运算教案

笔构网

2025-12-03教案

请欣赏运算教案(精选10篇),由笔构网整理,希望能够帮助到大家。

运算教案 篇1

教学目标:

1.学生进一步掌握整数、小数、分数四则运算的法则及计算法则之间的联系,能选择口算、笔算、估算以及计算器等不同方法进行计算,进一步认识常见的数量关系,并能解决一些简单的实际问题。

2.学生在整理与复习的过程中,进一步了解计算原理,感受知识之间的内在联系,进一步体会基本的数量关系,提高运算能力,以及分析问题和解决问题的能力。

3.学生进一步养成独立 、认真计算等学习习惯,培养按规则计算的品质,增强学习数学的积极性,体会学习成功的乐趣。

重点难点:

理解四则运算的意义和法则。正确进行四则运算。

教学过程:

一、 揭示课题

谈话:前几节课,我们只要复习了数的认识,今天开始我们要复习数的运算。这节课先复习数的四则运算。(板书课题)通过复习,同学们要熟悉掌握四则运算的法则,能选择不同方法进行计算,并能解决一些简单的实际问题。

二、 知识梳理

1.小组讨论。

引导:通常所说的四则运算是指加法、减法、乘法和除法。想一想,整数、小数、分数加、减法分别怎样计算?整数、小数和分数乘、除法呢?先独立思考,找一些例子想一想,再在小组里交流你的想法。

学生各自整理后在小组里讨论。

2.集体交流。

(1)提问:整数加、减法是怎样计算的?小数加、减法,分数加、减法呢?

生答。

追问:你能说说这些计算方法之间的联系吗?

生交流,汇报。

(2)提问:怎样计算整数、小数和分数的乘、除法?你能举出一些例子吗?

结合学生交流,用简单的例子说明,进一步明确法则。

提问:小数乘、除法计算和整数乘、除法有什么联系?要注意什么问题?

学生交流,总结。

提问:分数乘、除法计算有什么联系?

指出:分数乘法用分子相乘的积作分子,分母相乘的积作分母;分数除法用被除数乘除数的倒数,转化成分数乘法后按分数乘法的方法进行计算。

三、 基本练习

1.做练习与实践第1题。 直接写出得数。

运算教案 篇2

教学设计思路:

根据课堂教学设计的基本原理,并结合《小学数学课程标准》,制定了“四则运算”第二课时的教学设计方案。按照“复习旧知识——导入新知识——学习新知识——巩固新知识——布置作业”五个环节来设计课堂的。在导入中给学生留下问题情境,再带领学生继续学习四则运算的第二条定律。通过讲解例题和例题拓展学生自己找出运算定律:在没有括号的算式里,如果既有加、减法,又有乘、除法,先算乘、除法,再算加、减法。接着学生练习、巩固今天的学习内容,知道如何将分步运算写成综合式子,并且按运算定律计算结果。

1、学习任务分析

“四则运算”是《义务教育课程标准实验教科书 数学》(人教版)四年级下册第一章的内容。本节课内容通过爸爸妈妈带玲玲去“冰天雪地”游玩买门票这一具体生活实例,引发出有关四则运算的运算法则的数学问题。在活动中让学生了解这一知识的生成过程,提高列综合算式解决实际问题的能力。将混合运算赋予了生活中的现实意义,从而达到在感悟、理解的基础上尝试概括总结,掌握运用。

(1)教学重点

学生理解掌握在没有括号的情况下,既有加、减法又有乘、除法的算式的运算顺序。

(2)教学难点

学生理解归纳:“先算乘、除”,“后算加、减”的运算规律。

2、学习者分析

学习者是小学四年级的学生,已具备了归纳总结的能力。上节课已经学习了四则运算的第一条定律:在没有括号的算式里,如果只有加、减法或者只有乘、除法,都按从左到右的顺序计算。这节课需要学生自己总结出运算定律:在没有括号的算式里,如果既有加、减法,又有乘、除法,先算乘、除法,再算加、减

法。这还是有一定难度的。

3、教学目标

(1)知识与技能目标:掌握在没有括号的情况下,既有加、减法又有乘、除法的算式的运算顺序及格式。通过对运算顺序的了解,结合本节课内容,培养学生的归纳概括能力以及基本的运算能力和技巧。

(2)过程与方法:会把分步算式写成综合算式,学生理解和自主探讨归纳正确的运算步骤和规律。

(3)情感、态度与价值观:培养学生对数学的兴趣和对科学的热爱,能够在生活中感受到数学的乐趣,能灵活运用数学知识解决生活中实际问题。

4、教学准备

多媒体、网络

5、板书设计

四则运算(二)

老师讲解例题时的重点数学信息和运算步骤,练习题的讲解时会有运算步骤。

6、教学过程设计

【导入新课】

上节课我们学习了四则运算的第一条运算法则,在没有括号的算式里,如果只有加、减法或者只有乘、除法,该怎么计算?(从左到右,多媒体出示运算规律。) 那我们来说说下面各题的运算顺序,答案老师已经给出,但是你们必须告诉老师怎么计算才能得到正确地答案呢?多媒体将题目展示出来。

27+60-30=57 8×6÷24=2 12﹢30×2=72

师讲解,着重分析12+30×2。这题我们该按什么顺序计算呢?同学们比较我们昨天学习的内容,这个综合式子有什么不一样,它有几类运算?(两类,加法和乘法)那我们能按照昨天学习的从左到右计算的方法来计算吗?我们试一试好吗?

老师带领学生计算得出84,和正确答案不符。

为什么我们这样计算没有得到72呢?是我们哪里出了问题呢?难道还有另外的运算法则吗?那我们今天就继续来学习四则运算,看看能不能找到解决方法,好不好?

设计意图:有计划地安排练习,复习上节课的内容,进一步达到熟练计算,为后面学习打下较好的基础,同时也留下了疑问,为新课的学习埋下伏笔,也调动了学生的积极性。

【新课教学】

① 既有加、减法又有乘、除法的运算定律学习

多媒体展示“买门票”情境图和例3:星期天,爸爸妈妈带着玲玲去“冰天雪地”游玩,购门票需要花多少钱?(成人票:24元,儿童票:半价) 师:从图中你获得了什么信息?

师:“半价”是什么意思?

(理解“半价”指的是儿童票的价格是成人票的价格的一半)

分步列式

师:购门票需要多少钱?你能列分步算式进行解答吗?(学生上台写答案) 方法一: 24×2=48(元) 24÷2=12(元) 48+12=60(元)

方法二: 24+24=48(元) 24÷2=12(元) 48+12=60(元)

师:说说这样列式,每一步是什么意思?学生回答每一步的意思。

综合列式

师:同学们能根据分步算式列出综合算式吗?(学生回答,老师多媒体展示) 算式一: 24×2+24÷2

算式二: 24+24+24÷2

师:这两道算式和上节课的算式有什么不同?该怎样计算?先算什么,再算什么?每一步是什么意思?请在小组里交流一下,说给同学听听。(老师指名回答)

24×2+24÷2

=48+12

=60(元)

(引导学生理解:先算:爸爸妈妈两个大人,所以买两张成人票,就是24×2=48,同时算:玲玲是儿童,买儿童票,就是24÷2=12,最后求总门票,就

是48+12=60)

师:那方法二又是怎么计算呢?老师想算一遍让大家看看有没有算对,大家要注意老师的运算顺序啊。

24+24+24÷2

=24+24+12

=48+12

=60(元)

老师是按什么顺序计算的?引导学生理解:先算玲玲的票价24÷2=12,再算三个人的总价24+24+12=60,也得到了60正确答案,那老师的运算方法正确吗?)

