交流能力。
三.教学目标
1.知识与技能
(1)通过知识竞赛中小组得分的计算,经历探索有理数加法法则和运算律的过程,体会分类和归纳的思想方法,使学生掌握有理数加法法则,并能运用法则进行计算。
(2)理解有理数的加法法则和运算律,在有理数加法法则的教学过程中,注意培养学生的运算能力。
(3)能熟练进行整数加法运算,并能用运算律简化运算。
2.过程与方法
通过观察,比较,归纳等得出有理数加法法则,能运用有理数加法法则解决实际问题。
3.情感与态度
认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。
4.重点与难点
会用有理数加法法则进行运算.异号两数相加的法则.类比小学阶段学习的加法,比较其中的差别,注重不同点的教学,即异号两数相加时的绝对值相减的问题。
四.教学过程
(一)创设问题情境首先设置一个大家都感兴趣的话题:某次数学竞赛,有三种参赛队,比赛规则规定,每答对一题得4分,答错一题扣4分,不答不得分也不扣分。最后得了冠军的队一道题都没答,而第二名还答对了三道题,这是一个什么样的情况?请设计一个具体情况,使这种情况合理符合题意。
问题出来之后请学生小组讨论分析,每个组的答案可能不一致,比如说第二名可以是答对三题但答错了五道题,那么得分就是-8分,而第三名可以是答错了一题,一个也没答对。然后由学生给出计算过程,即(+12)+(-20)=-8分,也可以有其它举例。
(二)师生共同探究有理数加法法则
之前我们已经学习了有理数的一些知识,比如绝对值等,以上面的问题为例,来不分析不同情况下的得分情况:
(1)答错3题时:
(-4)+(-4)+(-4)=-12分
(2)答对5题时:4+4+4+4+4=20分
(3)答对3题,答错5题时,答对的'3题与答错的3题抵消为0,剩下的两个答错题得分为-8,即12+(-20)=-8由学生讨论其它情形的得分情况及计算方法。总结:先确定得分是正还是负的,再考虑绝续值。法则得出:加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加;
2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;
3.一个数同0相加,仍得这个数。
(三)应用法则解决问题
例1(教科书的例1)
解:(1)(-10)+(-1)(两个加数同号,用加法法则的第2条计算)=-(10+1)(和取负号,把绝对值相加)=-11(2)180+(-10)(两个加数异号,用加法法则的第2条计算)=+(180-10)(和取正号,把大的绝对值减去小的绝对值)=+170(3)5+(-5)
=0(互为相反数的两个数相加得0)(4)0+(-2)
=-2(一个数同0相加,仍得这个数)
例1.计算下列算式,先判断正负说理由,再计算绝对值。(1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3);(4)(+3)+(-4);
(5)(+4)+(-4);(6)(-3)+0;(7)0+(+2);总结:给以上各题分类,即同号还是异号,再选择法则的相应内容去解决问题。
强调异号两数相加时符号的确定及绝对值的确定。
(四)小结
1.本节课你学到了什么?
2.本节课你有什么感受?(由学生自己小结)
(五)练习设计
1、基础练习:
教材36页知识技能1.计算
(1)(-8)+(-9);(2)(-17)+21;(3)(-12)+25(4)45+(-23);
(5)-45+23;(6)(-29)+(-31);(7)(-39)+(-45);(8)(-28)+37;(9)(-13)+0通过计算学生总结法则哪部分的应用最易出错,从而提示学生注重异号两数相加时符号的确定及绝对值的确定。教材第2、3题自己完成
数学理解中设计-4+3的情境,是为了锻炼学生解决实际问题的能力。可以有多种,比如气温的变化,得分的变化,水位的变化等。
2、提升练习
1.用“>”或“<”号填空:
(1)如果a>0,b>0,那么a+b ______0;(2)如果a<0,b<0,那么a+b ______0;
(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;(4)如果a<0,b>0,|a|>|b|,那么a+b ______0
2.已知如图:
那么a+b ______0;
a
0
b
五、教学反思:
本节教案设计注重引导学生参与探索、归纳有理数加法法则的过程,紧跟教学改革的脚步,把培养学生能力做为主要内容,同时注重合做交流,小组讨论,学习的过程是培养学生能力的过程,同进也兼顾数学学习的基础,计算能力的培养,让学生掌握加法法则,类比有理数范围的加法和小学阶段的加法的区别,并能用法则进行计算。
