初中数学教案

笔构网

2025-12-11教案

请欣赏初中数学教案(精选76篇),由笔构网整理,希望能够帮助到大家。

初中数学教案 篇1

教学目标

(一)教学知识点

1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.

3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.

(二)能力训练要求

1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.

2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.

3.通过学生共同观察和讨论,培养大家的合作交流意识.

(三)情感与价值观要求

1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.

2.具有初步的创新精神和实践能力.

教学重点

1.体会方程与函数之间的联系.

2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.

3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.

教学难点

1.探索方程与函数之间的联系的过程.

2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.

教学方法

讨论探索法.

教具准备

投影片二张

第一张:(记作§2.8.1A)

第二张:(记作§2.8.1B)

教学过程

Ⅰ.创设问题情境,引入新课

[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.

现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题。

通过学生的讨论,使学生更清楚以下事实:

(1)分解因式与整式的乘法是一种互逆关系;

(2)分解因式的结果要以积的形式表示;

(3)每个因式必须是整式,且每个因式的次数都必须低于原来的'多项式的次数;

(4)必须分解到每个多项式不能再分解为止。

活动5:应用新知

例题学习:

P166例1、例2(略)

在教师的引导下,学生应用提公因式法共同完成例题。

让学生进一步理解提公因式法进行因式分解。

活动6:课堂练习

1.P167练习;

2.看谁连得准

x2-y2 (x+1)2

9-25 x 2 y(x -y)

x 2+2x+1 (3-5 x)(3+5 x)

xy-y2 (x+y)(x-y)

3.下列哪些变形是因式分解,为什么?

(1)(a+3)(a -3)= a 2-9

(2)a 2-4=( a +2)( a -2)

(3)a 2-b2+1=( a +b)( a -b)+1

(4)2πR+2πr=2π(R+r)

学生自主完成练习。

通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。

活动7:课堂小结

从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?

学生发言。

通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。

活动8:课后作业

课本P170习题的第1、4大题。

学生自主完成

通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。

板书设计(需要一直留在黑板上主板书)

15.4.1提公因式法例题

1.因式分解的定义

2.提公因式法

初中数学教案集锦15篇

作为一名专为他人授业解惑的人民教师,可能需要进行教案编写工作,借助教案可以让教学工作更科学化。那么写教案需要注意哪些问题呢?以下是小编为大家收集的初中数学教案,仅供参考,希望能够帮助到大家。

初中数学教案 篇2

教学目标:

利用数形结合的数学思想分析问题解决问题。

利用已有二次函数的知识经验,自主进行探究和合作学习,解决情境中的数学问题,初步形成数学建模能力,解决一些简单的实际问题。

在探索中体验数学来源于生活并运用于生活,感悟二次函数中数形结合的美,激发学生学习数学的兴趣,通过合作学习获得成功,树立自信心。

教学重点和难点:

运用数形结合的思想方法进行解二次函数,这是重点也是难点。

教学过程:

(一)引入:

分组复习旧知。

探索:从二次函数y=x2+4x+3在直角坐标系中的图象中,你能得到哪些信息?

可引导学生从几个方面进行讨论:

(1)如何画图

(2)顶点、图象与坐标轴的交点

(3)所形成的三角形以及四边形的面积

(4)对称轴

从上面的问题导入今天的课题二次函数中的图象与性质。

(二)新授:

1、再探索:二次函数y=x2+4x+3图象上找一点,使形成的图形面积与已知图形面积有数量关系。例如:抛物线y=x2+4x+3的顶点为点A,且与x轴交于点B、C;在抛物线上求一点E使SBCE= SABC。

再探索:在抛物线y=x2+4x+3上找一点F,使BCE与BCD全等。

再探索:在抛物线y=x2+4x+3上找一点M,使BOM与ABC相似。

2、让同学讨论:从已知条件如何求二次函数的解析式。

例如:已知一抛物线的顶点坐标是C(2,1)且与x轴交于点A、点B,已知SABC=3,求抛物线的解析式。

(三)提高练习

根据我们学校人人皆知的船模特色项目设计了这样一个情境:

让班级中的上科院小院士来简要介绍学校船模组的情况以及在绘制船模图纸时也常用到抛物线的知识的情况,再出题:船身的龙骨是近似抛物线型,船身的最大长度为48cm,且高度为12cm。求此船龙骨的抛物线的解析式。

让学生在练习中体会二次函数的图象与性质在解题中的作用。

(四)让学生讨论小结(略)

(五)作业布置

1、在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k—5)x—(k+4)的图象交x轴于点A(x1,0)、B(x2,0)且(x1+1)(x2+1)=—8。

(1)求二次函数的解析式;

(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求 POC的.面积。

2、如图,一个二次函数的图象与直线y= x—1的交点A、B分别在x、y轴上,点C在二次函数图象上,且CBAB,CB=AB,求这个二次函数的解析式。

3、卢浦大桥拱形可以近似看作抛物线的一部分,在大桥截面1:11000的比例图上,跨度AB=5cm,拱高OC=0。9cm,线段DE表示大桥拱内桥长,DE∥AB,如图1,在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如图2。

(1)求出图2上以这一部分抛物线为图象的函数解析式,写出函数定义域;

(2)如果DE与AB的距离OM=0。45cm,求卢浦大桥拱内实际桥长(备用数据: ,计算结果精确到1米)

初中数学教案 篇3

教学目标

1.理解二元一次方程及二元一次方程的解的概念;

2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;

3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;

4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育。

教学重点、难点

重点:二元一次方程的`意义及二元一次方程的解的概念.

难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程.

教学过程

1.情景导入:

新闻链接:桐乡70岁以上老人可领取生活补助,得到方程:80a+150b=902880.2.

2.新课教学:

引导学生观察方程80a+150b=902880与一元一次方程有异同?

得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程.

3.合作学习:

给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值;接下来男女同学互换.(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法.提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?

4.课堂练习:

1)已知:5xm-2yn=4是二元一次方程,则m+n=;

2)二元一次方程2x-y=3中,方程可变形为y=当x=2时,y=_

5.课堂总结:

(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);

(2)二元一次方程解的不定性和相关性;

(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式.

作业布置

本章的课后的方程式巩固提高练习。

初中数学教案 篇4

一、教材分析

本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。

二、教学目标

1、知识目标:了解多边形内角和公式。

2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。

4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。

三、教学重、难点

重点:探索多边形内角和。

难点:探索多边形内角和时,如何把多边形转化成三角形。

四、教学方法:引导发现法、讨论法

五、教具、学具

教具:多媒体课件

学具:三角板、量角器

六、教学媒体:大屏幕、实物投影

七、教学过程:

(一)创设情境,设疑激思

师:大家都知道三角形的内角和是180,那么四边形的内角和,你知道吗?

活动一:探究四边形内角和。

在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。

方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360。

方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360。

接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。

师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?

活动二:探究五边形、六边形、十边形的内角和。

学生先独立思考每个问题再分组讨论。

关注:

(1)学生能否类比四边形的方式解决问题得出正确的结论。

(2)学生能否采用不同的方法。

学生分组讨论后进行交流(五边形的内角和)

方法1:把五边形分成三个三角形,3个180的和是540。

方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180的和减去一个周角360。结果得540。

方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180的和减去一个平角180,结果得540。

方法4:把五边形分成一个三角形和一个四边形,然后用180加上360,结果得540。

师:你真聪明!做到了学以致用。

交流后,学生运用几何画板演示并验证得到的方法。

得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720,十边形内角和是1440。

(二)引申思考,培养创新

师:通过前面的讨论,你能知道多边形内角和吗?

活动三:探究任意多边形的内角和公式。

思考:

(1)多边形内角和与三角形内角和的关系?

(2)多边形的边数与内角和的关系?

(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?

学生结合思考题进行讨论,并把讨论后的结果进行交流。

发现1:四边形内角和是2个180的和,五边形内角和是3个180的和,六边形内角和是4个180的和,十边形内角和是8个180的和。发现2:多边形的边数增加1,内角和增加180。

发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。

得出结论:多边形内角和公式:(n-2)·180。

(三)实际应用,优势互补

1、口答:(1)七边形内角和()

(2)九边形内角和()

(3)十边形内角和()

2、抢答:(1)一个多边形的内角和等于1260,它是几边形?

(2)一个多边形的内角和是1440,且每个内角都相等,则每个内角的度数是()。

3、讨论回答:一个多边形的内角和比四边形的内角和多540,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?

(四)概括存储

学生自己归纳总结:

1、多边形内角和公式

2、运用转化思想解决数学问题

3、用数形结合的思想解决问题

(五)作业:练习册第93页1、2、3

八、教学反思:

1、教的转变

本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。

2、学的转变

学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。

3、课堂氛围的转变

整节课以“流畅、开放、合作、隐导”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。

初中数学教案(通用19篇)

作为一名无私奉献的老师,通常会被要求编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么大家知道正规的教案是怎么写的吗?下面是小编为大家整理的初中数学教案,欢迎大家分享。

初中数学教案 篇5

教学目标:

1、引导同学们领略数学隐藏在生活中的迷人之处;

2、培养同学们对数学的兴趣。

教学内容:

生活中的数学。

教学方法:

启发探索、小游戏

教具安排:

多媒体、剪纸、小剪刀三把

教学过程:

师:同学们,从小学到现在我们都在跟数学打交道,能说说大家对数学的感受吗?

学生讨论。

师:同学们,不管以前你们喜不喜欢数学,但老师要告诉大家,其实数学很有趣,它不仅出现在我们的课本,更隐藏在生活的每个角落,只要我们仔细探究,就会发现它在我们的周围闪着迷人的光,希望大家从今天开始,喜欢数学,与数学成为好朋友,好好领略好朋友带给我们的美的享受。事不宜迟,现在我们马上开始我们的数学探究之旅。首先,我们来玩个小游戏:

请大家拿出笔和纸,根据下面的步骤来操作,你会有惊人的发现。(PPT演示)

[1]首先,随意挑一个数字(0、1、2、3、4、5、6、7)

[2]把这个数字乘上2

[3]然后加上5

[4]再乘以50

[5]如果你今年的生日已经过了,把得到的数目加上1759;如果还没过,加1758

[6]最后一个步骤,用这个数目减去你出生的那一年(公元的)

师:发现了什么?第一个数字是不是你一开始选择的数字呢?那接下来的两个呢?如无意外,就是你的年龄了。是不是很有趣呢?至于为什么会这样课后大家仔细想想自然就明白啦,这就是数学的魅力所在了。接下来我们来尝试帮助格尼斯堡的居民解决下面的问题(PPT演示):格尼斯堡建造在普蕾尔河岸上。7座桥连接着两个岛和河岸,如图所示:

网路图

居民们的一项普遍爱好是尝试在一次行走中跨过所有的7座桥而不

重复经过任何一座桥。同学们,你们能帮助他们实现这个想法吗?拿出纸和笔设计的路线。

学生思考设计。

师:同学们行吗?事实上,著名数学家欧拉已经证明不能解决这个问题了,可是这是为什么呢?别急,我们继续看下去。

1944年的空袭,毁坏了大多数的旧桥,格尼斯堡在河上重新建了5座桥,如图:

B

现在请同学们再尝试一下,在一次行走中跨过所有的5座桥而不重复经过任何一座桥。

学生思考。

师:同学们,这次行得通了吧?那么为什么呢?有没有同学可以说一下他的想法?

其实,我们的欧拉大师经过研究大量类似的网络,证明了这样的事实(PPT演示):要走完一条路线而其中每一段行程只许经过一次,只有当奇数结点的数目是0或2时才是有可能的,在其他情况下,如果不走回头路,就不能历遍整个网络。

他还发现:如果有两个奇结点,那么经过整个路线的形成必须从一个

奇结点开始,到另一个奇结点结束。

师:我们来看一下是不是这样的?第一个图奇结点的个数为3,第二个图奇结点的个数减少到2个了,看来真的是这样的。

现在请同学们自己在练习本上解决这个问题:(PPT演示)

下面是一幅农场的大门的图。如果笔不离纸,又不重复经过任一条线,有没有可能画成它?

学生思考讨论。

师:我们看到它的奇结点个数为4,由欧拉的证明我们知道不能一笔画成。

那如果农场主将门的形状做成这样呢?(PPT演示)

学生尝试。

师:是不是可以啦,为什么呢?

生:奇结点个数为2.

师:这种不用走回头路而历遍整条线路的情况,不仅仅具有趣味性,在现实生活中具有很重要的实用性,比如,我们的邮递员和煤气抄表员,不走回头路意味着可以节省很多宝贵的时间。看来,数学并不像

某些时候想的那样没什么用处了吧?

下面我们继续我们的奥秘之类吧。

今天我们班有同学生日吗?如果你生日,爸爸妈妈给你买了一个正方形的蛋糕,你要把它切成不同形状的平均大小的7块,怎么切?能行吗?尝试一下。

其实很简单,你只需要把正方形的周边(即周长)分成7个等长,定出蛋糕的中心,从周边划分等长的标记切向中电,(如图所示)即可。

为什么呢?这里我们用到三角形等高等底面积相等的性质。

吃完了蛋糕,我们来观赏一下百合花。(PPT演示):

一个乡村的池塘里种了美丽的百合花,百合花生长得很快,使它们覆盖的面积每天增加一倍。30天后,长满了整个池塘,那么池塘只被百合花覆盖一半时是多少天呢?同学们,你知道吗?

学生讨论。

师:答案是29天,多么神奇,是吧?潜意识里我们很难接受答案就是29天,只与30天差一天。但用数学我们很容易很清楚地知道是29天,奥秘就在“它们覆盖的面积每天增加一倍”这句话里面。你看,数学是多么聪慧、多么神奇的家伙!

其实,除了以上我们看到的一些有趣的数学影子外,我们的日常生

初中数学教案 篇6

一、教学目标

1、了解二次根式的意义;

2、掌握用简单的一元一次不等式解决二次根式中字母的取值问题;

3、掌握二次根式的性质和,并能灵活应用;

4、通过二次根式的计算培养学生的逻辑思维能力;

5、通过二次根式性质和的介绍渗透对称性、规律性的数学美。

二、教学重点和难点

重点:

(1)二次根的意义;

(2)二次根式中字母的取值范围。

难点:确定二次根式中字母的取值范围。

三、教学方法

启发式、讲练结合。

四、教学过程

(一)复习提问

1、什么叫平方根、算术平方根?

2、说出下列各式的意义,并计算

(二)引入新课

新课:二次根式

定义:式子叫做二次根式。

对于请同学们讨论论应注意的问题,引导学生总结:

(1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢?

若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。

(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次

根式指的.是某种式子的“外在形态”。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答。

例1当a为实数时,下列各式中哪些是二次根式?

例2 x是怎样的实数时,式子在实数范围有意义?

解:略。

说明:这个问题实质上是在x是什么数时,x—3是非负数,式子有意义。

例3当字母取何值时,下列各式为二次根式:

分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。

解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。

(2)—3x≥0,x≤0,即x≤0时,是二次根式。

(3),且x≠0,∴x>0,当x>0时,是二次根式。

(4),即,故x—2≥0且x—2≠0,∴x>2。当x>2时,是二次根式。

例4下列各式是二次根式,求式子中的字母所满足的条件:

分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,。即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。

解:(1)由2a+3≥0,得。

(2)由,得3a—1>0,解得。

(3)由于x取任何实数时都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。

(4)由—b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0。

初中数学教案 篇7

知识技能

会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。

数学思考

1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。进一步发展符号意识。

2.通过一元一次方程的学习,体会方程模型思想和化归思想。

解决问题

能在具体情境中从数学角度和方法解决问题,发展应用意识。

经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。

情感态度

经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。

教学重点

建立方程解决实际问题,会通过移项解 “ax+b=cx+d”类型的一元一次方程。

教学难点

分析实际问题中的相等关系,列出方程。

教学过程

活动一 知识回顾

解下列方程:

1. 3x+1=4

2. x-2=3

3. 2x+0.5x=-10

4. 3x-7x=2

提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?

教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。

出示问题(幻灯片)。

学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。

教师提问:(略)

教师追问:变形的依据是什么?

学生独立思考、回答交流。

本次活动中教师关注:

(1)学生能否准确理解运用等式性质和合并同列项求解方程。

(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。

通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。

活动二 问题探究

问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?

教师:出示问题(投影片)

提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?

(学生尝试提问)

学生:读题,审题,独立思考,讨论交流。

1.找出问题中的已知数和已知条件。(独立回答)

2.设未知数:设这个班有x名学生。

3.列代数式:x参与运算,探索运算关系,表示相关量。(讨论、回答、交流)

4.找相等关系:

这批书的总数是一个定值,表示它的两个等式相等.(学生回答,教师追问)

5.列方程:3x+20=4x-25(1)

总结提问:通过列方程解决实际问题分析时,要经历那些步骤?书写时呢?

教师提问1:这个方程与我们前面解过的方程有什么不同?

学生讨论后发现:方程的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25).

教师提问2:怎样才能使它向x=a的形式转化呢?

学生思考、探索:为使方程的右边没有含x的项,等号两边同减去4x,为使方程的左边没有常数项,等号两边同减去20.