师:比较我们上节课的综合式子,看看我们这两个综合式子有什么不一样,它有哪些运算呢?说说每道算式是按怎样的顺序算的?

(引导学生说出:先算乘除,再算加减,并多媒体展示运算定律)

② 例3拓展题学习

多媒体展示“买门票”情境图和拓展题:买3张成人票,付100元,应找回多少钱?

师:请同学们在本子上列出综合算式并计算。

算式和计算过程

100-24×3

=100-72

=28(元)

答:应找回28元。

师:先算什么,再算什么?每一步表示什么意思?

(引导学生运用运算定律,并结合实际理解意义)

③ 师:你还能提出什么数学问题?请同学在小组里提出问题并解答。

【巩固练习】

⑴ 做一做

完成教科书P7“做一做”第1题。

要求:先说出每一道题的运算顺序,再比较运算顺序是否一样。

⑵ 根据分步算式列出综合算式

25×2=50 62-50=12

32÷8=456+4=60

15×3=45 30÷6=5 45-5=40

⑶ 判断并改错

22+18÷232-10×256÷8+7×3

=40÷2 =22×2 =7+7×3

=20 =44 =14×3

=42

要求:独立完成,并小组评讲。

设计意图:让学生独立思考、辨析,完成练习,培养学生综合运用知识的能力,加强数学与生活的联系,充分发挥学生的主动性和积极性,注意培养学生良好的学习习惯。

【归纳总结】

通过今天的学习,你知道了什么?还有新的想法吗?

设计意图:让学生自己归纳出在没有括号的算式里,如果既有加、减法,又有乘、除法,先算乘、除法,再算加、减法的计算法则。培养学生的归纳概括能力。

【作业布置】

①完成课堂作业本P2

②完成书上P8练习一:5、6、7、8、9、10题

7、资源及媒体的应用

教师根据教学设计方案的要求事先制作好上诉内容的课件,以供教学之用,充分利用多媒体和网络,为提高课堂教学效率做好准备,也能有条理地板书学习内容,便于学生接受。

8、教学设计后记

本内容的设计遵循了小学《数学课程标准》的理念,并结合教材,运用多媒体,根据学生的认知特点,恰当地提出讨论的问题,创设师生互动、生生互动、合作学习的情境,引导学生自主探索和归纳知识。这样,既发挥了教师的引导作用,又有效地促进学生参与到教学活动中。

运算教案 篇3

教学设计思路:

根据课堂教学设计的基本原理,并结合《小学数学课程标准》,制定了“四则运算”第二课时的教学设计方案。按照“复习旧知识——导入新知识——学习新知识——巩固新知识——布置作业”五个环节来设计课堂的。在导入中给学生留下问题情境,再带领学生继续学习四则运算的第二条定律。通过讲解例题和例题拓展学生自己找出运算定律:在没有括号的算式里,如果既有加、减法,又有乘、除法,先算乘、除法,再算加、减法。接着学生练习、巩固今天的学习内容,知道如何将分步运算写成综合式子,并且按运算定律计算结果。

1、学习任务分析

“四则运算”是《义务教育课程标准实验教科书 数学》(人教版)四年级下册第一章的内容。本节课内容通过爸爸妈妈带玲玲去“冰天雪地”游玩买门票这一具体生活实例,引发出有关四则运算的运算法则的数学问题。在活动中让学生了解这一知识的生成过程,提高列综合算式解决实际问题的能力。将混合运算赋予了生活中的现实意义,从而达到在感悟、理解的基础上尝试概括总结,掌握运用。

(1)教学重点

学生理解掌握在没有括号的情况下,既有加、减法又有乘、除法的算式的运算顺序。

(2)教学难点

学生理解归纳:“先算乘、除”,“后算加、减”的运算规律。

2、学习者分析

学习者是小学四年级的学生,已具备了归纳总结的能力。上节课已经学习了四则运算的第一条定律:在没有括号的算式里,如果只有加、减法或者只有乘、除法,都按从左到右的顺序计算。这节课需要学生自己总结出运算定律:在没有括号的算式里,如果既有加、减法,又有乘、除法,先算乘、除法,再算加、减

法。这还是有一定难度的。

3、教学目标

(1)知识与技能目标:掌握在没有括号的情况下,既有加、减法又有乘、除法的算式的运算顺序及格式。通过对运算顺序的了解,结合本节课内容,培养学生的归纳概括能力以及基本的运算能力和技巧。

(2)过程与方法:会把分步算式写成综合算式,学生理解和自主探讨归纳正确的运算步骤和规律。

(3)情感、态度与价值观:培养学生对数学的兴趣和对科学的热爱,能够在生活中感受到数学的`乐趣,能灵活运用数学知识解决生活中实际问题。

4、教学准备

多媒体、网络

5、板书设计

四则运算(二)

老师讲解例题时的重点数学信息和运算步骤,练习题的讲解时会有运算步骤。

6、教学过程设计

【导入新课】

上节课我们学习了四则运算的第一条运算法则,在没有括号的算式里,如果只有加、减法或者只有乘、除法,该怎么计算?(从左到右,多媒体出示运算规律。) 那我们来说说下面各题的运算顺序,答案老师已经给出,但是你们必须告诉老师怎么计算才能得到正确地答案呢?多媒体将题目展示出来。

27+60-30=57 8×6÷24=2 12﹢30×2=72

师讲解,着重分析12+30×2。这题我们该按什么顺序计算呢?同学们比较我们昨天学习的内容,这个综合式子有什么不一样,它有几类运算?(两类,加法和乘法)那我们能按照昨天学习的从左到右计算的方法来计算吗?我们试一试好吗?

老师带领学生计算得出84,和正确答案不符。

为什么我们这样计算没有得到72呢?是我们哪里出了问题呢?难道还有另外的运算法则吗?那我们今天就继续来学习四则运算,看看能不能找到解决方法,好不好?

设计意图:有计划地安排练习,复习上节课的内容,进一步达到熟练计算,为后面学习打下较好的基础,同时也留下了疑问,为新课的学习埋下伏笔,也调动了学生的积极性。

【新课教学】

① 既有加、减法又有乘、除法的运算定律学习

多媒体展示“买门票”情境图和例3:星期天,爸爸妈妈带着玲玲去“冰天雪地”游玩,购门票需要花多少钱?(成人票:24元,儿童票:半价) 师:从图中你获得了什么信息?

师:“半价”是什么意思?

(理解“半价”指的是儿童票的价格是成人票的价格的一半)

分步列式

师:购门票需要多少钱?你能列分步算式进行解答吗?(学生上台写答案) 方法一: 24×2=48(元) 24÷2=12(元) 48+12=60(元)

方法二: 24+24=48(元) 24÷2=12(元) 48+12=60(元)

师:说说这样列式,每一步是什么意思?学生回答每一步的意思。

综合列式

师:同学们能根据分步算式列出综合算式吗?(学生回答,老师多媒体展示) 算式一: 24×2+24÷2

算式二: 24+24+24÷2

师:这两道算式和上节课的算式有什么不同?该怎样计算?先算什么,再算什么?每一步是什么意思?请在小组里交流一下,说给同学听听。(老师指名回答)

24×2+24÷2

=48+12

=60(元)

(引导学生理解:先算:爸爸妈妈两个大人,所以买两张成人票,就是24×2=48,同时算:玲玲是儿童,买儿童票,就是24÷2=12,最后求总门票,就

是48+12=60)

师:那方法二又是怎么计算呢?老师想算一遍让大家看看有没有算对,大家要注意老师的运算顺序啊。

24+24+24÷2

=24+24+12

=48+12

=60(元)

老师是按什么顺序计算的?引导学生理解:先算玲玲的票价24÷2=12,再算三个人的总价24+24+12=60,也得到了60正确答案,那老师的运算方法正确吗?)

