高一数学教学设计

笔构网

2025-12-26教案

请欣赏高一数学教学设计(精选11篇),由笔构网整理,希望能够帮助到大家。

高一数学教学设计 篇1

(一)教学目标

1、知识与技能

(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集、

(2)能使用Venn图表示集合的并集和交集运算结果,体会直观图对理解抽象概念的作用。

(3)掌握的关的术语和符号,并会用它们正确进行集合的并集与交集运算。

2、过程与方法

通过对实例的分析、思考,获得并集与交集运算的法则,感知并集和交集运算的实质与内涵,增强学生发现问题,研究问题的`创新意识和能力、

3、情感、态度与价值观

通过集合的并集与交集运算法则的发现、完善,增强学生运用数学知识和数学思想认识客观事物,发现客观规律的兴趣与能力,从而体会数学的应用价值、

(二)教学重点与难点

重点:交集、并集运算的含义,识记与运用、

难点:弄清交集、并集的含义,认识符号之间的区别与联系

(三)教学方法

在思考中感知知识,在合作交流中形成知识,在独立钻研和探究中提升思维能力,尝试实践与交流相结合、

(四)教学过程

教学环节,教学内容,师生互动,设计意图

提出问题引入新知,思考:观察下列各组集合,联想实数加法运算,探究集合能否进行类似“加法”运算、

(1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}

(2)A = {x | x是有理数},

B = {x | x是无理数},

C = {x | x是实数}、

师:两数存在大小关系,两集合存在包含、相等关系;实数能进行加减运算,探究集合是否有相应运算、

生:集合A与B的元素合并构成C、

师:由集合A、B元素组合为C,这种形式的组合就是为集合的并集运算、生疑析疑,

高一数学教学设计 篇2

本节课是《普通高中课程标准实验教科书·数学5》(北师大版)第一章数列第二节等差数列第一课时.数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用.等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广.同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法.

【教学目标】

1. 知识与技能

(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:

(2)账务等差数列的通项公式及其推导过程:

(3)会应用等差数列通项公式解决简单问题。

2.过程与方法

在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。

3.情感、态度与价值观

通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。

【教学重点】

①等差数列的概念;②等差数列的通项公式

【教学难点】

①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程.

【学情分析】

我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的.基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展.

【设计思路】

1.教法

①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.

②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.

③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.

2.学法

引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.

【教学过程】

一:创设情境,引入新课

1.从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?

2.水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼.如果一个水库的水位为18,自然放水每天水位降低2.5,最低降至5.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:)组成一个什么数列?

3.我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10 000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?

教师:以上三个问题中的数蕴涵着三列数.

学生:

1:0,5,10,15,20,25,….

2:18,15.5,13,10.5,8,5.5.

3:10072,10144,10216,10288,10360.

(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.

二:观察归纳,形成定义

①0,5,10,15,20,25,….

②18,15.5,13,10.5,8,5.5.

③10072,10144,10216,10288,10360.

思考1上述数列有什么共同特点?

思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?

思考3你能将上述的文字语言转换成数学符号语言吗?

教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.

学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.

教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.

(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.)

三:举一反三,巩固定义

1.判定下列数列是否为等差数列?若是,指出公差d.

(1)1,1,1,1,1;

(2)1,0,1,0,1;

(3)2,1,0,-1,-2;

(4)4,7,10,13,16.

教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.

注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0 .

(设计意图:强化学生对等差数列“等差”特征的理解和应用).

2思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?

(设计意图:强化等差数列的证明定义法)

四:利用定义,导出通项

1.已知等差数列:8,5,2,…,求第200项?

2.已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?

教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.

(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)

五:应用通项,解决问题

1判断100是不是等差数列2, 9,16,…的项?如果是,是第几项?

2在等差数列{an}中,已知a5=10,a12=31,求a1,d和an.

3求等差数列 3,7,11,…的第4项和第10项

教师:给出问题,让学生自己操练,教师巡视学生答题情况.

学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式

(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)

六:反馈练习:教材13页练习1

七:归纳总结:

1.一个定义:

等差数列的定义及定义表达式

2.一个公式:

等差数列的通项公式

3.二个应用:

定义和通项公式的应用

教师:让学生思考整理,找几个代表发言,最后教师给出补充

(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)

【设计反思】

本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.