3x-4x=-25-20(2)

教师提问3:以上变形依据是什么?

学生回答:等式的性质1。

归纳:像上面那样把等式一边的某项变号后移到另一边,叫做移项。

师生共同完成解答过程。

设问4:以上解方程中“移项”起了什么作用?

学生讨论、回答,师生共同整理:

通过移项,含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a的形式。

教师提问5:解这个方程,我们经历了那些步骤?列方程时找了怎样的相等关系?

学生思考回答。

教师关注:

(1)学生对列方程解决实际问题的一般步骤:设未知数,列代数式,列方程,是否清楚?

在参与观察、比较、尝试、交流等数学活动中,体验探究发现成功的快乐。

活动三 解法运用

例2解方程

3x+7=32-2x

教师:出示问题

提问:解这个方程时,第一步我们先干什么?

学生讲解,独立完成,板演。

提问:“移项”是注意什么?

学生:变号。

教师关注:学生“移项”时是否能够注意变号。

通过这个例题,掌握“ax+b=cx+d”类型的`一元一次方程的解法。体验“移项”这种变形在解方程中的作用,规范解题步骤。

活动四 巩固提高

1.第91页练习(1)(2)

2.某货运公司要用若干辆汽车运送一批货物。如果每辆拉6吨,则剩余15吨;如果每辆拉8吨,则差5吨才能将汽车全部装满。问运送这批货物的汽车多少量?

3.小明步行由A地去B地,若每小时走6千米,则比规定时间迟到1小时;若每小时走8千米,则比规定时间早到0.5小时。求A、B两地之间的距离。

教师按顺序出示问题。

学生独立完成,用实物投影展示部分学而生练习。

教师关注:

1.学生在计算中可能出现的错误。

2.x系数为分数时,可用乘的办法,化系数为1。

3.用实物投影展示学困生的完成情况,进行评价、鼓励。

巩固“ax+b=cx+d”类型的一元一次方程的解法,反馈学生对解方程步骤的掌握情况和可能出现的计算错误。

2、3题的重点是在新情境中引导学生利用已有经验解决实际问题,达到巩固提高的目的。

活动五

提问1:今天我们学习了解方程的那种变形?它有什么作用、应注意什么?

提问2:本节课重点利用了什么相等关系,来列的方程?

教师组织学生就本节课所学知识进行小结。

学生进行总结归纳、回答交流,相互完善补充。

教师关注:学生能否提炼出本节课的重点内容,如果不能,教师则提出具体问题,引导学生思考、交流。

引导学生对本节所学知识进行归纳、总结和梳理,以便于学生掌握和运用。

布置作业:

第93页第3题

初中数学教案 篇8

一、素质教育目标

(一)知识教学点

1.理解画两个角的差,一个角的几倍、几分之一的方法.

2.掌握用量角器画两个角的和差,一个角的几倍、几分之一的画法.用三角板画一些特殊角的画法.

(二)能力训练点

通过画角的和、差、倍、分,三角板和量角器的使用,培养学生动手能力和操作技巧.

(三)德育渗透点

通过利用三角板画特殊角的方法,说明几何知识常用来解决实际问题,进行几何学在生产、生活中起着重要作用的教育,鼓励他们努力学习。

(四)美育渗透点

通过学生动手操作,使学生体会到简单几何图形组合的多样性,领会几何图形美.

二、学法引导

1.教师教法:尝试指导,以学生操作为主.

2.学生学法:在教师的指导下,积极动手参与,认真思考领会归纳.

三、重点、难点、疑点及解决办法

(一)重点

用量角器画角的和、差、倍、分及用三角板画特殊角.

(二)难点

准确使用量角器画一个角的几分之一.

(三)疑点

量角器的正确使用.

(四)解决办法

通过正确指导,规范操作,使学生掌握画法要领,并以练习加以巩固,从而解决重难点及疑点.

四、课时安排

1课时

五、教具学具准备

一副三角板、量角器.

六、师生互动活动设计

1.通过教师设,学生动手及思考创设出情境,引出课题.

2.通过学生尝试解决、教师把握几何语言美的方法,放手由学生自己解决有关角的画法.

3.通过提问的形式完成小结.

七、教学步骤

(一)明确目标

使学生会用量角器画角及角的和、差、倍、分,培养学生动手能力和操作能力.

(二)整体感知

通过教师指导,学生动手操作完成对画图能力和操作能力的掌握.

图1

(三)教学过程

创设情境,引出课题

教师在黑板上画出(如图1).

师:现有工具量角器和三角板,谁到黑板上画一个角等于呢?请同学们观察他的操作,老师要找同学说明他的画法.

【教法说明】有上节课的基础,学生会先用量角器测量的度数,再画一个度数等于这个度数的角,学生也会叙述其画法.

提出问题:若老师想画的余角、补角呢?

学生会想到画、减去的度数后的角,即为的余角、补角.

师:是否还有别的方法?

这时学生一定会积极思考,立刻回答还有困难.教师抓住时机点明课题:同学们不用着急,今天我们就研究角的画法,学习用三角板、量角器画角的和、差、倍、分以及一些特殊角.老师提出的问题你们会解决的.另外,角的画法在我们日常生活中应用广泛,希望同学们认真学习.(板书课题……)

[板书]1.7角的画法

探究新知

1.画一个角等于已知角

找学生再次叙述方法:用量角器量出已知角的度数,再画一个等于这个度数的角.

操作:略.

注意:量角器使用三要素:对中、重合、读数.

2.用三角板画特殊角

师:请同学们准备好练习本和一副三角板,再找同学说出一副三角板中各角度数.

学生活动:用三角板在练习本上画出直角、角、角、角.

提出问题:你能利用一副三角板画出、的角吗?

学生活动:讨论画、的角的方法,在练习本上画出图形,同桌可相互交换检查,找学生到黑板上画.

【教法说明】有前一节角的和、差的理解和、 、角的画法,学生对画、的角不会有困难.因此,教师要敢于放手,让学生自己去尝试解决问题的方法,也培养他们的动手操作的能力,但对于画法学生不会叙述得太严密,教师要把关,培养学生几何语言的严密性.

教师根据前面学生所画图形,引导学生写出画法.(以角的画法为例,与例题相符.)

图1

画法如图l,①利用三角板,画

②在的外部,再画就是要画的的角.

反馈练习:用三角板画、的角.

【教法说明】由学生独立完成以上三个角的画图.教师不给任何提示,只要求写出画角的方法,注意观察画法,是否写出了“在角的内部画的角”.区别例题中两角和的画法.

提出问题:由一副三角板可以画出多少度的角?

学生讨论得出可以画出的角.

这些角都是的倍数,用三角板也只限画这样的角.由此得出:由量角器画任意角的和、差、倍、分角.

3.画任意两个角的和差及一个角的几倍、几分之一.

问题:如图1,已知、(),如何画出与的和?与的'差?

图1

学生活动:讨论画,的方法,并在练习本上根据自己的想法画图.

根据学生的讨论回答,老师归纳以下方法:

(1)用量角器量出、的度数,计算出它们度数的和、差,再用量角器画出等于它们度数和、差的角.

(2)用量角器把移到上,如果本方法.

图1

教师示范,写出两种画法:

画法一:(1)用量角器量得,.

(2)画,就是要画的角如图1.

图2

画法二:(1)用量角器画.

(2)以点为顶点,射为一边,在的外部画.

就是要画的角如图2.

学生活动:叙述用两种方法画的画法.出示例1由学生完成,要求用两种方法,找同学板演.

例1?已知,画出它们的余角.

画法一:(1)量得.

图1图2

(2)画,就是所要画的角,见图1.

画法二:利用三角板,以的顶点为顶点,一边为边,画直角,使的另一边在直角的内部,如图2,就是所要画的角.

【教法说明】第二种画法学生可能叙述或书写不太完整,教师要注意其严密性.

反馈练习

1.已知,画出它的补角.

2.已知,画它们的角平分线.

3.画的角,并把它分成三等份.

【教法说明】本练习只要求图形正确即可,不要求写出画法.

(四)总结、扩展

以提问的形式归纳出以下知识脉络:

八、布置作业

课本第46页习题1.5A组第2、3题.

初中数学教案 篇9

一、指导思想

教育教学工作是一个头绪众多的系统工程,在纷繁的头绪中需要各项工作有序进展,尤为重要的是强化常规,做好细节,教学常规是对学校教学工作的基本要求,落实教学常规是学校教学工作得以正常有序开展的根本保证。只有搞好教学常规才有可能获得成功的教育。教师教学水平的高低体现于教学各个步骤的细节中,空洞地谈教学能力是苍白的,只有用教师的备课情况、讲课细节、作业批改情况。教学常规培养着教师的`基本功,决定着教师的教学能力,可以说教师的教学水平就是在这些常规细节中培养起来。

二、检查反馈

本次检查大多数教师都比较重视,检查内容完整、全面。现将检查情况总结如下教案方面的特点与不足。

特点:

1、绝大多数教案设计完整,教学重点、难点突出,设置得当,紧紧围绕新课标,例如:刘兴华、孙菊、江文等能突出对学科素养的高度关注。教师撰写的课后反思能体现教师对教材处理的新方法,能侧重对自己教法和学生学法的指导,并且还能对自己不得法的教学手段、方式、方法进行深刻地解剖,能很好地体现课堂教学的反思意识,反思深刻、务实、有针对性。

2、教学环节齐全,注重引语与小结,使教学设计前后呼应,环节完整。

3、注重选择恰当的教学方法,注重在灵活多样的教学方法中培养学生的合作意识和创新精神。

4、教案能体现多媒体教学手段,注重培养学生的探究精神和创新能力。

不足:

1、教案后的教学反思不够认真、不够详细,没能对本堂课的得与失作出记录与小结,从中也可以看出我们对课后反思还不够重视。

2、个别教师教案过于简单。

作业方面的特点与不足

特点:

1、能按进度布置作业,作业设置量度适中,难易适中,上交率较高,且都能做到全批全改。

2、作业批改公平、公正,有一定的等级评定。教师批改要求严格、细致,能够反映学生作业中的错误做法及纠正措施。

不足:

1、对于学生书写的工整性,还需加强教育。

2、教师在批阅作业时,要稍细心些,发现问题就让学生当时改正,学生也就会逐渐养成做事认真的习惯。

初中数学教案 篇10

教学目标

1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

3, 体验分类是数学上的常用处理问题的方法。

教学难点 正确理解分类的标准和按照一定的标准进行分类

知识重点 正确理解有理数的概念

教学过程(师生活动) 设计理念

探索新知 在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).

问题1:观察黑板上的9个数,并给它们进行分类.

学生思考讨论和交流分类的情况.

学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.

例如,

对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)

通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.

按照书本的说法,得出“整数”“分数”和“有理数”的概念.

看书了解有理数名称的由来.

“统称”是指“合起来总的名称”的意思.

试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的) 分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与

学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

练一练 1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

2,教科书第10页练习.

此练习中出现了集合的概念,可向学生作如下的说明.

把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;

数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.

思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

也可以教师说出一些数,让学生进行判断。

集合的概念不必深入展开。

创新探究 问题2:有理数可分为正数和负数两大类,对吗?为什么?

教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

有理数 这个分类可视学生的程度确定是否有必要教学。

应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的'象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等

小结与作业

课堂小结 到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

本课作业

1, 必做题:教科书第18页习题1.2第1题

2, 教师自行准备

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视.关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。

2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。

3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

初中数学教案15篇【合集】

作为一名教师,总不可避免地需要编写教案,教案是教学活动的依据,有着重要的地位。教案应该怎么写才好呢?下面是小编精心整理的初中数学教案,欢迎阅读与收藏。

初中数学教案 篇11

教学建议

知识结构

重难点分析

本节的重点是的性质和判定定理。是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。

本节的难点是性质的灵活应用。由于是特殊的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。如果得到一个平行四边形是,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措,教师在教学过程中应给予足够重视。

教法建议

根据本节内容的特点和与平行四边形的关系,建议教师在教学过程中注意以下问题:

1.的知识,学生在小学时接触过一些,可由小学学过的知识作为引入。

2.在现实中的实例较多,在讲解的性质和判定时,教师可自行准备或由学生准备一些生活实例来进行判别应用了哪些性质和判定,既增加了学生的参与感又巩固了所学的知识.

3.如果条件允许,教师在讲授这节内容前,可指导学生按照教材148页图4-33所示,制作一个平行四边形作为教学过程中的道具,既增强了学生的动手能力和参与感,有在教学中有切实的体例,使学生对知识的掌握更轻松些.

4.在对性质的讲解中,教师可将学生分成若干组,每个学生分别对事先准备后的图形进行边、角、对角线的测量,然后在组内进行整理、归纳.

5.由于和的性质定理证明比较简单,教师可引导学生分析思路,由学生来进行具体的证明.

6.在性质应用讲解中,为便于理解掌握,教师要注意题目的层次安排。

一、教学目标

1.掌握概念,知道与平行四边形的关系.

2.掌握的性质.

3.通过运用知识解决具体问题,提高分析能力和观察能力.

4.通过教具的演示培养学生的学习兴趣.

5.根据平行四边形与矩形、的从属关系,通过画图向学生渗透集合思想.

6.通过性质的学习,体会的图形美.

二、教法设计

观察分析讨论相结合的方法

三、重点·难点·疑点及解决办法

1.教学重点:的性质定理.

2.教学难点:把的性质和直角三角形的知识综合应用.

3.疑点:与矩形的性质的区别.

四、课时安排

1课时

五、教具学具准备

教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具

六、师生互动活动设计

教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨

七、教学步骤

【复习提问】

1.什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?

2.矩形中对角线与大边的夹角为,求小边所对的两条对角线的夹角.

3.矩形的一个角的平分线把较长的边分成、,求矩形的周长.

【引入新课】

我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,这时可将事先按课本中图4-38做成的一个短边也可以活动的教具进行演示,如图,改变平行四边形的边,使之一组邻进相等,引出概念.

【讲解新课】

1.定义:有一组邻边相等的平行四边形叫做.

讲解这个定义时,要抓住概念的本质,应突出两条:

(1)强调是平行四边形.

(2)一组邻边相等.

2.的性质:

教师强调,既然是特殊的平行四边形,因此它就具有平行四边形的一切性质,此外由于它比平行四边形多了“一组邻边相等”的条件,和矩形类似,也比平行四边形增加了一些特殊性质.

下面研究的性质:

师:同学们根据的定义结合图形猜一下有什么性质(让学生们讨论,并引导学生分别从边、角、对角线三个方面分析).

生:因为是有一组邻边相等的平行四边形,所以根据平行四边形对边相等的性质可以得到.

性质定理1:的四条边都相等.

由的四条边都相等,根据平行四边形对角线互相平分,可以得到

性质定理2:的对角线互相垂直并且每一条对角线平分一组对角.

引导学生完成定理的规范证明.

师:观察右图,被对角线分成的四个直角三角形有什么关系?

生:全等.

师:它们的底和高和两条对角线有什么关系?

生:分别是两条对角线的一半.

师:如果设的两条对角线分别为、,则的面积是什么?

生:

教师指出当不易求出对角线长时,就用平行四边形面积的一般计算方法计算面积.

例2已知:如右图,是△的角平分线,交于,交于.

求证:四边形是.

(引导学生用定义来判定.)

例3已知的边长为,,对角线,相交于点,如右图,求这个的对角线长和面积.

(1)按教材的'方法求面积.

(2)还可以引导学生求出△一边上的高,即的高,然后用平行四边形的面积公式计算的面积.

【总结、扩展】

1.小结:(打出投影)(图4)

(1)、平行四边形、四边形的从属关系:

(2)性质:图5

①具有平行四边形的所有性质.

②特有性质:四条边相等;对角线互相垂直,且平分每一组对角.

八、布置作业

教材P158中6、7、8,P196中10

九、板书设计

标题

定义……

性质例2…… 小结:

性质定理1:……例3…… ……

性质定理2:……

十、随堂练习

教材P151中1、2、3

补充

1.的两条对角线长分别是3和4,则周长和面积分别是___________、___________.

2.周长为80,一对角线为20,则相邻两角的度数为___________、____________.

初中数学教案 篇12

教学目的

1、使学生了解无理数和实数的概念,掌握实数的分类,会准确判断一个数是有理数还是无理数。

2、使学生能了解实数绝对值的意义。

3、使学生能了解数轴上的点具有一一对应关系。

4、由实数的分类,渗透数学分类的思想。

5、由实数与数轴的一一对应,渗透数形结合的思想。

教学分析

重点:无理数及实数的概念。

难点:有理数与无理数的区别,点与数的一一对应。

教学过程

一、复习

1、什么叫有理数?

2、有理数可以如何分类?

(按定义分与按大小分。)

二、新授

1、无理数定义:无限不循环小数叫做无理数。

判断:无限小数都是无理数;无理数都是无限小数;带根号的数都是无理数。

2、实数的定义:有理数与无理数统称为实数。

3、按课本中列表,将各数间的联系介绍一下。

除了按定义还能按大小写出列表。

4、实数的相反数:

5、实数的绝对值:

6、实数的运算

讲解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的.值是多少?