师:比较我们上节课的综合式子,看看我们这两个综合式子有什么不一样,它有哪些运算呢?说说每道算式是按怎样的顺序算的?

(引导学生说出:先算乘除,再算加减,并多媒体展示运算定律)

② 例3拓展题学习

多媒体展示“买门票”情境图和拓展题:买3张成人票,付100元,应找回多少钱?

师:请同学们在本子上列出综合算式并计算。

算式和计算过程

100-24×3

=100-72

=28(元)

答:应找回28元。

师:先算什么,再算什么?每一步表示什么意思?

(引导学生运用运算定律,并结合实际理解意义)

③ 师:你还能提出什么数学问题?请同学在小组里提出问题并解答。

【巩固练习】

⑴ 做一做

完成教科书P7“做一做”第1题。

要求:先说出每一道题的运算顺序,再比较运算顺序是否一样。

⑵ 根据分步算式列出综合算式

25×2=50 62-50=12

32÷8=456+4=60

15×3=45 30÷6=5 45-5=40

⑶ 判断并改错

22+18÷232-10×256÷8+7×3

=40÷2 =22×2 =7+7×3

=20 =44 =14×3

=42

要求:独立完成,并小组评讲。

设计意图:让学生独立思考、辨析,完成练习,培养学生综合运用知识的能力,加强数学与生活的联系,充分发挥学生的主动性和积极性,注意培养学生良好的学习习惯。

【归纳总结】

通过今天的学习,你知道了什么?还有新的想法吗?

设计意图:让学生自己归纳出在没有括号的算式里,如果既有加、减法,又有乘、除法,先算乘、除法,再算加、减法的计算法则。培养学生的归纳概括能力。

【作业布置】

①完成课堂作业本P2

②完成书上P8练习一:5、6、7、8、9、10题

7、资源及媒体的应用

教师根据教学设计方案的要求事先制作好上诉内容的课件,以供教学之用,充分利用多媒体和网络,为提高课堂教学效率做好准备,也能有条理地板书学习内容,便于学生接受。

8、教学设计后记

本内容的设计遵循了小学《数学课程标准》的理念,并结合教材,运用多媒体,根据学生的认知特点,恰当地提出讨论的问题,创设师生互动、生生互动、合作学习的情境,引导学生自主探索和归纳知识。这样,既发挥了教师的引导作用,又有效地促进学生参与到教学活动中。

运算教案 篇4

第一课时:

加减混合运算

教学目标

1、使学生掌握加减混合运算的运算顺序,并能正确地计算。

2、在解决具体问题的过程中,知道算式中每一步所表示的意思,根据算式的意思来说明运算顺序。

教学重点:

在解决问题的过程中,掌握加减混合运算顺序。

教学难点:

根据算式的意思来说明运算顺序。

教学过程

(一)谈话引入激发兴趣

同学们,你们心目中认为什么样的景色是最美的?(鸟语花香、晴空万里、茫茫草原、雪景……)今天,老师带大家到冰城哈尔滨去看看。(课件出示)

美吗?(美)欣赏图片

(二)情景延伸复习旧知

咱们一起到“冰雪天地”去看一看吧!

1、说一说图中的人们在干什么?“冰雪天地”分成几个活动区?每个区有多少人?你是怎么知道的?

同学们观察得真仔细。我们从图上可以知道:滑冰区有72人,滑水区有36人,冰雕区有180人。同学们仔细想一想,你们能根据这些信息提出一些数学问题并解决它吗?

2、交流、反馈

同学们真棒!根据三条信息就可提出这么多的问题,还能够解决问题。

(三)学习新知算法探究

同学们,咱们到滑冰场去看一看吧!(课件出示)下面请听滑冰场的负责人向大家介绍:小朋友们,欢迎你们来到滑冰区,今天上午有72人,中午有44人离去,又有85人到来。你们也进去看一看吧!

同学们,你们知道现在滑冰场有多少人在滑冰吗?

1、列式计算,并跟同桌说一说你是怎么想的?

2、反馈交流。

(1)、72-44=28 (2)72-44+85=113

28+85=113

72-44表示什么?28+85又表示什么?

说说哪一种方法好?为什么?(方法(2)可以少写一个中间数,因此更简便。)

4、运用方法(2)列式。

如果老师把题目改一改,滑冰区今天上午有78人,又进来50人,下午离开37人,现在有多少人呢?

请学生自由列式计算,然后全班交流。

78+50-37

说一说每一步的意思。

5、小结加减混合运算的运算顺序。

学习这两题以后我们来观察这两题的计算顺序,你能用一句话来概括吗?(有加有减,按从左往右的顺序进行计算。)

(四)巩固新知总结评价

“冰雪天地”参观得差不多了,我们该回到学校去了。路比较远,咱们就乘公交车吧!

1、(课件出示)咱们在“城南站“上车,公交车上原有乘客36人,下车12人,又上车15人,现在车上有多少人?

(1)请学生快速地列出算式。

(2)完成后同桌说一说每一步算式的意思,运算顺序又是怎么样的?

2、到校了,我们去图书室看会儿书,请听图书管理员阿姨为我们介绍:同学们,今天真是个好日子,借故事书的人特别多,图书室有故事书98本,今天借出了46本,返回25本,你知道现在图书室里有多少本故事书吗?

3、小结:学习了这节课你有什么收获?你觉得自己哪里还掌握得不够好?

第二课时:

乘除混合运算

教学目标:

1、通过解决具体的问题,列出算式,分析算式的意思,使学生明确乘除混合运算的顺序。

2、遇到乘除混合运算式题学生能按从左往右的顺序进行计算。

教学重点:

掌握乘除混合运算的运算顺序。

教学难点:

要让学生来理解题目的数量关系,能够看算式中每一步的意思。

教学过程

(一)复习旧知

昨天咱们学习了加减混合运算,谁能说一说加减混合运算的运算顺序。

1、回忆加减混合运算的运算顺序。(在只有加减法的算式里,按从左往右的顺序进行计算。)

咱们来看两题,结合具体的题目咱们再来分析一下运算顺序。

2、说说运算顺序并计算。

25+78-91 105-58+46

(二)展开新课

看来同学们掌握得不错。大家用掌声表示对自己的鼓励。今天咱们再到“冰雪天地“去看一看,那里会不会有什么新情况。

1、出示例2。

“冰雪天地“3天接待了987人,照这样计算,6天预计接待多少人?

2、请一位学生读题。

3、照这样计算是什么意思?(意思是每天接待的人数,按3天接待987人计算。

4、请同学们小组讨论解题方法,可以借助线段图来理解,列出算式,想一想每一步算式表示什么意思?

5、组织交流:

a、分步列式:987÷3=329

329×6=1974

综合列式:987÷3×6

=329×6

=1974

线段图:3天接待987人

一共接待几人?