高一数学教学设计 篇3

一、教学目标

2、 过程与方法目标:通过让学生探 究点、线、面之间的相互关系,掌握文字语言、符号语言、图示语 言之间的相互转化。

3、 情感、态度与价值目标:通过用集合论 的观点和运动的观点讨论点、线、面、体之间的相互关系培养学生会从多角度,多方面观察和分析问题,体会将理论知识和现实生活建立联系的快乐,从而提高学生学习数学的兴趣。

二、教学重点和难点

重点:点、线、面之间的相互关系,以及文字语言、符号语言、图示语言之间的相互转化。

难点:从集合的角度理解点、线、面之间的相互关系。

三、教学方法和教学手段

在上课前将问题用学案的形式发给各组学生,让学生先在课下研究探讨,在课上以小组为单位就学案中的问题展开讨论并发表自己组的研究结果,并引导同学展开争论,同时利用课件给 同学一个直观的展示,然后得出结论。下附学生的学案

四、教学过程

教学环节 教学内容 师生互动 设计意图

课题引入 让同学们观察几个几何体,从感性上对几何体有个初步的认识,并总结出空间立体几何研究的几个基本元素。 学生观察、讨论、总结,教师引导。 提高学生的学习兴趣

新课讲解

基础知识

能力拓展

探索研究 一、构成几何体的基本元素。

点、线、面

二、从集合的角度解释点、线、面、体之间的相互关系。

点是元素,直线是点的集合,平面是点的集合,直线是平面的子集。

三、从运动学的角度解释点、线、面、体之间的相互关系。

1、 点运动成直线和曲线。

2、 直线有两种运动方式:平行移动和绕点转动。

3、 平行移动形成平面和曲面。

4、 绕点转动形成平面和曲面。

5、 注意直线的两种运动方式形成的曲面的区别。

6、 面运动成体。

四、点、线、面、之间的相互位置关系。

1、 点和线的'位置关系。

点A

2、 点和面的位置关系。

3、 直线和直线的位置关系。

4 、 直线和平面的位置关系。

5、 平面和平面的位置关系。 通过对几何体的观察、讨论由学生自己总结。

引领学生回忆元素、集合的相互关系,讨论、归纳点、线、面之间的相互关系。

通过课件演示及学生的讨论,得出从 运动学的角度发现点、线、面之间的相互关系。

引导学生由生活中的实际例子总结出点、线、面之间的相互位置关系,让学生有个感性认识。 培养学生的观察能力。

培养学生将所学知识建立相互联系的能力。

让学生在观察中发现点、线、面之间的相互运动规律,为以后学习几何体奠定基础。

培养学生将学习联系实际的习惯,锻炼学生由感性认识上升为理性知识的能力。

课堂小结 1、 学习了构成几何体的基本元素。

2、 掌握了点、线、面之间的相互关系。

3、 了解了点、线、面之间的相互的位置关系。 由学生总结归纳。 培养学生总结、归纳、反思的学习习惯。

课后作业 试着画出点、线、面之间的几种位置关系。 学生课后研究完成。 检验学生上课的听课效果及观察能力。

附:1.1.1构成空间几何体的基本元素学案

(一)、基础知识

1、 几何体:________________________________________________________________

2、 长方体:________________________________ ___________________________ _____

3、 长方体的面:____________________________________________________________

4、 长方体的棱: ____________________________________________________________

5、 长方体的顶点:__________________________________________________________

6、 构成几何体的基本元素:__________________________________________________

7、 你能说出构成几何体的 几个基本元素之间的关系吗?

(二)、能力拓展

1、 如果点做连续运动,运动出来的轨迹可能是______________________ 因此点是立体几何中的最基本的元素,如果点运动的方向不变,则运动的轨迹是_____________ 如果点运动的轨迹改变,则运动的轨迹是________ ____ 试举几个日常生活中点运动成线的例子___ ________________________________

2、 在空间中你认为直线有几种运动方式_______________________________________分别形成_______________________________________________________你能举几个日常生活中的例子吗?

3、 你知道直线和线段的区别吗?_______________________________________如果是线段做上述运动,结果如何?_______________________________________.现在你能总结出平面和面的区别吗?______________________________________________

(三)、探索与研究

1、 构成几何体的基本元素是_________,__________,____________.

2、 点和线能有几种位置关系_________________________你能画图说明吗?