《有理数》的教学设计 篇4
教学目标:
1、在正数,负数及对小学里数的认识的基础上,经历探索有理数范围内的整数,分数的意义的过程,学会通过举例理解相关概念,会区分整数(正整数,零和负整数),分数(正分数和负分数)、
2、知道整数和分数统称为有理数,初步认识集合、
新知重难点:
重点:探索有理数范围内的整数,分数的意义、
难点:会区分整数(正整数,零和负整数),分数(正分数和负分数)、
教学过程:
一、新知生长点(这个环节:新知是建立在哪些已学知识点和相应知识点复习呈现的方法设计)
1、正数与负数
请任意写出3个正数,3个负数,并说明正数,负数的区别与联系、
方式:让学生动手写出后,举手回答、
强调:0既不是正数,也不是负数、
2、小学学过的数
你知道小学学过哪些数
方式:让学生独立思考动手写出名称,并举例、1分钟后,小组汇总展示、
讲解:自然数是整数,小数都可以化为分数、
二、新知探究点(这个环节:新知有哪些需要探究的知识点和相应知识点探究的方法设计)
1、整数与分数
由于负数的加入,现在的整数又指哪些数呢分数又指哪些数呢
(1)初中里你又学到了哪些数请举例说明、
(2)你能给小学里的整数(0除外)与分数取个新名吗
讲解:事实上小学里的数都是0或正数,为区分我们规定:
正整数:1,2,3,零:0、____
负整数:—1,—2,____
正分数:____,____,3、14,____
负分数:—____,—6、4%,____
强调:0是整数,不是分数;整数与分数统称为有理数,"统称"是指合起来总的名称的
意思;到现在为止我们学过的数都是有理数(圆周率π除外)、
巩固练习:
▲Ⅰ同座两生合作(也可以老师说出一些数,让学生判断):一人说名称,一人写相应的数、
▲Ⅱ判断题:
(1)0是整数,不是分数;(2)正数和负数统称为有理数;
(3)0是最小的有理数;(4)整数和分数统称为有理数;
(5)自然数一定是正整数;(6)正整数和负整数统称为整数、
反思:小学学了0,正整数,正分数;初中学了负整数,负分数;
有理数可分两大类:整数与分数;有理数也可以分三大类正数,0,负数、
2、集合
讲解:把一些数放在一起,就组成了一个数的集合,简称"数集",、
注:这里集合概念只作简单描述,学生明白即可,不要加深、
集合一般用圆圈或大括号表示,因为集合中的数是无限的,所以要加上省略号、
巩固练习:教材P10练习、
三、新知检测点(这个环节:新知有哪些需要当堂检测的`知识点和相应的题目的设计)
会区分整数(正整数,零和负整数),分数(正分数和负分数)、
1、—20xx不是()
A、有理数B、自然数c、整数d、负有理数
2、分别写出满足下列条件的数:
(1)三个负整数:____,____,____;三个负分数____,____,____ 、
3、下列说法中正确的是()
A、 —3、14是负分数,不是有理数B、 0是有理数,不是整数
c、 0既不是正数,也不是负数d、负整数不是整数
4、把下列各数分别填在相应的集合内:
20,—0、08,1,3、14,—2,0,—98,正数集合:{ };负数集合:{ };
整数集合:{ };分数集合:{ }、
四,新知拓展点(这个环节:新知有哪些需要拓展的知识点和相应题目的设计)
非正数非负数的意义:
1、判断:一个有理数不是正数就是负数()
零和负数统称为_______,零和正数统称为______、
2、已知下列各数:—5,+,0、62,4,0,—1、1,—6、4,—7,7、
其中正整数有,负数有,非负数有、
感受交集:
下面两个圈分别表示正数集和整数集,请在每个圈内填人8个数,其中有4个数既是正数,又是整数、这4个数应填在哪里你能说出这两个圈的重叠部分表示什么数的集合吗
五,回顾小结与布置作业
通过本课的学习,你有哪些收获
(1)现在问大家小学学了哪些数你如何回答呢(2)初中有新学了哪些数
小学学了0,正整数,正分数;初中学了负整数,负分数;整数可分三大类:正整数,0,负整数;分数可分两大类:正分数,负分数;有理数可分两大类:整数与分数、有理数也可以分三大类正数,0,负数、
作业:(1)复习,预习(要求略);(2)P17习题1、2第1题、
思考题:
观察下面依次排列的一列数,它的排列有什么规律请接着写出后面的3个数,你能说出第10个数,第200个数,第201个数是什么吗
(1)1,—2,3,—4,5,—6,7,—8,____,____,____,____;
(2)—1,____,____,____
整数:0,1,2,3,;分数(小数):____,____,3、14,____,整数:____1,____2,;分数:____,—6、4%,分数
整数
有理数
____
____
____
正数集合
整数集合
《有理数》的教学设计 篇5