引导学生把自己的线段图画在黑板上,特别是评价表示6天接待人数的线段的长短。

987÷3表示一天接待多少人。

329×6表示一天接待的人数乘天数6就能算出6天接待的人数。

比较分步列式与综合列式哪个更简便?(综合列式比较简便,他可以少写一个中间数。)

b、6÷3×987

6÷3表示6天里含有两个3,即2个987人。

6、小结乘除混合运算的运算顺序。(在只有乘除法的计算式题里,按从左往右的顺序进行计算。)

7、总结出没有括号的算式里只有加减法或只有乘除法的运算顺序。(在没有括号的算式里,只有加减法法或只有乘除法,按从左往右的顺序进行计算。)

(三)巩固深化

1、口算。

27÷3×7 3×6÷9 25÷5×8

45+8-23 63÷7×8 24-8+10

28÷4×7 35+24-12 48÷8÷9

开小火车的方式进行,每说一个,其他同学判断是对还是错,前面的同学说错了,后面的同学进行更正。要求越快越好,如果前面的同学慢了,后面同学可以快速进行抢答。

2、一箱橙汁48元,芳芳要买三瓶,共需付多少元?

请学生按照第二题的方法进行解答。可能有的同学会问这道题做不来的,缺少条件,引导学生看图找条件。

(四)小结提高

通过这节课的学习,你觉得自己哪方面进步了?

第三课时:

积商之和(差)的混合运算

教学目标

1、让学生掌握含有两级运算(没有括号)的.运算顺序,并能正确地计算。

2、让学生从实际问题的解决过程中感受“先乘除后加减”的道理。

教学重点、难点:

使学生理解运算顺序。

教学过程:

(一)复习导入

前两节课,老师向大家介绍了有关“冰雪天地”游乐场的一些情况。今天,老师带来了“冰雪天地”游乐场接待人数的统计表。大家来看看这张统计表,你能提出哪些数学问题呢?

出示下表:

这是“冰雪天地”游乐场接待人数的统计表

日期星期一星期二星期三

人数312 306 369

提问:根据表中提供的数据,你能提出哪些数学问题?(学生可能会提一些一步计算的题,教师可提示他们提出一些两步计算的题)

根据学生回答,出示:

3天一共接待987人,照这样计算,一周预计接待多少人?

学生列式解答。并说说计算顺序。

导入新课:星期天,爸爸妈妈带玲玲去“冰雪天地”游玩。大家说说到了“冰雪天地”游乐场门口,得先干什么呀?(买票)大家看,游乐场到了,牌子上都写得清清楚楚,你能看懂它的意思,会买票吗?

课件出示情境图,引导学生看图。提问:从图中你看到了什么?

(二)探究新知

1、教学例3

(1)学生分组讨论,在组内交流获取的信息,小组汇报。

谁能用语言完整地叙述问题?

师引导,学生回答,教师课件出示:星期天,爸爸妈妈带玲玲去“冰雪天地”游玩。成人票每张24元,儿童票半价。购门票需要花多少钱?

提问:成人票每张多少元?半价是什么意思?儿童票每张多少元?要买几张成人票?几张儿童票?要解决什么问题?

提问:要求购门票一共需要花多少钱,必须先求什么,再求什么,最后求什么?

(2)列式解答。

生1:24+24=48(元)24÷2=12(元)48+12=60(元)

生2:24+24+24÷2

生3:24×2+24÷2

师板书,提问:这三个算式,它们之间有什么联系?(第一个算式是分步列式,二、三两个算式是分步列式,后两个算式的意思其实一样,24+24和24×2都是在算两张大人票要多少钱?)

24×2表示什么意思?24÷2表示什么意思?

让学生独立解答。

(3)明确综合算式的解答方法。

24+24+24÷2 24×2+24÷2

=24+24+12 =48+12

=48+12 =60(元)

=60(元)

以上两种综合算式的解答方法进行呈现,虽然两种算式都是来求购门票需要多少钱?但写法却有所不同。

(4)引导学生进行比较。

复习题的算式与例3的算式有什么不同?

揭示课题:这就是我们今天这节课要学习的内容。(板书课题:积商之和(差)的混合运算)

提问:在没有括号的算式里,有乘、除法和加、减法,要先算什么?

生回答,师小结:在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。

2、提问:你还能提出其他问题吗?小组讨论并交流。

学生可能提出:

(1)买1张成人票,3张儿童票,一共要付多少钱?

(2)买3张成人票,付100元,应找回多少钱?

学生独立列综合算式解答,并说出计算顺序。

3、比较:这些算式与例题算式有什么异同?

学生回答,教师归纳并小结,深化运算顺序。

4、反馈练习:第7页“做一做”第1题。

运算顺序一样的画“√”,不一样的画“×”。

(1)2×9÷3 (2)36-6×5 (3)56÷7×5

2+9-3 36÷6×5 56+7×5

(三)巩固提高

1、说出下面各题的运算顺序,再计算。

203-134÷2 28+120×8

97-12×6+43 26×4-125÷5

先说一说各题的运算顺序,请四位同学到黑板上来板演,其它同学在自己草稿纸上完成。完成后进行校对,有错误的及时指出。

2、解决问题。

(1)同学们植树,四年级140人,每人植树2棵;五年级120人,每人植树3棵。这两个年级一共植树多少棵?

(2)果园里有苹果树48棵,桃树的棵数是苹果树的2倍,梨树的棵数比苹果树和桃树的总数多12棵。果园里有梨树多少棵?

3、课堂小结:自己评一评这节课有哪些收获?请你的同桌评一评你这节课学得棒不棒?

第四课时:

两个商(积)之和(差)的混合运算

教学目标:

1、通过解决实际问题,来总结含有小括号的混合运算的运算顺序。

2、让学生分析问题中的数量关系,提高学生分析问题、解决问题的能力。

教学重点:

根据分析数量关系来总结出含有小括号的混合运算顺序。

教学难点:

解决问题。

教学过程:

(一)复习铺垫

1、你了解了混合运算的哪些知识?(根据学生回答,适当板书)

只有加减法从左往右

只有乘除法从左往右

乘除法、加减法兼有先乘除后加减

2、说说运算顺序后,快速地计算出结果。

51+16-18 67-29+15

5×15-12÷3 56÷8-2×3

请四位同学先说一说运算顺序,并快速地报出答案。

(二)新知学习

几天来“冰雪天地“的客流量很大,游客特别多,为了使”冰雪天地“保持良好的环境,服务部决定请一些保洁员协助管理卫生。上午冰雕区有游客180位,下午有270位。如果每30位游客需要一名保洁员。

1、你理解这三条信息的意思吗?“每30位游客需要一名保洁员”这句话你怎么理解?(游客30人就要派一名保洁员,下午与上午的标准是一样的,都30位游客派一名保洁员。)

教师还可以问:60位游客派几名保洁员?90位游客呢?有多少游客要派5名保洁员呢?

2、你能根据这三条信息编一道应用题吗?可自己独立完成,也可以小组合作。

3、交流,板书。

4、你会解答吗?先来解决第一题。

老师请大家仔细读题后想一想,列出算式并计算,说一说每一步的意思。如果有一种解答方法了,同桌间讨论,还有别的解题方法吗?

5、反馈。

6、你能把以上两种算式方法写成综合算式吗?

a、180÷30+270÷30

b、(270+180)÷30为什么要加上括号?(因为是先算总游客数,如果不加括号,就先算除法,就变成上午要派的保洁员加下午的游客了,意思就说不通了。)

7、总结含有小括号的混合运算的运算顺序。

8、比较两种方法哪一种更简便?

9、解决第二个问题。

上午冰雕区有游客180位,下午有270位。如果每30位游客需要一名保洁员。下午要比上午多请几名保洁员?

