有理数的加法教案

笔构网

2025-12-09教案

请欣赏有理数的加法教案(精选27篇),由笔构网整理,希望能够帮助到大家。

有理数的加法教案 篇1

教学目标

1.通过实例,了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算。

2.正确地进行有理数的加法运算;用数结合的思想方法得出有理数加法的法则。并能运用有理数加法解决实际问题。

3.对学生加强数感的培养,感受数的意义,培养实事求是的科学态度,既会独立思考,又能勇于创新。

重点难点重点:

了解有理数加法的意义,会根据有理数加法进行运算。

难点:

有理数加法中的异号两数的加法运算。

教学过程

一、问题情境

小明在一条东西的跑道上先走了5m,又走了3m,如果以向东为正,他两次运动后的总结果是什么?

5+3=8

如果小明先向西运动5m,再向东运动3m,两次运动的结果是什么?

(-5)+(-3)=-8

如果小明先向东运动5m,再向西运动3m,两次运动的结果是什么?

5+(-3)=2

足球循球赛中,通常把进球数记为正,失球数记为负数,它们的和叫做净胜球数。

图中,红队进4个球,失2个球;蓝队进1个球,失1个球,那么红队和蓝队的'净胜球数如何表示?

二、知识点拔:

有理数加法法则:

1.同号两数相加,取相同符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,与为相反数的两个数相加得0.

3.一个数同0相加,仍得这个数。

三、例题指导

例1 计算

(1) (-3)+(-9)

(2) (-4.7)+3.9

解:(1)(-3)+(-9)=-(3+9)

=-12

(2)(-4.7)+3.9=-(4.7-3.9)

=-0.8

四、练习巩固:P22 1、2。

五、小结:

这节课我们学习了哪些知识?

六、作业:

习题1.3 1、8、12题

有理数的加法教案 篇2

一、教学目标

1. 理解有理数加法的概念,掌握有理数加法的运算法则。

2. 能运用有理数加法的运算法则进行简单的有理数加法运算。

3. 培养学生的逻辑思维能力和数学运算能力。

二、教学重难点

1. 重点:掌握有理数加法的运算法则。

2. 难点:理解异号有理数相加时绝对值不等和相等两种情况下的运算。

三、教学过程

1. 导入新课

复习有理数的概念,回顾整数、分数和它们的运算规则。

提问学生:你们认为有理数加法与整数加法有什么不同?

2. 讲授新课

定义有理数加法:将两个有理数相加得到另一个有理数的`过程称为有理数的加法。

同号有理数相加:当两个有理数同号时,取相同的符号,并将它们的绝对值相加。

异号有理数相加:当两个有理数异号时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

0与任何数相加:0与任何数相加都等于该数本身。

3. 举例说明

给出几个具体的例子,让学生根据运算法则进行计算。

引导学生总结规律,加深对有理数加法运算法则的理解。

4. 课堂练习

布置一些练习题,让学生独立完成。

巡视课堂,及时纠正学生的错误,并解答学生的疑问。

5. 课堂小结

总结有理数加法的运算法则,强调同号相加和异号相加的运算方法。

提醒学生注意运算过程中的符号和绝对值问题。

6. 作业布置

布置适量的课后练习题,巩固学生对有理数加法运算法则的掌握。

四、教学反思

反思本节课的教学效果,评估学生对有理数加法运算法则的掌握情况。

总结教学中的优点和不足,为下一节课的教学提供参考。

有理数的加法教案 篇3

第一课时

三维目标

一、知识与技能

理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算。

二、过程与方法

引导学生观察符号及绝对值与两个加数的符号及其他绝对值的关系,培养学生的分类、归纳、概括能力。

三、情感态度与价值观

培养学生主动探索的.良好学习习惯。

教学重、难点与关键

1.重点:掌握有理数加法法则,会进行有理数的加法运算。

2.难点:异号两数相加的法则。

3.关键:培养学生主动探索的良好学习习惯。

四、教学过程

一、复习提问,引入新课

1.有理数的绝对值是怎样定义的?如何计算一个数的绝对值?

2.比较下列每对数的大小。

(1)-3和-2; (2)│-5│和│5│; (3)-2与│-1│;(4)-(-7)和-│-7│。

五、新授

在小学里,我们已学习了加、减、乘、除四则运算,当时学习的运算是在正有理数和零的范围内。然而实际问题中做加法运算的数有可能超出正数范围,例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。本章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球,那么哪个队的净胜球多呢?

要解决这个问题,先要分别求出它们的净胜球数。

红队的净胜球数为:4+(-2);

蓝队的净胜球数为:1+(-1)。

这里用到正数与负数的加法。

怎样计算4+(-2)呢?

下面借助数轴来讨论有理数的加法。

看下面的问题:

一个物体作左右方向的运动,我们规定向左为负、向右为正。

(1)如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是什么?

有理数的加法教案 篇4

教学目标:

1、使学生掌握有理数加法的运算律,并能运用加法运算律简化运算。

2、培养学生观察、比较、归纳及运算能力。

重点:有理数加法运算律及其运用。

重点:灵活运用运算律

教学过程:

一、创设情境,引入新课

1、小学时已学过的加法运算律有哪几条?

2、猜一猜:在有理数的加法中,这两条运算律仍然适用吗?

3、(1)计算30+(-20)=__________=______,-20+30=___________=_____;

(2)[8+(-5)]+(-4)=_______=______, 8+[(-5)+(-4)]=_______=______。

二、讲授新课

教师:你会用文字表述加法的两条运算律吗?你会用字母表示加法的.这两条运算律吗?

(学生回答省略)

师生共同归纳:加法交换律:两个数相加,交换加数的位置,和不变。 即:a+b=b+a

加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。即(a+b)+c=a+(b+c)

讲解例3

教师:例3中是怎样使计算简化的?这样做的根据是什么?(请两位同学起来回答)

三、巩固知识

教师:例4中用了两种方法,比较两种解法,哪种方法比较好?解法2中使用了哪些运算律?

师生共同得出:解法2比较好,因为它的运算量比较小。解法2中使用了加法交换律和加法结合律。

四、总结

本节课主要学习有理数加法运算律及其运用,主要用到的思想方法是类比思想,需要注意的是:有理数的加法运算律与小学学习的运算律相同,运用加法运算律的目的为了简化运算。解题技巧是将正数分别相加,再把负数分别相加,然后再把它们的和相加。

五、布置作业

有理数的加法教案 篇5

教学目标

知识与技能:

掌握有理数加法法则,并能运用法则进行有理数加法的运算。

过程与方法:

1.经历有理数加法法则的探究过程,深刻感受分类讨论、数形结合的思想,由具体到抽象、由特殊到一般的认知规律;

2.动手、发现、分类、比较等方法的学习,培养归纳能力。

情感态度与价值观:

1.通过师生合作交流,学生主动参与探索获得数学知识,从而提高学习数学的积极性;

2.体会数学来源于生活,服务于生活,培养热爱数学的情感,体会数学的应用价值;

3.培养善于观察、勤于思考的学习习惯,树立合作意识,体验成功,提高学习自信心。

教学重点

有理数加法法则及运用

教学难点

异号两数相加法则

教具准备

powerpoint课件

课时安排

1课时

教学过程环节教师活动学生活动设计意图创设情境引入新课XX年6月11日至7月11日,第19届世界杯足球赛在南非举行。来自世界各国的32支球队为全世界的球迷送上了一场完美的足球盛宴。

小组循环赛中,胜一场得3分,平一场得1分,负一场得0分,积分最多的.两支队伍进入十六强。积分相同时,净胜球多者为胜。

以B组为例,进入十六强的是阿根廷和韩国。

国家赛胜平负得分阿根廷韩国希腊尼日利亚再以A组为例,A组积分榜,国家赛胜平负得分进球失球净胜球乌拉圭+40墨西哥+3-2南非+3-5法国+1-4师:从A组积分榜可以看出墨西哥和南非的积分相同,那么究竟应该确定哪个队进入十六强呢?此时则需要计算各队的净胜球数。你能列出计算各队净胜球数的算式吗?

学生看图表,思考问题。

学生列出计算净胜球数的算式。利用世界杯的例子,体现数学来源于生活,让学生体会学习有理数加法的必要性,更能激发学生的兴趣,体会学习有理数运算的必要性。环节教师活动学生活动设计意图探索新知

师:净胜球数的计算实际上涉及到有理数的加法。今天我们就来研究有理数的加法运算。

有理数的加法教案 篇6

教学目的:

经历探索有理数加法法则,理解有理数加法的意义。初步掌握有理数加法法则,并能准确地进行有理数加法运算。

教学重点:

有理数的加法法则

教学难点:

异号两数相加的法则

教学教程:

一、复习提问:

1、如果向东走5米记作+5米,那么向

西走3米记作__.

2、已知a=-5,b=+3,

??a??+??b??=_

已知a=-5,b=+3,

??a??-??b??=__

-1012345678

二、授新课

小明在一条东西向的跑道上,先走了5米,又走了3米,能否确定他现在位于原来位置的哪个方向?与原来相距多少米?规定向东的方向为正方向

提问:这题有几种情况?

小结:有以下四种情况

(1)两次都向东走,

(2)两次都向西走

(3)先向东走,再向西走

(4)先向西走,再向东走

根据小结,我们再分析每一种情况:

(1)向东走5米,再向东走3米,一共向东走了多少米?

+5+3(+5)+(+3)=+8

(2)向西走-5米,再向西走-3米,一共向东走了多少米?

-5-3(-3)+(-5)=-8

(3)先向东走5米,再向西走3米,两次一共向东走了多少米?

+3+5(+5)+(-3)=2

(4)先向西走5米,再向东走3米,两次一共向东走了多少米?

-5+3(-5)+(+3)=-2

下面再看两种特殊情况:

(5)向东走5米,再向西走5米,两次一共向东走了多少米

-5+5(+5)+(-5)=0

(6)向西走5米,再向东走0米,两次一共向东走了多少米?