3、 点和平面能有几种位置关系_______________________你能画图说明吗?

4、 直线和直线能有几种位置关系________________________你能画图说明吗?

高一数学教学设计 篇4

一、教学目标

2、 过程与方法目标:通过让学生探 究点、线、面之间的相互关系,掌握文字语言、符号语言、图示语 言之间的相互转化。

3、 情感、态度与价值目标:通过用集合论 的观点和运动的观点讨论点、线、面、体之间的相互关系培养学生会从多角度,多方面观察和分析问题,体会将理论知识和现实生活建立联系的快乐,从而提高学生学习数学的兴趣。

二、教学重点和难点

重点:点、线、面之间的相互关系,以及文字语言、符号语言、图示语言之间的相互转化。

难点:从集合的角度理解点、线、面之间的相互关系。

三、教学方法和教学手段

在上课前将问题用学案的形式发给各组学生,让学生先在课下研究探讨,在课上以小组为单位就学案中的问题展开讨论并发表自己组的研究结果,并引导同学展开争论,同时利用课件给 同学一个直观的展示,然后得出结论。下附学生的学案

四、教学过程

教学环节 教学内容 师生互动 设计意图

课题引入 让同学们观察几个几何体,从感性上对几何体有个初步的认识,并总结出空间立体几何研究的几个基本元素。 学生观察、讨论、总结,教师引导。 提高学生的学习兴趣

新课讲解

基础知识

能力拓展

探索研究 一、构成几何体的基本元素。

点、线、面

二、从集合的角度解释点、线、面、体之间的相互关系。

点是元素,直线是点的集合,平面是点的集合,直线是平面的子集。

三、从运动学的角度解释点、线、面、体之间的相互关系。

1、 点运动成直线和曲线。

2、 直线有两种运动方式:平行移动和绕点转动。

3、 平行移动形成平面和曲面。

4、 绕点转动形成平面和曲面。

5、 注意直线的两种运动方式形成的曲面的区别。

6、 面运动成体。

四、点、线、面、之间的相互位置关系。

1、 点和线的位置关系。

点A

2、 点和面的位置关系。

3、 直线和直线的位置关系。

4 、 直线和平面的位置关系。

5、 平面和平面的位置关系。 通过对几何体的观察、讨论由学生自己总结。

引领学生回忆元素、集合的.相互关系,讨论、归纳点、线、面之间的相互关系。

通过课件演示及学生的讨论,得出从 运动学的角度发现点、线、面之间的相互关系。

引导学生由生活中的实际例子总结出点、线、面之间的相互位置关系,让学生有个感性认识。 培养学生的观察能力。

培养学生将所学知识建立相互联系的能力。

让学生在观察中发现点、线、面之间的相互运动规律,为以后学习几何体奠定基础。

培养学生将学习联系实际的习惯,锻炼学生由感性认识上升为理性知识的能力。

课堂小结 1、 学习了构成几何体的基本元素。

2、 掌握了点、线、面之间的相互关系。

3、 了解了点、线、面之间的相互的位置关系。 由学生总结归纳。 培养学生总结、归纳、反思的学习习惯。

课后作业 试着画出点、线、面之间的几种位置关系。 学生课后研究完成。 检验学生上课的听课效果及观察能力。

附:1.1.1构成空间几何体的基本元素学案

(一)、基础知识

1、 几何体:________________________________________________________________

2、 长方体:________________________________ ___________________________ _____

3、 长方体的面:____________________________________________________________

4、 长方体的棱: ____________________________________________________________

5、 长方体的顶点:__________________________________________________________

6、 构成几何体的基本元素:__________________________________________________

7、 你能说出构成几何体的 几个基本元素之间的关系吗?

(二)、能力拓展

1、 如果点做连续运动,运动出来的轨迹可能是______________________ 因此点是立体几何中的最基本的元素,如果点运动的方向不变,则运动的轨迹是_____________ 如果点运动的轨迹改变,则运动的轨迹是________ ____ 试举几个日常生活中点运动成线的例子___ ________________________________

2、 在空间中你认为直线有几种运动方式_______________________________________分别形成_______________________________________________________你能举几个日常生活中的例子吗?