一.教材分析
“有理数的加法”是北师大版七年级数学上册第二章有理数及其运算的第四节内容,本节内容安排三个课时,本课时是本节内容的第一课时,本课设计主要是通过知识竞赛中得分的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。“有理数加法”的教学,可以有多种不同的设计方案.大体上可以分为两类:一类是较快地由教师给出法则,用较多的时间(20分钟以上)组织学生练习,以求熟练地掌握法则;另一类是适当加强法则的形成过程,从而在此过程中着力培养学生的观察、比较、归纳能力,相应地适当压缩应用法则的练习,如本教学设计.注重引导学生参与探索、归纳有理数加法法则的过程,主动获取知识.这样,学生在这节课上不仅学懂了法则,而且能感知到研究数学问题的一些基本方法.所以根据这个情况本节课的设计就采取了第二种方案。
二.学情分析
学生刚升入初中不久,对于新的教学方法还不太熟悉,在新时期下,学习过程更注重对于学生能力的培养,而不是单纯的强调学生掌握一些定式的法则,学习知识是为了解决实际问题,而学生又缺少分析问题的能力,所以小组讨论就是学生锻炼能力的重要方式,但小组讨论往往不知道从何说起,这就需要老师给学生设定合适的话题,让学生有的放矢,而学生在课前已经进行了教材的阅读,对于教材内容没有新鲜感,所以这时我从问题入手,举出一个看似搞笑的'结果,让学生产生兴趣,积极参与,培养学生归纳及自主探索和合作交流能力。
三.教学目标
1.知识与技能
(1)通过知识竞赛中小组得分的计算,经历探索有理数加法法则和运算律的过程,体会分类和归纳的思想方法,使学生掌握有理数加法法则,并能运用法则进行计算。
(2)理解有理数的加法法则和运算律,在有理数加法法则的教学过程中,注意培养学生的运算能力。
(3)能熟练进行整数加法运算,并能用运算律简化运算。
2.过程与方法
通过观察,比较,归纳等得出有理数加法法则,能运用有理数加法法则解决实际问题。
3.情感与态度
认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。
4.重点与难点
会用有理数加法法则进行运算.异号两数相加的法则.类比小学阶段学习的加法,比较其中的差别,注重不同点的教学,即异号两数相加时的绝对值相减的问题。
四.教学过程
(一)创设问题情境首先设置一个大家都感兴趣的话题:某次数学竞赛,有三种参赛队,比赛规则规定,每答对一题得4分,答错一题扣4分,不答不得分也不扣分。最后得了冠军的队一道题都没答,而第二名还答对了三道题,这是一个什么样的情况?请设计一个具体情况,使这种情况合理符合题意。
问题出来之后请学生小组讨论分析,每个组的答案可能不一致,比如说第二名可以是答对三题但答错了五道题,那么得分就是-8分,而第三名可以是答错了一题,一个也没答对。然后由学生给出计算过程,即(+12)+(-20)=-8分,也可以有其它举例。
(二)师生共同探究有理数加法法则
之前我们已经学习了有理数的一些知识,比如绝对值等,以上面的问题为例,来不分析不同情况下的得分情况:
(1)答错3题时:
(-4)+(-4)+(-4)=-12分
(2)答对5题时:4+4+4+4+4=20分
(3)答对3题,答错5题时,答对的3题与答错的3题抵消为0,剩下的两个答错题得分为-8,即12+(-20)=-8由学生讨论其它情形的得分情况及计算方法。总结:先确定得分是正还是负的,再考虑绝续值。法则得出:加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加;
2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;
3.一个数同0相加,仍得这个数。
(三)应用法则解决问题
例1(教科书的例1)
解:(1)(-10)+(-1)(两个加数同号,用加法法则的第2条计算)=-(10+1)(和取负号,把绝对值相加)=-11(2)180+(-10)(两个加数异号,用加法法则的第2条计算)=+(180-10)(和取正号,把大的绝对值减去小的绝对值)=+170(3)5+(-5)
=0(互为相反数的两个数相加得0)(4)0+(-2)
=-2(一个数同0相加,仍得这个数)
例1.计算下列算式,先判断正负说理由,再计算绝对值。(1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3);(4)(+3)+(-4);
(5)(+4)+(-4);(6)(-3)+0;(7)0+(+2);总结:给以上各题分类,即同号还是异号,再选择法则的相应内容去解决问题。
强调异号两数相加时符号的确定及绝对值的确定。
(四)小结
1.本节课你学到了什么?