-5(-5)+0=-5

小结:总结前的六种情况:

同号两数相加:(+5)+(+3)=+8

(-5)+(-3)=-8

异号两数相加:(+5)+(-3)=2

(-5)+(+3)=-2

(+5)+(-5)=0

一数与零相加:(-5)+0=-5

得出结论:有理数加法法则

1、同号两数相加,取相同的符号,并把绝对值相加

2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得零

3、一个数与零相加,仍得这个数

例如:

(-4)+(-5)(同号两数相加)

解:=-()(取相同的符号)

=-9(并把绝对值相加)

(-2)+(+6)(绝对值不等的异号两数相加)

解:=+()(取绝对值较大的`符号)

=+4(用较大的绝对值减去较小的绝对值)

练习:

口答:

1、(-15)+(-32)=

2、(+10)+(-4)=

3、7+(-4)=

4、4+(-4)=

5、9+(-2)=

6、(-0.5)+4.4=

7、(-9)+0=

8、0+(-3)=

计算:

(1)(-3)+(-9)(2)(-1/2)+(+1/3)

解略

练习:

(1)15+(-22)=

(2)(-13)+(-8)=

(3)(-0?9)+1?5=

(4)2?7+(-3?5)=

(5)1/2+(-2/3)=

(6)(-1/4)+(-1/3)=

练习三:

1、填空:

(1)+11=27(2)7+=4

(3)(-9)+=9(4)12+=0

(5)(-8)+=-15(6)+(-13)=-6

2、用“”号填空:

(1)如果a>0,b>0,那么a+b0;

(2)如果a<0,b<0,那么a+b0;

(3)如果a>0,b|b|,那么a+b0;

(4)如果a0,|a|>|b|,那么a+b0

小结:

1、掌握有理数的加法法则,正确地进

行加法运算。

2、两个有理数相加,首先判断加法类

型,再确定和的符号,最后确定和的绝对值。

作业:课本第38页2、3

第40页1、2

有理数的加法教案 篇7

一.教学目标

1.知识与技能

(1)理解有理数加法的意义;

(2)理解并掌握有理数加法的法则;

(3)应用有理数加法法则进行准确运算;

2.数学思考

通过观察,比较,归纳等得出有理数加法法则。

3.解决问题

能运用有理数加法法则解决实际问题。

4.情感与态度

认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。

5.重点

会用有理数加法法则进行运算.

6.难点

异号两数相加的法则.

二.教材分析

“有理数的加法”是人教版七年级数学上册第一章有理数的第三节内容,本节内容安排四个课时,本课时是本节内容的第一课时,本课设计主要是通过球赛中净胜球数的实例来明确有理数加法的意义,引入有理数加法的法则,为今后学习“有理数的减法”做铺垫。

三.学校与学生情况分析

双溪中学是靖安县的一所完全中学,在新的教学理念的指导下,旧的.教学方法和学习方法逐步淡化,而是培养学生的观察,比较,归纳及自主探索和合作交流能力。现在,班级中已初步形成合作交流和勇于探究的良好学风,学生间互相评价和师生互动的课堂气氛已逐步形成。

四.教学过程

(一)比较下列各对有理数的大小关系。

(1)7和4;

(2)—7和4;

(3)—3.5和—4;

(4)—1/2和—2/3。

师:用多媒体展示图片,组织复习引入新课。

(二)探索规律,得出法则:

课件演示:(设置六个探究活动,以原点为起点,小明在数轴上西右走动来表示情况,规定向东为正,向西为负)让学生体会两个数相加的规律。

(1)同向情况:

1.情景

探究

1:小明先向东运动5米,再向右运动3米,那么两次运动后的总结果是什么。

探究

2:小明先向西运动5米,再向西运动3米,那么两次运动后的总结果是什么。

2.探究问题:有理数两个负数相加的和该怎么确定符号。怎么确定绝对值。(学生主动思考,展开讨论)

3.猜一猜,说一说(分组概括两个负数的加法法则):

有理数的加法教案

作为一无名无私奉献的教育工作者,很有必要精心设计一份教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。怎样写教案才更能起到其作用呢?下面是小编帮大家整理的有理数的加法教案,欢迎大家借鉴与参考,希望对大家有所帮助。

有理数的加法教案 篇8

【目标预览】

知识技能:1、通过实例,了解有理数加法的意义,掌握有理数加法法则,并能运用法则进行计算;

2、在有理数加法法则的教学过程中,培养观察、比较、归纳及运算能力。 数学思考:1、正确地进行有理数的加法运算;

2、用数形结合的思想方法得出有理数加法法则。

解决问题:能运用有理数加法解决实际问题。

情感态度:通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来。

【教学重点和难点】

重点:了解有理数加法的意义,会根据有理数加法法则进行有理数加法计算; 难点:异号两数如何相加的法则。

【情景设计】

我们来看一个大家熟悉的`实际问题:

足球比赛中进球个数与失球个数是相反意义的量.若我们规定进球为“正”,失球为“负”。比如,进3个球记为正数:+3,失2个球记为负数:-2。它们的和为净胜球数:(+3)+(-2)学校足球队在一场比赛中的胜负情况如下:

(1)红队进了3个球,失了2个球,那么净胜球数是:(+3)+(-2)

(2)蓝队进了1个球,失了1个球,那么净胜球数是:(+1)+(-1)

这里,就需要用到正数与负数的加法。

下面,我们利用数轴一起来讨论有理数的加法规律。

【探求新知】

一个物体作左右运动,我们规定向左为负,向右为正。向右运动5m,可以记作多少?向左运动5m呢?

(1)如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是多少呢? 利用数轴演示(如图1),把原点假设为运动起点。

两次运动后物体从起点向右运动了8m。写成算式是:5+3=8①

利用数轴依次讨论如下问题,引导学生自己寻找算式的答案:

(2)如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少呢?

(3)如果物体先向右运动5m,再向左运动3m,那么两次运动后总的结果是多少呢?

(4)如果物体先向左运动5m,再向右运动3m,那么两次运动后总的结果是多少呢?

(5)如果物体先向左运动5m,再向右运动5m,那么两次运动后总的结果是多少呢?

(6)如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少呢?

(7)如果物体第一分钟向右(或向左)运动5m,第二分钟原地不动,那么两次运动后总的结果是多少呢?

总结:依次可得

(2)(-5)+(-3)=-8②

(3)5+(-3)=2③

(4)3+(-5)=-2④

(5)5+(-5)=0⑤

(6)(-5)+5=0⑥

(7)5+0=5或(-5)+0=-5⑦

观察上述7个算式,自己归纳出有理数加法法则:

1.同号两数相加,取相同的符号,并把绝对值相加;

2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

3.一个数同0相加,仍得这个数。

【范例精析】

例1计算下列算式的结果,并说明理由:

(1)(+4)+(+7);(2)(-4)+(-7);

(3)(+4)+(-7);(4)(+9)+(-4);

(5)(+4)+(-4);(6)(+9)+(-2);

(7)(-9)+(+2);(8)(-9)+0;

(9)0+(+2);(10)0+0.

学生逐题口答后,教师小结:

进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.

解:(1)(-3)+(-9) (两个加数同号,用加法法则的第2条计算)

=-(3+9)(和取负号,把绝对值相加)

=-12.

例3 足球循环比赛中,红队胜黄队4﹕1,黄队胜蓝队1﹕0,蓝队胜红队1﹕0,计算各队的净胜球数。

解:我们规定进球为“正”,失球为“负”。它们的和为净胜球数。

三场比赛中,红队共进4球,失2球,净胜球数为(+4)+(-2)=2;

黄队共进2球,失4球,净胜球数为(+2)+(-4)= -2;

蓝队共进1球,失1球,净胜球数为(+1)+(-1)=0;

【一试身手】

下面请同学们计算下列各题:

(1)(-0.9)+(+1.5);(2)(+2.7)+(-3); (3)(-1.1)+(-2.9);

全班学生书面练,四位学生板演,教师对学生板演进行讲评.

【总结陈词】

1、这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则.今后我们经常要用类似的思想方法研究其他问题。

2、应用有理数加法法则进行计算时,要同时注意确定“和”的符号,计算“和”的绝对值两件事。

【实战操练】

1.计算:

(1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);

(4)(+6)+(+9);(5)67+(-73);(6)(-84)+(-59);

(7)33+48;(8)(-56)+37.

2.计算:

(1)(-0.9)+(-2.7);(2)3.8+(-8.4);

(3)(-0.5)+3;(4)3.29+1.78;

(5)7+(-3.04);(6)(-2.9)+(-0.31);

(7)(-9.18)+6.18;(8)4.23+(-6.77);(9)(-0.78)+0.

3.计算:

4*.用“>”或“<”号填空:

(1)如果a>0,b>0,那么a+b ______0;

(2)如果a<0,b<0,那么a+b ______0;

(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;

(4)如果a<0,b>0,|a|>|b|,那么a+b ______0.

5*.分别根据下列条件,利用|a|与|b|表示a与b的和:

(1)a>0,b>0;(2) a<0,b<0;

(3)a>0,b<0,|a|>|b|;(4)a>0,b<0,|a|<|b|.

有理数的加法教案 篇9

(一)知识与技能目标

1、经历探索有理数加法法则的过程,理解有理数的加法法则。

2、运用有理数加法法则熟练进行整数加法运算。

(二)过程与方法目标

1、在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。

2、在探索过程中感受数形结合和分类讨论的数学思想。

3、渗透由特殊到一般的唯物辩证法思想

(三)情感态度与价值观目标

(1)通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。

(2)让学生体会到数学知识于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识。

(3)培养学生合作意识,体验成功,树立学习自信心。

二、教学重点、难点:

重点:

理解和运用有理数的加法法则难点:理解有理数加法法则,尤其是理解异号两数相加的法则 三、教学组织与教材处理:

在教学过程中一如既往的开展“新、行、省、信”四字教育模式的教学。新:创设新的问题情境(足球净胜球数)、开展新的学习方式(自主、合作、交流)、进行新的评价体系(个人评价、教师评价与小组评价相结合);行:在教师的启发引导下自主、合作探究新知(有理数的`加法法则),教师关注学生是否积极思考问题(几组有理数加法的符号与绝对值特征)、是否主动参与讨论(同号与异号的特征)、是否敢于发表自己的见解(有理数加法法则的概括);省:在特殊实例的基础上观察、归纳、概括有理数的加法法则,在实例讲解和自主练习的基础上总结心得、反省得失(如:解后思)。信:在本节课的探究法则与运用法则中体验成功,增添学习兴趣,树立学习自信心(如在教师用数带正号球的方法得出(+2)+(+3)= +5后,学生按照此思路可以很快得出(-2)+(-3)等其它情形。又如以口答形式判断几组有理数加法的和的符号和在最后以“挑战老师”的形式判断一句话的正误等等)。同时本节课在运用“正负抵消”和数轴探讨有理数法则时,教师只对第一个或前两个进行指导和示范,其它的留给学生独立得出或合作完成。另外利用多媒体来辅助教学,使教学内容直观形象化,使学生在比较真实的环境里面体验数学的生活性。

四、教学流程

(一)引入新知---新师播放一段世界杯的音乐,让学生感受激情,再问“大家知道今年世界杯的冠军得主是谁?”学生回答后师给与评价,然后出示“净胜球”问题:凯旋足球队第一场比赛赢了1个球,第二场比赛输了1个球。该队这两场比赛的净胜球数是多少?学生回答后教师引导学生用数学式子表示:把赢1个球记为“+1”,输1个球记为“-1” ,净胜球数应是(+1)+(-1) =0。师再问:如果该队第一场比赛输1个球,第二场比赛赢1个球.那么该队这两场比赛的净胜球数为多少?师引导学生用(-1) + (+1) =0的式子说明。 (二)探究新知---行