列出算式,并说一说运算顺序,以及每一步的意思。

同学们真是帮了冰雕区叔叔阿姨的一个大忙,他们能根据同学们的意见尽快地来安排保洁员了。下面,我们再来解决一些问题。

(三)巩固练习

1、妈妈用一百元钱先给玲玲买了一件冬衣,又买了一副手套,还剩多少钱?

2、王老师要批改48篇作文,已经批改了12篇。如果每小时批改9篇,还要必小时才能批改完?

3、水果店运来苹果、香蕉各8箱,苹果每箱25千克,香蕉每箱18千克。一共运来水果多少千克?

(四)总结全课

(1)通过这节课的学习,你有什么收获?

(2)你能用简短的几句话来概括今天学习的知识吗?(含有括号的算式的运算顺序:先算括号里的。)

第五课时:

含有小括号的三步计算式题

教学目标:

1、引导学生结合具体四则混合运算式题,总结四则混合运算的顺序。

2、通过探讨为什么参与运算的数、排列顺序及运算符号都相同,而计算结果却不一样,使学生再一次认识小括号的作用,进一步掌握混合运算的顺序。

教学重点:

总结四则混合运算的运算顺序。

教学难点:

培养学生的计算意识。

教学过程:

(一)单刀直入教学新知

前几天,咱们都到“冰雪天地”去寻找数学问题,今天咱们就不去了,请看老师这儿有两题,你会计算吗?

1、出示:

(1)42+6×(12-4) (2)42+6×12-4

2、比较这两题的异同点。(数字、运算符号都一样,第一题有小括号,第二题没有小括号。)

3、你能用和、差、积、商来表述运算过程吗?(第一题:先求差,然后求积,最后求和。第二题:先求积、然后求和,最后求差。

4、会解答吗?请两位同学到黑板上板演,其余同学做在草稿纸上。

4、反馈交流,指出不足。

42+6×(12-4)

=42+6-8

=42+48

=90

以采访的形式向板演的同学发问:在计算之前,你先干什么?(先确定运算顺序)你是根据什么来确定运算顺序的?(先算小括号里面的,然后再乘除,最后加减)

42+6×12-4

=42+72-4

=114-4

=110

教师提问:你是怎么确定运算顺序的?

5、计算这两题后,你想说些什么?(数字、运算符号一样,就因为一个有小括号,一个没有小括号,运算顺序不一样,导致运算结果也不一样。)

6、总结四则混合运算的运算顺序,

(1)明确加法、减法、乘法、除法统称四则运算。

(2)回忆混合运算的学习,小组合作总结出四则混合运算的运算顺序。

(3)、交流,形成板书。

(二)及时练习加深理解

1、先说出各题的运算顺序,再计算。

(1)请学生用和、差、积、商说说运算顺序。

(2)计算,写出计算过程。

(3)交流,改错。

2、学校食堂买来大米850千克,运了三车,还剩100千克,平均每车运多少千克。

(1)请两位同学来读题,其他同学来说一说你读懂了什么?

(2)分析数量关系,列式解答,说说算式每一步的意思,再说说运算顺序,看看算式意思是否跟运算顺序相符合。

3、下面四张扑克牌上的点数,经过怎样的运算才能得到24呢?你能想出几种方法?

(1)先进行小组合作,看看哪个小组列出的算式最多。

(2)交流,列出各种方法。

(6+4-2)×3 6×4÷(3-2) 6

4、旅行社推出“××风景区一日游”的两种出游价格方案。

(1)分析两种方案的意思。(第一种方案是按人数买,成人和儿童的票价不一样;第二种方案按团体计价,五人以上就一口价每人100元。)

(2)共同解决第(1)小题,分别让学生按两种方案分别购票,看看哪种方案购票便宜一些?

(3)独立解答第(2)小题。(与第(1)小题是同样道理)

(三)课堂小结结束新课

上完了这一节课,你有什么想说的吗?

第六课时:

有关0的运算

教学目标:

1、把分散学习的有关0的运算这部分知识系统化,提高学生计算的正确率和整理概括知识的能力。

2、借助故事引起学生对0的有关知识的回忆,使学习变得主动、积极。

本课的难点是说明0不能作除数及0为什么不能作除数的道理。

教学准备:

课件(零国王勇战食数兽的故事)

教学过程:

(一)故事导入

今天老师给大家讲个故事,故事的题目是——零国王勇战食数兽。请同学们认真地听,仔细地思考,想一想,零国王为什么会战胜食数兽?你对0有什么看法?

故事开头:一天数字王国突然闯进来一个三只脚的怪兽,吓和数字公民纷纷逃走。怪兽张开血盆大口,一口吞下数24,接着它又吞吃了44。数5吓得脚软,奇怪的是,怪兽看也没看它一眼。

(1)听故事。

(2)说说零国王为什么会战胜食数兽?你对0有什么看法?(零国王抓住了食数兽的弱点。看来大家别小看这个0,它虽然表示什么都没有,但是它的作用是不能小看的。)

(二)知识梳理

同学们真会听故事,还能听故事来进行分析。今天咱们也来学习有关0的知识。

1、想一想,你知道哪些有关0的运算?运算时应该注意些什么?

(1)小组合作进行讨论,大家在组内畅所欲言,派一人记录。

(2)全班交流,教师板书。

加法:一个数加上0还得原数。

举例说明:6+0=6 23+0=23 0+91=91

减法:被减数等于减数,差是0;一个数减去0还是这个数。

举例说明:5-5=0 60-60=0 8-0=8

0的运算

乘法:一个数和0相乘,得0。

举例说明:3×0=0 0×9=0

除法:0除以一个非零的数,还得0;0不能作除数。

举例说明:0÷5=0 5÷0就无意义

(3)请几个同学来总结有关0的运算。

2、如果0作除数结果会怎样?

引导学生进行分析:a、5÷0表示一个非零的数除以0,从除法的意义上说是什么意思,商是多少,引导学生说出积是5,一个因数是0,求另一个因数,要想0和几相乘得5呢?因为一个数和0相乘仍得0,所以5÷0不可能得到商。b、0÷0,从除法意义上说是什么意思,商是多少,引导学生说出积是0,一个因数是0,求另一个因数,要想0和几相乘得0,然后问:能找到这样的数吗?能,因为0和任何数相乘都得0,这时指出0÷0得不到一个确定的商,所以不研究,最后得出0不能作除数的结论。

(三)数学游戏

归纳、整理了0的知识以后,咱们来轻松轻松,做一个数学游戏。出示:

(1)看清游戏要求,

(2)分组进行游戏,看看哪个小组找到又快又多,并记录下来。

(四)巩固提高

1、口算。

79+0 6×0 9-0 0-11

0+35 0÷71 6-6 4×0

0×53 54+0 54-0 0×900

以小火车的方式进行,前面的同学说不下去了,后面的同学可以进行抢答

3、破译密码。

先计算出圆圈和方框中的数来组成密码。注意计算过程的推导。

(五)总结全课

今天你的最大收获是什么?