3、 你知道直线和线段的区别吗?_______________________________________如果是线段做上述运动,结果如何?_______________________________________.现在你能总结出平面和面的区别吗?______________________________________________

(三)、探索与研究

1、 构成几何体的基本元素是_________,__________,____________.

2、 点和线能有几种位置关系_________________________你能画图说明吗?

3、 点和平面能有几种位置关系_______________________你能画图说明吗?

4、 直线和直线能有几种位置关系________________________你能画图说明吗?

高一数学教学设计 篇5

教学类型:探究研究型

设计思路:通过一系列的猜想得出德.摩根律,但是这个结论仅仅是猜想,数学是一门科学,所以需要论证它的正确性,因此本节通过剖析维恩图的四部分来验证猜想的正确性,并对德摩根律进行简单的应用,因此我们制作了本微课.

教学过程:

一、片头

(20秒以内)

内容:你好,现在让我们一起来学习《集合的运算——自己探索也能发现的数学规律(第二讲)》。

第 1 张PPT

12秒以内

二、正文讲解

(4分20秒左右)

1.引入:牛顿曾说过:“没有大胆的猜测,就做不出伟大的发现。”

上节课老师和大家学习了集合的运算,得出了一个有趣的规律。课后,你举例验证了这个规律吗?

那么,这个规律是偶然的,还是一个恒等式呢?

第 2 张PPT

28秒以内

2.规律的验证:

试用集合A,B的'交集、并集、补集分别表示维恩图中1,2,3,4及彩色部分的集合,通过剖析维恩图来验证猜想的正确性使用

第 3 张PPT

2分10 秒以内

3.抽象概括: 通过我们的观察和验证,我们发现这个规律是一个恒等式。

而这个规律就是180年前著名的英国数学家德摩根发现的。

为了纪念他,我们将它称为德摩根律。

原来我们通过自己的探索也能发现这么伟大的数学规律。

第 4 张PPT

30秒以内

4.例题应用:使用例题形式,将的德摩根定律的结论加以应用,让学生更加熟悉集合的运算

第 5 张PPT

1分20秒以内

三、结尾

(20秒以内)

通过这在道题的解答,我们发现德摩根律为解答集合运算问题提供了更为简便的方法。

希望你在今后的学习中,勇于探索,发现更多有趣的规律。

第 6 张PPT

10秒以内

教学反思(自我评价)

学生在学习集合时会接触到很多的集合运算,往往学生觉得这是集合中的难点,因此本节课通过一系列的猜想,以精彩的动画展示,让学生在直观的环境下轻松的学习,提高学生学习数学的兴趣,并通过层层深入的讲解,让学生进一步加强对集合运算的理解和应用能力,效果非常好.

高一数学教学设计

作为一名默默奉献的教育工作者,时常要开展教学设计的准备工作,借助教学设计可使学生在单位时间内能够学到更多的知识。那么写教学设计需要注意哪些问题呢?下面是小编为大家整理的高一数学教学设计,仅供参考,大家一起来看看吧。

高一数学教学设计 篇6

一、指导思想

准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。

二、高一上册数学教学教材特点:

我们所使用的教材是人教版《普通高中课程标准实验教科书数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承、借签、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有如下特点:

1.亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情.

2.问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神.

3.科学性与思想性:通过不同数学内容的联系与启发,强调类比、化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神.

4.时代性与应用性:以具有时代感和现实感的素材创设情境,加强数学活动,发展应用意识.

三、高一上册数学教学教法分析:

1.选取与内容密切相关的、典型的、丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的.目的

2.通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式.

3.在教学中强调类比、化归等数学思想方法,尽可能养成其逻辑思维的习惯.

四、学情分析

高一作为起始年级,作为从义务阶段迈入应试征程的适应阶段,该有的是一份执着.他的特殊性就在于它的跨越性,理想的期盼与学法的突变,难度的加强与惰性的生成等等矛盾冲突伴随着高一新生的成长.面对新教材的我们也是边摸索边改变,树立新的教学理念,并落实在课堂教学的各个环节,才能不负众望.我们要从学生的认识水平和实际能力出发,研究学生的心理特征,做好初三与高一的衔接工作,帮助学生解决好从初中到高中学习方法的过渡.从高一起就注意培养学生良好的数学思维方法,良好的学习态度和学习习惯,以适应高中领悟性的学习方法.

五、高一上册数学教学教学措施:

1、激发学生的学习兴趣.由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考.