例2,判断题:

(1)任何实数的偶次幂是正实数。( )

(2)在实数范围内,若| x|=|y|则x=y。( )

(3)0是最小的实数。( )

(4)0是绝对值最小的实数。( )

解:略

三、练习

P148 练习:3、4、5、6。

四、小结

1、今天我们学习了实数,请同学们首先要清楚,实数是如何定义的,它与有理数是怎样的关系,二是对实数两种不同的分类要清楚。

2、要对应有理数的相反数与绝对值定义及运算律和运算性质,来理解在实数中的运用。

五、作业

1、P150 习题A:3。

2、基础训练:同步练习1。

初中数学教案 篇13

一、教材分析

本节内容是人民教育出版社出版《义务教育课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。

二、设计思想

本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。

八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。

三、教学目标:

(一)知识技能目标:

1、理解同类项的含义,并能辨别同类项。

2、掌握合并同类项的方法,熟练的合并同类项。

3、掌握整式加减运算的方法,熟练进行运算。

(二)过程方法目标:

1、通过探究同类项定义、合并同类项的方法的活动,培养学生观察、归纳、探究的能力。

2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。

3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。

(三)情感价值目标:

1、通过交流协商、分组探究,培养学生合作交流的`意识和敢于探索未知问题的精神。

2、通过学习活动培养学生科学、严谨的学习态度。

四、教学重、难点:

合并同类项

五、教学关键:

同类项的概念

六、教学准备:

教师:

1、筛选数学题目,精心设置问题情境。

2、制作大小不等的两个长方体纸盒实物模型,并能展开。

3、设计多媒体教学课件。(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。)

学生:

1、复习有关单项式的概念、有理数四则运算及去括号的法则)

2、每小组制作大小不等的两个长方体纸盒模型。

初中数学教案 篇14

一、课题引入

为了让学生更好地理解正数与负数的概念,作为教师有必要了解数系的发展.从数系的发展历程来看,微积分的基础是实数理论,实数的基础是有理数,而有理数的基础则是自然数.自然数为数学结构提供了坚实的基础.

对于“数的发展”(也即“数的扩充”),有着两种不同的认知体系.一是数的自然扩充过程,如图1所示,即数系发展的自然的、历史的体系,它反映了人类对数的认识的历史发展进程;另一是数的逻辑扩充过程,如图2所示,即数系发展所经历的理论的、逻辑的体系,它是策墨罗、冯诺伊曼、皮亚诺、高斯等数学家构造的一种逻辑体系,其中综合反映了现代数学中许多思想方法.

二、课题研究

在实际生活中,存在着诸如上升5m,下降5m;收入5000元,支出5000元等各种具体的数量.这些数量不仅与5、5000等数量有关,而且还含有上升与下降、收入与支出等实际的意义.显然上升5m与下降5m,收入5000元与支出5000元的实际意义是不同的.

为了准确表达诸如此类的一些具有相反意义的量,仅用小学学过的正整数、正分数、零,是不够的.如果把收入5000元记作5000元,那么支出5000元显然是不可以也同样记作5000元的.收入与支出是“意义相反”的两回事,是不能用同一个数来表达的.因此,为了准确表达支出5000元,就有必要引入了一种新数—负数.

我们把所学过的大于零的数,都称为正数;而且还可以在正数的前面添加一个“+”号,比如在5的前面添加一个“+”号就成了“+5”,把“+5”称为一个正数,读作“正5”.

在正数的前面添加一个“-”号,比如在5的前面添加一个“-”号,就成了“-5”,所有按这种形式构成的数统称为负数.“-5”读作“负5”,“-5000”读作“负5000”.

于是“收入5000元”可以记作“5000元”,也可以记作“+5000元”,同时“支出5000元”就可以记作“-5000元”了.这样具有相反意义的两个数量就有了不同的表达方式.

利用正数与负数可以准确地表达或记录诸如上升与下降、收入与支出、海平面以上与海平面以下、零上与零下等一些“具有相反意义的量”.再如,某个机器零件的实际尺寸比设计尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一个机器零件的实际尺寸比设计尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比赛中,如果甲队赢了乙队2个球,那么可以把甲队的净胜球数记作“+2”,把乙队的净胜球数记作“-2”.

借助实际例子能够让学生较好地理解为什么要引入负数,认识到负数是为了有效表达与实际生活相关的一些数量而引入的`一种新数,而不是人为地“硬造”出来的一种“新数”.

三、巩固练习

例1博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了一台空调,又该怎样记录这笔支出呢?

思路分析:“收入”与“支出”是一对“具有相反意义的量”,可以用正数或负数来表示.一般来说,把“收入4800元”记作+4800元,而把与之具有相反意义的量“支出1600元”记作-1600元.

特别提醒:通常具有“增加、上升、零上、海平面以上、盈余、上涨、超出”等意义的数量,都用正数来表示;而与之相对的、具有“减少、下降、零下、海平面以下、亏损、下跌、不足”等意义的数量则用负数来表示.

再如,若游泳池的水位比正常水位高5cm,则可以将这时游泳池的水位记作+5cm;若游泳池的水位比正常的水位低3cm,则可以将这时游泳池的水位记作-3cm;若游泳池的水位正好处于正常水位的位置,则将其水位记作0cm.

例2周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表:单位:元

日期周二周三周四周五

开盘+0.16+0.25+0.78+2.12

收盘-0.23-1.32-0.67-0.65

当日收盘价

试在表中填写周二到周五该股票的收盘价.

思路分析:以周二为例,表中数据“+0.16”所表示的实际意义是“周二该股票的开盘价比周一的收盘价高出了0.16元”;而表中数据“-0.23”则表示“周二该股票收盘时的收盘价比当天的开盘价降低了0.23元”.

因此,这五天该股票的开盘价与收盘价分别应该按如下的方式进行计算:

周一该股票的收盘价是18.18-2.11=16.07元;周二该股票的收盘价为16.07+0.16-0.23=16.00元;周三该股票的收盘价为16.00+0.25-1.32=14.93元;周四的该股票的收盘价为14.93+0.78-0.67=15.04元;周五该股票的收盘价为15.04+2.12-0.65=16.51元.

例3甲、乙、丙三支球队以主客场的形式进行双循环比赛,每两队之间都比赛两场,下表是这三支球队的比赛成绩,其中左栏表示主队,上行表示客队,比分中前后两数分别是主客队的进球数,例如3∶2表示主队进3球客队进2球.

初中数学教案(合集15篇)

作为一名无私奉献的老师,就难以避免地要准备教案,教案是备课向课堂教学转化的关节点。那么什么样的教案才是好的呢?下面是小编为大家收集的初中数学教案,仅供参考,大家一起来看看吧。

初中数学教案 篇15

【学习目标】

1.了解圆周角的概念.

2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径.

4.熟练掌握圆周角的定理及其推理的灵活运用.

设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题

【学习过程】

一、 温故知新:

(学生活动)同学们口答下面两个问题.

1.什么叫圆心角?

2.圆心角、弦、弧之间有什么内在联系呢?

二、 自主学习:

自学教材P90---P93,思考下列问题:

1、 什么叫圆周角?圆周角的两个特征: 。

2、 在下面空里作一个圆,在同一弧上作一些圆心角及圆周角。通过圆周角的概念和度量的方法回答下面的问题.

(1)一个弧上所对的圆周角的个数有多少个?

(2).同弧所对的圆周角的度数是否发生变化?

(3).同弧上的圆周角与圆心角有什么关系?

3、默写圆周角定理及推论并证明。

4、能去掉同圆或等圆吗?若把同弧或等弧改成同弦或等弦性质成立吗?

5、教材92页思考?在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?

三、 典型例题:

例1、(教材93页例2)如图, ⊙O的直径AB为10cm,弦AC为6cm,,ACB的平分线交⊙O于D,求BC、AD、BD的长。

例2、如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?

四、 巩固练习:

1、(教材P93练习1)

解:

2、(教材P93练习2)

3、(教材P93练习3)

证明:

4、(教材P95习题24.1第9题)

五、 总结反思:

【达标检测】

1.如图1,A、B、C三点在⊙O上,AOC=100,则ABC等于( ).

A.140 B.110 C.120 D.130

(1) (2) (3)

2.如图2,1、2、3、4的大小关系是( )

A.3 B.32

C.2 D.2

3.如图3,(中考题)AB是⊙O的直径,BC,CD,DA是⊙O的弦,且BC=CD=DA,则BCD等于( )

A.100 B.110 C.120 D.130

4.半径为2a的⊙O中,弦AB的长为2 a,则弦AB所对的圆周角的度数是________.

5.如图4,A、B是⊙O的直径,C、D、E都是圆上的点,则2=_______.

(4) (5)

6.(中考题)如图5, 于 ,若 ,则

7.如图,弦AB把圆周分成1:2的两部分,已知⊙O半径为1,求弦长AB.

【拓展创新】

1.如图,已知AB=AC,APC=60

(1)求证:△ABC是等边三角形.

(2)若BC=4cm,求⊙O的面积.

3、教材P95习题24.1第12、13题。

【布置作业】教材P95习题24.1第10、11题。

初中数学教案 篇16

知识技能目标

1、理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;

2、利用反比例函数的图象解决有关问题。

过程性目标

1、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;

2、探索反比例函数的图象的性质,体会用数形结合思想解数学问题。

教学过程

一、创设情境

上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质。

二、探究归纳

1、画出函数的图象。

分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x≠0。

1、列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:

2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(—6,—1)、(—3,—2)、(—2,—3)等。

3、连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。这两个分支合起来,就是反比例函数的'图象。

上述图象,通常称为双曲线(hyperbola)。

提问这两条曲线会与x轴、y轴相交吗?为什么?

学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤)。

学生讨论、交流以下问题,并将讨论、交流的结果回答问题。

1、这个函数的图象在哪两个象限?和函数的图象有什么不同?

2、反比例函数(k≠0)的图象在哪两个象限内?由什么确定?

3、联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?

反比例函数有下列性质:

(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

(2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。

1、双曲线的两个分支与x轴和y轴没有交点;

2、双曲线的两个分支关于原点成中心对称。

以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?

在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少。

在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小。

三、实践应用

例1若反比例函数的图象在第二、四象限,求m的值。

分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+1<0,由这两个条件可解出m的值。

解由题意,得解得。

例2已知反比例函数(k≠0),当x>0时,y随x的.增大而增大,求一次函数y=kx—k的图象经过的象限。

分析由于反比例函数(k≠0),当x>0时,y随x的增大而增大,因此k<0,而一次函数y=kx—k中,k0,所以直线与y轴的交点在x轴的上方。

解因为反比例函数(k≠0),当x>0时,y随x的增大而增大,所以k<0,所以一次函数y=kx—k的图象经过一、二、四象限。

例3已知反比例函数的图象过点(1,—2)。

(1)求这个函数的解析式,并画出图象;

(2)若点A(—5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上?

分析(1)反比例函数的图象过点(1,—2),即当x=1时,y=—2。由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;

(2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上。

解(1)设:反比例函数的解析式为:(k≠0)。

而反比例函数的图象过点(1,—2),即当x=1时,y=—2。

所以,k=—2。

即反比例函数的解析式为:。

(2)点A(—5,m)在反比例函数图象上,所以,点A的坐标为。

点A关于x轴的对称点不在这个图象上;

点A关于y轴的对称点不在这个图象上;

点A关于原点的对称点在这个图象上;

例4已知函数为反比例函数。

(1)求m的值;

(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?

(3)当—3≤x≤时,求此函数的最大值和最小值。

解(1)由反比例函数的定义可知:解得,m=—2。

(2)因为—2<0,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大。

(3)因为在第个象限内,y随x的增大而增大,所以当x=时,y最大值=;

当x=—3时,y最小值=。

所以当—3≤x≤时,此函数的最大值为8,最小值为。

例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米。

(1)写出用高表示长的函数关系式;

(2)写出自变量x的取值范围;

(3)画出函数的图象。

解(1)因为100=5xy,所以。

(2)x>0。

(3)图象如下:

说明由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。

四、交流反思

本节课学习了画反比例函数的图象和探讨了反比例函数的性质。

1、反比例函数的图象是双曲线(hyperbola)。

2、反比例函数有如下性质:

(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

(2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。

五、检测反馈

1、在同一直角坐标系中画出下列函数的图象:

(1);(2)。

2、已知y是x的反比例函数,且当x=3时,y=8,求:

(1)y和x的函数关系式;

(2)当时,y的值;

(3)当x取何值时,?

3、若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。

4、已知反比例函数经过点A(2,—m)和B(n,2n),求:

(1)m和n的值;

(2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x1<0

初中数学教案 篇17

一、教学目的:

1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;

2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.

二、重点、难点

1.教学重点:菱形的两个判定方法.

2.教学难点:判定方法的证明方法及运用.

三、例题的意图分析

本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的.题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算.这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成.程度好一些的班级,可以选讲例3.

四、课堂引入

1.复习

(1)菱形的定义:一组邻边相等的平行四边形;

(2)菱形的性质1 菱形的四条边都相等;

性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;

(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)

2.【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?

3.【探究】(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?

通过演示,容易得到:

菱形判定方法1 对角线互相垂直的平行四边形是菱形.

注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.

通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:

菱形判定方法2 四边都相等的四边形是菱形.

五、例习题分析

例1 (教材P109的例3)略

例2(补充)已知:如图 ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.

求证:四边形AFCE是菱形.

证明:∵ 四边形ABCD是平行四边形,

∴ AE∥FC.

∴ ∠1=∠2.

又 ∠AOE=∠COF,AO=CO,

∴ △AOE≌△COF.

∴ EO=FO.

∴ 四边形AFCE是平行四边形.

又 EF⊥AC,

∴ AFCE是菱形(对角线互相垂直的平行四边形是菱形).

※例3(选讲) 已知:如图,△ABC中, ∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F.

求证:四边形CEHF为菱形.

略证:易证CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因为∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.

所以,CF=CE=EH,CF∥EH,所以四边形CEHF为菱形.

六、随堂练习

1.填空:

(1)对角线互相平分的四边形是 ;

(2)对角线互相垂直平分的四边形是________;

(3)对角线相等且互相平分的四边形是________;

(4)两组对边分别平行,且对角线 的四边形是菱形.

2.画一个菱形,使它的两条对角线长分别为6cm、8cm.

3.如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。

七、课后练习

1.下列条件中,能判定四边形是菱形的是 ( ).

(A)两条对角线相等 (B)两条对角线互相垂直

(C)两条对角线相等且互相垂直 (D)两条对角线互相垂直平分

2.已知:如图,M是等腰三角形ABC底边BC上的中点,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求证:四边形MEND是菱形.

3.做一做:

设计一个由菱形组成的花边图案.花边的长为15 cm,宽为4 cm,由有一条对角线在同一条直线上的四个菱形组成,前一个菱形对角线的交点,是后一个菱形的一个顶点.画出花边图形.

初中数学教案 篇18

[教学目标]

1、体会并了解反比例函数的图象的意义

2、能列表、描点、连线法画出反比例函数的图象

3、通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质

[教学重点和难点]

本节教学的重点是反比例函数的图象及图象的性质

由于反比例函数的图象分两支,给画图带来了复杂性是本节教学的难点

[教学过程]

1、情境创设

可以从复习一次函数的图象开始:你还记得一次函数的图象吗?在回忆与交流中,进一步认识函数图象的直观有助于理解函数的性质。转而导人关注新的函数——反比例函数的图象研究:反比例函数的图象又会是什么样子呢?

2、探索活动

探索活动1反比例函数y?

由于反比例函数y?

要分几个层次来探求:

(1)可以先估计——例如:位置(图象所在象限、图象与坐标轴的交点等)、趋势(上升、下降等);

(2)方法与步骤——利用描点作图;

列表:取自变量x的哪些值?——x是不为零的任何实数,所以不能取x的值的为零,但仍可以以零为基准,左右均匀,对称地取值。

描点:依据什么(数据、方法)找点?

连线:怎样连线?——可在各个象限内按照自变量从小到大的顺序用两条光滑的'曲线把所描的点连接起来。

探索活动2反比例函数y??2的图象.x2的图象是曲线型的,且分成两支.对此,学生第一次接触有一定的难度,因此需x2的图象.x

可以引导学生采用多种方式进行自主探索活动:

2的图象的方式与步骤进行自主探索其图象;x

222(2)可以通过探索函数y?与y??之间的关系,画出y??的图象.xxx

22探索活动3反比例函数y??与y?的图象有什么共同特征?xx(1)可以用画反比例函数y?