运算教案 篇5

教学内容:

整数、小数四则混合运算的运算顺序(例1~例3和做一做,练习十第1~4题。)

教学要求:

1.知识目标:使学生进一步掌握整数、小数四则混合运算顺序,明确第一级运算和第二级运算的概念;能比较熟练地计算整数、小数四则混合运算式题。

2.能力目标:能在学生掌握整数四则混合运算和小数四则混合运算的基础上,对整数、小数四则混合运算进行高度概括、总结。

3.情感目标:学会使用中括号,灵活运用运算方法。培养大家勤于动手动脑的良好习惯。

教学重点:

1.整数、小数四则混合运算的运算顺序。

2.中括号的使用。

教学难点:

在四则混合运算的过程中,遇到除法的商的小数位数较多或出现循环小数时,一般保留两位小数后再计算。在取近似值的这一步要写约等号。

教具准备:

投影片、投影器

教学过程:

一、激发。

1.口算

32.8+19 1.82-0.63 0.42×0.5 8.2÷0.01

5.2÷1.3 0.67+1.24 0.51÷17 1.6×0.4

2.提问:我们学过哪些运算?(这些运算统称四则运算)

3.计算四则混合运算的顺序是怎样的?(板贴)

一个算式里,如果只有加减法或只有乘除法,要从左往右依次计算。

一个算式里,如果有加减法和乘除法,要先算乘除,再算加减。

一个算式里,如果有小括号,要先算小括号里面的。

二、尝试。

1.出示例1:下面的算是有哪些运算?运算顺序是怎样的?

3.7-2.5+4.6 3.6×6÷0.9

⑴读题想一想,你知道了什么?

生回答

①第一个算式含有加、减两种运算,要先算减法,后算加法。

②第二个算式含有乘、除两种运算,要先算乘法,后算除法。③这两个算式中,除了整数就是小数。

导入:这就是今天要研究的'整数、小数四则混合运算(板书课题)

⑵师:加法和减法叫做第一级运算,乘法和除法叫做第二级运算。

⑶你能把“一个算式里,如果只有加减法或只有乘除法,要从左往右依次计算”换一种说法吗?

引导学生说出“一个算式里,如果只有同一级运算,要从左往右依次计算”。

⑷生试算,指名板演。

3.7-2.5+4.6 3.6×6÷0.9

=1.2+4.6 =21.6÷0.9

=5.8 =24

⑸反馈练习:口述下面各题的运算顺序。

7-0.5+0.83 3.6÷0.4×5

2.出示例2:下面的算式里有几级运算?运算顺序是怎样的?

35.6-5×1.73 6.75+2.52÷1.2

⑴读题想一想,你知道了什么?

生回答

①这两个算式里都含有两级运算,所以第一题要先算乘法,再算减法;第二题要先算除法,再算加法。

②这两道题的运算顺序是:一个算式里,如果有两级运算,要先算第二级运算,后算第一级运算。

⑵试算并说说解题思路。

35.6-5×1.73 6.75+2.52÷1.2

=35.6-8.65 =6.75+21

=26.95 =27.75

⑶反馈练习:先说出运算顺序,再算出得数。

7-0.5×14+0.83 2.6+8×0.5×3

3.6÷0.4-1.2×5 0.75÷0.3÷0.5-3.2

3.例1和例2都是没有括号的整数、小数四则混合运算,接着请看例3。

三、示范。

1.出示例3:计算3.6÷1.2+0.5×5。

⑴生独立计算,集体订证时,说说这道题含有几级运算?

⑵在3.6÷1.2+0.5×5里,如果要先算1.2+0.5怎么办?运算顺序怎样?

⑶在3.6÷1.2+0.5×5里,如果要先算(1.2+0.5)×5,又该怎么办?

⑷讨论

⑸汇报讨论结果,板书

3.6÷(1.2+0.5)×5 3.6÷[(1.2+0.5)×5]

⑹提示:有时需要改变算式中的运算顺序,就要用到括号;如果使用小括号后还需要改变运算顺序,就必须用到中括号。一个算式里,如果有括号,要先算括号里面的,再算中括号里面的。

⑺自学p.40页内容

⑻你看懂了哪些内容?还有什么不明白的?

⑼注意:如果遇到除不尽的情况,或者商的小数位数较多或出现循环小数时,一般可以只除到第三位,然后四舍五入保留两位小数再接着往下计算。在保留两位小数取近似值这一步,要注意写约等号“≈”,到下一步如果没有再取近似值,仍要写等号。

2.反馈练习

0.4×(3.2-0.8)÷1.2 5×[(3.2+4.06)÷6.05]

四、应用。

1.填空(投影出示)

⑴加、减、乘、除四种运算统称为( )。

⑵加法和减法叫做第( )级运算;乘法和除法叫做第( )运算。

⑶一个算式里,如果只含同一级运算,要从( );如果含有两级运算,要先做( )运算,后做( )运算;如果有括号,要先算( ),再算( )里面的。

2.练习十第1、4题。

3.判断并说明理由。

13.6×3-40.8÷2 3.8+5.6÷7×4

=40.8-40.8÷2 =7.4÷7×4

=0÷2 =1.2×4

=0 =4.8

五、体验。

这节课你学会了什么知识?

六、作业。

练习十第2、3题。

运算教案 篇6

教学目标

1.归纳整理四则运算的意义.

2.归纳整理整数小数和分数计算法则的异同点,进一步总结计算时应遵循的一般规律.

3.总结四则运算中的一些特殊情况.

4.总结验算方法.

教学重点

整理四则运算的意义及法则.

教学难点

对四则运算算理本质规律的认识和理解.

教学步骤

一、复习旧知识,归纳知识结构.

(一)四则运算的意义.【演示课件“四则运算的意义和法则”】

1.举例说明四则运算的意义.

根据下面算式,说一说它们表示的四则运算的意义.

2+3 0.6-0.4 2×3 6÷2

100-15 2×0.3 0.6÷0.2

0.2+0.3 2×1.3

2.观察图片.

教师提问:看一看,整数、小数、分数的哪些意义相同?哪些意义有扩展?

(加法、减法和除法意义相同,乘法意义在小数和分数中有所扩展.)

3.你能用图示的形式表示出四则运算的意义之间的关系吗?

(二)四则运算的法则.【继续演示课件“四则运算的意义和法则”】

1.加法和减法的法则.

(1)出示三道题,请分析错误原因并改正.

错误分别是:数位没有对齐,小数点没有对齐,没有通分.

(2)三条法则分别是怎样要求的?

整数:相同数位对齐

小数:小数点对齐

分数:分母相同时才能直接相加减

思考:三条法则的要求反映了一条什么样的共同的规律?

(相同计数单位上的数才能相加或相减)

2.乘法和除法的法则.

(1)出示两道题:

口述整数乘法和除法的计算法则.

改编成小数乘除法计算:1.42×2.3 4.182÷1.23

(要求:学生在整数计算的结果上确定小数点的位置)

(2)教师提问.

通过上面的计算,你发现小数乘法和除法与整数乘法和除法有什么相似的地方?

(小数乘除法都先按整数乘除法法则计算)

有什么不同?

(小数乘、除法还要在计算结果上确定小数点的位置.)

(3)根据 ,说一说分数乘法和除法的法则.

分数乘法和除法比较又有什么相似和不同?

相似:分数除法要转化成分数乘法计算.

不同:分数除法转化后乘的是除数的倒数.

(三)练习.【继续演示课件“四则运算的意义和法则”】

计算后说一说各题计算时需要注意什么?

73.06-3.96 (差的百分位是0,可以不写)

37.5×1.03 (积是三位小数)

8.7÷0.03 (商是整数)

3.13÷15 (得数保留三位小数)

(要除到小数点后第四位)

(要先通分)

(四)法则中的特殊情况.【继续演示课件“四则运算的意义和法则”】

请同学们根据a与0,a与1和a与a的运算分类.(a作除数时不等于0)

分类如下:

第一组:a+0=a a-0=a a×0=00÷a=0

第二组:a×1=a a÷1=a

第三组:a-a=0 a÷a=1

(五)验算.【继续演示课件“四则运算的意义和法则”】

1.根据四则运算的关系,完成下面等式.