2.本节课你有什么感受?(由学生自己小结)
(五)练习设计
1、基础练习:
教材36页知识技能1.计算
(1)(-8)+(-9);(2)(-17)+21;(3)(-12)+25(4)45+(-23);
(5)-45+23;(6)(-29)+(-31);(7)(-39)+(-45);(8)(-28)+37;(9)(-13)+0通过计算学生总结法则哪部分的应用最易出错,从而提示学生注重异号两数相加时符号的确定及绝对值的确定。教材第2、3题自己完成
数学理解中设计-4+3的情境,是为了锻炼学生解决实际问题的能力。可以有多种,比如气温的变化,得分的变化,水位的变化等。
2、提升练习
1.用“>”或“<”号填空:
(1)如果a>0,b>0,那么a+b ______0;(2)如果a<0,b<0,那么a+b ______0;
(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;(4)如果a<0,b>0,|a|>|b|,那么a+b ______0
2.已知如图:
那么a+b ______0;
a
0
b
五、教学反思:
本节教案设计注重引导学生参与探索、归纳有理数加法法则的过程,紧跟教学改革的脚步,把培养学生能力做为主要内容,同时注重合做交流,小组讨论,学习的过程是培养学生能力的过程,同进也兼顾数学学习的基础,计算能力的培养,让学生掌握加法法则,类比有理数范围的加法和小学阶段的加法的区别,并能用法则进行计算。
《有理数》的教学设计 篇6
1.3.1有理数的加法
一、教学目标
(一)知识与技能:通过实例,了解有理数加法的意义,会根据有理数加法法则进行运算;
(二)过程与方法:经历有理数加法法则的探究过程,深刻感受分类讨论、数形结合的思想,由具体到抽象、由特殊到一般的规律;
(三)情感态度与价值观:通过师生活动,学会自我探究,让学生充分参与到数学学习的过程中来。
二、教学重、难点
重点:了解有理数加法的意义,会根据有理数加法法则进行运算;难点:有理数的加法中异号两数如何进行加法运算。
三、教学过程
(一)创设情境,导入问题
活动1学校的运动会刚结束不久,我们知道在足球循环赛中,通常把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。那么,在本次运动会中,我们学校红队进4个球,失两个球。蓝队进一个球,失一个球。请问两队的净胜球数分别是多少?如何表示?
红队:4+(-2)蓝队:1+(-1)
师:请同学们观察这两个式子,和我们小学所学的加法运算有什么不同呢?生:有了负数的参加师:像这种有了负数的参加的加法运算我们称为什么?想知道有理数是如何进行相加的呢?那么我们今天就来共同研究——有理数的加法(引出课题)。设计意图:采用与生活实际相关的足球比赛引入,通过净胜球数说明实际问题中要用到正数与负数的加法,从而提出问题,让学生思考,可以激发学生探究的热情。
(二)启发探索,获取新知活动2看下面的问题
1、一个物体作左右方向的运动,我们规定向左为负,向右为正。向右运动5m记作5m,向左运动5m记作-5m.
如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是什么?
两次运动后物体从起点向右运动8m.写成算式就是:5+3=8①
2、如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是什么?
两次运动后物体从起点向左运动8m.写成算式就是:(-5)+(-3)=-8②
这个运算也可以用数轴表示,其中假设原点O为运动起点:
-3–9–8–7–6–5-8–4-5–3–2–1O 4、如果用正数表示向右运动,用负数表示向左运动,就可以用算式描述相应的问题。
活动31、如果物体先向右运动5m,再向左运动3m,那么两次运动后物体从起点向右运动了2m,写成算式就是:5+(-3)=2③
用数轴表示为:
5-3O122345
2、探究;利用数轴求以下情况时物体两次运动的结果:
(1)先向左运动5m,再向右运动3m,物体从起点向___运动了___m;(2)先向右运动5m,再向左运动5m,物体从起点向___运动了___m;(3)先向左运动5m,再向右运动5m,物体从起点向___运动了___m;
(4)如果物体第一秒向右(或左)运动5m,第二秒原地不动,两秒后物体从起点向右(或左)运动了___m.
师生行为:让学生自己探究,利用数轴可得出相应结果,依次填空;引导列算式为:-5+3=-2④
5+(-5)=0⑤-5+5=0⑥5+0=5或-5+0=-5⑦
设计意图:通过表演、结合数轴,其目的是让学生了解用数轴表示加法的方法,从而为后面利用数轴探究其他情况做准备。
异号相加有三种情况,要充分利用数轴,由在数轴上表示结果的点所处的位置以及表示结果的点与原点的距离,就可以确定两次运动的结果。
引导学生观察①到⑦的式子中可以发现什么规律?(①②两式是同号两数相加、③④⑤⑥是异号两数相加且⑤⑥是两加数绝对值相等、⑦是一个数与0相加)
请同学们分组讨论研究和的符号以及绝对值与两个加数之间的符号以及加数绝对值之间有什么关系?从而分组概括有理数的加法法则:
1、同号两数相加,取相同的符号,并把绝对值相加
2、绝对值不相等的异号两数相加,取绝对值较大的`加数符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0
3、一个数同0相加,仍得这个数
有理数运算三个步骤:①确定类型②确定和的符号③确定和的绝对值
设计意图:运算法则是从实例引出的,这时说明法则的合理性。使理解法则并学会运用法则
(三)运用新知
活动5例1计算(1)(-3)+(-9)(2)-4.7+3.9
解:原式=-(3+9)解:原式=-(4.7-3.9)=-12=-0.8
例2足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,计算各队的净胜球数。
(四)巩固新知,变式练习(课本P22)1.用算式表示下面的结果:(1)温度由-4℃上升7℃;
(2)收入7元,又支出5元。2.计算:
(1)15+(-22);
(2)(-13)+(-8);
(3)(-0.9)+1.5;
(4)+(-).