引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征.(即双曲线)反比例函数y?

k(k≠0)的图象中两支曲线都与x轴、y轴不相交;并且当k?0时,图象在第一、第x

初中数学教案 篇19

一、教材分析

本节内容是人民教育出版社出版《义务教育课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。

二、设计思想

本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。

八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的'技能。因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。

三、教学目标:

(一)知识技能目标:

1、理解同类项的含义,并能辨别同类项。

2、掌握合并同类项的方法,熟练的合并同类项。

3、掌握整式加减运算的方法,熟练进行运算。

(二)过程方法目标:

1、通过探究同类项定义、合并同类项的方法的活动,培养学生观察、归纳、探究的能力。

2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。

3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。

(三)情感价值目标:

1、通过交流协商、分组探究,培养学生合作交流的意识和敢于探索未知问题的精神。

2、通过学习活动培养学生科学、严谨的学习态度。

四、教学重、难点:

合并同类项

五、教学关键:

同类项的概念

六、教学准备:

教师:

1、筛选数学题目,精心设置问题情境。

2、制作大小不等的两个长方体纸盒实物模型,并能展开。

3、设计多媒体教学课件。(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。)

学生:

1、复习有关单项式的概念、有理数四则运算及去括号的法则)

2、每小组制作大小不等的两个长方体纸盒模型。

初中数学教案 篇20

教学目标:

利用数形结合的数学思想分析问题解决问题。

利用已有二次函数的知识经验,自主进行探究和合作学习,解决情境中的数学问题,初步形成数学建模能力,解决一些简单的实际问题。

在探索中体验数学来源于生活并运用于生活,感悟二次函数中数形结合的美,激发学生学习数学的兴趣,通过合作学习获得成功,树立自信心。

教学重点和难点:

运用数形结合的思想方法进行解二次函数,这是重点也是难点。

教学过程:

(一)引入:

分组复习旧知。

探索:从二次函数y=x2+4x+3在直角坐标系中的图象中,你能得到哪些信息?

可引导学生从几个方面进行讨论:

(1)如何画图

(2)顶点、图象与坐标轴的交点

(3)所形成的三角形以及四边形的面积

(4)对称轴

从上面的问题导入今天的课题二次函数中的图象与性质。

(二)新授:

1、再探索:二次函数y=x2+4x+3图象上找一点,使形成的图形面积与已知图形面积有数量关系。例如:抛物线y=x2+4x+3的顶点为点A,且与x轴交于点B、C;在抛物线上求一点E使SBCE= SABC。

再探索:在抛物线y=x2+4x+3上找一点F,使BCE与BCD全等。

再探索:在抛物线y=x2+4x+3上找一点M,使BOM与ABC相似。

2、让同学讨论:从已知条件如何求二次函数的解析式。

例如:已知一抛物线的顶点坐标是C(2,1)且与x轴交于点A、点B,已知SABC=3,求抛物线的解析式。

(三)提高练习

根据我们学校人人皆知的船模特色项目设计了这样一个情境:

让班级中的上科院小院士来简要介绍学校船模组的情况以及在绘制船模图纸时也常用到抛物线的知识的情况,再出题:船身的龙骨是近似抛物线型,船身的最大长度为48cm,且高度为12cm。求此船龙骨的抛物线的解析式。

让学生在练习中体会二次函数的图象与性质在解题中的作用。

(四)让学生讨论小结(略)

(五)作业布置

1、在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k—5)x—(k+4)的图象交x轴于点A(x1,0)、B(x2,0)且(x1+1)(x2+1)=—8。

(1)求二次函数的解析式;

(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求 POC的面积。

2、如图,一个二次函数的图象与直线y= x—1的交点A、B分别在x、y轴上,点C在二次函数图象上,且CBAB,CB=AB,求这个二次函数的解析式。

3、卢浦大桥拱形可以近似看作抛物线的一部分,在大桥截面1:11000的比例图上,跨度AB=5cm,拱高OC=0。9cm,线段DE表示大桥拱内桥长,DE∥AB,如图1,在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如图2。

(1)求出图2上以这一部分抛物线为图象的函数解析式,写出函数定义域;

(2)如果DE与AB的距离OM=0。45cm,求卢浦大桥拱内实际桥长(备用数据: ,计算结果精确到1米)

初中数学教案 篇21

知识技能目标

1、理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;

2、利用反比例函数的图象解决有关问题。

过程性目标

1、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;

2、探索反比例函数的图象的性质,体会用数形结合思想解数学问题。

教学过程

一、创设情境

上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质。

二、探究归纳

1、画出函数的图象。

分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x≠0。

1、列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:

2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(—6,—1)、(—3,—2)、(—2,—3)等。

3、连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。这两个分支合起来,就是反比例函数的图象。

上述图象,通常称为双曲线(hyperbola)。

提问这两条曲线会与x轴、y轴相交吗?为什么?

学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤)。

学生讨论、交流以下问题,并将讨论、交流的结果回答问题。

1、这个函数的图象在哪两个象限?和函数的图象有什么不同?

2、反比例函数(k≠0)的图象在哪两个象限内?由什么确定?

3、联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?

反比例函数有下列性质:

(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

(2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。

1、双曲线的两个分支与x轴和y轴没有交点;

2、双曲线的两个分支关于原点成中心对称。

以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?

在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少。

在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小。

三、实践应用

例1若反比例函数的图象在第二、四象限,求m的值。

分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+1<0,由这两个条件可解出m的值。

解由题意,得解得。

例2已知反比例函数(k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx—k的图象经过的象限。

分析由于反比例函数(k≠0),当x>0时,y随x的增大而增大,因此k<0,而一次函数y=kx—k中,k0,所以直线与y轴的交点在x轴的上方。

解因为反比例函数(k≠0),当x>0时,y随x的增大而增大,所以k<0,所以一次函数y=kx—k的图象经过一、二、四象限。

例3已知反比例函数的图象过点(1,—2)。

(1)求这个函数的解析式,并画出图象;

(2)若点A(—5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上?

分析(1)反比例函数的图象过点(1,—2),即当x=1时,y=—2。由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;

(2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上。

解(1)设:反比例函数的解析式为:(k≠0)。

而反比例函数的图象过点(1,—2),即当x=1时,y=—2。

所以,k=—2。

即反比例函数的解析式为:。

(2)点A(—5,m)在反比例函数图象上,所以,

点A的坐标为。

点A关于x轴的对称点不在这个图象上;

点A关于y轴的对称点不在这个图象上;

点A关于原点的对称点在这个图象上;

例4已知函数为反比例函数。

(1)求m的值;

(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?

(3)当—3≤x≤时,求此函数的最大值和最小值。

解(1)由反比例函数的定义可知:解得,m=—2。

(2)因为—2<0,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大。

(3)因为在第个象限内,y随x的增大而增大,

所以当x=时,y最大值=;

当x=—3时,y最小值=。

所以当—3≤x≤时,此函数的最大值为8,最小值为。

例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米。

(1)写出用高表示长的函数关系式;

(2)写出自变量x的取值范围;

(3)画出函数的图象。

解(1)因为100=5xy,所以。

(2)x>0。

(3)图象如下:

说明由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。

四、交流反思

本节课学习了画反比例函数的图象和探讨了反比例函数的性质。

1、反比例函数的图象是双曲线(hyperbola)。

2、反比例函数有如下性质:

(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

(2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。

五、检测反馈

1、在同一直角坐标系中画出下列函数的图象:

(1);(2)。

2、已知y是x的反比例函数,且当x=3时,y=8,求:

(1)y和x的函数关系式;

(2)当时,y的值;

(3)当x取何值时,?

3、若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。

4、已知反比例函数经过点A(2,—m)和B(n,2n),求:

(1)m和n的值;

(2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x1<0

初中数学教案 篇22

一、检查反馈

本次检查大多数教师都比较重视,检查内容完整、全面。现将检查情况总结如下教案方面的特点与不足。

特点:

1、绝大多数教案设计完整,教学重点、难点突出,设置得当,紧紧围绕新课标,例如:刘兴华、孙菊、江文李雅芳等能突出对学科素养的高度关注。教师撰写的课后反思能体现教师对教材处理的新方法,能侧重对自己教法和学生学法的指导,并且还能对自己不得法的教学手段、方式、方法进行深刻地解剖,能很好地体现课堂教学的'反思意识,反思深刻、务实、有针对性。

2、注重选择恰当的教学方法,注重在灵活多样的教学方法中培养学生的合作意识和创新精神。

3、教案能体现多媒体教学手段,注重培养学生的探究精神和创新能力。

不足:

1、教案后的教学反思不够认真、不够详细,没能对本堂课的得与失作出记录与小结,从中也可以看出我们对课后反思还不够重视。

2、个别教师教案过于简单。

作业方面的特点与不足

特点:

1、能按进度布置作业,作业设置量度适中,难易适中,上交率较高,且都能做到全批全改。

2、作业批改公平、公正,有一定的等级评定。教师批改要求严格、细致,能够反映学生作业中的错误做法及纠正措施。

3、学生在书写方面有很大进步。从检查可以发现教师对学生作业的书写格式有明确的要求。

不足:

1、对于学生书写的工整性,还需加强教育。

2、教师在批阅作业时,要稍细心些,发现问题就让学生当时改正,学生也就会逐渐养成做事认真的习惯。

初中数学教案 篇23

教学目标:

1、理解切线的判定定理,并学会运用。

2、知道判定切线常用的方法有两种,初步掌握方法的选择。

教学重点:切线的判定定理和切线判定的方法。

教学难点:切线判定定理中所阐述的圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视一.

教学过程:

一、复习提问

【教师】问题1.怎样过直线l上一点P作已知直线的垂线?

问题2.直线和圆有几种位置关系?

问题3.如何判定直线l是⊙O的切线?

启发:(1)直线l和⊙O的公共点有几个?

(2)圆心O到直线L的距离与半径的数量关系 如何?

学生答完后,教师强调(2)是判定直线 l是⊙O的切线的常用方法,即: 定理:圆心O到直线l的距离OA 等于圆的半 (如图1,投影显示)

再启发:若把距离OA理解为 OA⊥l,OA=r;把点A理解为半径在圆上的端点 ,请同学们试将上面定理用新的理解改写成新的命题,此命题就 是这节课要学的“切线的判定定理”(板书课题)

二、引入新课内容

【学生】命题:经过半径的在圆上的端点且垂直于半 径的直线是圆的切线。

证明定理:启发学生分清命题的题设和结论,写出已 知、求证,分析证明思路,阅读课本P60。

定理:经过半径外端并且垂直于这条半径的直线是圆的切线.

定理的证明:已知:直线l经过半径OA的外端点A,直线l⊥OA,

求证:直线l是⊙O的切线

证明:略

定理的符号语言:∵直线l⊥OA,直线l经过半径OA的外端A

∴直线l为⊙O的切线。

是非题:

(1)垂直于圆的半径的直线一定是这个圆的切线。 ( )

(2)过圆的半径的外端的直线一定是这个圆的切线。 ( )

三、例题讲解

例1、已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB。

求证:直线AB是⊙O的切线。

引导学生分析:由于AB过⊙O上的点C,所以连结OC,只要证明AB⊥OC即可。

证明:连结OC.

∵OA=OB,CA=CB,

∴AB⊥OC

又∵直线AB经过半径OC的外端C

∴直线AB是⊙O的切线。

练习1、如图,已知⊙O的半径为R,直线AB经过⊙O上的点A,并且AB=R,∠OBA=45°。求证:直线AB是⊙O的切线。

练习2、如图,已知AB为⊙O的直径,C为⊙O上一点,AD⊥CD于点D,AC平分∠BAD。

求证:CD是⊙O的切线。

例2、如图,已知AB是⊙O的直径,点D在AB的延长线上,且BD=OB,过点D作射线DE,使∠ADE=30°。

求证:DE是⊙O的切线。

思考题:在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,以D为圆心,BD为半径作圆,问⊙D的切线有几条?是哪几条?为什么?

四、小结

1.切线的判定定理。

2.判定一条直线是圆的切线的方法:

①定义:直线和圆有唯一公共点。

②数量关系:直线到圆心的距离等于该圆半径(即d = r)。[

③切线的判定定理:经过半径外端且与这条半径垂直的直线是圆的切线。

3.证明一条直线是圆的切线的辅助线和证法规律。

凡是已知公共点(如:直线经过圆上的点;直线和圆有一个公共点;)往往是"连结"圆心和公共点,证明"垂直"(直线和半径);若不知公共点,则过圆心作一条线段垂直于直线,证明所作的线段等于半径。即已知公共点,“连半径,证垂直”;不知公共点,则“作垂直,证半径”。

五、布置作业:略

《切线的判定》教后体会

本课例《切线的判定》作为市考试院调研课型兼区级研讨课,我以“教师为引导,学生为主体”的二期课改的理念出发,通过学生自我活动得到数学结论作为教学重点,呈现学生真实的思维过程为教学宗旨,进行教学设计,目的在于让学生对知识有一个本质的、有效的理解。本节课切实反映了平时的教学情况,为前来调研和研讨的老师提供了真实的样本。反思本节课,有以下几个成功与不足之处:

成功之处:

一、 教材的二度设计顺应了学生的认知规律

这批学生习惯于单一知识点的学习,即得出一个知识点,必须由浅入深反复进行练习,巩固后方能加以提升与综合,否则就会混淆概念或定理的`条件和结论,导致错误,久之便会失去学习数学的兴趣和信心。本教时课本上将切线判定定理和性质定理的导出作为第一课时,两个定理的运用和切线的两种常用的判定方法作为第二课时,学生往往会因第一时间得不到及时的巩固,对定理本质的东西不能很好地理解,在运用时抓不住关键,解题仅仅停留在模仿层次上,接受能力薄弱的学生更是因知识点多不知所措,在云里雾里。二度设计将切线的判定方法作为第一课时,切线的性质定理以及两个定理的综合运用作为第二课时,这样的设计即是对前面所学的“直线与圆相切的判定方法”的复习,又是对后面学习综合运用两个定理,合理选择两种方法判定切线作了铺垫,教学呈现了一个循序渐进、温过知新的过程。从学生的反馈情况判断,教学效果较为理想。

二、重视学生数感的培养呼应了课改的理念

数感类似与语感、乐感、美感,拥有了感觉,知识便会融会贯通,学习就会轻松。拥有数感,不仅会对数学知识反应灵敏,更会在生活中不知不觉运用数学思维方式解决实际问题。本节课中,两个例题由教师诱导,学生发现完成的,而三个习题则完全放手让学生去思考完成,不乏有不会做和做得复杂的学生,但在展示和交流中,撞击出思维的火花,难以忘怀。让学生尝试总结规律,也是对学生能力的培养,在本节课中,辅助线的规律是由学生得出,事实证明,学生有这样的理解、概括和表达能力。通过思考得出正确的结论,这个结论往往是刻骨铭心的,长此以往,对数和形的感觉会越来越好。

不足之处:

一、这节课没有“高潮”,没有让学生特别兴奋激起求知欲的情境,整个教学过程是在一个平静、和谐的氛围中完成的。

二、课的引入太直截了当,脱离不了应试教学的味道。

三、教学风格的定势使所授知识不能很合理地与生活实际相联系,一定程度上阻碍了学生解决实际问题能力的发展。

通过本节课的教学,我深刻感悟到在教学实践中,教师要不断地充实自己,拓宽知识面,努力突破已有的教学形状,适应现代教育,适应现代学生。课堂教学中,敢于实验,舍得放手,尽量培养学生主体意识,问题让学生自己去揭示,方法让学生自己去探索,规律让学生自己去发现,知识让学生自己去获得,教师只提供给学生现实情境、充足的思考时间和活动空间,给学生表现自我的机会和成功的体验,培养学生的自我意识,发挥学生的主体作用,来真正实现《数学课程标准》中提出的“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者”这一教学理念。

初中数学教案 篇24

一、素质教育目标

(一)知识教学点

1.使学生理解多项式的概念.

2.使学生能准确地确定一个多项式的次数和项数.

3.能正确区分单项式和多项式.

(二)能力训练点

通过区别单项式与多项式,培养学生发散思维.

(三)德育渗透点

在本节教学中向学生渗透数学知识来源于生活,又为生活而服务的辩证思想.

(四)美育渗透点

单项式和多项式在前二章,特别是第一章已有新接触,本节课来研究多项式的概念可谓水到渠成,体现了数学的结构美

二、学法引导

1.教学方法:采用对比法,以训练为主,注重尝试指导.

2.学生学法:观察分析→多项式有关概念→练习巩固

三、重点、难点、疑点及解决办法

1.重点:多项式的概念及单项式的联系与区别.

2.难点:多项式的次数的确定,以及多项式与单项式的联系与区别.

3.疑点:多项式中各项的符号问题.

四、课时安排

1课时

五、教具学具准备

投影仪或电脑、自制胶片.

六、师生互动活动设计

教师出示探索性练习,学生分析讨论得出多项式有关概念,教师出示巩固性练习,学生多种形式完成.

七、教学步骤

(一)复习引入,创设情境

师:上节课我们学习了单项式的有关概念,同学们看下面一些问题.

(出示投影1)

1.下列代数式中,哪些是单项式?是单项式的请指出它的系数与次数.

, , ,2, , , ,

2.圆的半径为 ,则半圆的面积为_____________,半圆的总长为_____________.

学生活动:回答上述两个问题,可以进行抢答,看谁想的全面,回答的准确,教师对回答准确、速度快的给予表扬和鼓励.

【教法说明】让学生通过1题回顾有关单项式的一些知识点,再通过2题中半圆周长为 很自然地引出本节内容.

师:上述2题中,表示半圆面积的代数式是单项式吗?为什么?表示半圆的周长的式子呢?

学生活动:同座进行讨论,然后选代表回答.