1、师:同学们今天我们借助这两个式子来探讨有理数的加法。为了更形象的说明问题,我们用 1个 表示 +1,用 1个 表示 -1,那么就表示0。

2、师:首先我们一起来计算(+2)+(+3)。教师演示:先出现两个带正号的球,再出现三个带正号的球,用方框框住总共有五个带正号的球,也就是说(+2)+(+3)= +5。师问:聪明的同学们能告诉我(-2)+(-3)等于多少吗?教师先让学生思考再回答,教师演示过程,并给与积极评价。在前两例的基础上再启发学生思考:(-3)+2,3+(-2),(-4) + 4三种情形。(注:此三例关键是“正负抵消”,教师教学时引导学生观察并运用这个思想)。

3、师:同学们,其实我们还可以用数轴来表示刚才这几道题的运算过程。出示数轴,并规定正负方向。师先举例说明:先向西移动2个单位,再向西移动3个单位,则一共向西移动了5个单位。所以:(-2)+(-3)=-5。师然后让学生用数轴的方法运算(-3)+2,3+(-2),(-4) + 4三个式子。(注:学生在表示(-3)+2的移动过程时对于+2可能不能正确表示。师应强调加法是“相继”活动的合并,教学时可让学生先想想再决定到底是从原点出发还是从-3这个点出发。对于非常正确的见解,师给与积极评价。)

(三)发现新知---省

1、教师引导学生观察刚才的五个例子:

问:两个有理数相加,和的符号怎样确定?和的绝对值怎样确定?师先让学生独立思考,再小组讨论。在学生发表见解时应肯定他们朴素的语言,同时教师引导学生先把他们分成三类:同号类、异号类、相反数类,再去观察他们加数与和的符号和绝对值特征。

2、师生共同得出有理数加法法则

同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并把较大的绝对值减去较小的绝对值;相反数相加,和为零。师问:一个数同0相加?师生得出仍得这个数。师引导学生记一记。

(四)运用新知---信 1、范例讲解:

例1 计算下列各题:

①180+(-10);

②(-10)+(-1);

③5+(-5);

④ 0+(-2).

教师引导学生先观察符号特征,再教师示范写出过程。

解:(1)180+(-10)(异号型 ) =+(180-10)(取绝对值较大的数的符号, =170 并用较大的绝对值减去较小的绝对值)

②(-10)+(-1) (同号型) =-(10+1) (取相同的符号,并把绝对值相加)对于③④ 小题,可以让学生口答。

2、解后思:

教师引导学生反思刚才做题时的基本思路。教师在学生回答的基础上提炼为三句话: ①确定类型、②确定符号、③确定绝对值。

3、说一说

(口答)确定下列各题中的符号,并说明理由:

(1) (+5)+(+ 7); (2) (- 10) +(- 3) (3) (+ 6)+(-5)

(4) (+ 3)+(-8)

注:此题意在强化对有理数加法的符号判断,特别是异号的情形着重反馈矫正 4、练一练

1、计算下列各式:(1) (-25)+(-7); (2)(-13)+5;(3) (-23)+0; (4)45+(-45)。

2、土星表面的夜间平均温度为-150度,白天比夜间高27度,那么白天的平均温度是多少?注:此两题意在对有理数加法法则的巩固和引导学生运用有理数的加法解决实际问题。第一题教师先让学生独立完成,并请四个学生演板。做完后小组之间开展互评,正误怎样?有什么值得改 进的地方?对于第二题教师请男女两个同学比赛进行演板,师给与评价。

5、想一想

请根据 式子(-4)+3,举出一个恰当的生活情境;(聪明的你能举出多少种新情境?)注:此例意在引导学生关注“生活中的数学”。对于学生有创意的情境师应给与积极评价。(符合此式子的情境有很多,如:温度变化问题、足球净胜球问题、方向行走问题、收入支出问题、水位涨落问题等等)

(五)反省新知---谈一谈 我学到了什么?

教师引导学生自我反省、自我评价。 师生共同总结:1、有理数的加法法则,2、运算时的基本思路。

(六)挑战老师

师说:通过今天的学习,老师认为:“ 两个有理数相加,和一定大于其中一个加数”。老师的说法正确吗?请聪明的你举例说明。

(七)超越自我

分别在右图的圆圈内填上彼此不相等的数,使得 条线上的数之和为零,你有几种填法?

(八)布置作业。

附:“新、行、省、信”

------------我的四字教育法

一、“新”

1、新的教学理念(“春风不让一木枯”);

2、新的学习方式(“自主、合作、交流、探究”);

3、新的评价体系(制定《成长档案袋》内设“单元知识总结”、“自己独特的解法”、“提出挑战性问题”、“探究性活动记录”、“自我评价与小组评价”,从而动态、全方位评价学生)。

二、“行” 1、有品行(引导学生养成良好的数学学习习惯和培养良好的情感与价值观); 2、有行动(培养学生主动探究、参与合作和交流的意识)。

有理数的加法教案 篇10

一、教学内容

《有理数的加法》是北师大版七年级数学上册第二章《有理数及其运算》第四节课的内容,这节课的内容应两个课时完成。本课时是本节内容的第一课时,依据教材的安排本节课应是让学生理解有理数的加法法则和运算律,最终熟练地进行整数加法运算,并能用运算律简化运算。

在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。

二、设计理念

七年级年龄段的学生思维活跃、求知欲强、有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,又刚从小学升上初中三周时间,人人都自信满满,摩拳擦掌,准备大施拳脚,因此我采用探究式的学习方法,以“问题串”引领整个课堂,请同学们通过动脑、计算、分析得出结论,并利用组间游戏帮助学生理解法则,运用法则。

三、教学目标与重难点

目标:1.使学生掌握有理数加法法则,并能运用法则进行计算;

2.让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;

3. 让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。

重点:会用有理数加法法则进行运算.

难点:异号两数相加的法则.

四、学情分析

1.学生非常熟悉正数加正数,正数加零的情况。

2.有理数的分类、数轴、绝对值的相关知识已经掌握。

3.学生善于形象思维,思维活跃,能积极参与讨论。

五、教学策略

1.将本节课的教学内容设计成六个重要问题,引导学生深层次的思考;

2.由学生自己举出生活中的具体实例,认识到运算的作用,加深对运算意义的理解;

3.在教学过程中,将每一个环节的要点及时归纳,并准确地表达,帮助学生构建知识体系。

六、教学流程

1.回顾旧知,启发思维

展示课件上的三个问题,请同学们思考并回答。

(1)有理数是怎么分类的?

(2)有理数的绝对值是怎么定义的?

(3)下列各组数中,哪一个数的绝对值大?

7和4; -7和4; 7和-4; -7和-4

【设计意图】回顾与本节课有关的概念和性质,为新课引入进行铺垫。

2.创设情境 引入课题

问题一:两个有理数相加,有多少种不同的情形?

答:正+正,负+负,正+负,正+0,负+0,0+0.

【设计意图】强化学生分类讨论的意识,明确研究数学问题一般所应采取的具体步骤。同时也增强了孩子们学习的信心,因为在六种不同的情况中,学生们四种都已经熟练掌握,仅剩两种需要攻克。

问题二:你能举出需要运用有理数加法的知识去解决的生活实例吗?

请同学们举自己熟悉的例子:①西安夜间平均气温为16 摄氏度,白天的平均温度比夜间高9摄氏度,那么白天的平均温度是多少?②土星表面的夜间平均气温为-150摄氏度,白天比夜间高27摄氏度,那么白天的平均温度是多少摄氏度?(多媒体展示题目)

师:同学们已经有了研究有理数加法运算的准备知识了。今天同学们有信心和我一同当回“研究生”共同研究有理数的加法运算吗?

(出示课题)

【设计意图】体现了数学源于生活,体会学习有理数加法的必要性,激发学生探究新知的兴趣.同时肯定学生的知识准备,树立学生进一步学习的'信心,激发学生的斗志,让学生尽快参与到教学中来,进一步体会到自己是课堂的主人。

(二)分析问题探究新知

问题三:你能根据同学们所举的例子总结出正数+负数、负数+负数的运算规律吗?

学生们各抒己见,总结法则。

1、 同号两数相加,取相同的符号,并把绝对值相加。

2、 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数 的两个数相加得0。

3、 一个数同0相加,仍得这个数

老师总结口诀:“同号相加一边倒,异号等距零正好,异号不等‘大’减‘小’,符号跟着‘大’的跑”。

【设计意图】感受两个有理数相加的各种情况。用表格的形式展示有理数加法的所有可能情况,使学生体会数学思维的规律性和严密性,感受分类和归纳的数学思想方法。借助于生活中的实例,使学生亲身参加探索发现,主动的获取知识和技能,直观感受有理数的加法法则。鼓励学生用自己的语言概括法则,提高学生的概括能力和语言表达能力

(三)运用新知深入体会

例1计算(-3)+(-9).

分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).

解:(-3)+(-9)=-12.

分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对

解题时,先确定和的符号,后计算和的绝对值.

课堂练习:

1.计算(口答)

(1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);

(5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;

2.计算

(1)5+(-22); (2)(-1.3)+(-8)

(3)(-0.9)+1.5; (4)2.7+(-3.5)

3.用“>”或“<”填空:

(1)如果a>0,b>0,那么a+b____0;

(2) 如果a<0,b<0,那么a+b____0;

(3) 如果a>0,b|b|,那么a+b____0;

(4) 如果a0, |a|<|b|,那么a+b____0;

【设计意图】帮助学生熟悉法则,并养成“算必有据”的习惯。更重要的是渗透了研究一般与特殊关系的思想。

问题四:你能尝试着使用数学语言将有理数加法法则表示出来吗?

(1)如果a>0,b>0,那么a+b=+(|a|+|b|)

(2) 如果a<0,b<0,那么a+b=-(|a|-|b|)

(3) 如果a>0,b|b|,那么a+b=+(|a|-|b|)

(4) 如果a0, |a|<|b|,那么a+b=-(|b|-|a|)

(5)a+0=a.

【设计意图】有意识培养学生使用数学表达的能力,将数学书写渗透到每一节课当中。

(四)延伸拓展敢于挑战

问题五:和一定大于加数吗?和与两个加数这三者之间的有什么大小关系?

问题六:小学学过的运算律是否适用于有理数的加法?

【设计意图】由课堂延伸到课外,不仅为下节课做好了铺垫,也给学有余力的同学留下了无限的思考空间。

(五)归纳总结感受思想

(1)本节课所学的有理数的加法法则是什么?在应用时应注意哪些问题?

(2)本节课你学习到了哪些数学思想方法?