3、加强培养学生的逻辑思维能力和解决实际问题的能力,提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育.

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力.

5、重视数学应用意识及应用能力的培养.

高一数学教学设计 篇7

教学目标:

通过生动有趣的“数学乐园”活动,使学生加深对10以内数的认识,进一步巩固10以内的加减法,充分感受数学与日常生活的密切联系。使学生在理解和掌握知识的同时,感受到学习数学的.乐趣,提高学习数学的兴趣。教学准备:

1.数字迷宫图十幅,信箱四个,口算卡片40张

2.自制教学课件,教室场景布置,学生坐成4行。

教学过程:

一、导入:小朋友们,今天老师带大家到“数学乐园”去玩(老师指“数学乐园”场景布置)。大家想不想去呀可是在“数学乐园”的门口有四个信箱,需要每个小朋友当一回“小小邮递员”,把“数字娃娃”藏在你们抽屉里的“信”送到正确的信箱里,就能进人数学乐园,大家有没有信心

二、活动送信游戏

1.分组送信。教室讲台上放四个标有数字的信箱,老师问:怎样才能把“信”送到正确的信箱里呢只要把“信”(即口算卡片)上的题目得数算出来,得数是几,就把“信”送到标有这个数的信箱里。每个学生从抽屉里拿出一封“信”(即口算卡片),在音乐声中分组走上讲台送“信”。注意:有的卡片上面的得数不是信箱的标号,是没法送出的信。对于没有送出的信,让学生说说为什么送不出去。

2.检查送信游戏的正确性。学生投完信后,老师把四个信箱分发到四个小组(课前学生坐成四行),由小组长主持检查每个信箱里的口算卡片是否送对了,学生做手势表示对错进行检查,看有没有送错的信。对于送错的信,让学生说说为什么送错了。各组检查完后,小组长向老师汇报检查结果。

三、活动二起立游戏

好啊,我们进人数学乐园啦!看,数学乐园里有很多小动物在等着我们呢!老师出示包括乖乖虎、皮卡丘、机器猫的画面(课件),你们喜欢它们吗让学生分组选择喜欢的小动物。全班坐成四行,每行10人,各行报数(同时进行)。

老师根据学生的选择点击小动物图案,出示下列四题:

1.请这一组的前面四个小朋友站起来。请第四个小朋友拍四下手。从前往后数你是第几个从后往前数你是第几个

2.请从前往后数第五个小朋友站起来,:你前面有几个小朋友后面有几个小朋友你这一组有几个小朋友你是怎么知道的

3.请从前往后数第六个小朋友站起来。不许往后看,你知道你后面有几个小朋友吗你是怎么知道的

4.请从后往前数第二个小朋友站起来。你这一组有几个男孩有几个女孩合起来一共有几个小朋友你是怎么知道的

高一数学教学设计 篇8

一、教学目标

2、 过程与方法目标:通过让学生探 究点、线、面之间的相互关系,掌握文字语言、符号语言、图示语 言之间的相互转化。

3、 情感、态度与价值目标:通过用集合论 的观点和运动的观点讨论点、线、面、体之间的相互关系培养学生会从多角度,多方面观察和分析问题,体会将理论知识和现实生活建立联系的快乐,从而提高学生学习数学的兴趣。

二、教学重点和难点

重点:点、线、面之间的相互关系,以及文字语言、符号语言、图示语言之间的相互转化。

难点:从集合的角度理解点、线、面之间的相互关系。

三、教学方法和教学手段

在上课前将问题用学案的形式发给各组学生,让学生先在课下研究探讨,在课上以小组为单位就学案中的问题展开讨论并发表自己组的研究结果,并引导同学展开争论,同时利用课件给 同学一个直观的展示,然后得出结论。下附学生的学案

四、教学过程

教学环节 教学内容 师生互动 设计意图

课题引入 让同学们观察几个几何体,从感性上对几何体有个初步的认识,并总结出空间立体几何研究的'几个基本元素。 学生观察、讨论、总结,教师引导。 提高学生的学习兴趣