(五)课堂总结,布置作业
这节课我们学习了哪些知识?你有什么收获?(师生一起回顾有理数加法法则)
作业:习题1.3第1、7、11
《有理数》的教学设计 篇7
一、 教学目标
1、 知识与技能目标
掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、 能力与过程目标
经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、 情感与态度目标
通过学生自己探索出法则,让学生获得成功的喜悦。
二、 教学重点、难点
重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
三、 教学过程
1、 创设问题情景,激发学生的求知欲望,导入新课。
教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?
学生:26米。
教师:能写出算式吗?学生:……
教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题
2、 小组探索、归纳法则
(1)教师出示以下问题,学生以组为单位探索。
以原点为起点,规定向东的方向为正方向,向西的方向为负方向。
① 2 ×3
2看作向东运动2米,×3看作向原方向运动3次。
结果:向 运动 米
2 ×3=
② -2 ×3
-2看作向西运动2米,×3看作向原方向运动3次。
结果:向 运动 米
-2 ×3=
③ 2 ×(-3)
2看作向东运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
2 ×(-3)=
④ (-2) ×(-3)
-2看作向西运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
(-2) ×(-3)=
(2)学生归纳法则
①符号:在上述4个式子中,我们只看符号,有什么规律?
(+)×(+)=( ) 同号得
(-)×(+)=( ) 异号得
(+)×(-)=( ) 异号得
(-)×(-)=( ) 同号得
②积的绝对值等于 。
③任何数与零相乘,积仍为 。
(3)师生共同用文字叙述有理数乘法法则。
3、 运用法则计算,巩固法则。
(1)教师按课本P75 例1板书,要求学生述说每一步理由。
(2)引导学生观察、分析例子中两因数的`关系,得出两个有理数互为倒数,它们的积为 。
(3)学生做练习,教师评析。
(4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。
《有理数》的教学设计 篇8
有理数的加法运算律及应用
教材分析:有理数的加法运算律
【地位作用】
《有理数的加法运算律》是人教版七年级数学上册第一章《有理数》第三节的内容。本节共计两课时,加法运算律是第二课时的内容,依据教材的安排本节课应是让学生在理解有理数的加法法则的基础上来运用加法运算律,最终能熟练地进行有理数的加法运算,并能用运算律简化运算。加、减法可以统一成为加法,因此加法的运算是本小节的关键,而加法又是学生初中阶段接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于本一节的学习。
【教学目标】
知识与技能
通过有理数加法运算法则,使学生掌握有理数加法的运算律,并能用有理数加法进行简化运算。
过程与方法
培养学生观察能力、归纳能力,通过分类结合思想渗透,提高学生运算能力,尤其是简便计算能力的.提高。
情感态度与价值观
培养学生把实际问题抽象成数学问题的能力
【教学重点、难点】
重点:有理数加法运算律
难点:灵活运用有理数运算律简便运算
重难点的突破:
1、处理好知识之间的联系。适时复习,以旧带新,相互对比。
2、给出大量具体的例子。让学生亲身经历观察思考、抽象概括、补充完善的过程,从不同的问题情境中抽象出相同的数学模型。
【学情分析】
认知:七年级的学生年龄和认知水平还较低,学生爱表现、有较强的好胜心理等特征,因此,在教学过程中善于结合学生的这些特征是上好这节课的关键所在。
能力:1.学生对正数加正数,正数加零的情况较为熟练,但计算准确率不高。
2.对异号两数相加确定符号,绝对值大减小掌握不好。
3.学生善于形象思维,思维活跃,能积极参与讨论。
【教法与学法】
教法:以引导法为主,辅之以直观演示法、小组讨论法,向学生提供充分从事数学活动的机会,激发学生的学习主动性,使学生主动参与课堂活动的全过程。
学法:在学生的学习方式上,采用动手实践,自主探究与合作交流相结合的方式使学习过程直观化、形象化。通过PK赛的形式调动学生的学习热情,从而掌握简便运算的技巧
【教学过程分析】
回顾复习,承前启后
例题讲解,合作学习
应用练习,巩固新知
归纳总结,反思提高
作业布置
《有理数》的教学设计 篇9
教学目的:
1.知识目标 使学生了解了负数产生的背景 ,理解正、负数及零的意义,掌握正、负数的表示方法 ,会用正、负数表示具有相反意义的量。
2.能力 目标 通过 本节教学,培养学生的想象 能力、理论联系 实际能力、分析解决问题的能力;并向学生渗透"对立统一"、"实践第一"等辩证唯物主义观点;
3.思想目标 对学生进行爱国主义思想教育;培养学生良好的个性品质和学习习惯。
教学设计
本课教材所处位置,是小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础。
重点
正、负数的意义,
难点
负数的意义及0的内涵。
教学方法:
鉴于初一年级学生的年龄特点 ,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。我决定采取启发式教学法及情感教学,创设问题情境,引导学生主动思考,用大量的实例和生动的语言激发学生学习兴趣,调节学习情绪。并利用计算机和投影胶片辅助教学,增大教学密度。
教学过程的设计,分为四部分。
一、创设情境,引入负数;
二、联系对比,突出重点;
三、课堂练习,及时反馈;
四、总结提高,渗透德育。
在引入部分,我通过介绍数的产生与发展 ,向学生渗透"实践第一"的辩证唯物主义观点:原始社会,从打猎记数开始,首先出现自然数,经过漫长岁月,人们用数"0"表示没有,随着人类 的不断进步,在丈量土地进行分配时,又用小数使测量结果更加准确。使同学们感到,数的第一次发展都是为了满足社会生产与生活的需要。
随之提问:同学们小学都学过哪些数?