【设计意图】由学生总结,归纳反思,加深对知识的理解,并且能熟练运用所学知识解决问题及养成归纳总结的习惯和语言表达的能力。

(六)布置作业

(1)P56 习题1、3

(2)请同学们回家用有理数牌和父母进行有理数加法运算比赛。

【设计意图】充分发挥家庭教育资源,让学生在快乐的游戏中达到熟练的程度。

七、设计说明

1.通过“问题串”的设置,激发兴趣,引起学生深层次的思考;

2.通过“互举例子”、“小组竞赛”两个活动,鼓励学生主动参与活动。

3.通过法则的符号化 ,促进学生数学语言的形成,数学表示能力的提升。

4.在活动中注重运用态势、语言对学生进行即兴评价,在整个评价的设计中安排多维评价:既关注学生合作交流的意识和能力、又关注学生数学思维能力与发展水平、还关注学生发现问题和解决问题的能力。

有理数的加法教案 篇11

【教学目标】

1. 通过学习,能感受到数学知识来源于生活又可应用于实际生活,激发学习的兴趣。

2.通过探索,能归纳总结出有理数加法法则,理解有理数加法的意义渗透分类思想。

3.掌握有理数加法法则,并能准确地进行有理数加法运算。

【学习重点、难点】

重点:了解有理数加法的意义,会根据有理数加法法则进行有理数加法计算;

难点:异号两数如何相加的法则。

【学习过程】

一、 预习自学:

1.蛋糕店上半年挣5万,下半年挣3万,请问一年共挣多少钱?

2.蛋糕店上半年赔5万,下半年赔3万,请问一年共挣多少钱?

3.蛋糕店上半年挣5万,下半年赔3万,请问一年共挣多少钱?

4.蛋糕店上半年赔5万,下半年挣3万,请问一年共挣多少钱?

5.蛋糕店上半年挣5万,下半年赔5万,请问一年共挣多少钱?

6.蛋糕店上半年赔5万,下半年挣0万,请问一年共挣多少钱?

请你列式计算,并引导学生对前面的七个加法运算进行合理的分类探讨:和的符号怎样确定?和的绝对值怎样确定?(小组讨论展示)

二、 教师点拨

知识点一:引导学生对前面的七个加法运算进行合理的分类

同号两数相加: (+5)+(+3)= ______.(-5)+(-3)= ______

异号两数相加:(+5)+(-3)= ______;(-5)+(+3)= ______;

(+5)+(-5)=______

一数与零相加: (-5)+0=______;

知识点二:探讨:和的符号怎样确定?和的绝对值怎样确定?

结论:有理数加法法则:

1.同号两数相加,取相同的符号,并把绝对值相加。

2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

3.一个数同0相加,仍得这个数。

三.例题精讲;例1(学生自学,教师示范。注意解题步骤)

四、课堂练习;36页随堂练习与习题(小组展示交流)

五、当堂检测;

1.用生活中的事例说明下列算是的意义,并计算出结果:

(-2)+(-3);(-3)+2

2.有理数加法法则:

绝对值不相等的两数相加,取绝对值的加数的符号,并用较大的绝对值较小的绝对值. 互为相反数的两个数相加得.

3.计算:(+15)+(-7);(-39)+(-21);

(-37)+22;(-3)+(+3)

有理数的加法教案 篇12

教学目标

1、知识目标:借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性,会判断一个数是正数还是负数.

2、能力目标:能应用正负数表示生活中具有相反意义的量.

3、情感态度:让学生了解有关负数的历史、体会负数与实际生活的联系.教学重难点

重点:

理解有理数的意义.

难点:

能用正负数表示生活中具有相反意义的量.

教学过程

一、创设情境、提出问题

某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基础分均为0分.两个队答题情况见书上第23页.

二、分析探索、问题解决

分组讨论扣的分怎样表示?

用前面学的数能表示吗?

数怎么不够用了?

引出课题.

讲授正数、负数、有理数的定义.

用负数表示比“0”低的数,如:-10,读作负10,表示比0低10分的数.启发学生再从生活中例举出用负数表示具有相反意义的数.

三、巩固练习

1、用正数或负数表示下列各题中的数量:

(1)如果火车向东开出400千米记作+400千米,那么火车向西开出4000千米,记作______;

(2)球赛时,如果胜2局记作+2,那么-2表示______;

(3)若-4万表示亏损4万元,那么盈余3万元记作______;

(4)+150米表示高出海平面150米,低于海平面200米应记作______.

分析:用正、负数可分别表示具有相反意义的量,通常高于海平面的高度用正数表示,低于海平面的高度用负数表示;完全相反的两个方向,一个方向定为用正数表示,则另一个方向用负数表示;如运进与运出,收入与支出,盈利与亏损,买进与卖出,胜与负等都是具有相反意义的量.

2、下面说法中正确的是().

a.“向东5米”与“向西10米”不是相反意义的量;

b.如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;

c.如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;

d.若将高1米设为标准0,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米.

三、小结回顾、纳入体系

学生交流回顾、讨论总结,教师补充如下:

概念:正数、负数、有理数.

分类:有理数的分类:两种分法.

应用:有理数可以用来表示具有相反意义的量.

有理数的加法教案 篇13

教学目标:

1、使学生掌握有理数加法的运算律,并能运用加法运算律简化运算。

2、培养学生观察、比较、归纳及运算能力。

重点:有理数加法运算律及其运用。

重点:灵活运用运算律

教学过程:

一、创设情境,引入新课

1、小学时已学过的加法运算律有哪几条?

2、猜一猜:在有理数的加法中,这两条运算律仍然适用吗?

3、(1)计算30+(-20)=__________=______,-20+30=___________=_____;

(2)[8+(-5)]+(-4)=_______=______, 8+[(-5)+(-4)]=_______=______。

二、讲授新课

教师:你会用文字表述加法的两条运算律吗?你会用字母表示加法的这两条运算律吗?

(学生回答省略)

师生共同归纳:加法交换律:两个数相加,交换加数的位置,和不变。 即:a+b=b+a

加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。即(a+b)+c=a+(b+c)

讲解例3

教师:例3中是怎样使计算简化的?这样做的根据是什么?(请两位同学起来回答)

三、巩固知识

教师:例4中用了两种方法,比较两种解法,哪种方法比较好?解法2中使用了哪些运算律?

师生共同得出:解法2比较好,因为它的运算量比较小。解法2中使用了加法交换律和加法结合律。

四、总结

本节课主要学习有理数加法运算律及其运用,主要用到的思想方法是类比思想,需要注意的是:有理数的加法运算律与小学学习的运算律相同,运用加法运算律的目的为了简化运算。解题技巧是将正数分别相加,再把负数分别相加,然后再把它们的和相加。

五、布置作业

有理数的加法教案 篇14

1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;

2.能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;

3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;

4.通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;

5.本节课通过行程问题说明有理数的加法法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。

重点、难点分析

重点:是依据有理数的加法法则熟练进行有理数的加法运算。

难点:是有理数的加法法则的理解。

(1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。

(2)具体运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与0相加。

(3)如果是同号相加,取相同的符号,并把绝对值相加。如果是异号两数相加,应先判别绝对值的大小关系,如果绝对值相等,则和为0;如果绝对值不相等,则和的符号取绝对值较大的加数的符号,和的绝对值就是较大的绝对值与较小的绝对值的差。一个数与0相加,仍得这个数。

知识结构

教法建议

1.对于基础比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、绝对值等知识。

2.有理数的加法法则是规定的,而教材开始部分的行程问题是为了说明加法法则的合理性。

3.应强调加法交换律a+b=b+a中字母a、b的任意性。

4.计算三个或三个以上的加法算式,应建议学生养成良好的运算习惯。不要盲目动手,应该先仔细观察式子的特点,深刻认识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。

5.可以给出一些类似两数之和必大于任何一个加数的判断题,以明确由于负数参与加法运算,一些算术加法中的正确结论在有理数加法运算中未必也成立。

6.在探讨导出有理数的加法法则的行程问题时,可以尝试发挥多媒体教学的作用。用动画演示人或物体在同一直线上两次运动的过程,让学生更好的理解有理数运算法则。

有理数的加法教案 篇15

教学目标

1、知识目标:借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性,会判断一个数是正数还是负数. 2、能力目标:能应用正负数表示生活中具有相反意义的量. 3、情感态度:让学生了解有关负数的历史、体会负数与实际生活的联系.教学重难点

重点:

理解有理数的意义.

难点:

能用正负数表示生活中具有相反意义的量.教学过程

一、创设情境、提出问题

某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基础分均为0分.两个队答题情况见书上第23页.

二、分析探索、问题解决

分组讨论扣的分怎样表示?

用前面学的数能表示吗?

数怎么不够用了?

引出课题.

讲授正数、负数、有理数的定义.

用负数表示比“0”低的数,如:-10,读作负10,表示比0低10分的数.启发学生再从生活中例举出用负数表示具有相反意义的数.三、巩固练习

1、用正数或负数表示下列各题中的数量:

(1)如果火车向东开出400千米记作+400千米,那么火车向西开出4000千米,记作______;

(2)球赛时,如果胜2局记作+2,那么-2表示______;

(3)若-4万表示亏损4万元,那么盈余3万元记作______;

(4)+150米表示高出海平面150米,低于海平面200米应记作______.分析:用正、负数可分别表示具有相反意义的量,通常高于海平面的高度用正数表示,低于海平面的高度用负数表示;

完全相反的.两个方向,一个方向定为用正数表示,则另一个方向用负数表示;如运进与运出,收入与支出,盈利与亏损,买进与卖出,胜与负等都是具有相反意义的量.

2、下面说法中正确的是().

a.“向东5米”与“向西10米”不是相反意义的量;

b.如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;

c.如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;

d.若将高1米设为标准0,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米.

三、小结回顾、纳入体系

学生交流回顾、讨论总结,教师补充如下:

概念:正数、负数、有理数.

分类:有理数的分类:两种分法.

应用:有理数可以用来表示具有相反意义的量.