师:谁能把1题中不是单项式的式子读出来?(师做相应板书)

学生活动:小组讨论, 、 , , 对于这些代数式的结构特点,由小组选代表说明,若不完整,其他同学可做补充.

(二)探索新知,讲授新课

师:像以上这样的式子叫多项式,这节课我们就研究多项式,上面几个式子都是多项式.

[板书]3.1整式(多项式)

学生活动:讨论归纳什么叫多项式.可让学生互相补充.

教师概括并板书

[板书]多项式:几个单项式的和叫多项式.

师:强调每个单项式的符号问题,使学生引起注意.

(出示投影2)

练习:下裂代数式 , , , , , ,

, , 中,是多项式的有:

___________________________________________________________.

学生活动:学生抢答以上问题,然后每个学生在练习本上写出两个多项式,同桌互相交换打分,有疑问的提出再讨论.

【教法说明】通过观察式子特点,讨论归纳多项式的概念,体现了学生的主体作用和参与意识.多项式的概念是本节教学重点,为使学生对概念真正理解,让学生每个人写出两个多项式,可及时反馈学生掌握知识中存在的问题,以便及时纠正.

师:提出问题,多项式 、 , , 各是由几个单项式相加而得到的?每个单项式各指的是谁?各是几次单项式?引导学生回答,教师根据学生回答,给予肯定、否定与纠正.

师:在 中,是两个单项式相加得到,就叫做二项式,两个单项式中, 次数是1, 次数是1,最高次数是一次,所以我们说这个多项式的次数是一次,整个式子叫做一次二项式.

[板书]

学生活动:同桌讨论,, , ,应怎样称谓,然后找学生回答.

师:给予归纳,并做适当板书:

[板书]

学生活动:通过上例,学生讨论多项式的项、次数,然后选代表回答.

根据学生回答,师归纳:

在多项式中,每个单项式叫多项式的项,是几个单项式的和就叫做几项式.每一项包含它的符号,如 中, 这一项不是 .多项式里次数最高的项的次数,就叫做多项式次数,即最高次项是几次,就叫做几次多项式,不含字母的项叫做常数项.

[板书]

【教法说明】通过学生对以上几个多项式的感知,学生对多项式的特片已有了一定的了解,教师可逐步引导,让学生自己总结归纳一些结论,以训练学生的口头表达能力和归纳能力.

(三)尝试反馈,巩固练习

(出示投影3)

1.填空:

2.填空:

(1) 是_________次__________项式; 是_________次_________项式; 的常数项是___________.

(2) 是_________次________项式,最高次数是___________,最高次项的系数是__________,常数项是___________.

学生活动:1题抢答,同桌同学给予肯定或否定,且肯定地说出依据,否定的再说出正确答案;2题学生观察后,在练习本或投影胶片上完成,部分胶片打出投影,师生一起分析、讨论,对所做答案给予肯定或更正.

【教法说明】在此组练习题中,1题目的是以填表的形式感知一个多项式就是单项式的和,多项式的项就是单项式;使学生能进一步了解多项式与单项式的关系,避免死记硬背概念,而不能准确应用于解题中的弊病.2题是在理解概念和完成1题单一问题的基础上进行综合训练,使学生逐步学会使用数学语言.

(四)归纳小结

师:今天我们学习了《整式》一节中“多项式”的有关概念;在掌握多项式概念时,要注意它的项数和次数.前面我们还学习了单项式,掌握单项式时要注意它的系数和次数.

归纳:单项式和多项式统称为整式.

[板书]

说明:教师边小结边板书出多项式、单项式,然后再提出它们统称为整式,并做了述板书,使所学知识纳入知识系统.

巩固练习:

(出示投影4)

下列各代数式:0, , , , , , 中,单项式有__________,多项式有____________,整式有_____________.

学生活动:观察后学生回答,互相补充、纠正,提醒学生不能遗漏.

【教法说明】数学要领重在于应用,通过上题的训练,可使学生很清楚地了解单项式、多项式的区别与联系,它们与整式的关系.

(五)变式训练,培养能力

(出示投影5)

1.单项式 , , 的和_________,它是__________次__________项式.

2. 是_______次________项式 是__________次_________项式,它的常数项_________.

3. 是________次________项式,最高次项是_________,最高次项的系数是_________,常数项是__________.

4. 的2倍与 的平方的 的和,用代数式表示__________,它是__________(填单项式或多项式).

学生活动:每个学生先独立在练习本上完成,然后小组互相交流补充,最后小组选出代表发言.

师:做肯定或否定,强调3题中最高次项的系数是 , 是一个数字,不是字母,因为它只能代表圆周率这一个数值,而一个字母是可以取不同的值的..

【教法说明】本组是在前面掌握了本节课基本知识后安排的一组训练题,目的是使学生进一步理解多项式的次数与项数,特别是对 这个数字要有一个明确的认识.

自编题目练习:

每个学生写出6个整式,并要求既有单项式,又有多项式,然后交给同桌的同学,完成以下任务,①先找出单项式、多项式,②是单项式的写出系数与次数,是多项式的写出是几次几项式,最高次数是什么?常数项是什么,然后再互相讨论对方的解答是否正确.

【教学说明】自编题目的训练,一是可活跃课堂气氛,增强了学生的参与意识;二是可以培养学生的发散思维和逆向思维能力.

师:通过上面编题、解题练习,同学们对整式的概念有了清楚的理解,下面再按老师的要求编题,编一个四次三项式,看谁编的又快又准确,再编一个不高于三次的多项式.

学生活动:学生边回答师边板书,然后学生讨论是否符合要求.

【教法说明】通过上面训练,使学生进一步巩固多项式项数、次数的概念,同时也可以培养学生逆向思维的能力.

八、随堂练习

1.判断题

(1)-5不是多项式( )

(2) 是二次二项式( )

(3) 是二次三项式( )

(4) 是一次三项式( )

(5) 的最高次项系数是3( )

2.填空题

(1)把上列代数式分别填在相应的括号里

, , ,0, , ,

; ;

; ;

(2)如果代数式 是关于 的三次二项式则 , .

九、布置作业

(一)必做题:课本第149页习题3.1A组12.

(二)选做题:课本第150页习题3.1B组3.

十、板书设计

随堂练习答案

1.√ × × √ ×

2.(1)单项式 ,多项式 ;

整式 ;

二项式 ;

三次三项式 ;

(2) , .

作业答案

教材P.149中A组12题:(1)三次二项式 (2)二次三项式

(3)一次二项式 (4)四次三项式

初中数学教案 篇25

教学目标:

1、进一步理解函数的概念,能从简单的实际事例中,抽象出函数关系,列出函数解析式;

2、使学生分清常量与变量,并能确定自变量的取值范围.

3、会求函数值,并体会自变量与函数值间的对应关系.

4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量的取值范围的求法.

5、通过函数的教学使学生体会到事物是相互联系的.是有规律地运动变化着的.

教学重点:了解函数的意义,会求自变量的取值范围及求函数值.

教学难点:函数概念的抽象性.

教学过程:

(一)引入新课:

上一节课我们讲了函数的概念:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.

生活中有很多实例反映了函数关系,你能举出一个,并指出式中的自变量与函数吗?

1、学校计划组织一次春游,学生每人交30元,求总金额y(元)与学生数n(个)的关系.

2、为迎接新年,班委会计划购买100元的小礼物送给同学,求所能购买的总数n(个)与单价(a)元的关系.

解:1、y=30n

y是函数,n是自变量

2、n是函数,a是自变量.

(二)讲授新课

刚才所举例子中的函数,都是利用数学式子即解析式表示的.这种用数学式子表示函数时,要考虑自变量的取值必须使解析式有意义.如第一题中的学生数n必须是正整数.

例1、求下列函数中自变量x的取值范围.

(1)(2)

(3)(4)

(5)(6)

分析:在(1)、(2)中,x取任意实数,与都有意义.

(3)小题的`是一个分式,分式成立的条件是分母不为0.这道题的分母是,因此要求.

同理(4)小题的也是分式,分式成立的条件是分母不为0,这道题的分母是,因此要求且.

第(5)小题,是二次根式,二次根式成立的条件是被开方数大于、等于零.的被开方数是.

同理,第(6)小题也是二次根式,是被开方数,

小结:从上面的例题中可以看出函数的解析式是整数时,自变量可取全体实数;函数的解析式是分式时,自变量的取值应使分母不为零;函数的解析式是二次根式时,自变量的取值应使被开方数大于、等于零.

注意:有些同学没有真正理解解析式是分式时,自变量的取值应使分母不为零,片面地认为,凡是分母,只要即可.教师可将解题步骤设计得细致一些.先提问本题的分母是什么?然后再要求分式的分母不为零.求出使函数成立的自变量的取值范围.二次根式的问题也与次类似.

但象第(4)小题,有些同学会犯这样的错误,将答案写成或.在解一元二次方程时,方程的两根用“或者”联接,在这里就直接拿过来用.限于初中学生的接受能力,教师可联系日常生活讲清“且”与“或”.说明这里与是并且的关系.即2与-1这两个值x都不能取.

例2、自行车保管站在某个星期日保管的自行车共有3500辆次,其中变速车保管费是每辆一次0.5元,一般车保管费是每次一辆0.3元.

(1)若设一般车停放的辆次数为x,总的保管费收入为y元,试写出y关于x的函数关系式;

(2)若估计前来停放的3500辆次自行车中,变速车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围.

解:(1)

(x是正整数,

(2)若变速车的辆次不小于25%,但不大于40%,

则收入在1225元至1330元之间

总结:对于反映实际问题的函数关系,应使得实际问题有意义.这样,就要求联系实际,具体问题具体分析.

对于函数,当自变量时,相应的函数y的值是.60叫做这个函数当时的函数值.

例3、求下列函数当时的函数值:

(1)————(2)—————

(3)————(4)——————

注:本例既锻炼了学生的计算能力,又创设了情境,让学生体会对于x的每一个值,y都有唯一确定的值与之对应.以此加深对函数的理解.

(二)小结:

这节课,我们进一步地研究了有关函数的概念.在研究函数关系时首先要考虑自变量的取值范围.因此,要求大家能掌握解析式含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并能求出其相应的函数值.另外,对于反映实际问题的函数关系,要具体问题具体分析.

作业:习题13.2A组2、3、5

今天的内容就介绍到这里了。

初中数学教案 篇26

一、课题

27.3 过三点的圆

二、教学目标

1.经历过一点、两点和不在同一直线上的三点作圆的过程.

2.. 知道过不在同一条直线上的三个点画圆的方法

3.了解三角形的外接圆和外心.

三、教学重点和难点

重点:经历过一点、两点和不在同一直线上的三点作圆的过程.

难点:知道过不在同一条直线上的三个点画圆的方法.

四、教学手段

现代课堂教学手段

五、教学方法

学生自己探索

六、教学过程设计

(一)、新授

1.过已知一个点A画圆,并考虑这样的圆有多少个?

2.过已知两个点A、B画圆,并考虑这样的圆有多少个?

3.过已知三个点A、B、C画圆,并考虑这样的圆有多少个?

让学生以小组为单位,进行探索、思考、交流后,小组选派代表向全班学生展示本小组的探索成果,在展示后,接受其他学生的质疑.

得出结论:过一点可以画无数个圆;过两点也可以画无数个圆;这些圆的圆心都在连结这两点的线段的垂直平分线上;经过不在同一直线上的三个点可以画一个圆,并且这样的圆只有一个.

不在同一直线上的三个点确定一个圆.

给出三角形外接圆的概念:经过三角形三个顶点可以作一个圆,这个圆叫作三角形的外接圆,外接圆的圆心叫做三角形的外心.

例:画已知三角形的外接圆.

让学生探索课本第15页习题1.

一起探究

八年级(一)班的学生为老区的.小朋友捐款500元,准备为他们购买甲、乙 两种图书共12套.已知甲种图书每套45元,乙种图书每套40元.这些钱最多能买甲种图书多少套?

分析:带领学生完成课本第13页的表格,并完成2、3 问题,使学生清楚通过列表可以更好的分析题目,对于情景较为复杂的问题情景可采用这种分析方法解题.另外通过此题,使学生认识到:在应不等式解决实际问题时,当求出不等式的解集后,还要根据问题的实际意义确定问题的解.

(二)、小结

七、练习设计

P15习题2、3

八、教学后记

后备练习:

1. 已知一个三角形的三边长分别是 ,则这个三角形的外接圆面积等于 .

2. 如图,有A, ,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()

A.在AC,BC两边高线的交点处

B.在AC,BC两边中线的交点处

C.在AC,BC两边垂直平分线的交点处

D.在A,B两内角平分线的交点处

初中数学教案 篇27

一、案例实施背景

本节课是20xx-20xx学年度第一学期开学第七周笔者在长青中学的多媒体教室里上的一节公开课,课堂中数学优秀生、中等生及后进生都有,所用教材为北师大版义务教育教科书七年级数学(上册)。

二、案例主题分析与设计

本节课是北师大版义务教育教科书七年级数学(上册)——科学记数法,它是在学习乘方的基础上,研究更简便的记数方法,是第二章有理数及其运算的重要组成部分。 《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以“生活·数学”、“活动·思考”、“表达·应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同

时通过小组内学生相互协作研究,培养学生合作性学习精神。

三、案例教学目标

1、知识与技能:掌握科学记数法的方法,能将一些大数写成科学记数法。

2、过程与方法:在寻找科学记数法的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。

3、情感态度与价值观:通过科学记数法的总结,使学生形成数形结合的数学思想方法,以及知识的迁移能力、创新意识和创新精神。

四、案例教学重、难点

1、重点:正确运用科学记数法表示较大的数

2、难点:正确掌握10的幂指数特征,将科学记数法表示的数写成原数

五、案例教学用具

1、教具:多媒体平台及多媒体课件、图片

六、案例教学过程

一、创设情境,兴趣导学:

1、展示学生收集的非常大的数,与同学交流,你觉得记录这些数据方便吗?

2、展示课本图片,现实中,我们会遇到一些比较

大的数,如世界人口数、地球的`半径、光速等,读写这样大的数有一定的困难。

师:(展示刚才演示过的3个大数)我们能不能找到更好的记数方法使下列各数更加便于读、写?请同学们六个人一组,分组进行讨论。

(1) 1 370 000 000 (2) 6 400 000 (3) 300 000 000

生1:答:13.7亿,640万,3亿。

师:回答正确。这是数字加上单位的记数方法,在小学已经学过,是比较常用的一种方法,可是它有一定的局限性。如果我在3亿后面再加上好多个0,那么这种记数方法还好用吗?生:不好用。(让学生意识到以前所学的方法不够用了)师:接下来我们一起来探索新的记数方法。

分析:在读写大数时使学生感觉到不方便,从实际生活的需要,自然引入课题,需要寻找一种更简单的方法记数,为新课创设了良好的问题情境。

二、尝试探索,讲授新课:

1、探索10n的特征

计算一下102、103、104、105、1010你发现什么规律?102=100103 =1 00010 4 =10 000105=100 0001010 =10 000 000 000

(观察并思考,小组讨论)

(1)结果中“0”的个数与10的指数有什么关系?

(2)结果的位数与10的指数有什么关系?

2、练习:将下列个数写成只有一位整数乘以10n的形式。

(1)500(2)3000(4)40000

师:(学生完成之后)可见这种表示方法不仅书写简短,同时还便于读数。这就是我们本节课研究的内容—科学记数法。分析:通过教师引导,学生小组讨论,合作探究,成功地找到表示大数的简便记数方法——科学记数法。

4、科学记数法:

像上面这样,把一个大于10的数表示成a×10n的形式(其中1≤a<10,a是整数数位只有一位的数,n是整数),这种记数方法叫做科学记数法。

(思考,小组讨论)

10的指数与结果的位数有什么关系?

分析:这是本节课的重难点:10的幂指数n与原数的整数位数之间的关系。从特殊数据出发,寻找解决问题的方案,这符合“特殊到一般”的认知规律。在探究过程中,学生的探究活动体现了“化繁为简”、“分析归纳”的数学思想。

三、巩固新知,知识运用:

1、将下列各数写成科学记数法形式。

(1)23 000 000(2)453 000 000(3)13 400 000 000 000 000米,用科学记数法表示是多少米?分析:学生的模仿能力强,在分析讨论10的指数与结果的位数有什么关系时,会与前面曾经讨论过的10n联系起来,也可以对知识进行迁移和回顾。再加上学生好奇心都特别强,很想将自己总结出来的结论加以应用,针对以上学生特点,给出相应的练习题。这样学生能够体会到学以致用的乐趣,从而调动学生自主学习的积极性。

(观察并思考,小组讨论)

5、如何将一个用科学记数法表示的数写成原数?

a×10n将a的小数点向右移动n位原数

分析:这是本节课另一个重点,也是知识的逆向巩固,学生通过寻找写出原数的方法,更加明白在写科学记数法时,如何确定10的指数,同时也学会了如何写出原数。

练习:人体内约有2.5×10 5个细胞,其原数为多少个?