为了给下节课讲述有理数概念及分类作好铺垫,我把学生们答出的数归类为整数和分数。
那么小学学过的这些数能否满足社会生产生活及数学自身发展的需要呢?
为了体现负数是从实践中产生的,我选择了三个学生较熟悉的例子,用计算机显示动画效果 ,采取形象化教学。
(计算机)比如零上5°C,它比0°C高5°C,可记作5°C,而零下5°C比0°C低5°C,怎么表示呢?珠穆朗玛峰高出海平面8848米,吐鲁番盆地低于海平面155米,怎样表示二者的海拔高度?又如向东走3米与向西走3米、收入50元与支出50元等等。还可以联系抗洪实际,让学生思考怎样用数学来区分高区警戒水位1米与低于警戒水位1米呢?
通过创设问题情境,激发学生的求知欲望 让不同水平的学生都在教师的引导下进行积极的思维参与,兴致勃勃的参与学习活动,既体现了教师的主导作用,又突出了学生的主体地位,师生共同进入角色。
以上实例说明,小学学过的那些数不能满足实际需要,而且数的局限也阻碍了数学自身向前发展。如小学遇到0-2、3-5这类题我们束手无策。以上种种矛盾及不便我们如何解决呢?
使学生感到数的扩充势在必行,扩充的根源是社会生产生活的需要及数学自身发展的需要。
既然小学学过的数不能满足需要,我们需要引出新的数。根据同学们的生活经验,零下5°C,比0°C低5°C,那么有没有比0还上的数呢?此时,负数已到了呼之欲出的地步,学生顺利地接受了这一事实,负数自然而然的引出了。
接下来讲解正、负数的定义及本节课的重点、难点,我采取联系对比的方法,始终不脱离小学所学知识。在给出正、负数的定义时,我采取比较轻松的态度,尽量避免使概念复杂化:小学学过的大于零的数就是正数,负数就是在正数前面加上一个"-"号。让学生觉得数学并不难学。在讲述正、负数的表示法、读法后,强调这里的"+""-"是性质符号,虽然与表示运算符号的加号、减号涵义不同,但又能完全统一,因此形式上是一样的。在学运算时会有更深刻的理解。
从温度计上观察0°C以上的温度用正数表示,0°C以下的温度用负数表表示,说明正数都大于0,负数都小于0,0是正数与负数的界限。因此,0既不是正数也不是负数。0是非正非负的中性数。对于0的认识,我们小学知道,0表示没有,又知道0的'一些性质:0不能作除数、0乘以任何数都得0等。其实,0不仅仅表示没有:比如:0°C并不是没有温度,水位线定为0米并不是没有高度。在实际意义中,0是用来表示基准的数,比如海平面、警戒水位等。因此,0是一个实际存在的数量,它比所有正数都小,又比所有负数都大。当然,0的内涵还很丰富,我们将在以后陆续学到。
以上对数0表示量的意义的分析,实际上能够帮助学生加深对负数的认识和理解。正数、0、负数的大上关系在学生的头脑中初步形成,也为下一节课讲述有理数分类打下基础。
在此选取课本练习1让学生口答,巩固对正、负数的认识。并把课本例1作为练习给出。目的是使学生熟悉正、负数的特征,会判断一个数是正数还是负数。
为了突出正、负数的意义这一重点,就要突出它的实践性。那么,与引入部分呼应,有了负数以后,那些不能解决的问题就迎刃而解了。零上5°C可记作5°C或+5°C,零下5°C可记作-5°C;珠穆朗玛峰海拔8848米,吐鲁番盆地海拔-155米;收入50元记作+50元,支出50元记作-50元等等。同学们观察、正、负数所表示的两个意义正好相反的量,叫做具有相反意义的量。有趣的是,在千世界 中,有上就有下,有升就有降,有收入就有支出,有赢就有亏损。因此,上仍相反意义的量是普遍存在的。正、负数的一个重要应用就是能表示两个具有相反意义的量。为了加深学生对具有相反意义的量的理解,请学生再举一些日常生活中的例子,总结出具有相反意义的量的特征:
(1)意义相反 (2)同一种量
并解释相反与相异的区别。比如向东走3米向北走3米就不是具有相反意义的量。并通过以下练习加以巩固。
由于用负数表示实际问题对学生来说很不习惯,是理解上的难点,如何讲解难点呢?在此要向学生渗透相反意义所隐含的辩证关系。
"+""-"作为性质符号有着更深层的涵义:
"+"表示与问题中给出意义的相同意义,
"-"表示与问题中给出意义的相反意义,
如:前进+5米,表示真正前进5米,