有理数的加法教案 篇16

教学目标

1、理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算;

2、通过把减法运算转化为加法运算,向学生渗透转化思想,通过有理数的减法运算,培养学生的运算能力。

3、通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。

教学建议

(一)重点、难点分析

本节重点是运用有理数的减法法则熟练进行减法运算。解有理数减法的计算题需严格掌握两个步骤:首先将减法运算转化为加法运算,然后依据有理数加法法则确定所求结果的符号和绝对值。理解有理数的减法法则是难点,突破的关键是转化,变减为加。学习中要注意体会:小学遇到的小数减大数不会减的.问题解决了,小数减大数的差是负数,在有理数范围内,减法总可以实施。

(二)知识结构

(三)教法建议

1、教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法。有理数的加法和减法,当引进负数后就可以统一用加法来解决。

2、不论减数是正数、负数或是零,都符合有理数减法法则。在使用法则时,注意被减数是永不变的。

3、因为任何减法运算都可以统一成加法运算,所以我们没有必要再规定几个带有减法的运算律,这样有利于知识的巩固和记忆。

4、注意引入负数后,小的数减去大的数就可以进行了,其差可用负数表示。

教学设计示例:

有理数的减法

一、素质教育目标

(一)知识教学点

1、掌握有理数的减法法则。

2、进行有理数的减法运算。

(二)能力训练点

1、通过把减法运算转化为加法运算,向学生渗透转化思想。

2、通过有理数减法法则的推导,发展学生的逻辑思维能力。

3、通过有理数的减法运算,培养学生的运算能力。

(三)德育渗透点

通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。

(四)美育渗透点

在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美。

二、学法引导

1、教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动。

2、学生学法:探索新知→归纳结论→练习巩固。

三、重点、难点、疑点及解决办法

1、重点:有理数减法法则和运算。

2、难点:有理数减法法则的推导。

四、课时安排

1课时

五、教具学具准备

电脑、投影仪、自制胶片。

六、师生互动活动设计

教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决。

七、教学步骤

(一)创设情境,引入新课

1、计算(口答)(1);(2)-3+(-7);

(3)-10+(+3);(4)+10+(-3)。

2、由实物投影显示课本第42页本章引言中的画面,这是北京冬季里的一天,白天的最高气温是10℃,夜晚的最低气温是-5℃。这一天的最高气温比最低气温高多少?

教师引导学生观察:

生:10℃比-5℃高15℃。

师:能不能列出算式计算呢?

生:10-(-5)。

师:如何计算呢?

教师总结:这就是我们今天要学的内容。(引入新课,板书课题)

【教法说明】

1、题目既复习巩固有理数加法法则,同时为进行有理数减法运算打基础。2题是一个具体实例,教师创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课课题—有理数的减法。

(二)探索新知,讲授新课

师:大家知道10-3=7。谁能把10-3=7这个式子中的性质符号补出来呢?

生:(+10)-(+3)=+7。

师:计算:(+10)+(-3)得多少呢?

生:(+10)+(-3)=+7。

师:让学生观察两式结果,由此得到:

师:通过上述题,同学们观察减法是否可以转化为加法计算呢?生:可以。

师:是如何转化的呢?

生:减去一个正数(+3),等于加上它的相反数(-3)。

【教法说明】

教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,自己认识减法可以转化为加法计算。

2、再看一题,计算(-10)-(-3)。

教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与(-3)相加会得到-10,那么这个数是谁呢?

生:-7即:(-7)+(-3)=-10,所以(-10)-(-3)=-7。教师给另外一个问题:计算(-10)+(+3)。

生:(-10)+(+3)=-7。

教师引导、学生观察上述两题结果,由此得到:

教师进一步引导学生观察(2)式;你能得到什么结论呢?

生:减去一个负数(-3)等于加上它的相反数(+3)。

教师总结:由(1)、(2)两式可以看出减法运算可以转化成加法运算。

有理数的加法教案 篇17

教学目标

1.了解有理数加法的意义,理解有理数加法法则的合理性;

2.能运用有理数加法法则,正确进行有理数加法运算;

3.经历探索有理数加法法则的过程,感受数学学习的方法;

4.通过积极参与探究性的数学活动,体验数学来源于实践并为实践服务的思想,激发学生的学习兴趣,同时培养学生探究性学习的能力.

教学重点

能运用有理数加法法则,正确进行有理数加法运算.

教学难点

经历探索有理数加法法则的过程,感受数学学习的方法.

教学过程(教师)

一、创设情境

小学里,我们学过加法和减法运算,引进负数后,怎样进行有理数的'加法和减法运算呢?

1.试一试

甲、乙两队进行足球比赛.如果甲队在主场赢了3球,在客场输了2球,那么两场比赛后甲队净胜1球.

你能把上面比赛的过程及结果用有理数的算式表示出来吗?

做一做:比赛中胜负难料,两场比赛的结果还可能有哪些情况呢?动动手填表:

2.我们知道,求两次输赢的总结果,可以用加法来解答,请同学们先个人研究,后小组交流.

你还能举出一些应用有理数加法的实际例子吗?

二、探究归纳

1.把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,这时笔尖停在“”的位置上.

用数轴和算式可以将以上过程及结果分别表示为:

算式:________________________

2.把笔尖放在数轴的原点,沿数轴先向右移动3个单位长度,再向左移动2个单位长度,这时笔尖停在“1”的位置上.

用数轴和算式可以将以上过程及结果分别表示为:

算式:________________________

3.把笔尖放在数轴的原点,沿数轴先向左移动3个单位长度,再向左移动2个单位长度,这时笔尖的位置表示什么数?

请用数轴和算式分别表示以上过程及结果:

算式:________________________

仿照上面的做法,请在数轴上呈现下面的算式所表示的笔尖运动的过程和结果.

4.观察、思考、讨论、交流并得出有理数加法法则.

讨论:两个有理数相加时,和的符号及绝对值怎样确定?你能找到有理数相加的一般方法吗?

《2.5有理数的加法与减法》课时练习

1.七年级(3)班同学李亮在一次班级运动会上参加三级跳远比赛,共跳了5次,他第一次跳了6m,第二次比第一次多跳0.1m,第三次比第二次少跳0.3m,第四次比第三次多跳0.5m,第五次比第四次少跳了0.4m.他那一次跳得最远?成绩是多少?

2.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.

(1)通过计算说明小虫是否回到起点P.

(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.

2.5有理数的加法与减法:同步练习

1.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:km)

+17,-9,+7,-15,-3,+11,-6,-8,+5,+16

(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?

(2)养护过程中,最远外离出发点有多远?

(3)若汽车耗油量为0.09升/km,则这次养护共耗油多少升?

有理数的加法教案 篇18

教学目标:

1、知识与技能: 理解有理数加法的运算律,能熟练地运用运算律简化有理数加法的运算,能灵活运用有理数的加法解决简单实际问题。

2、过程与方法: 经过有理数加法运算律的探索过程,了解加法的运算律,能用运算律简化运算。

重点、难点:

1、重点:运算律的理解及合理、灵活的运用。

2、难点:合理运用运算律。

教学过程:

一、创设情景,导入新课

1、叙述有理数的加法法则。

2、有理数加法与小学里学过的数的加法有什么区别和联系?

答:进行有理数加法运算,先要根据具体情况正确地选用法则,确定和的符号,这与小学里学过的数的加法是不同的;而计算和的绝对值,用的`是小学里学过的加法或减法运算。

二、合作交流,解读探究

1、计算下列各题,并说明是根据哪一条运算法则?

(1) (-9.18)+6.18; (2) 6.18+(-9.18); (3) (-2.37)+(-4.63)

2、计算下列各题:

(1) +(-4); (2) 8+;

(3) +(-11); (4) (-7)+;

(5) +(+27); (6) (-22)+.

通过上面练习,引导学生得出:

交换律两个有理数相加,交换加数的位置,和不变。

用代数式表示上面一段话:

a+b=b+a

运算律式子中的字母a,b表示任意的一个有理数,可以是正数,也可以是负数或者零.在同一个式子中,同一个字母表示同一个数。

结合律三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.

用代数式表示上面一段话:

(a+b)+c=a+(b+c)

这里a,b,c表示任意三个有理数。

根据加法交换律和结合律可以推出:三个以上的有理数相加,可以任意交换加数的位置,也可以先把其中的几个数相加。

三、应用迁移,巩固提高

例(P22例3) 计算:

(1) 33+(-2)+7+(-8)

(2) 4.375+(-82)+( -4.375)

引导学生发现,在本例中,把正数与负数分别结合在一起再相加,有相反数的先把相反数相加;能凑整的先凑整;有分母相同的,先把同分母的数相加,计算就比较简便。

本例先由学生在笔记本上解答,然后教师根据学生解答情况指定几名学生板演,并引导学生发现,简化加法运算一般是三种方法:首先消去互为相反数的两数(其和为0),同号结合或凑整数。

例2(P23例4)

教师通过启发,由学生列出算式,再让学生思考,如何应用运算律,使计算简便。第一问可以让学生自已作行程示意图帮助理解,注意第一问和第二问的区别。

练习课本P.23练习:1、2

四、总结反思

本节课你有哪些收获?

五、作业

1、课本P27习题1.4A组第3、4题

2、课本P28习题1.4B组第12题

有理数的加法教案 篇19

教学目标:

1、知识与技能: 理解有理数加法的运算律,能熟练地运用运算律简化有理数加法的运算,能灵活运用有理数的加法解决简单实际问题。

2、过程与方法: 经过有理数加法运算律的探索过程,了解加法的运算律,能用运算律简化运算。

重点、难点:

1、重点:运算律的理解及合理、灵活的运用。

2、难点:合理运用运算律。

教学过程:

一、创设情景,导入新课

1、叙述有理数的加法法则。

2、有理数加法与小学里学过的数的加法有什么区别和联系?

答:进行有理数加法运算,先要根据具体情况正确地选用法则,确定和的.符号,这与小学里学过的数的加法是不同的;而计算和的绝对值,用的是小学里学过的加法或减法运算。

二、合作交流,解读探究

1、计算下列各题,并说明是根据哪一条运算法则?

(1) (-9.18)+6.18; (2) 6.18+(-9.18); (3) (-2.37)+(-4.63)

2、计算下列各题:

(1) +(-4); (2) 8+;

(3) +(-11); (4) (-7)+;

(5) +(+27); (6) (-22)+.

通过上面练习,引导学生得出:

交换律两个有理数相加,交换加数的位置,和不变。

用代数式表示上面一段话:

a+b=b+a

运算律式子中的字母a,b表示任意的一个有理数,可以是正数,也可以是负数或者零.在同一个式子中,同一个字母表示同一个数。

结合律三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.

用代数式表示上面一段话:

(a+b)+c=a+(b+c)

这里a,b,c表示任意三个有理数。

根据加法交换律和结合律可以推出:三个以上的有理数相加,可以任意交换加数的位置,也可以先把其中的几个数相加。

三、应用迁移,巩固提高

例(P22例3) 计算:

(1) 33+(-2)+7+(-8)

(2) 4.375+(-82)+( -4.375)

引导学生发现,在本例中,把正数与负数分别结合在一起再相加,有相反数的先把相反数相加;能凑整的先凑整;有分母相同的,先把同分母的数相加,计算就比较简便。

本例先由学生在笔记本上解答,然后教师根据学生解答情况指定几名学生板演,并引导学生发现,简化加法运算一般是三种方法:首先消去互为相反数的两数(其和为0),同号结合或凑整数。

例2(P23例4)

教师通过启发,由学生列出算式,再让学生思考,如何应用运算律,使计算简便。第一问可以让学生自已作行程示意图帮助理解,注意第一问和第二问的区别。

练习 课本P.23练习:1、2

四、总结反思

本节课你有哪些收获?