2.思考:怎样应用这些关系对加、减法或乘、除法的'计算进行验算?

(加法可用减法验算;减法可以用加法或减法验算;乘法可以用除法验算;除法可以用乘法或除法验算.)

3.练习:先说出下面各算式的意义,再计算,并进行验算.

4325+379 47.5-7.65 18.4×75

84× 587.1÷0.57 ÷

二、全课小结.

这节课我们对四则运算的意义和法则进行了整理和复习,总结了在四则运算中的一些特殊情况及注意的问题,希望同学们在计算时一定要细心、认真,养成自觉验算的好习惯.

三、随堂练习.

1.根据43×78=3354,直接写出下面各题的得数.(复习积的变化规律和商不变的性质)

43×0.78= 0.43×7.8=

33.54÷0.78= 3354÷0.43=

2.在○里填上“>”“<”或“=”.

○ 12× ○12÷3×2

÷ ○ 12÷ ○12÷2×3

3.思考:7.6÷0.25的商与7.6×4的积相等吗?为什么?

四、布置作业.

计算下面各题,并且验算.

1624÷56 -

× 4.5×5.02

五、板书设计

四则运算的意义和法则

数学教案-四则运算的意义和法则

运算教案 篇7

教学要求:

1.使学生进一步理解分数四则运算的意义和法则,能正确地进行分数四则运算。

2.使学生能正确地进行整数、小数和分数的四则馄合运算,并能灵活地选择合理的方法使计算简便,提高学生的计算能力。

教学过程:

一、揭示课题

这节课我们复习分数的四则运算。(板书课题)通过复习,进一步认识分数四则运算的意义和计算法则,能正确地进行整数、小数和分数四则混合运算,并能根据具体特点灵活地选择合理的方法,使一些计算简便。

二、复习分数四则运算的意义

1.提问:分数四则运算意义与整数四则运算的意义有哪些相同,有什么不同?指出:分数加减法和除法的意义与整数完全相同。在乘法里,除了求几个相同分数的和用乘法外,求一个数的几分之几是多少也用乘法。

2.做练习十六第1题。

指名学生口答,其中第(2)题要求说明理由.追问:要求一个数的几分之几是多少,用什么方法计算?

三、复习分数四则运算法则

1.复习加、减法计算。

(1)做练一练第1题加、减法。

让学生计算 + 、 - ,同时指名板演。集体订正,说说怎样算的。

(2)提问:分数加、减法怎样算?(板书:分数加减法:同分母的,分子加减,分母不变。异分母的,先通分再计算。)你能举例说明吗?为什么同分母分数加、减分母不变,分子相加、减,异分母分数要先通分再计算?(只有单位相同的数才能直接相加、减)分数加、减法的法则与整数和小数的加、减法的法则有什么共同特点?(都是把相同单位的数直接相加、减,所以整数、小数是把相同单位的数相加、减,分数是把分子相加、减,分母不变)

2.复习分数乘、除法计算。

(1)做练一练第1题后四题。指名两人板演,其余学生分两组,每组做一组题。集体订正,说说怎样算的。

(2)提问:分数乘、除法怎样算?(板书:分数乘法;分子、分母分别相乘。分数除法:乘除数的倒数。)

3.做练一练第2题。

先让学生直接写出得数。小黑板出示,指名学生说出得数。第三、四行让学生说说是怎样算的。

四、复习四则棍合运算

1.做练一练第3题。

指名学生说一说各题的.运算顺序。提问:分数四则混合运算是按怎样的顺序进行的?指出:分数四则混合运算顺序与整数、小数相同。(板书)指名四人板演,其余学生分两组,分别做前两题和后两题。集体订正。指出:分数四则混合运算要按照整数、小数的四则混合运算顺序进行计算,一步一步算出结果。

2.做练一练第4题。

让学生在课本上看一看,应用了哪些运算定律。小黑板出示,指名学生回答,并在小黑板上用适当的符号表示出来。追问:这样计算简便一些吗?为什么?指出:整数、小数的运算定律在分数里同样适用。在分数四则混合运算里,应用运算定律和规律,也可以使一些计算简便。

3.讨论练习十六第2题。

现在请大家看练习十六第3题。讨论一下,每道题的数有什么特点,怎样算比较简便。指名学生口答怎样算简便。

4.讨论练习十六第6题。

让学生讨论、填数。指名学生口答,并说明怎样想的,有几种填法。

五、课堂小结

这节课复习了哪些内容?你能把这些内容简要地概括一下吗?

六、布置作业

课堂作业:练习十六第3题右边四题,第4题下面三行,第5题。

家庭作业:练习十六第2题,第3题前五题,第4题第一行。

运算教案 篇8

教学内容:

教材第61、62页的带有小括号的混合运算

教学提示:

本节课是在学生掌握没有括号的混合运算的基础上进行教学的,学生对混合运算已有初步的认识,在学习用小括号解决简单的实际问题,困难不是很大。关键是让学生体会小括号在混合运算中的作用。

教学目标:

1、知识与技能:在解决问题的过程中体会到小括号的作用,掌握有小括号的算式的运算顺序。

2、过程与方法:通过“购物”的情境,发展学生提出问题和解决问题的能力。

3、情感态度与价值观:结合教学情境,让学生感受数学与生活实际的密切联系。

教学重点:

理解小括号的作用,掌握有小括号的两步混合运算的运算顺序。

教学难点:

能按运算顺序正确地进行计算。

教学准备:

多媒体课件、计算本

教学过程:

一、谈话引入

1.口算,说说运算的顺序。

课件出示课堂活动:64÷8+32 80-5×9

说说这两题先算什么,再算什么?(含有两级的混合运算,先算乘、除法,再算加、减法)

2.小明是个粗心的孩子,他在计算15-6×2时,得到的结果是18,你知道他在计算时犯了什么错误?

让学生讨论,指名回答:运算顺序是错的,他先算减法,再算乘法。

追问:对于15-6×2,如果要先算减法,有办法?(添上小括号)

3.揭题:本节课我们就来学习含有括号的混合运算。

设计意图:通过对旧知识的复习寻找新知识的生长点,提出问题,引出本课内容,激发学生的求知欲。

二、学习新知

1、出示例题:说说图上所能看到的数学信息?

生:阿姨买了一件成人衣服和3件同样的儿童衣服一共用了207元,成人衣服一件120元。一件儿童衣服多少钱?

师:先列分步算式,再列综合算式。

设计意图:为学生提供购物的情景,让学生收集信息,提出问题,为学习新知打下基础。

2、学生尝试练习,教师巡视辅导。

3、全班交流。

(1)指名说分布算式,教师板书

207-120=87(元)

87÷3=29(元)

(2)师:每步算式求出的是什么?这道题先进行什么计算,再进行什么计算?

生:第一步求出的是3件儿童衣服的钱,第二步求的是1件儿童衣服的钱。

生:先算减法,再算除法。

(3)让学生汇报自己列出的综合算式,教师板书

207-120÷3 (207—120)÷3

师问:要求一件儿童衣服多少钱,必须先求什么?(小组讨论)

生:必须先求3件儿童衣服的钱。

师:207—120÷3 这样列式能先算出3件儿童衣服的钱吗?要求3件儿童衣服的钱应先算哪一步?