七、教学反思:

数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为“过程”不仅能引导学生更好

地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得“情感、态度、价值观”方面的体验。

初中数学教案 篇28

生活中的立体图形:(常见的有)圆柱、圆锥、正方体、长方体、棱柱、球。棱:相邻两个面的交线。

侧棱:相邻两个侧面的交线。棱柱的所有侧棱长都相等。

底面:棱柱有上、下两个底面,形状相同。

侧面:棱柱的侧面都是平行四边形。

立体图形的分类:锥体、柱体、球体。也可分为有曲面、无曲面。还可以分为有顶点、无顶点。

棱柱:分为直棱柱、斜棱柱。直棱柱的侧面是长方形。

特殊的四棱柱:长方体、正方体。正方体的.每个面都是正方形。

圆柱:上、下两个面都是圆形,侧面展开图是长方形。

圆锥:底面是圆形,侧面展开图是扇形。

截面:用一个平面去截一个几何体,截出的面。

球:用一个平面去截,截面图形是圆形。

正方体的截面:可以是正方形、长方形、梯形、三角形。

圆柱体的截面:可以是长方形、圆形、椭圆形、三角形。

展开与折叠:两个面出现在同一位置的展开图形,是不可折叠的。

从三个方向看物体的形状:正面看(主视图)、左面看(侧视图)、上面看(俯视图)

初中数学教案 篇29

《正方形》教学设计

教学内容分析:

⑴学习特殊的平行四边形—正方形,它的特殊的性质和判定。

⑵前面学习了平行四边形、矩形菱形,类比他们的性质与判断,有利于对正方形的研究。

⑶对本节的学习,继续培养学生分类研究的思想,并且建立新旧知识的联系,类比的基础上进行归纳,梳理知识,进一步发展学生的推理能力。

学生分析

⑴学生在小学初步认识了正方形,并且本节课之前,学生又学习了几种平行四边形,已经具备了观察研究平行四边形的经验与知识基础。

⑵学生在上几节已有了推理的经历,但是对于证明,学生的思维能力还不成熟,有待于提高。

教学目标:

⑴知识与技能:了解正方形是特殊的平行四边形,掌握它的性质和判定,会利用性质与判定进行简单的说理。

⑵过程与方法:通过类比前边的四边形的研究,探索并归纳正方形的性质与判定。通过运用提高学生的推理能力。

⑶情感态度与价值观:在学习中体会正方形的完美性,通过活动获得成功的喜悦与自信。

重点:掌握正方形的性质与判定,并进行简单的推理。

难点:探索正方形的判定,发展学生的推理能

教学方法:类比与探究

教具准备:可以活动的四边形模型。

一、教学分析

(一)教学内容分析

1.教材:义务教育课程标准实验教科书《数学》九年级上册(人民教育出版社)

2.本课教学内容的地位、作用,知识的前后联系

《中心对称图形》是新人教版九年级数学上册第二十三章第二单元第二节课的内容。本节教材属于图形变换的内容,是在学习了“轴对称和轴对称图形”、“旋转和中心对称”后的一种对称图形,因此涉及归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义。

3.本课教学内容的特点,重点分析体现新课程理念的特点

本节课主要介绍中心对称图形的概念、中心对称图形的识别、中心对称图形与轴对称图形与中心对称的比较、中心对称图形的性质。为使学生感受、理解知识的产生和发展过程,培养学生的抽象思维,我将通过:(1)例举日常生活中的一些旋转对称图形引出中心对称图形的概念;(2)引导学生观察、猜想、实验、归纳、类比等方法探究中心对称图形的性质,(3)通过多媒体演示使学生对中心对称图形的性质有直观的表象。我认为这环环相扣、层层深入、循序渐进的活动过程,符合新课程标准理念和学生建构知识的规律,有利于激发学生的学习情趣。

(二)教学对象分析

1.学生所在地区、学校及班级的特色

我授课的班级是西安市阎良区振兴中学九年级一班,作为九年级的学生,在图形的对称方面已经积累一些经验,已经具有一定的观察、猜想、实验、归纳、类比等研究图形对称变换的能力;班级学生具有个性活泼,思维活跃,对各种事物充满好奇,学习情绪易于调动,学习积极性高的特点,但学生的抽象思维能力个体差异较大,并且班级中已出现分化现象。

2.学生的年龄特点和认知特点

班级学生的年龄大多在15岁到17岁间。他们已具备了一定的独立分析、解决问题的能力,表现欲望较为强烈,喜好发表个人见解并且具有一定的合作交流、共同探讨的意识与经验,因此在课程内容的安排中,适当地创设一些具有一定思维深度的问题,加强学生在学习过程中自主探索与合作交流的紧密结合,促使学生在探究的过程中,更多地获得成功的体验,感受学习思考的乐趣。

教学过程

一:复习巩固,建立联系

教师活动

问题设置:①平行四边形、矩形,菱形各有哪些性质?

②()的四边形是平行四边形。()的平行四边形是矩形。()的平行四边形是菱形。()的四边形是矩形。()的四边形是菱形。

学生活动

学生回忆,并举手回答,对于填空题,让更多的学生参与,说出更多的答案。

教师活动

评析学生的结果,给予表扬。

总结性质从边角对角线考虑,在填空时也考虑这几方面之外,还应该考虑三者之间的联系与区别。

演示平行四边形变为矩形菱形的过程。

二:动手操作,探索发现

活动一:拿出一张矩形纸片,拉起一角,使其宽AB落在长AD边上,如下图所示,沿着B′E剪下,能得到什么图形?

学生活动

学生拿出自备矩形纸片,动手操作,不难发现它是正方形。

设置问题:①什么是正方形?

观察发现,从活动中体会。

【教师活动】:演示矩形变为正方形的过程,菱形变为正方形的`过程。

【学生活动】认真观察变化过程,思考之间的联系,举手回答设置问题。

设置问题②正方形是矩形吗,是菱形吗?是平行四边形吗?为什么?

【学生活动】

小组讨论,分组回答。

【教师活动】

总结板书:㈠(一组邻边相等)的矩形是正方形,(一个角是直角)的菱形是正方形。

设置问题③正方形有那些性质?

【学生活动】

小组讨论,举手抢答。

教师活动

表扬学生发言,板书学生发现,㈡正方形每一条对角线平分一组对角

活动二:拿出活动一得到的正方形折一折,正方形是轴对称图形吗?有几条对称轴?

学生活动

折纸发现,说出自己的发现。得到正方形的又一性质。正方形是轴对称图形。

教师活动

演示从平行四边形变为正方形的过程,擦去板书㈠中的括号内容,出示一下问题:你还可以怎样填空?

()的菱形是正方形,()的矩形是正方形,()的平行四边形是正方形,()的四边形是正方形。

学生活动

小组充分交流,表达不同的意见。

教师活动

评析活动,总结发现:

一组邻边相等的矩形是正方形,对角线互相平分的矩形是正方形;

有一个角是直角的菱形是正方形,对角线相等的菱形是正方形,;

有一组邻边相等且有一个角是直角的平行四边形是正方形,对角线相等且互相平分的平行四边形是正方形;

四边相等且有一角是直角的四边形是正方形,对角线相等且互相垂直平分的四边形是正方形。

以上是正方形的判定方法。

正方形是一个多么完美的平行四边形呀?大家互相说一说,它的完美体现在哪里?生活中有哪些利用正方形的例子?

学生交流,感受正方形

三,应用体验,推理证明。

出示例一:正方形ABCD的两条对角线AC,BD交与O,AB长4cm,求AC,AO长,及的度数。

方法一解:∵四边形ABCD是正方形

∴∠ABC=90°(正方形的四个角是直角)

BC=AB=4cm(正方形的四条边相等)

∴=45°(等腰直角三角形的底角是45°)

∴利用勾股定理可知,AC===4cm

∵AO=AC(正方形的对角线互相平分)

∴AO=×4=2cm

方法二:证明△AOB是等腰直角三角形,即可得证。

学生活动

独立思考,写出推理过程,再进行小组讨论,并且各小组指派代表写在黑板上,共同交流。

教师活动

总结解题方法,从正方形的性质全面考虑,准确利用条件,减少麻烦。评析解题步骤,表扬突出学生。

出示例二:在正方形ABCD中,E、F、G、H分别在它的四条边上,且AE=BF=CG=DH,四边形EFGH是什么特殊的四边形,你是如何判断的?

学生活动

小组交流,分析题意,整理思路,指名口答。

教师活动

说明思路,从已知出发或者从已有的判定加以选择。

四,归纳新知,梳理知识。

这一节课你有什么收获?

学生举手谈论自己的收获。

请把平行四边形,矩形,菱形,正方形分别填写在下图的ABCDC处,说明它们的关系。

发表评论

教学目标:

情意目标:培养学生团结协作的精神,体验探究成功的乐趣。

能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。

认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。

教学重点、难点

重点:等腰梯形性质的探索;

难点:梯形中辅助线的添加。

教学课件:PowerPoint演示文稿

教学方法:启发法、

学习方法:讨论法、合作法、练习法

教学过程:

(一)导入

1、出示图片,说出每辆汽车车窗形状(投影)

2、板书课题:5梯形

3、练习:下列图形中哪些图形是梯形?(投影)

结梯形概念:只有4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。

5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)

6、特殊梯形的分类:(投影)

(二)等腰梯形性质的探究

【探究性质一】

思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)

猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)

如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C

想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?

等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。

【操练】

(1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影)

(2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)

【探究性质二】

如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)

如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)

等腰梯形性质:等腰梯形的两条对角线相等。

【探究性质三】

问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)

问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)

等腰梯形性质:同以底上的两个内角相等,对角线相等

(三)质疑反思、小结

让学生回顾本课教学内容,并提出尚存问题;

学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。

初中数学教案 篇30

一、指导思想

教育教学工作是一个头绪众多的系统工程,在纷繁的头绪中需要各项工作有序进展,尤为重要的是强化常规,做好细节,教学常规是对学校教学工作的基本要求,落实教学常规是学校教学工作得以正常有序开展的根本保证。只有搞好教学常规才有可能获得成功的教育。教师教学水平的高低体现于教学各个步骤的细节中,空洞地谈教学能力是苍白的,只有用教师的备课情况、讲课细节、作业批改情况。教学常规培养着教师的基本功,决定着教师的教学能力,可以说教师的教学水平就是在这些常规细节中培养起来。

二、检查反馈

本次检查大多数教师都比较重视,检查内容完整、全面。现将检查情况总结如下教案方面的特点与不足。

特点:

1、绝大多数教案设计完整,教学重点、难点突出,设置得当,紧紧围绕新课标,例如:刘兴华、孙菊、江文等能突出对学科素养的高度关注。教师撰写的课后反思能体现教师对教材处理的新方法,能侧重对自己教法和学生学法的指导,并且还能对自己不得法的教学手段、方式、方法进行深刻地解剖,能很好地体现课堂教学的反思意识,反思深刻、务实、有针对性。

2、教学环节齐全,注重引语与小结,使教学设计前后呼应,环节完整。

3、注重选择恰当的教学方法,注重在灵活多样的教学方法中培养学生的合作意识和创新精神。

4、教案能体现多媒体教学手段,注重培养学生的探究精神和创新能力。

不足:

1、教案后的教学反思不够认真、不够详细,没能对本堂课的得与失作出记录与小结,从中也可以看出我们对课后反思还不够重视。

2、个别教师教案过于简单。

作业方面的特点与不足

特点:

1、能按进度布置作业,作业设置量度适中,难易适中,上交率较高,且都能做到全批全改。

2、作业批改公平、公正,有一定的等级评定。教师批改要求严格、细致,能够反映学生作业中的错误做法及纠正措施。

不足:

1、对于学生书写的工整性,还需加强教育。

2、教师在批阅作业时,要稍细心些,发现问题就让学生当时改正,学生也就会逐渐养成做事认真的习惯。

初中数学教案 篇31

教学目标:

(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

重点难点:

能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

教学过程:

一、试一试

1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,

2.x的值是否可以任意取?有限定范围吗?

3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,

对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。 对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。 对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.

二、提出问题

某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大? 在这个问题中,可提出如下问题供学生思考并回答:

1.商品的利润与售价、进价以及销售量之间有什么关系?

[利润=(售价-进价)×销售量]

2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?

[10-8=2(元),(10-8)×100=200(元)]

3.若每件商品降价x元,则每件商品的利润是多少元?一天可销

售约多少件商品?

[(10-8-x);(100+100x)]

4.x的值是否可以任意取?如果不能任意取,请求出它的范围,

[x的值不能任意取,其范围是0≤x≤2]

5.若设该商品每天的利润为y元,求y与x的函数关系式。

[y=(10-8-x) (100+100x)(0≤x≤2)]

将函数关系式y=x(20-2x)(0 <x <10=化为:

y=-2x2+20x(0<x<10)……………………………(1) 将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为: y=-100x2+100x+20D (0≤x≤2)……………………(2)

三、观察;概括

1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;

(1)函数关系式(1)和(2)的自变量各有几个?

(各有1个)

(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式? (分别是二次多项式)

(3)函数关系式(1)和(2)有什么共同特点?

(都是用自变量的二次多项式来表示的)

(4)本章导图中的问题以及P1页的问题2有什么共同特点? 让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。

2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.

四、课堂练习

1.(口答)下列函数中,哪些是二次函数?

(1)y=5x+1 (2)y=4x2-1

(3)y=2x3-3x2 (4)y=5x4-3x+1

2.P3练习第1,2题。

五、小结

1.请叙述二次函数的定义.

2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。

六、作业:略

初中数学教案 篇32

教学目标:

1. 理解平行线的概念及其性质。

2. 掌握平行线的判定方法,包括同位角相等、内错角相等、同旁内角互补等。

3. 能够应用平行线的性质与判定解决简单的实际问题。

教学重点:

平行线的性质与判定方法。

教学难点:

理解平行线判定方法中的.角的关系。

教学过程:

一、导入新课

1. 复习上节课内容,回顾直线的概念及其性质。

2. 引入平行线的概念,展示几组平行线让学生观察并总结特征。

二、新课讲解

1. 讲解平行线的定义和性质,包括平行线间的角的关系等。

2. 详细讲解平行线的判定方法,包括同位角相等、内错角相等、同旁内角互补等,并结合例题进行演示。

3. 强调判定平行线时需要注意的条件和角的关系。

三、学生练习

1. 提供一些基础的平行线判定练习题,让学生判断给定的两条直线是否平行,并说明理由。

2. 针对学生在练习中出现的问题进行个别指导。

四、实际应用

1. 引入一些简单的实际问题,如建筑设计、道路规划等,让学生尝试用平行线的性质与判定来解决。

2. 分析问题中的条件,判断是否存在平行线,并说明理由。

五、课堂小结

1. 总结平行线的定义、性质和判定方法。

2. 强调平行线判定方法中的角的关系和实际应用的重要性。

六、布置作业

1. 布置一些基础的平行线判定练习题,让学生巩固所学内容。

2. 布置一些实际应用题,让学生尝试用平行线的性质与判定来解决实际问题。

初中数学教案 篇33

一、内容特点

在知识与方法上类似于数系的第一次扩张。也是后继内容学习的基础。

内容定位:了解无理数、实数概念,了解(算术)平方根的概念;会用根号表示数的(算术)平方根,会求平方根、立方根,用有理数估计一个无理数的大致范围,实数简单的四则运算(不要求分母有理化)。

二、设计思路

整体设计思路:

无理数的引入----无理数的表示----实数及其相关概念(包括实数运算),实数的应用贯穿于内容的始终。

学习对象----实数概念及其运算;学习过程----通过拼图活动引进无理数,通过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的方式,寻求实数的运算法则;学习方式----操作、猜测、抽象、验证、类比、推理等。

具体过程:

首先通过拼图活动和计算器探索活动,给出无理数的概念,然后通过具体问题的解决,引入平方根和立方根的`概念和开方运算。最后教科书总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。

第一节:数怎么又不够用了:通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想;会判断一个数是有理数还是无理数。

第二、三节:平方根、立方根:如何表示正方形的边长?它的值到底是多少?并引入算术平方根、平方根、立方根等概念和开方运算。

第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常通过估算来求它的近似值,为此这一节内容介绍估算的方法,包括通过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。

第五节:用计算器开方:会用计算器求平方根和立方根。经历运用计算器探求数学规律的活动,发展合情推理的能力。

第六节:实数。总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。

三、一些建议

1.注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的意义理解。

2.鼓励学生进行探索和交流,重视学生的分析、概括、交流等能力的考察。

3.注意运用类比的方法,使学生清楚新旧知识的区别和联系。

4.淡化二次根式的概念。

初中数学教案 篇34

问题描述:

初中数学教学案例

初中的,随便那个年级.20xx字.案例和反思

1个回答 分类:数学 20xx-11-30

问题解答:

我来补答

2.3 平行线的性质

一、教材分析:

本节课是人民教育出版社义务教育课程标准实验教科书(五四学制)七年级上册第2章 第3节 平行线的性质,它是平行线及直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分.

二、教学目标:

知识与技能:掌握平行线的性质,能应用性质解决相关问题.

数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程.

解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神.

情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神.