五、作业

1、课本P27习题1.4A组第3、4题

2、课本P28习题1.4B组第12题

有理数的加法教案 篇20

(一)知识与技能目标

1、经历探索有理数加法法则的过程,理解有理数的加法法则。

2、运用有理数加法法则熟练进行整数加法运算。

(二)过程与方法目标

1、在教师创设的熟悉情境与学生探索法则的过程中,通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。

2、在探索过程中感受数形结合和分类讨论的数学思想。

3、渗透由特殊到一般的唯物辩证法思想

(三)情感态度与价值观目标

(1)通过师生交流、探索,激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。

(2)让学生体会到数学知识于生活、服务于生活,培养学生对数学的热爱,培养学生运用数学的意识。

(3)培养学生合作意识,体验成功,树立学习自信心。

二、教学重点、难点:

重点:

理解和运用有理数的加法法则难点:理解有理数加法法则,尤其是理解异号两数相加的法则 三、教学组织与教材处理:

在教学过程中一如既往的开展“新、行、省、信”四字教育模式的教学。新:创设新的问题情境(足球净胜球数)、开展新的学习方式(自主、合作、交流)、进行新的评价体系(个人评价、教师评价与小组评价相结合);行:在教师的启发引导下自主、合作探究新知(有理数的加法法则),教师关注学生是否积极思考问题(几组有理数加法的符号与绝对值特征)、是否主动参与讨论(同号与异号的特征)、是否敢于发表自己的见解(有理数加法法则的概括);省:在特殊实例的基础上观察、归纳、概括有理数的加法法则,在实例讲解和自主练习的基础上总结心得、反省得失(如:解后思)。信:在本节课的探究法则与运用法则中体验成功,增添学习兴趣,树立学习自信心(如在教师用数带正号球的方法得出(+2)+(+3)= +5后,学生按照此思路可以很快得出(-2)+(-3)等其它情形。又如以口答形式判断几组有理数加法的和的符号和在最后以“挑战老师”的形式判断一句话的正误等等)。同时本节课在运用“正负抵消”和数轴探讨有理数法则时,教师只对第一个或前两个进行指导和示范,其它的留给学生独立得出或合作完成。另外利用多媒体来辅助教学,使教学内容直观形象化,使学生在比较真实的环境里面体验数学的生活性。

四、教学流程

(一)引入新知---新师播放一段世界杯的音乐,让学生感受激情,再问“大家知道今年世界杯的冠军得主是谁?”学生回答后师给与评价,然后出示“净胜球”问题:凯旋足球队第一场比赛赢了1个球,第二场比赛输了1个球。该队这两场比赛的净胜球数是多少?学生回答后教师引导学生用数学式子表示:把赢1个球记为“+1”,输1个球记为“-1” ,净胜球数应是(+1)+(-1) =0。师再问:如果该队第一场比赛输1个球,第二场比赛赢1个球.那么该队这两场比赛的净胜球数为多少?师引导学生用(-1) + (+1) =0的式子说明。

(二)探究新知---行

1、师:同学们今天我们借助这两个式子来探讨有理数的加法。为了更形象的说明问题,我们用 1个 表示 +1,用 1个 表示 -1,那么就表示0。

2、师:首先我们一起来计算(+2)+(+3)。教师演示:先出现两个带正号的球,再出现三个带正号的球,用方框框住总共有五个带正号的球,也就是说(+2)+(+3)= +5。师问:聪明的同学们能告诉我(-2)+(-3)等于多少吗?教师先让学生思考再回答,教师演示过程,并给与积极评价。在前两例的基础上再启发学生思考:(-3)+2,3+(-2),(-4) + 4三种情形。(注:此三例关键是“正负抵消”,教师教学时引导学生观察并运用这个思想)。

3、师:同学们,其实我们还可以用数轴来表示刚才这几道题的运算过程。出示数轴,并规定正负方向。师先举例说明:先向西移动2个单位,再向西移动3个单位,则一共向西移动了5个单位。所以:(-2)+(-3)=-5。师然后让学生用数轴的.方法运算(-3)+2,3+(-2),(-4) + 4三个式子。(注:学生在表示(-3)+2的移动过程时对于+2可能不能正确表示。师应强调加法是“相继”活动的合并,教学时可让学生先想想再决定到底是从原点出发还是从-3这个点出发。对于非常正确的见解,师给与积极评价。)

(三)发现新知---省

1、教师引导学生观察刚才的五个例子:

问:两个有理数相加,和的符号怎样确定?和的绝对值怎样确定?师先让学生独立思考,再小组讨论。在学生发表见解时应肯定他们朴素的语言,同时教师引导学生先把他们分成三类:同号类、异号类、相反数类,再去观察他们加数与和的符号和绝对值特征。

2、师生共同得出有理数加法法则

同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并把较大的绝对值减去较小的绝对值;相反数相加,和为零。师问:一个数同0相加?师生得出仍得这个数。师引导学生记一记。

有理数的加法教案 篇21

一、教学内容

《有理数的加法》是北师大版七年级数学上册第二章《有理数及其运算》第四节课的内容,这节课的内容应两个课时完成。本课时是本节内容的第一课时,依据教材的安排本节课应是让学生理解有理数的加法法则和运算律,最终熟练地进行整数加法运算,并能用运算律简化运算。

在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于这一节的学习。

二、设计理念

七年级年龄段的学生思维活跃、求知欲强、有比较强烈的自我意识,对观察、猜想、探索性的问题充满好奇,又刚从小学升上初中三周时间,人人都自信满满,摩拳擦掌,准备大施拳脚,因此我采用探究式的学习方法,以“问题串”引领整个课堂,请同学们通过动脑、计算、分析得出结论,并利用组间游戏帮助学生理解法则,运用法则。

三、教学目标与重难点

目标:

1.使学生掌握有理数加法法则,并能运用法则进行计算;

2.让学生亲身经历探究有理数加法法则的过程,深刻感受分类讨论、数形结合的思想,感受由具体到抽象、由特殊到一般的认知规律;

3.让学生通过研讨、分类、比较等方法的学习,培养归纳总结知识的能力。

重点:会用有理数加法法则进行运算.

难点:异号两数相加的法则.

四、学情分析

1.学生非常熟悉正数加正数,正数加零的情况。

2.有理数的分类、数轴、绝对值的相关知识已经掌握。

3.学生善于形象思维,思维活跃,能积极参与讨论。

五、教学策略

1.将本节课的教学内容设计成六个重要问题,引导学生深层次的思考;

2.由学生自己举出生活中的具体实例,认识到运算的作用,加深对运算意义的理解;

3.在教学过程中,将每一个环节的要点及时归纳,并准确地表达,帮助学生构建知识体系。

六、教学流程

1.回顾旧知,启发思维

展示课件上的三个问题,请同学们思考并回答。

(1)有理数是怎么分类的?

(2)有理数的绝对值是怎么定义的?

(3)下列各组数中,哪一个数的绝对值大?

7和4; -7和4; 7和-4; -7和-4

【设计意图】回顾与本节课有关的概念和性质,为新课引入进行铺垫。

2.创设情境 引入课题

问题一:两个有理数相加,有多少种不同的情形?

答:正+正,负+负,正+负,正+0,负+0,0+0.

【设计意图】强化学生分类讨论的意识,明确研究数学问题一般所应采取的具体步骤。同时也增强了孩子们学习的信心,因为在六种不同的情况中,学生们四种都已经熟练掌握,仅剩两种需要攻克。

问题二:你能举出需要运用有理数加法的知识去解决的生活实例吗?

请同学们举自己熟悉的例子:

①西安夜间平均气温为16 摄氏度,白天的'平均温度比夜间高9摄氏度,那么白天的平均温度是多少?

②土星表面的夜间平均气温为-150摄氏度,白天比夜间高27摄氏度,那么白天的平均温度是多少摄氏度?(多媒体展示题目)

师:同学们已经有了研究有理数加法运算的准备知识了。今天同学们有信心和我一同当回“研究生”共同研究有理数的加法运算吗?

(出示课题)

【设计意图】体现了数学源于生活,体会学习有理数加法的必要性,激发学生探究新知的兴趣。同时肯定学生的知识准备,树立学生进一步学习的信心,激发学生的斗志,让学生尽快参与到教学中来,进一步体会到自己是课堂的主人。

(二)分析问题探究新知

问题三:你能根据同学们所举的例子总结出正数+负数、负数+负数的运算规律吗?

学生们各抒己见,总结法则。

1、同号两数相加,取相同的符号,并把绝对值相加。

2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数 的两个数相加得0。

3、 一个数同0相加,仍得这个数

老师总结口诀:“同号相加一边倒,异号等距零正好,异号不等‘大’减‘小’,符号跟着‘大’的跑”。

【设计意图】感受两个有理数相加的各种情况。用表格的形式展示有理数加法的所有可能情况,使学生体会数学思维的规律性和严密性,感受分类和归纳的数学思想方法。借助于生活中的实例,使学生亲身参加探索发现,主动的获取知识和技能,直观感受有理数的加法法则。鼓励学生用自己的语言概括法则,提高学生的概括能力和语言表达能力

(三)运用新知深入体会

例1计算(-3)+(-9)

分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征)

解:(-3)+(-9)=-12

分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对

解题时,先确定和的符号,后计算和的绝对值

课堂练习:

1.计算(口答)

(1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);

(5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;

2.计算

(1)5+(-22); (2)(-1.3)+(-8)

(3)(-0.9)+1.5; (4)2.7+(-3.5)

3.用“>”或“<”填空:

(1)如果a>0,b>0,那么a+b____0;

(2) 如果a<0,b<0,那么a+b____0;

(3) 如果a>0,b|b|,那么a+b____0;

(4) 如果a0, |a|<|b|,那么a+b____0;

【设计意图】帮助学生熟悉法则,并养成“算必有据”的习惯。更重要的是渗透了研究一般与特殊关系的思想。

问题四:你能尝试着使用数学语言将有理数加法法则表示出来吗?

(1)如果a>0,b>0,那么a+b=+(|a|+|b|)

(2) 如果a<0,b<0,那么a+b=-(|a|-|b|)

(3) 如果a>0,b|b|,那么a+b=+(|a|-|b|)

(4) 如果a0, |a|<|b|,那么a+b=-(|b|-|a|)

(5)a+0=a.

【设计意图】有意识培养学生使用数学表达的能力,将数学书写渗透到每一节课当中。

(四)延伸拓展敢于挑战

问题五:和一定大于加数吗?和与两个加数这三者之间的有什么大小关系?

问题六:小学学过的运算律是否适用于有理数的加法?

【设计意图】由课堂延伸到课外,不仅为下节课做好了铺垫,也给学有余力的同学留下了无限的思考空间。

(五)归纳总结感受思想

(1)本节课所学的有理数的加法法则是什么?在应用时应注意哪些问题?

(2)本节课你学习到了哪些数学思想方法?