前进-5米,表示后退5米,
那么,后退-5米就表示前进5米。并通过课本例2加以巩固。
为了加深对正、负数的意义及对具有相反意义的量的理解,我安排了这样一个练习:
图中所示是一个零件的剖面图。用φ30±0.07表示轴直径的误差范围,说明±0.07的意义。
因为学生第一次见到这种标注误差的方法,很难回答。我采取铺垫式启发,先讲解;"这是一个直径为30mm的轴,在制作过程中允许产生尺寸上的误差,既可以大些也可以小些,但不许超过一定的范围,如此标准谁能说出它的意义?"这时,学生就会根据正、负数可以表示具有相反意义的量这一特点回答出+0.07表示比30mm大0.07mm,-0.07表示比30mm小0.07mm。这样使学生把正、负数与实际问题联系起来,加深了对正、负数意义内涵的理解。
接下来是课堂练习。让更多的学生参与进来,通过练习巩固知识发现不足,教师及时得到反馈,检查教学效果,采取相应措施。在练习过程中培养学生养成用所学知识去思考问题,判断问题,解决问题的好习惯。学生的练习分出了梯度,让不同水平的学生都有所提高,有助于贯彻因材施教的教学原则。各组练习在进行中,进行后,都要掌握学生的完成情况,让学生举手,加以统计,及时纠错及再讲解,根据学生的接受情况,调整练习题目的多少与难易。在学生回答问题时,我通过语言、目光、动作给予鼓励与告诉,发挥评价的增益效应。
在整个教学过程中,教师的一言一行、语气、神态都会对学生的学习过程产生影响。因此,教师要对学生在听课过程中通过有形的精神状态如眼神等所表现出来的无形思维状态加以感知,随时捕捉反馈信息,对自己的讲课进程作出相应的调整,快、慢、停、转应用自如。
在本节课的小结部分,首先小结本课重点与难点,然后向学生提问:你知道是哪个国家最早使用负数吗?负数最早记载于中国的《九章算术》中,比国外早一千多年。借此向学生进行爱国主义思想教育。并布置思考题及作业,目的是把正、负数与第一章所学代数式联系起来,加深对正、负数的意义的理解。
通过教学实践取得了良好的效果,使我认识到教师在教学过程中,不仅要教会学生知识,还要培养学生良好的数学素养的学习习惯,更要重视教学生做人,才能真正讲出一堂好课,真正成为一名好教师。
《有理数》的教学设计 篇10
教学目标:
1.使学生理解有理数加法的意义,掌握有理数加法法则,能准确地进行有理数的加法运算.
2.通过有理数加法的教学,体现化归的意识、数形结合和分类的思想方法,培养学生观察、比较和概括的思维能力.
3.在传授知识、培养能力的同时,注意培养学生勇于探索的精神.教学重点:有理数的加法法则,能准确地进行有理数的加法运算.教学难点:异号两数相加的法则.
教学程序设计:
一.类比联想提出问题
通过引导学生回忆小学算术运算的学习过程,类比联想到在认识了有理数之后,必然要首先学习有理数的加法.
又通过提问,复习具有相反意义的量和用负数表示的量的实际意义,并通过实际问题,提出质疑导入新课.
具体问题是:在下列问题中用负数表示量的实际意义是什么?
(1)某人第一次前进了5米,接着按同一方向又向前进了3米;
(2)某地气温第一天上升了3°C,第二天上升了-1°C;
(3)某汽车先向东走4千米,再向东走-2千米。紧接着,回答:
(1)某人两次一共前进了多少米?
(2)某地气温两天一共上升了多少度?
(3)某汽车两次一共向东走了多少千米?
组织学生展开讨论,在此基础上指出:这三个问题都是求物体两次向同一方向运动的和的问题,同小学一样,可以用加法来做。但是,这些数中出现了负有理数,怎样进行有理数的加法运算呢?引出课题.
在刚才的教学中,通过复习,加强了铺垫,刻意去引导学生回忆和复习前面学过的有关知识和方法,在旧知识的复习中找到新知识的生长点。这样,既了解了学生的认知基础,带领学生做好学习新课的知识准备,又使学生认识到本课学习的重要性,引起学生的注意,激发他们的求知个欲望,让每个学生都进行积极的思维参与.
二.直观演示归纳法则
用6个实例讲两个有理数相加的问题:
(1)向东走5米,再向东走3米,两次一共向东走了多少米?
(2)向西走5米,再向西走3米,两次一共向东走了多少米?
(3)向东走5米,再向西走5米,两次一共向东走了多少米?