三、教学重、难点:

重点:平行线的性质

难点:“性质1”的探究过程

四、教学方法:

“引导发现法”与“动像探索法”

五、教具、学具:

教具:多媒体课件

学具:三角板、量角器.

六、教学媒体:大屏幕、实物投影

七、教学过程:

(一)创设情境,设疑激思:

1.播放一组幻灯片.内容:①火车行驶在铁轨上;②游泳池;③横格纸.

2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?

学生活动:

思考回答.①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;

教师:首先肯定学生的回答,然后提出问题.

问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?

引出课题——平行线的性质.

(二)数形结合,探究性质

1.画图探究,归纳猜想

任意画出两条平行线(a‖b),画一条截线c与这两条平行线相交,标出8个角(如图).

问题一:指出图中的同位角,并度量这些角,把结果填入下表:

第一组

第二组

第三组

第四组

同位角

∠1

∠5

角的度数

数量关系

学生活动:画图——度量——填表——猜想

结论:两直线平行,同位角相等.

问题二:再画出一条截线d,看你的猜想结论是否仍然成立?

学生:探究、讨论,最后得出结论:仍然成立.

2.教师用《几何画板》课件验证猜想

3.性质1.两条直线被第三条直线所截,同位角相等.(两直线平行,同位角相等)

(三)引申思考,培养创新

问题三:请判断内错角、同旁内角各有什么关系?

学生活动:独立探究——小组讨论——成果展示.

教师活动:引导学生说理.

因为a‖b 因为a‖b

所以∠1=∠2 所以∠1=∠2

又 ∠1=∠3 又 ∠1+∠4=180°

所以∠2=∠3 所以∠2+∠4=180°

语言叙述:

性质2 两条直线被第三条直线所截,内错角相等.

(两直线平行,内错角相等)

性质3 两条直线被第三条直线所截,同旁内角互补.

(两直线平行,同旁内角互补)

(四)实际应用,优势互补

1.(抢答)

(1)如图,平行线AB、CD被直线AE所截

①若∠1 = 110°,则∠2 = °.理由:.

②若∠1 = 110°,则∠3 = °.理由:.

③若∠1 = 110°,则∠4 = °.理由:.

(2)如图,由AB‖CD,可得( )

(A)∠1=∠2 (B)∠2=∠3

(C)∠1=∠4 (D)∠3=∠4

(3)如图,AB‖CD‖EF,

那么∠BAC+∠ACE+∠CEF=( )

(A) 180°(B)270° (C)360° (D)540°

(4)谁问谁答:如图,直线a‖b,

如:∠1=54°时,∠2= .

学生提问,并找出回答问题的同学.

2.(讨论解答)

如图是一块梯形铁片的残余部分,量得∠A=100°,

∠B=115°,求梯形另外两角分别是多少度?

(五)概括存储(小结)

1.平行线的性质1、2、3;

2.用“运动”的观点观察数学问题;

3.用数形结合的方法来解决问题.

(六)作业 第69页 2、4、7.

八、教学反思:

①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者.在引导学生画图、测量、发现结论后,利用几何画板直观地、动态地展示同位角的关系,激发学生自觉地探究数学问题,体验发现的乐趣.

②学的'转变:学生的角色从学会转变为会学.本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境.

③课堂氛围的转变:整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值.

初中数学教案 篇35

教学目标

1.知识与技能

能运用运算律探究去括号法则,并且利用去括号法则将整式化简.

2.过程与方法

经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.

3.情感态度与价值观

培养学生主动探究、合作交流的意识,严谨治学的学习态度.

重、难点与关键

1.重点:去括号法则,准确应用法则将整式化简.

2.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误.

3.关键:准确理解去括号法则.

教具准备

投影仪.

教学过程

一、新授

利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?

现在我们来看本章引言中的问题(3):

在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为

100t+120(t-0.5)千米①

冻土地段与非冻土地段相差

100t-120(t-0.5)千米②

上面的式子①、②都带有括号,它们应如何化简?

思路点拨:教师引导,启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:

利用分配律,可以去括号,合并同类项,得:

100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60

100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60

我们知道,化简带有括号的整式,首先应先去括号.

上面两式去括号部分变形分别为:

+120(t-0.5)=+120t-60③

-120(t-0.5)=-120+60④

比较③、④两式,你能发现去括号时符号变化的规律吗?

思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示:

如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;

如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.

特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).

利用分配律,可以将式子中的括号去掉,得:

+(x-3)=x-3(括号没了,括号内的每一项都没有变号)

-(x-3)=-x+3(括号没了,括号内的每一项都改变了符号)

去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项.

二、范例学习

例1.化简下列各式:

(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).

思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号.

解答过程按课本,可由学生口述,教师板书.

例2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时.

(1)2小时后两船相距多远?

(2)2小时后甲船比乙船多航行多少千米?

教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路.

思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度,船逆水航行速度=船在静水中行驶速度-水流速度.因此,甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50-a)千米.两船从同一洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和.

解答过程按课本.

去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号.为了防止出错,可以先用分配律将数字2与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号.

三、巩固练习

1.课本第68页练习1、2题.

2.计算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.[5xy2]

思路点拨:一般地,先去小括号,再去中括号.

四、课堂小结

去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.

五、作业布置

1.课本第71页习题2.2第2、3、5、8题.

2.选用课时作业设计.

初中数学教案 篇36

教学目标

(一)知识认知要求

1、回顾收集数据的方式、

2、回顾收集数据时,如何保证样本的代表性、

3、回顾频率、频数的概念及计算方法、

4、回顾刻画数据波动的统计量:极差、方差、标准差的概念及计算公式、

5、能利用计算器或计算机求一组数据的算术平均数、

(二)能力训练要求

1、熟练掌握本章的知识网络结构、

2、经历数据的收集与处理的过程,发展初步的统计意识和数据处理能力、

3、经历调查、统计等活动,在活动中发 展学生解决问题的能力、

(三)情感与价值观要求

1、通过对本章内容的回顾与思考,发展学 生用数学的意识、

2、在活动中培养学生团队精神、

教学重点

1、建立本章的知识框架图、

2、体会收集数据的方式,保证样本的代表性,频率、频数及刻画数据离散程度的统 计量在实际情境中的意义和应用、

教学难点

收集数据的方式、抽样时保证样本的代表性、频率、频数、刻画数据离散程度的统计量在不同情境中的应用、

教学过程

一、导入新课

本章的内容已全部学完、现在如何让你调查一个情况、并且根据你获得数据,分析整理,然后写出调查报告,我想大家现在心里应该有数、

例如,我们要调查一下“上网吧的人的年龄”这一情况,我们应如何操作?

先选择调查方式,当然这个调查应采用抽样调查的方式,因为我们不可能调查到所有上网吧的人,何况也没有必要、

同学们感兴趣的话,下去以后可以以小组为单位,选择自己感兴趣的事情做调查,然后再作统计分析,然后把调查结果汇报上来,我们可以比一比,哪一个组表现最好?

二、讲授新课

1、举例说明收集数据的方式主要有哪几种类型、

2、抽样调查时,如何保证样本的代表性?举例说明、

3、举出与频数、频率有关的几个生活实例?

4、刻画数据波动的统计量有 哪些?它们有什么作用?举例说明、

针对上面的几个问题,同学们先独 立思考,然后可在小组内交流你的想法,然后我们每组选出代表来回答、

(教师可参与到学生的讨论中,发现同学们前面知识掌握不好的地方,及时补上)、

收集数据的方式有两种类型:普查和抽样调查、

例如:调查我校八年级同学每天做家庭作业的时间,我们就可以用普查的形式、

在这次调查中,总体:我校八年级全体学生每天做家庭作业的时间;个体:我校八年级每个学生每天做家庭作业的时间、

用普查的方式可以直接获得总体情况、但有时总体中个体数目太多,普查的工作量较大;有时受客观条件的限制,无法对所有个体进行普查;有时调查具有破坏性,不允许普查,此时可用抽样调查、

例如把上面问题改成“调查全国八年级同学每天做家庭作业的时间”,由于个体数目太多,普查的工作量也较大,此时就采取抽样调查,从总体中抽取一个样本,通过样本的特征数字来估计总体,例如平均数、中位数、众数 、极差、方差等、

上面我们回顾了为了了解某种情况而采取的调查方式:普查和抽样调查,但抽样调查必须保证数据具有代表性,因为只 有这样,你抽取的样本才能体现出总体的情况,不然,就会失去可靠性和准确性、

例如对我们班里某门学科的成绩情况,有时不仅知道平均成绩,还要知道90分以上占多少,80到90分之间占多少,……,不及格的占多少等,这时,我们只要看一下每个学生的成绩落在哪一个分数段,落在这个分数段的分数有几个,表明数据落在这个小组的频数就是多少,数据落在这个小组的频率就是频数与数据总个数的商、

刻画数据波动的统计量有极差、方差、标准差、它们是用来描述一组数据的稳定性的、一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定、

例如:某农科所在8个试验点,对甲、乙两种玉米进行对比试验,这两种玉米在各试验点的亩产量如下(单位:千克)

甲:450 460 450 430 450 460 440 460

乙:440 470 460 440 430 450 470 4 40

在这个试验点甲、乙两种玉米哪一种产量比较稳定?

我们可以算极差、甲种玉米极差为460-430=30千克;乙种玉米极差为470-430=40千克、所以甲种玉米较稳定、

还可以用方差来比较哪一种玉米稳定、

s甲2=100,s乙2=200、

s甲2<s乙2,所以甲种玉米的产量较稳定、

三、建立知识框架图

通 过刚才的几个问题回顾思考了我们这一章的重点内容,下面构建本章的知识结构图、

四、随堂练习

例1一家电脑生产厂家在某城市三个经销本厂产品的大商场调查,产品的销量占这三个 大商场同类产品销量的40%、由此在广告中宣传,他们的产品在国内同类产品的销售量占40%、请你根据所学的统计知识,判断该宣传中的数据是否可靠:________,理由是________、

分析:这是一道判断说理型题,它要求借助于统计知识,作出科学的判断, 同时运 用统计原理给予准确的解释、因此,该电脑生产厂家凭借挑选某城市经销本产品情况,断然说他们的产品在国内同类产品的销量占40%,宣传中的数据是不可靠的,其理由有二:第一,所取样本容量太小;第二,样本抽取缺乏代表性和广泛性、

例2在举国上下众志成城抗击“非典” 的斗争中,疫情变化牵动着全国人民的心 、请根据下面的疫情统计图表回答问题:

(1)图10是5月11日至5月29日全国疫情每天新增数据统计走势图,观察后回答:

①每天新增确诊病例与新增疑似病例人数之和超过100人的天数共有__________天;

②在本题的统计中,新增确诊病例的人数的中位数是___________;

③本题在对新增确诊病例的统计中,样本是__________,样本容量是__________、

(2)下表是我国一段时间内全国确诊病例每天新增的人数与天数的频率统计表、(按人数分组)

①100人以下的分组组距是________;

②填写本统计表中未完成的空格;

③在统计的这段时期中,每天新增确诊

病例人数在80人以下的天数共有_________天、

解:(1)①7 ②26 ③5月11日至29日每天新增确诊病例人数 19

(2)①10人 ②11 40 0、125 0、325 ③25

五.课时小结

这节课我们通过回顾与思考这一章的重点内容,共同建立的知识框架图,并进一步用统计的思想和知识解决问题,作出决策、

六.课后作业:

七.活动与探究

从鱼塘捕得同时放养的草鱼240尾,从中任选9尾,称得每尾鱼的质量分别是1、5,1、6,1、4,1、6,1、3,1、4,1、2,1、7,1、8(单位:千克)、依此估计这240尾鱼的总质量大约是

A、300克 B、360千克C、36千克 D、30千克

【热门】初中数学教案

作为一名教学工作者,有必要进行细致的教案准备工作,教案是实施教学的主要依据,有着至关重要的作用。那要怎么写好教案呢?下面是小编帮大家整理的初中数学教案,希望能够帮助到大家。

初中数学教案 篇37

一、目的要求

1、使学生初步理解一次函数与正比例函数的概念。

2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。

二、内容分析

1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。

2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。

3、“函数及其图象”这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。

三、教学过程

复习提问:

1、什么是函数?

2、函数有哪几种表示方法?

3、举出几个函数的例子。

新课讲解:

可以选用提问时学生举出的例子,也可以直接采用教科书中的四个函数的例子。然后让学生观察这些例子(实际上均是一次函数的解析式),y=x,s=3t等。观察时,可以按下列问题引导学生思考:

(1)这些式子表示的是什么关系?(在学生明确这些式子表示函数关系后,可指出,这是函数。)

(2)这些函数中的自变量是什么?函数是什么?(在学生分清后,可指出,式子中等号左边的y与s是函数,等号右边是一个代数式,其中的字母x与t是自变量。)

(3)在这些函数式中,表示函数的自变量的式子,分别是关于自变量的什么式呢?(这题牵扯到有关整式的基本概念,表示函数的自变量的式子也就是等号右边的式子,都是关于自变量的一次式。)

(4)x的一次式的一般形式是什么?(结合一元一次方程的有关知识,可以知道,x的一次式是kx+b(k≠0)的形式。)

由以上的层层设问,最后给出一次函数的定义。

一般地,如果y=kx+b(k,b是常数,k≠0)那么,y叫做x的一次函数。

对这个定义,要注意:

(1)x是变量,k,b是常数;

(2)k≠0 (当k=0时,式子变形成y=b的形式。b是x的0次式,y=b叫做常数函数,这点,不一定向学生讲述。)

由一次函数出发,当常数b=0时,一次函数kx+b(k≠0)就成为:y=kx(k是常数,k≠0)我们把这样的函数叫正比例函数。

在讲述正比例函数时,首先,要注意适当复习小学学过的正比例关系,小学数学是这样陈述的:

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

写成式子是(一定)

需指出,小学因为没有学过负数,实际的例子都是k>0的例子,对于正比例函数,k也为负数。

其次,要注意引导学生找出一次函数与正比例函数之间的关系:正比例函数是特殊的一次函数。

课堂练习:

教科书13、4节练习第1题.

初中数学教案 篇38

初中数学分层次教学案例

【案例主题:】学生参与教学,体现了现代教学理念:活动、合作、自由、民主、创新。

【背景:】我在进行数学七年级上册图形的认识的应用教学时,处理定理时,随着教学过程的深入,很有感想:??

例题:课本p123证明两个角之间的关系,

请同学们总结一下他们可能出现的情况。

【活动过程】师:谁能总结一下判定两个角比较大小的方法?(学生都在紧张的思考中)(突然间,我发现一名平时学习较困难的学生闫家衔这次第一个举起了手,很惊奇,便马上让他发言了。也有了我思想上的一次飞跃。)

生:我认为前面,度量,而刚才第一条,第二条的叠合法。(这时,教室里鸦雀无声,个别同学在讥笑,这位学生顿时有些难堪,想坐下去,我赶紧制止。)

师:很好!那你准备应该怎么做呢?生:嗯,(一下子来劲了):接着这位同学上黑板画了图,写出自己度量的方法和自己的想法。

师:刚才闫家衔同学真的不错,不但提出了新的方法,而且还给出了说理,我和全班同学都为你今天的表现感到非常高兴(教室里响起一片掌声)。要有勇气展示自己,你今天的表现就非常非常地出色,你今后的表现一定会更出色。好,下面我就让我们一同来总结一下菱形的证明方法。

在师生的共同研讨下得出了这些方法。

师:今天的课程内容还有一项,那就是请闫家衔同学谈谈这堂课的感想。

生:??以前我不敢发言,我怕说的不对会被同学们笑话,而今天的他的方法恰好是我前几天才预习过的,所以一下子??我今天才发现不是这样??我今后还会努力发言的??

【理念反思】:从这一个学生的举手发言到说得头头是道的.“意外”中,我明白了:学生需要一个能充分展示自我的自由空间,作为老师,我们需要给学生一个自由的民主的氛围,能充分培养学生的自信,使“学困生”也能产生发言的欲望,也能对问题畅所欲言,教师还应能及时捕捉到这一闪光点,给每一位学生都有展示的机会。也就是说要使学生全部积极参与教学,因为它集中体现了现代课程理念:活动、合作、自由、民主、创新。

1、活动、合作是现代课程中的新的理念,只有参与,才能合作创新。

2、民主是现代课程中的重要理念。民主最直接的体现是在课程实施中学生能够平等地参与。没有主动参与,只有被动接受,就没有民主可言。相反,如果没有民主,学生的参与

就不是主动性参与,而是被动的、消极的参与。

3、在提问时,应设计开放性的问题,如:“请你帮助设计一下,有几种方案等问题?这样才没有限制学生的思维,给学生创设一个自由的空间,学生在这个空间中可以按自己的方式展开想象,才能畅所欲言。

4、在课堂上,老师应不只关注“优等生”,而应平等地对待每一个学生,让学困生”和“学优生”同时享有尊严和拥有一份自信。特别是发现到一个学困生在举了手时,应及时给“学困生”展示的机会,让他们发言,学生在发言中,虽然有时不能把问题完全解决,老师也要充分的肯定这个学生的成绩和能够大胆发言的勇气。

初中数学教案 篇39

教学目标:

(一)知识与技能

理解单项式及单项式系数、次数的概念;能准确迅速地确定一个单项式的系数和次数;会用含字母的式子表示实际问题中的数量关系。

(二)过程与方法

1.在经历用字母表示数量关系的过程中,发展符号感;

2. 通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力

(三)情感态度价值观

1.通过丰富多彩的现实情景,让学生经历从具体问题中抽象出数量关系,在解决问题中了解数学的价值,增长“用数学”的信心.