【设计意图】由学生总结,归纳反思,加深对知识的理解,并且能熟练运用所学知识解决问题及养成归纳总结的习惯和语言表达的能力。

(六)布置作业

(1)P56 习题1、3

(2)请同学们回家用有理数牌和父母进行有理数加法运算比赛。

【设计意图】充分发挥家庭教育资源,让学生在快乐的游戏中达到熟练的程度。

七、设计说明

1.通过“问题串”的设置,激发兴趣,引起学生深层次的思考;

2.通过“互举例子”、“小组竞赛”两个活动,鼓励学生主动参与活动。

3.通过法则的符号化 ,促进学生数学语言的形成,数学表示能力的提升。

4.在活动中注重运用态势、语言对学生进行即兴评价,在整个评价的设计中安排多维评价:既关注学生合作交流的意识和能力、又关注学生数学思维能力与发展水平、还关注学生发现问题和解决问题的能力。

有理数的加法教案 篇22

教学目标:

1通过学生身边可以尝试、探索的场景,经历有理数加法法则得出的过程,理解有理数加法法则的合理性。2能进行简单的有理数加法运算。3发展观察、归纳、猜测验证等能力。

重点难点:

重点:有理数加法法则的得出,和的符号的确定;难点:异号两数相加

教学过程

一激情引趣,导入新课

1我们早知道正有理数和零可以做加法运算,所有的有理数是否都可以进行加法运算呢?这就是我们这节课要研究的问题,先来分析一下,所有的有理数相加的时候有哪些情况呢?请你想一想

2从前有一个文盲记录家里的收入和支出的时候是这样的,用一颗红豆代表收入一文钱,用一颗黑豆代表支出一文钱,有一个月他发现记账的盒子里有10颗红豆6颗黑豆,他发现红豆比黑豆多了4颗,于是他不仅知道了这个月结余了4文钱还知道了自己这个月的收入和支出情况。我们可以用一个图形来表示他这种记账方式。“○”,“●”分别表红豆和黑豆。

,这个图形其实就是一个有理数的加法算式:(+10)+(-6)=+4下面我们借助数轴来理解有理数的加法运算。

二合作交流,探究新知

以原点为起点,规定向东的方向为正方向,向西的.方向为负方向,一个单位代表1千米

1同号两数相加

小亮从O点出发,先向西移动2个千米休息一会儿,再向西移动3个千米,两次走路的总效果等于从点O出发向_____走了_______千米,用式子表示为_______________.

从上,你发现了吗,同号两数相加结果的符号怎么确定?结果的绝对值怎么确定?请把你的发现填在下面的框里。

同号两数相加,取__________的符号,并把它们的_____________相加。

2异号两数相加

(1)小明先从点O出发,先向东走4千米,发现口袋里的钥匙丢了,急急忙忙掉头向西走了1千米,找到了掉在路边的钥匙,小明这两次走路的效果总等于从点O出发向___走了____千米,用式子表示为_________________________.

(2)小李先从点O出发,先向东走了1米,突然想起今天家里有事,赶紧掉头向西往家里走,走了3千米到达家中,小李两次走路的总效果等于等于吃哦从点O出发,向___走了

_____千米。用式子表达为_______________________.

从上面例子,你发现了异号两数怎么做吗?把你的结论填在下框中。

异号两数相加,绝对值不相等时,取__________________的符号,并用_________的绝对值

减去_______________的绝对值。

3一个数和零相加,以及互为相反数相加

(1)某个人第一批货获得利润3万元,第二批货物保本,这两批货物总的利润是多少万元?

(2)某人第一批货物的利润是5万元,第二批货物亏损5万元,这两批货物总的利润是多少?

从上问题,你发现了什么?把你的结论写在下框中,

互为相反数的两个相加得_______,一个数和零相加,任得____________________.

三应用迁移,拓展提高

例1计算(1)(-8)+(-12)(2)(-3.75)+(-0.25)

(3)(-5)+9(4)(–10)+7

例2计算(1)(-3)+(2)(-)+(-)

例3填空

(1)-7+____=0(2)(+)+______=-(3)____+(-)=(4)__+=

四课堂练习,巩固提高

P21

五反思小结巩固提高

有理数的加法法则有哪些?请你把它们写在下面:

1

2

3

4

六作业p24-25A组1-4B1

有理数的加法教案 篇23

【目标预览】

知识技能:1、通过实例,了解有理数加法的意义,掌握有理数加法法则,并能运用法则进行计算;

2、在有理数加法法则的教学过程中,培养观察、比较、归纳及运算能力。 数学思考:1、正确地进行有理数的加法运算;

2、用数形结合的思想方法得出有理数加法法则。

解决问题:能运用有理数加法解决实际问题。

情感态度:通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来。

【教学重点和难点】

重点:了解有理数加法的意义,会根据有理数加法法则进行有理数加法计算; 难点:异号两数如何相加的法则。

【情景设计】

我们来看一个大家熟悉的实际问题:

足球比赛中进球个数与失球个数是相反意义的量.若我们规定进球为“正”,失球为“负”。比如,进3个球记为正数:+3,失2个球记为负数:-2。它们的和为净胜球数:(+3)+(-2)学校足球队在一场比赛中的胜负情况如下:

(1)红队进了3个球,失了2个球,那么净胜球数是:(+3)+(-2)

(2)蓝队进了1个球,失了1个球,那么净胜球数是:(+1)+(-1)

这里,就需要用到正数与负数的加法。

下面,我们利用数轴一起来讨论有理数的加法规律。

【探求新知】

一个物体作左右运动,我们规定向左为负,向右为正。向右运动5m,可以记作多少?向左运动5m呢?

(1)如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是多少呢? 利用数轴演示(如图1),把原点假设为运动起点。

两次运动后物体从起点向右运动了8m。写成算式是:5+3=8①

利用数轴依次讨论如下问题,引导学生自己寻找算式的答案:

(2)如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少呢?

(3)如果物体先向右运动5m,再向左运动3m,那么两次运动后总的结果是多少呢?

(4)如果物体先向左运动5m,再向右运动3m,那么两次运动后总的结果是多少呢?

(5)如果物体先向左运动5m,再向右运动5m,那么两次运动后总的结果是多少呢?

(6)如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少呢?

(7)如果物体第一分钟向右(或向左)运动5m,第二分钟原地不动,那么两次运动后总的结果是多少呢?

总结:依次可得

(2)(-5)+(-3)=-8②

(3)5+(-3)=2③

(4)3+(-5)=-2④

(5)5+(-5)=0⑤

(6)(-5)+5=0⑥

(7)5+0=5或(-5)+0=-5⑦

观察上述7个算式,自己归纳出有理数加法法则:

1.同号两数相加,取相同的符号,并把绝对值相加;

2.绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;

3.一个数同0相加,仍得这个数。

【范例精析】

例1计算下列算式的结果,并说明理由:

(1)(+4)+(+7);(2)(-4)+(-7);

(3)(+4)+(-7);(4)(+9)+(-4);

(5)(+4)+(-4);(6)(+9)+(-2);

(7)(-9)+(+2);(8)(-9)+0;

(9)0+(+2);(10)0+0.

学生逐题口答后,教师小结:

进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.

解:(1)(-3)+(-9) (两个加数同号,用加法法则的第2条计算)

=-(3+9)(和取负号,把绝对值相加)

=-12.

例3 足球循环比赛中,红队胜黄队4﹕1,黄队胜蓝队1﹕0,蓝队胜红队1﹕0,计算各队的净胜球数。

解:我们规定进球为“正”,失球为“负”。它们的和为净胜球数。

三场比赛中,红队共进4球,失2球,净胜球数为(+4)+(-2)=2;

黄队共进2球,失4球,净胜球数为(+2)+(-4)= -2;

蓝队共进1球,失1球,净胜球数为(+1)+(-1)=0;

【一试身手】

下面请同学们计算下列各题:

(1)(-0.9)+(+1.5);(2)(+2.7)+(-3); (3)(-1.1)+(-2.9);

全班学生书面练,四位学生板演,教师对学生板演进行讲评.

【总结陈词】

1、这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则.今后我们经常要用类似的思想方法研究其他问题。

2、应用有理数加法法则进行计算时,要同时注意确定“和”的符号,计算“和”的绝对值两件事。

【实战操练】

1.计算:

(1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);

(4)(+6)+(+9);(5)67+(-73);(6)(-84)+(-59);

(7)33+48;(8)(-56)+37.

2.计算:

(1)(-0.9)+(-2.7);(2)3.8+(-8.4);

(3)(-0.5)+3;(4)3.29+1.78;

(5)7+(-3.04);(6)(-2.9)+(-0.31);

(7)(-9.18)+6.18;(8)4.23+(-6.77);(9)(-0.78)+0.

3.计算:

4*.用“>”或“<”号填空:

(1)如果a>0,b>0,那么a+b ______0;

(2)如果a<0,b<0,那么a+b ______0;

(3)如果a>0,b<0,|a|>|b|,那么a+b ______0;

(4)如果a<0,b>0,|a|>|b|,那么a+b ______0.

5*.分别根据下列条件,利用|a|与|b|表示a与b的和:

(1)a>0,b>0;(2) a<0,b<0;

(3)a>0,b<0,|a|>|b|;(4)a>0,b<0,|a|<|b|.

有理数的加法教案 篇24

教学目标

知识与技能:

掌握有理数加法法则,并能运用法则进行有理数加法的运算。

过程与方法:

1.经历有理数加法法则的探究过程,深刻感受分类讨论、数形结合的思想,由具体到抽象、由特殊到一般的认知规律;

2.动手、发现、分类、比较等方法的学习,培养归纳能力。

情感态度与价值观:

1.通过师生合作交流,学生主动参与探索获得数学知识,从而提高学习数学的积极性;

2.体会数学来源于生活,服务于生活,培养热爱数学的情感,体会数学的应用价值;

3.培养善于观察、勤于思考的学习习惯,树立合作意识,体验成功,提高学习自信心。

教学重点

有理数加法法则及运用

教学难点

异号两数相加法则

教具准备

powerpoint课件

课时安排

1课时

教学过程环节教师活动学生活动设计意图创设情境引入新课XX年6月11日至7月11日,第19届世界杯足球赛在南非举行。来自世界各国的32支球队为全世界的.球迷送上了一场完美的足球盛宴。

小组循环赛中,胜一场得3分,平一场得1分,负一场得0分,积分最多的两支队伍进入十六强。积分相同时,净胜球多者为胜。

以B组为例,进入十六强的是阿根廷和韩国。

国家赛胜平负得分阿根廷韩国希腊尼日利亚再以A组为例,A组积分榜,国家赛胜平负得分进球失球净胜球乌拉圭+40墨西哥+3-2南非+3-5法国+1-4师:从A组积分榜可以看出墨西哥和南非的积分相同,那么究竟应该确定哪个队进入十六强呢?此时则需要计算各队的净胜球数。你能列出计算各队净胜球数的算式吗?