生:不对。

师:怎样才能先算207—120?这里要先算减法,列综合算式时必须在减法这部分添上小括号,因为数学上有个规定:算式中有小括号的,要先算小括号里的。

所以(207—120)÷3是对的'。

师:这个括号起着改变运算顺序的作用。

4、完成试一试教材61页。学生独立计算,指定两人板演。

提问:这两道算式里都有括号,都要先算哪一步?

小结:在一个算式里有小括号,要先算小括号里的。

设计意图:教师引导学生探索新知,发现矛盾,通过小组讨论,全班交流的形式解决矛盾从而得出正确结论。使学生真正成为学习的主人。

三、巩固练习

1、说说运算顺序。(80-25)×8

2、第62页课堂活动2题。

3、计算:(34+22)÷7 25×(34-26)

四、达标反馈

1、比一比,看谁算的对。

35÷(21-14) (51-43)×7

2、找朋友,连一连。

3、一袋开心果有60颗,要想分给7个人,每人分9颗,还差多少颗?

五、课堂小结

师:说一说,有小括号的混合运算的运算顺序?

生:先算小括号里的,再算小括号外的。

师:要是没有小括号呢?

生:先算乘除后算加减。

师:计算时要先理清顺序,再仔细计算。

六、布置作业

1、把下面两个算式合并成一个。

51-43=8 8×7=56

2、第62页练习十五1—3题。

3、三年级有男生27人,女生21人,如果每排坐8人能坐几排?

板书设计:

带有小括号的混合运算

分步:207-120=87(元)

87÷3=29(元)

综合算式:(207-120)÷3………………必须加小括号

=87÷3

=29(元)

答:一件儿童衣服29元。

(算式里有小括号,要先算小括号里面的。)

运算教案 篇9

一、考试要求:

(1)导数概念及其几何意义

①了解导数概念的实际背景

② 理解导数的几何意义.

(2)导数的运算

① 能根据导数定义,求函数 的导数.

② 能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如 的复合函数)的导数.

二、知识梳理:

1、如果当 时, 有极限,就说函数 在点 处可导,并把这个极限叫做 在点 处的导数(或变 化 率)。记作 或 ,即 。 的几何意义是曲线 在点 处的切线;瞬时速度就是位移函数 对时间 的导数。

2、几种常 见函数的导数

(1) (其中 为常数);(2) ( );(3) ;

(4) (5) (6) ;

3、可导函数的四则运算的求导法则

(1) ; (2) ; (3) ( );

(4) 的导数 (其中 );

三、基础检测:

1、设 是函数 的导函数,将 和 的图象画在同一个直角坐标系中,不可能正确的是 ( )

2、已知曲线 的一条切线的斜率为 ,则切点的横坐标为 ( )

A.1 B.2 C.3 D.4

3、设函数 是R上以5为周期的可导偶函数,则曲线 在 处的切线的斜率为 ( ) A. B.0 C. D.5

4、已知对任意实数 ,有 ,且 时, ,则 时( ) A. B.

C. D.

5、若 ,则下列命题正确的是( )

A. B. C. D.

6、点 是曲线 上任意一点,则 到直线 的距离的最小值是 ;

7、若函数 的'图像与直线 只有一个公共点,则实数 的取值范围是

8、若点 在曲线 上移动,则过 点的切线的倾斜角取值范围是

9、设函数 (1)证明: 的导数 ;

(2)若对所有 都有 ,求 的取值范围。

10、已知 在区间[0,1 ]上是增函数,在区间 上是减函数,又 (Ⅰ)求 的解析式;

(Ⅱ)若在区间 (m>0)上恒有 ≤x成立,求m的取值范围.

运算教案 篇10

教学内容:教材第17页例3、例4和“练一练”,练习四第1~4题。

教学要求:

1.使学生进一步掌握在带有小括号的算式里,要先算小括号里面的,再算括号外面的运算顺序。

2.使学生知道在带有两个小括号的三步计算式题里,两个小括号里的同时计算、脱式比较简便,并能照这样的方法计算。

3.使学生掌握小括号里含有两级运算的运算顺序,会计算小括号里含有两级运算的三步计算式题。

教学过程:

一、复习引新

1.做第17页复习题。

(1)指名学生依次说出每题里各有哪些运算,应该按怎样的顺序计算。并口答运算过程及得数。

(2)提问:算式里有乘法或除法,又有加法或减法,运算顺序是怎样的?

有括号的混合运算,运算顺序是怎样的?

第l小题计算时是怎样使运算过程简便的?

2.引入新课。

从刚才的两道题可以知道:算式里如果有加或减,又有乘或除,就要先算乘、除,再算加、减。在有括号的算式里,要先算括号里的。如果两步可以同时计算、脱式,那么同时计算、脱式比较方便。

我们今天根据这些运算顺序的'规定,来继续学习带有小括号的三步计算的一些混合运算。(板书课题)

二、教学新课

1.教学例3。

(1)出示例3。

提问:这道题里有小括号时,要先算什么?有两个小括号时,

(在两个小括号下面画线表示)运算时怎样写比较简便?

让学生计算在课本上。

(2)谁来说一说,你是怎样算的,结果是多少?(老师板书)提问:递等式第一步算了哪两部分?

(3)指出:有括号的算式,要先算括号里面的,同时计算、脱式时,同时计算、脱式比较简便。

2.做“练一练”第1题。

让学生把先算的部分画出来。

指名二人板演,其余的学生做在练习本上。

集体订正,让学生说说为什么这样算。

3.教学例4。

(1)出示例4。

提问:这道题先算哪里的?小括号里面又要先算什么?为什么?

说明:算式里有小括号要先算小括号里的,小括号里有加法和乘法,要先算乘法。(在“25X4”下面画线)

请同学们按照计算顺序,在练习本上算出结果。(教师巡视辅导)

谁来说一说,你是怎样算的?(学生口答,老师板书递等式)

结合板书过程提问:为什么第一步要先算乘法?

完成计算过程后指出:括号里如果有加、减法和乘法,也要先算乘法,再算加、减法。

想一想,括号里如果是加、减法和除法,要先算什么?

4.教学“试一试”。 ·

请同学们看“试一试”的题。第一步要先算什么?为什么?二步和第三步各要算什么?

指名板演,其余学生做在练习本上。

集体订正。

追问:为什么第一步先算除法?

5.小结:上面两道题都是括号里有加法或减法,又有乘法或

除法的三步计算式题。在计算时,要计算括号里的部分时,也要先算乘法或除法,再算加法或减法。

三、巩固练习

1.做“练一练”第2题。

分别指名说一说两题的运算顺序。

指名两人板演,其余学生做在练习本上。

集体订正。强调括号里要先算什么。

2.做练习四第l题第一组。

指名两人板演,其余学生做在练习本上。集体订正。

提问:第一步先算什么?为什么两个小括号里的可以同时计算、脱式?

指出:有小括号的三步计算式题,要先算小括号里面的。如果有两个小括号,为了使计算简便,小括号里的可以同时计算、脱式。

3.做练习四第2题。

让学生先在方框里填数。

提问:第1小题先算什么?再算什么?最后算什么?第2小题呢?

让学生在练习本上列出综合算式。

学生口答综合算式,老师板书。

提问:为什么第l小题前两步上要加小括号?第2小题为什么后两步加了小括号?

指出:第1小题为了先算除法、加法,最后算乘法,所以要把除法和加法括在括号里。第2小题为了先算乘法、减法,最后算除法,所以要把乘法和减法括在括号里。

四、课堂作业:练习第l题第二组,第3、4题。

大家都在看