新课讲解

基础知识

能力拓展

探索研究 一、构成几何体的基本元素。

点、线、面

二、从集合的角度解释点、线、面、体之间的相互关系。

点是元素,直线是点的集合,平面是点的集合,直线是平面的子集。

三、从运动学的角度解释点、线、面、体之间的相互关系。

1、 点运动成直线和曲线。

2、 直线有两种运动方式:平行移动和绕点转动。

3、 平行移动形成平面和曲面。

4、 绕点转动形成平面和曲面。

5、 注意直线的两种运动方式形成的曲面的区别。

6、 面运动成体。

四、点、线、面、之间的相互位置关系。

1、 点和线的位置关系。

点A

2、 点和面的位置关系。

3、 直线和直线的位置关系。

4 、 直线和平面的位置关系。

5、 平面和平面的位置关系。 通过对几何体的观察、讨论由学生自己总结。

引领学生回忆元素、集合的相互关系,讨论、归纳点、线、面之间的相互关系。

通过课件演示及学生的讨论,得出从 运动学的角度发现点、线、面之间的相互关系。

引导学生由生活中的实际例子总结出点、线、面之间的相互位置关系,让学生有个感性认识。 培养学生的观察能力。

培养学生将所学知识建立相互联系的能力。

让学生在观察中发现点、线、面之间的相互运动规律,为以后学习几何体奠定基础。

培养学生将学习联系实际的习惯,锻炼学生由感性认识上升为理性知识的能力。

课堂小结 1、 学习了构成几何体的基本元素。

2、 掌握了点、线、面之间的相互关系。

3、 了解了点、线、面之间的相互的位置关系。 由学生总结归纳。 培养学生总结、归纳、反思的学习习惯。

课后作业 试着画出点、线、面之间的几种位置关系。 学生课后研究完成。 检验学生上课的听课效果及观察能力。

附:1.1.1构成空间几何体的基本元素学案

(一)、基础知识

1、 几何体:________________________________________________________________

2、 长方体:________________________________ ___________________________ _____

3、 长方体的面:____________________________________________________________

4、 长方体的棱: ____________________________________________________________

5、 长方体的顶点:__________________________________________________________

6、 构成几何体的基本元素:__________________________________________________

7、 你能说出构成几何体的 几个基本元素之间的关系吗?

(二)、能力拓展

1、 如果点做连续运动,运动出来的轨迹可能是______________________ 因此点是立体几何中的最基本的元素,如果点运动的方向不变,则运动的轨迹是_____________ 如果点运动的轨迹改变,则运动的轨迹是________ ____ 试举几个日常生活中点运动成线的例子___ ________________________________

2、 在空间中你认为直线有几种运动方式_______________________________________分别形成_______________________________________________________你能举几个日常生活中的例子吗?

3、 你知道直线和线段的区别吗?_______________________________________如果是线段做上述运动,结果如何?_______________________________________.现在你能总结出平面和面的区别吗?______________________________________________

(三)、探索与研究

1、 构成几何体的基本元素是_________,__________,____________.

2、 点和线能有几种位置关系_________________________你能画图说明吗?

3、 点和平面能有几种位置关系_______________________你能画图说明吗?

4、 直线和直线能有几种位置关系________________________你能画图说明吗?

高一数学教学设计 篇9

教学目标

1.了解映射的概念,象与原象的概念,和一一映射的概念.

(1)明确映射是特殊的对应即由集合 ,集合 和对应法则f三者构成的一个整体,知道映射的特殊之处在于必须是多对一和一对一的对应;

(2)能准确使用数学符号表示映射, 把握映射与一一映射的区别;

(3)会求给定映射的指定元素的象与原象,了解求象与原象的方法.

2.在概念形成过程中,培养学生的观察,比较和归纳的能力.

3.通过映射概念的学习,逐步提高学生对知识的探究能力.

教学建议

教材分析

(1)知识结构

映射是一种特殊的对应,一一映射又是一种特殊的映射,而且函数也是特殊的映射,它们之间的关系可以通过下图表示出来,如图:

由此我们可从集合的包含关系中帮助我们把握相关概念间的区别与联系.

(2)重点,难点分析

本节的教学重点和难点是映射和一一映射概念的形成与认识.

①映射的概念是比较抽象的概念,它是在初中所学对应的基础上发展而来.教学中应特别强调对应集合 B中的唯一这点要求的理解;

映射是学生在初中所学的对应的基础上学习的,对应本身就是由三部分构成的整体,包括集 合A和集合B及对应法则f,由于法则的不同,对应可分为一对一,多对一,一对多和多对多. 其中只有一对一和多对一的能构成映射,由此可以看到映射必是“对B中之唯一”,而只要是对应就必须保证让A中之任一与B中元素相对应,所以满足一对一和多对一的对应就能体现出“任一对唯一”.