学生看图表,思考问题。

学生列出计算净胜球数的算式。利用世界杯的例子,体现数学来源于生活,让学生体会学习有理数加法的必要性,更能激发学生的兴趣,体会学习有理数运算的必要性。环节教师活动学生活动设计意图探索新知

师:净胜球数的计算实际上涉及到有理数的加法。今天我们就来研究有理数的加法运算。

有理数的加法教案 篇25

教学目标

1,在现实背景中理解有理数加法的意义。

2,经历探索有理数加法法则的过程,理解有理数的加法法则。

3,能积极地参与探究有理数加法法则的活动,并学会与他人交流合作。

4,能较为熟练地进行有理数的加法运算,并能解决简单的实际间题。

5,在教学中适当渗透分类讨论思想

教学难点

异号两数相加

知识重点

和的符号的确定

教学过程

(师生活动)设计理念

设置情境

引入课题回顾用正负数表示数量的实际例子;

在足球比赛中,如果把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。若红队进4个球,失2个球,则红队的胜球数,可以怎样表示?蓝队的胜球数呢?

师:如何进行类似的有理数的加法运算呢?这就是我们这节课一起与大家探讨的问题。

(出示课题)让学生感受到在实际问题中做加法运算的数可能超出正数的范围,体会学习有理数加法的必要性,激发学生探究新知的兴趣。

分析问题

探究新知如果是球队在某场比赛中上半场失了两个球,下

半场失了3个球,那么它的得胜球是几个呢?算式应该

怎么列?若这支球队上半场进了2个球,下半场失了3个球,又如何列出算式,求它的得胜球呢?

(学生思考回答)

思考:请同学们想想,这支球队在这场比赛中还可

能出现其他的什么情况?你能列出算式吗?与同伴交流。

学生相互交流后,教师进一步引导学生可以把两个有理数相加归纳为同号两数相加、异号两数相加、一个数同零相加这三种情况。

2,借助数轴来讨论有理数的加法。I

一个物体向左右方向运动,我们规定向左运动为负,向右为正,向右运动5m,记作5m,向左运动5m,记作—5m。

(1)(小组合作)把我们已经得出的几种有理数相加的情况在数轴上用运动的'方向表示出来,并求出结果,解释它的意义。

(2)交流汇报。(对学习小组的汇报结果,数轴用实物投影仪展示,算式由教师写在黑板上)

(3)说一说有理数相加应注意什么?(符号,绝对值)能用自己的语言归纳如何相加吗?

(4)在学生归纳的基础上,教师出示有理数加法法则。

有理数加法法则:

1,同号两数相加,取相同的符号,并把绝对值相加。

2,绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

3,一个数同。相加,仍得这个数。再次创设足球比赛情境,一方面与引题相呼应,联系密切,另一方面让学生在此情境中感受到有理数相加的几种不同情形,并能将它分类,渗透分类讨论思想。

估计学生能顺利地得到(+)+(+),(+)+(一),(一)+(+),(一)十(—),0+(+),0+(一)。

但不能把它归的为同号异号等三类,所以此处需教师。点拔、指扎,体现教师的引导者作用。

①假设原点0为第一次运动起点,第二次运动的起点是第一次运动的终点。②若学生在学习小组内不能很好地参与探究,也可以让其参照教科书第21页的“探究”自主进行。③让学生感受“数学模型”的思想。④学会与同伴交流,并在交流中获益。培养学生的语言表达能力和归纳能力,也许学生说得不够严谨,但这并不重要,重要的足能用自己的语言表达自己所发现的规律

解决问题解决问题

例1计算:

(1)(—3)+(—9);(2)(—5)+13;

(3)0十(—7);(4)(—4。7)+3。9。

教师板演,让学生说出每一步运算所依据的法则。

请同学们比较,有理数的加法运算与小学时候学的加法有什么异同?(如:有理数加法计算中要注意符号,和不一定大于加数等等)

例2足球循环赛中,红队4:1胜黄队,黄队1:0胜蓝队蓝队1:0胜红队,计算各队的净胜球数。

(让学生读数,理解题意,思考解决方案,然后由学生口述,教师板书)

学生活动:请学生说一说在生活中用到有理数加法的例子。注意点:(1)下先确定是哪种类型的加法再定符号,最后算绝对位。(2)教教师板演的例通要完整体现过程,并要求学生在刚开始学的时候要把中间的过

程写完整。(3)体现化归思想。(4)这里增加了两道题目,要是让学生能较为熟练地运用法则进行计算。

拓宽学生视野,让学

生体会到数学与生活的密切联系。

课堂练习教科书第23页练习

小结与作业

课堂小结通过这节课的学习,你有哪些收获,学生自己总结。

本课作业必做题:阅读教科书第20~22页,教科书第31习题1。3第1、12、第13题。

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,在本节课的设计中,注重引导学生参与探究、归纳(用自己的语言叙迷)有理数加法法则的过程。

2,注意渗透数学思想方法。数学思想方法的渗透不可能立即见效,也不可能靠一朝一夕让学生理解、掌握,所以,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类、辩析、归纳、化归等)。如在探究加法法则时,有意识地把各种情况先分为三类(同号、异号,一个数同0相加);在运用法则时,当和的符号确定以后,有理数的加法就转化为算术的加减法。

3,注意学生合作学习的学习方式,让学生在与他人合作中受益,学会交流,学会倾听

别人的意见和建议。

附板书:1。3。1有理数的加法(一)

有理数的加法教案 篇26

一、知识与技能

理解有理数加减法可以互相转化,能把有理数加减混合运算统一为加法运算,灵活应用运算律进行计算、

二、过程与方法

经历综合运用有理数加减法解决实际问题的过程,培养学生分析问题解决问题的能力、

三、情感态度与价值观

体会数学与现实生活的联系,提高学生学习数学的兴趣、

教学重点、难点与关键

1、重点:有理数加减法统一为加法运算,掌握有理数加减混合运算、

2、难点:省略括号和加号的加法算式的运算方法、

3、关键:理解加减混合运算可以统一成加法,?以及正确理解省略加号的有理数加法形式、

教具准备

投影仪、

四、教学过程

一、复习提问,引入新课

1、叙述有理数的加法、减法法则、

2、计算、

(1)(—8)+(—6);(2)(—8)—(—6);(3)8—(—6);

(4)(—8)—6;(5)5—14、

五、新授

我们已学习了有理数加、减法的运算,今天我们来研究怎样进行有理数的加减混合运算、

六、巩固练习

1、课本第24页练习、

(1)题是已写成省略加号的代数和,可运用加法交换律、结合律、

原式=1+3—4—0。5=0—0。5=—0。5

(2)题运用加减混合运算律,同号结合、

原式=—2。4—4。6+3。5+3。5=—7+7=0

(3)题先把加减混合运算统一为加法运算、

原式=(—7)+(—5)+(—4)+(+10)

=—7—5—4+10(省略括号和加号)

=—16+10

=—6

七、课堂小结

有理数加减混合运算通常统一成加法运算,运算时常用交换律和结合律使计算简便,一般情况采用:

(1)凡相加是整数的,可以先加;

(2)分母相同或易于通分的分数相结合;

(3)有互为相反数可以互相抵消的,先相加;

(4)正、负数分别相加、总之要认真观察,灵活运用运算律、

八、作业布置

1、课本第25页第26页习题1、3第5、6、13题、

九、板书设计:

第四课时

1、把有理数加减混合运算转化为加法后,常用加法交换律和结合律使计算简便、

归纳:加减混合运算可以统一为加法运算、

用式子表示为a+b—c=a+b+(—c)、

2、随堂练习。

3、小结。

4、课后作业。

十、课后反思

本课教学反思

本节课主要采用过程教案法训练学生的听说读写。过程教案法的理论基础是交际理论,认为写作的过程实质上是一种群体间的交际活动,而不是写作者的个人行为。它包括写前阶段,写作阶段和写后修改编辑阶段。在此过程中,教师是教练,及时给予学生指导,更正其错误,帮助学生完成写作各阶段任务。课堂是写作车间,学生与教师,学生与学生彼此交流,提出反馈或修改意见,学生不断进行写作,修改和再写作。在应用过程教案法对学生进行写作训练时,学生从没有想法到有想法,从不会构思到会构思,从不会修改到会修改,这一过程有利于培养学生的写作能力和自主学习能力。学生由于能得到教师的及时帮助和指导,所以,即使是英语基础薄弱的同学,也能在这样的环境下,写出较好的作文来,从而提高了学生写作兴趣,增强了写作的自信心。

这个话题很容易引起学生的共鸣,比较贴近生活,能激发学生的兴趣,在教授知识的同时,应注意将本单元情感目标融入其中,即保持乐观积极的生活态度,同时要珍惜生活的点点滴滴。在教授语法时,应注重通过例句的讲解让语法概念深入人心,因直接引语和间接引语的概念相当于一个简单的定语从句,一个清晰的脉络能为后续学习打下基础。此教案设计为一个课时,主要将安妮的处境以及她的精神做一个简要概括,下一个课时则对语法知识进行讲解。

在此教案过程中,应注重培养学生的自学能力,通过辅导学生掌握一套科学的学习方法,才能使学生的学习积极性进一步提高。再者,培养学生的学习兴趣,增强教案效果,才能避免在以后的学习中产生两极分化。

在教案中任然存在的问题是,学生在“说”英语这个环节还有待提高,大部分学生都不愿意开口朗读课文,所以复述课文便尚有难度,对于这一部分学生的学习成绩的提高还有待研究。

有理数的加法教案 篇27

一、教学目标

1. 知识与技能:

理解有理数的加法法则,能够运用有理数加法法则进行整数加法运算。

掌握有理数加法中同号相加、异号相加以及一个数与零相加的情况。

2. 过程与方法:

通过观察结果的符号及绝对值与两个加数的符号及其绝对值的关系,培养学生的分类、归纳、概括的能力。

在探索过程中感受数形结合和分类讨论的数学思想。

3. 情感态度与价值观:

激发学生的学习兴趣、求知欲望,培养良好的数学思维品质。

体会数学知识于生活、服务于生活,培养对数学的.热爱和运用数学的意识。

二、教学重点与难点

重点:理解和运用有理数的加法法则。

难点:理解有理数加法法则,尤其是异号两数相加的法则。

三、教学过程

1. 引入:

通过实际生活中的例子(如某人从一点出发,经过两次不同方向的运动)引导学生思考有理数加法的情境。

2. 知识点讲解:

介绍有理数的概念,强调有理数包括正整数、正分数、零、负整数和负分数。

详细讲解有理数加法的法则,包括同号相加、异号相加和一个数与零相加的情况。

3. 例题讲解与练习:

通过具体例题(如足球比赛中的净胜球数)演示有理数加法的应用。

提供练习题供学生练习,加深对有理数加法法则的理解和掌握。

4. 小结:

总结本节课学习的内容和重点,强调有理数加法法则的重要性和应用。

大家都在看