(4)向东走5米,再向西走3米,两次一共向东走了多少米?
(5)向东走3米,再向西走5米,两次一共向东走了多少米?
(6)向西走5米,再向东走0米,两次一共向东走了多少米?
点拨:“一共”的含义是什么?通过小学的学习知道,就是两个数相加.
探究:若设向东为正,向西为负,你能写出算式吗?
(1)(+5)+(+3)=+8;(2)(-5)+(-3)=-8;
(3)(+5)+(-5)=0;(4)(+5)+(-3)=+2;
(5)(+3)+(-5)=-2;(6)(-5)+(+0)=-5;
以上六个问题的设置运用了数学中分类的思想方法,因为两数相加,按符号异同划分为三大类。即:
这样自然就把问题归结为三种情况:问题(1)和(2)是同号两数相加的情况;
问题(3)、(4)、(5)是异号两数相加的情况;
问题(6)有是有一个加数为零的情况.
这6个问题,都借助于数轴,先规定了向东为正,向西为负,通过电教手段具体演示验证两次运动的结果,由在数轴上表示结果的点所处的方向,确定和的符号,由表示结果的点与原点的距离,确定和的绝对值。引导学生认真观察,积极思考,通过分类、观察,最后师生共同归纳总结出有理数的加法法则.
有理数的`加法法则:
一般步骤为:
(1)根据有理数的加法法则确定和的符号;
(2)根据有理数的加法法则进行绝对值的加减运算.
前面已经分析过,异号两数相加的法则是学生学习的难点。因此,我抓住突破难点的关键,一是借助于数轴的直观演示,引导学生认真观察、积极思考,自己归纳法则;二是引导学生分析法则特点,总结规律,在此基础上加以记忆,从而使难点化解,并在化解难点的过程中培养学生的思维能力.
总结出法则之后,可进一步提问:在算术里,两个不都是零的数相加,和一定大于加数,那么,对于两个有理数,相加后和还一定大于加数吗?
提出问题后,让学生去思考、去分析,最终要让学生明白:在有理数运算中,算术中的某些结论不一定再成立,即对于两个有理数,相加的和不一定大于加数,这是有理数的加法与算术运算的一个很大的区别.
三.应用迁移巩固提高
为了解决从掌握知识到运用知识的转化,使知识教学和智能培养结合起来,设计了例题和练习题,选题遵循由浅入深,循序渐进的原则.
类型:同号、异号、0与一个数相加的三种情况的有理数相加
例1:计算下列各题:
(1)(+7)+(+4)
(2)(-3)+(-9)11
(3)4+(-4)
(4)()+(-))23
(5)(-10.5)+(+1.5)
(6)(+5)+0
(7)(-7)+0
(8)0+(-8)
分析:先确定符号,在进行绝对值加减运算.
解:(2)(-3)+(-9) (两个加数同号,用加法法则的第1条计算) =-(3+9) (和取负号,把绝对值相加)
=-12.
通过此例,训练学生对法则的理解和直接应用,进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.
变式题1:填空(口答,并说明理由)
(1)(-4)+(-7)=____()(2)(+4)+(-7)=_____()
(3)7+(-4)=_____()(4)4+(-4)=_____()
(5)9+(-2)=_____()(6)(-9)+2 =_____()
(7)(-9)+0 =_____()(8)0+(-3)=_____()
变式题2:今年,我国南方部分地区发生了严重的洪涝灾害。某地水库的水位在某天当中每一次上升了a厘米,第二次上升了b厘米,问:
(1)两次一共上升了多少厘米?
(2)计算当a、b为下列各数时的值:
① a= 4 , b=3 ② a= -3 , b= 7 ③ a= 5 ,b= -5 ④ a= 4, b= -1 ⑤ a = 3 , b=0
(3)说出以上运算结果的实际意义
四. 总结反思拓展升华
为了使学生对所学知识有一个完整而深刻的印象,利用提问形式,从以下三方面小结。学生先回答,进而教师归纳总结,体现学生为主体,教师为主导的教学思想.
(1)本节所学习的主要内容有哪些?
(2)有理数的加法法则在应用时应注意的哪些问题?(确定“和”的符号,计算“和”的绝对值两件事)
(3)本节课涉及的数学思想方法主要有哪些?五.作业课本第19页练习2、3题.
补充:
1.计算:
(1)(-10)+(+6);
(2)(+12)+(-4);
(3)(-5)+(-7);
(4)(+6)+(+9);
(5)67+(-73);
(6)(-84)+(-59);
(7)33+48;
(8)(-56)+37.
2.计算:
(1)(-0.9)+(-2.7);
(2)3.8+(-8.4);
(3)(-0.5)+3;
(4)3.29+1.78;
(5)7+(-3.04);
(6)(-2.9)+(-0.31);
(7)(-9.18)+6.18;
(8)4.23+(-6.77);
(9)(-0.78)+0.