②而一一映射又在映射的基础上增加新的'要求,决定了它在学习中是比较困难的.

教法建议

(1)在映射概念引入时,可先从学生熟悉的对应入手, 选择一些具体的生活例子,然后再举一些数学例子,分为一对多、多对一、多对一、一对一四种情况,让学生认真观察,比较,再引导学生发现其中一对一和多对一的对应是映射,逐步归纳概括出映射的基本特征,让学生的认识从感性认识到理性认识.

(2)在刚开始学习映射时,为了能让学生看清映射的构成,可以选择用图形表示映射,在集合的选择上可选择能用列举法表示的有限集,法则尽量用语言描述,这样的表示方法让学生可以比较直观的认识映射,而后再选择用抽象的数学符号表示映射,比如:

(3)对于学生层次较高的学校可以在给出定义后让学生根据自己的理解举出映射的例子,教师也给出一些映射的例子,让学生从中发现映射的特点,并用自己的语言描述出来,最后教师加以概括,再从中引出一一映射概念;对于学生层次较低的学校,则可以由教师给出一些例子让学生观察,教师引导学生发现映射的特点,一起概括.最后再让学生举例,并逐步增加要求向一一映射靠拢,引出一一映射概念.

(4)关于求象和原象的问题,应在计算的过程中总结方法,特别是求原象的方法是解方程或方程组,还可以通过方程组解的不同情况(有唯一解,无解或有无数解)加深对映射的认识.

(5)在教学方法上可以采用启发,讨论的形式,让学生在实例中去观察,比较,启发学生寻找共性,共同讨论映射的特点,共同举例,计算,最后进行小结,教师要起到点拨和深化的作用.

教学设计方案

2.1映射

教学目标(1)了解映射的概念,象与原象及一一映射的概念.

(2)在概念形成过程中,培养学生的观察,分析对比,归纳的能力.

(3)通过映射概念的学习,逐步提高学生的探究能力.

教学重点难点::映射概念的形成与认识.

教学用具:实物投影仪

教学方法:启发讨论式

教学过程:

一、引入

在初中,我们已经初步探讨了函数的定义并研究了几类简单的常见函数.在高中,将利用前面集合有关知识,利用映射的观点给出函数的定义.那么映射是什么呢?这就是我们今天要详细的概念.

二、新课

在前一章集合的初步知识中,我们学习了元素与集合及集合与集合之间的关系,而映射是重点研究两个集合的元素与元素之间的对应关系.这要先从我们熟悉的对应说起(用投影仪打出一些对应关系,共6个)

我们今天要研究的是一类特殊的对应,特殊在什么地方呢?

提问1:在这些对应中有哪些是让A中元素就对应B中唯一一个元素?

让学生仔细观察后由学生回答,对有争议的,或漏选,多选的可详细说明理由进行讨论.最后得出(1),(2),(5),(6)是符合条件的(用投影仪将这几个集中在一起)

提问2:能用自己的语言描述一下这几个对应的共性吗?

经过师生共同推敲,将映射的定义引出.(主体内容由学生完成,教师做必要的补充)

高一数学教学设计 篇10

教学类型:探究研究型

设计思路:通过一系列的猜想得出德.摩根律,但是这个结论仅仅是猜想,数学是一门科学,所以需要论证它的正确性,因此本节通过剖析维恩图的四部分来验证猜想的正确性,并对德摩根律进行简单的应用,因此我们制作了本微课.

教学过程:

一、片头

(20秒以内)

内容:你好,现在让我们一起来学习《集合的运算——自己探索也能发现的数学规律(第二讲)》。

第 1 张PPT

12秒以内

二、正文讲解

(4分20秒左右)

1.引入:牛顿曾说过:“没有大胆的猜测,就做不出伟大的发现。”

上节课老师和大家学习了集合的运算,得出了一个有趣的规律。课后,你举例验证了这个规律吗?

那么,这个规律是偶然的,还是一个恒等式呢?

第 2 张PPT

28秒以内

2.规律的验证:

试用集合A,B的交集、并集、补集分别表示维恩图中1,2,3,4及彩色部分的集合,通过剖析维恩图来验证猜想的正确性使用

第 3 张PPT

2分10 秒以内

3.抽象概括: 通过我们的观察和验证,我们发现这个规律是一个恒等式。

而这个规律就是180年前著名的`英国数学家德摩根发现的。

为了纪念他,我们将它称为德摩根律。

原来我们通过自己的探索也能发现这么伟大的数学规律。

第 4 张PPT

30秒以内

4.例题应用:使用例题形式,将的德摩根定律的结论加以应用,让学生更加熟悉集合的运算

第 5 张PPT

1分20秒以内

三、结尾

(20秒以内)

通过这在道题的解答,我们发现德摩根律为解答集合运算问题提供了更为简便的方法。

希望你在今后的学习中,勇于探索,发现更多有趣的规律。

第 6 张PPT

10秒以内

教学反思(自我评价)

学生在学习集合时会接触到很多的集合运算,往往学生觉得这是集合中的难点,因此本节课通过一系列的猜想,以精彩的动画展示,让学生在直观的环境下轻松的学习,提高学生学习数学的兴趣,并通过层层深入的讲解,让学生进一步加强对集合运算的理解和应用能力,效果非常好.

高一数学教学设计

作为一无名无私奉献的教育工作者,可能需要进行教学设计编写工作,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。那么什么样的教学设计才是好的呢?下面是小编为大家收集的高一数学教学设计,仅供参考,欢迎大家阅读。

高一数学教学设计 篇11

教学目标:

1、理解并掌握瞬时速度的定义;

2、会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度;

3、理解瞬时速度的实际背景,培养学生解决实际问题的能力。

教学重点:

会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度。

教学难点:

理解瞬时速度和瞬时加速度的定义。

教学过程:

一、问题情境

1、问题情境。

平均速度:物体的运动位移与所用时间的比称为平均速度。

问题一平均速度反映物体在某一段时间段内运动的快慢程度。那么如何刻画物体在某一时刻运动的'快慢程度?

问题二跳水运动员从10m高跳台腾空到入水的过程中,不同时刻的速度是不同的。假设t秒后运动员相对于水面的高度为h(t)=-4.9t2+6.5t+10,试确定t=2s时运动员的速度.

2、探究活动:

(1)计算运动员在2s到2.1s(t∈)内的平均速度。

(2)计算运动员在2s到(2+?t)s(t∈)内的平均速度。

(3)如何计算运动员在更短时间内的平均速度。

探究结论:

时间区间

t

平均速度

0.1

-13.59

0.01

-13.149

0.001

-13.1049

0.0001

-13.10049

0.00001

-13.100049

0.000001

-13.1000049

当?t?0时,?-13.1,

该常数可作为运动员在2s时的`瞬时速度。

即t=2s时,高度对于时间的瞬时变化率。

二、建构数学

1、平均速度。

设物体作直线运动所经过的路程为,以为起始时刻,物体在?t时间内的平均速度为。

可作为物体在时刻的速度的近似值,?t越小,近似的程度就越好。所以当?t?0时,极限就是物体在时刻的瞬时速度。

三、数学运用

例1物体作自由落体运动,运动方程为,其中位移单位是m,时

间单位是s,求:

(1)物体在时间区间s上的平均速度;

(2)物体在时间区间上的平均速度;

(3)物体在t=2s时的瞬时速度。

分析

(1)将?t=0.1代入上式,得:=2.05g=20.5m/s。

(2)将?t=0.01代入上式,得:=2.005g=20.05m/s。

(3)当?t?0,2+?t?2,从而平均速度的极限为:

例2设一辆轿车在公路上作直线运动,假设时的速度为,

求当时轿车的瞬时加速度。

∴当?t无限趋于0时,无限趋于,即=。

练习

课本P12—1,2。

四、回顾小结

问题1本节课你学到了什么?

1理解瞬时速度和瞬时加速度的定义;

2实际应用问题中瞬时速度和瞬时加速度的求解;

问题2解决瞬时速度和瞬时加速度问题需要注意什么?

注意当?t?0时,瞬时速度和瞬时加速度的极限值。

问题3本节课体现了哪些数学思想方法?

2极限的思想方法。

3特殊到一般、从具体到抽象的推理方法。

五、课外作业

大家都在看