2.通过用含字母的式子描述现实世界中的数量关系,认识到它是解决实际问题的重要数学工具之一。

教学重、难点:

重点:单项式及单项式系数、次数的概念。

难点:单项式次数的概念;单项式的书写格式及注意点。

教学方法:

引导——探究式

在感性材料的基础上,学生自主探究现实情景中用字母表示数的问题,通过观察、分析、比较,找出材料中个体的共同点,教师引导学生共同抽象、概括单项式及相关的概念.

教具准备:

多媒体课件、小黑板.

教学过程:

一、 创设情境,引入新课

出示一张奔驰在青藏铁路线上的列车照片,并配上歌曲《天路》,边欣赏边向学生介绍青藏铁路所创造的历史之最。

情境问题:

青藏铁路西线上,在格尔木到拉萨之间有一段很长的冻土地段。列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答:列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?

设计意图:从学生熟悉的情境出发,创设情境,让学生感受青藏铁路的伟大成就,激发

爱国主义情感,得到一次情感教育。

解:根据路程、速度、时间之间的关系:路程=速度×时间

2小时行驶的路程是:100×2=200(千米)

3小时行驶的路程是:100×3=300(千米)

t小时行驶的路程是:100×t=100t(千米)

注意:在含有字母的式子中若出现乘号,通常将乘号写作“ · ”或省略不写。

如:100×a可以写成100a或100a。

代数式:用基本的运算符号(运算包括加、减、乘除、乘方等)把数和表示数的字母连接起来的式子。

代数式可以简明地表示数量和数量的关系,本节我们就来学习最基本也是最重要的一类代数式整式。

设计意图:从学生已有的数学经验:路程=速度×时间出发,建立新旧知识之间的联系

让学生历一个从一般到特殊再到一般的认识过程,发展学生的认知观念。

二、合作交流,探究新知

探究

思考:用含字母的式子填空(独立完成),并观察列出的式子有什么共同特点(小组可交流讨论)。

1、边长为a的正方体的表面积是__,体积是__.

2、铅笔的单价是x元,圆珠笔的单价是铅笔的2.5倍,则圆珠笔的单价是___元。

3、一辆汽车的速度是v千米∕小时,它t小时行驶的路程为__千米。

4、数n的相反数是__。

解:(1)6a2、 a3 (2)2.5x (3) vt (4)-n

思考:它们有什么共同的特点?

6a 2=6·a·a a3=a·a·a 2.5x=2.5·x vt=v·t -n=-1·n

单项式:数与字母、字母与字母的乘积。

注意:单独的一个数或字母也是单项式。

设计意图:从熟悉的实际背景出发,充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,获得数学猜想和数学经验,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。

火眼金睛

下列各代数式中哪些是单项式哪些不是?

(1)a (2) 0 (3) a2

(4) 6a (5)

(6)

(7)3a+2b (8)xy2

设计意图:加强学生对不同形式的单项式的直观认识。

解剖单项式

系数:单项式中的数字因数。

如:-3x的系数是 ,-ab的系数是 , 的系数是 。

次数:一个单项式中的所有字母的指数的和。

如:-3x的次数是 ,ab的次数是 。

小试身手

单项式 2a 2 -1.2h xy2 -t2 -32x2y

系数

次数

设计意图:了解学生对单项式系数、次数的概念是否理解,找出存在的问题,从而进一步巩固概念。

单项式的注意点:

(1)数与字母相乘时,数应写在字母的___,且乘号可_________;

(2)带分数作为系数时,应改写成_______的形式;

(3)式子中若出现相除时,应把除号写成____的形式;

(4)把“1”或“-1”作为项的系数时,“1”可以__不写。

行家看门道

①1x ②-1x

③a×3 ④a÷2

⑤ ⑥m的系数为1,次数为0

⑦ 的系数为2,次数为2

设计意图:单项式的书写和表示有其特有的格式和注意点,通过以上两个题目让学生进一步明确注意点。

三、例题讲解,巩固新知

例1:用单项式填空,并指出它们的系数和次数:

(1)每包书有12册,n包书有 册;

(2)底边长为a,高为h的三角形的面积 ;

(3)一个长方体的长和宽都是a,高是h,它的体积是 ;

(4)一台电视机原价a元,现按原价的9折出售,这台电视机现在的售价

为 元;

(5)一个长方形的长0.9,宽是a,这个长方形的面积是 .

解:(1)12n,它的系数是12,次数是1

(2) ,它的系数是 , 次数是2;

(3)a2h,它的系数是1,次数是3;

(4)0.9a,它的系数是0.9,次数是1;

(5)0.9a,它的系数是0.9,次数是1。

设计意图:学生能用单项式表示简单的实际问题中的数量关系,并进一步巩固单项式的系数、次数的概念。

试一试

你还能赋予0.9a一个含义吗?

设计意图:同一个式子可以表示不同的含义,通过这个例子让学生进一步体会式子更具有一般性,而且发散学生思维。

大胆尝试

写出一个单项式,使它的系数是2,次数是3.

设计意图:充分发挥学生的想象力,让每一个学生都有获得成功的体验,为不同程度的学生一个展示自我的机会,激发他们的学习兴趣。

四、拓展提高

尝试应用

用单项式填空,并指出它们的系数和次数:

(1)全校学生总数是x,其中女生占总数48%,则女生人数是 ,男生人数是 ;

(2)一辆长途汽车从杨柳村出发,3小时后到达相距s千米的溪河镇,这辆长途汽车的平均速度是 ;

(3)产量由m千克增长10%,就达到 千克;

设计意图:让学生感受单项式在实际生活中的应用,进一步掌握单项式及单项式系数、次数的概念。

能力提升

1、已知-xay是关于x、y的三次单项式,那么a= ,b= .

2、若-ax2yb+1是关于x、y的五次单项式,且系数为-3,则a= ,b= .

设计意图:照顾学有余力的学生,拓展学生思维,让学生体会跳一跳、摘桃子的乐趣。

五、小结:

本节课你感受到了吗?

生活中处处有数学

本节课我们学了什么?你能说说你的收获吗?

1、单项式的概念: 数与字母、字母与字母的乘积。

2、单项式的系数、次数的概念。

系数:单项中的数字因数;

次数:单项中所有字母的指数和。

3、会用单项式表示实际问题中的数量关系,注意列式时式子要规范书写。

设计意图:通过回顾和反思,让学生看到自己的进步,激励学生,使学生相信自己在今后的学习中不断进步,不断积累数学活动经验,促进学生形成良好的心理品质。

结束寄语

悟性的高低取决于有无悟“心”,其实,人与人的差别就在于你是否去思考,去发现!

设计意图:这是对学生的激励也是对学生的一种期盼,可以增进师生间的情感交流。

六、板书设计

2.1 整式

单项式概念 探究 例1 多

单项式的系数概念 观察交流 尝试应用 媒

单项式的次数概念 能力提升 体

七、作业:

1.作业本(必做)。

2. 请下面图片设计一个故事情境,要求其中包含的数量关系能够用单项式表示,并且指出它们的系数和次数(选做)。

设计意图:布置分层作业,既让学生掌握基础知识,又使学有余力的学生有所提高。让学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,活跃学生思维,使学生能够透彻理解知识,同时培养同学之间的竞争意识。

八、设计理念:

本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。

针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将提供大量感性材料,以启发引导为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,同时注重培养学生由感性认识上升到理性认识,为进一步学习同类项打下坚实的基础。

初中数学教案 篇40

(一)教材分析

1、知识结构

2、重点、难点分析

重点:

找出命题的题设和结论.因为找出一个命题的题设和结论,是对该命题深刻理解的前提,而对命题理解能力是我们今后研究数学必备的能力,也是研究其它学科能力的基础.

难点:

找出一个命题的题设和结论.因为理解和掌握一个命题,一定要分清它的题设和结论,所以找出一个命题的题设和结论是十分重要的问题.但有些命题的题设和结论不明显.例如,“对顶角相等”,“等角的余角相等”等.一些没有写成“如果那么”形式的命题,学生往往搞不清哪是题设,哪是结论,又没有一个通用的方法可以套用,所以分清题设和结论是教学的一个难点.

(二)教学建议

1、教师在教学过程中,组织或引导学生从具体到抽象,结合学生熟悉的事例,来理解命题的概念、找出一个命题的题设和结论,并能判断一些简单命题的真假.

2、命题是数学中一个非常重要的概念,虽然高中阶段我们还要学习,但对于程度好的A层学生还要理解:

(1)假命题可分为两类情况:

①题设只有一种情形,并且结论是错误的,例如,“1+3=7”就是一个错误的命题.

②题设有多种情形,其中至少有一种情形的结论是错误的.

例如,“内错角互补,两直线平行”这个命题的题设可分为两种情形:

第一种情形是两个内错角都等于90°,这时两直线平行;

第二种情形是两个内错角不都等于90°,这时两直线不平行.

整体说来,这是错误的命题.

(2)是否是命题:

命题的定义包括两层涵义:

①命题必须是一个完整的句子;

②这个句子必须对某件事情做出肯定或者否定的判断.即命题是判断某一件事情的句子.在语法上,这样的句子叫做陈述句,它由“题设+结论”构成.

另外也有一些句子不是陈述句,例如,祈使句(也叫做命令句)“过直线AB外一点作该直线的'平行线.”疑问句“∠A是否等于∠B?”感叹句“竟然得到5>9的结果!”以上三个句子都不是命题.

(3)命题的组成

每个命题都是由题设、结论两部分组成.题设是已知事项;结论是由已知事项推出的事项.命题常写成“如果,那么”的形式.具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论.

有些命题,没有写成“如果,那么”的形式,题设和结论不明显.对于这样的命题,要经过分折才能找出题设和结论,也可以将它们改写成“如果那么”的形式.

另外命题的题设(条件)部分,有时也可用“已知”或者“若”等形式表述;命题的结论部分,有时也可用“求证”或“则”等形式表述.

初中数学教案 篇41

一、检查反馈

本次检查大多数教师都比较重视,检查内容完整、全面。现将检查情况总结如下教案方面的特点与不足。

特点:

1、绝大多数教案设计完整,教学重点、难点突出,设置得当,紧紧围绕新课标,例如:刘兴华、孙菊、江文李雅芳等能突出对学科素养的高度关注。教师撰写的课后反思能体现教师对教材处理的新方法,能侧重对自己教法和学生学法的`指导,并且还能对自己不得法的教学手段、方式、方法进行深刻地解剖,能很好地体现课堂教学的反思意识,反思深刻、务实、有针对性。

2、注重选择恰当的教学方法,注重在灵活多样的教学方法中培养学生的合作意识和创新精神。

3、教案能体现多媒体教学手段,注重培养学生的探究精神和创新能力。

不足:

1、教案后的教学反思不够认真、不够详细,没能对本堂课的得与失作出记录与小结,从中也可以看出我们对课后反思还不够重视。

2、个别教师教案过于简单。

作业方面的特点与不足

特点:

1、能按进度布置作业,作业设置量度适中,难易适中,上交率较高,且都能做到全批全改。

2、作业批改公平、公正,有一定的等级评定。教师批改要求严格、细致,能够反映学生作业中的错误做法及纠正措施。

3、学生在书写方面有很大进步。从检查可以发现教师对学生作业的书写格式有明确的要求。

不足:

1、对于学生书写的工整性,还需加强教育。

2、教师在批阅作业时,要稍细心些,发现问题就让学生当时改正,学生也就会逐渐养成做事认真的习惯。

初中数学教案 篇42

一、教材分析

本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。

二、教学目标

1、知识目标:了解多边形内角和公式。

2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。

4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。

三、教学重、难点

重点:探索多边形内角和。

难点:探索多边形内角和时,如何把多边形转化成三角形。

四、教学方法:引导发现法、讨论法

五、教具、学具

教具:多媒体课件

学具:三角板、量角器

六、教学媒体:大屏幕、实物投影

七、教学过程:

(一)创设情境,设疑激思

师:大家都知道三角形的内角和是180,那么四边形的内角和,你知道吗?

活动一:探究四边形内角和。

在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。

方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360。

方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360。

接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。

师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?

活动二:探究五边形、六边形、十边形的内角和。

学生先独立思考每个问题再分组讨论。

关注:

(1)学生能否类比四边形的方式解决问题得出正确的结论。

(2)学生能否采用不同的方法。

学生分组讨论后进行交流(五边形的内角和)

方法1:把五边形分成三个三角形,3个180的和是540。

方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180的和减去一个周角360。结果得540。

方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180的和减去一个平角180,结果得540。

方法4:把五边形分成一个三角形和一个四边形,然后用180加上360,结果得540。

师:你真聪明!做到了学以致用。

交流后,学生运用几何画板演示并验证得到的方法。

得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720,十边形内角和是1440。

(二)引申思考,培养创新

师:通过前面的讨论,你能知道多边形内角和吗?

活动三:探究任意多边形的内角和公式。

思考:

(1)多边形内角和与三角形内角和的关系?

(2)多边形的边数与内角和的关系?

(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?

学生结合思考题进行讨论,并把讨论后的结果进行交流。

发现1:四边形内角和是2个180的和,五边形内角和是3个180的和,六边形内角和是4个180的和,十边形内角和是8个180的和。发现2:多边形的`边数增加1,内角和增加180。

发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。

得出结论:多边形内角和公式:(n-2)·180。

(三)实际应用,优势互补

1、口答:(1)七边形内角和()

(2)九边形内角和()

(3)十边形内角和()

2、抢答:(1)一个多边形的内角和等于1260,它是几边形?

(2)一个多边形的内角和是1440,且每个内角都相等,则每个内角的度数是()。

3、讨论回答:一个多边形的内角和比四边形的内角和多540,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?

(四)概括存储

学生自己归纳总结:

1、多边形内角和公式

2、运用转化思想解决数学问题

3、用数形结合的思想解决问题

(五)作业:练习册第93页1、2、3

八、教学反思:

1、教的转变

本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。

2、学的转变

学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。

3、课堂氛围的转变

整节课以“流畅、开放、合作、隐导”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。

初中数学教案 篇43

《正方形》教学设计

教学内容分析:

⑴学习特殊的平行四边形—正方形,它的特殊的性质和判定。

⑵前面学习了平行四边形、矩形菱形,类比他们的性质与判断,有利于对正方形的研究。

⑶对本节的学习,继续培养学生分类研究的思想,并且建立新旧知识的联系,类比的基础上进行归纳,梳理知识,进一步发展学生的推理能力。

学生分析

⑴学生在小学初步认识了正方形,并且本节课之前,学生又学习了几种平行四边形,已经具备了观察研究平行四边形的经验与知识基础。

⑵学生在上几节已有了推理的经历,但是对于证明,学生的思维能力还不成熟,有待于提高。

教学目标:

⑴知识与技能:了解正方形是特殊的平行四边形,掌握它的性质和判定,会利用性质与判定进行简单的说理。

⑵过程与方法:通过类比前边的四边形的研究,探索并归纳正方形的性质与判定。通过运用提高学生的推理能力。

⑶情感态度与价值观:在学习中体会正方形的完美性,通过活动获得成功的喜悦与自信。

重点:掌握正方形的性质与判定,并进行简单的推理。

难点:探索正方形的判定,发展学生的推理能

教学方法:类比与探究

教具准备:可以活动的四边形模型。

一、教学分析

(一)教学内容分析

1.教材:义务教育课程标准实验教科书《数学》九年级上册(人民教育出版社)

2.本课教学内容的地位、作用,知识的前后联系

《中心对称图形》是新人教版九年级数学上册第二十三章第二单元第二节课的内容。本节教材属于图形变换的内容,是在学习了“轴对称和轴对称图形”、“旋转和中心对称”后的一种对称图形,因此涉及归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义。

3.本课教学内容的特点,重点分析体现新课程理念的特点

本节课主要介绍中心对称图形的概念、中心对称图形的识别、中心对称图形与轴对称图形与中心对称的比较、中心对称图形的性质。为使学生感受、理解知识的产生和发展过程,培养学生的抽象思维,我将通过:(1)例举日常生活中的一些旋转对称图形引出中心对称图形的概念;(2)引导学生观察、猜想、实验、归纳、类比等方法探究中心对称图形的性质,(3)通过多媒体演示使学生对中心对称图形的性质有直观的表象。我认为这环环相扣、层层深入、循序渐进的活动过程,符合新课程标准理念和学生建构知识的规律,有利于激发学生的学习情趣。

(二)教学对象分析

1.学生所在地区、学校及班级的特色

我授课的班级是西安市阎良区振兴中学九年级一班,作为九年级的学生,在图形的对称方面已经积累一些经验,已经具有一定的观察、猜想、实验、归纳、类比等研究图形对称变换的能力;班级学生具有个性活泼,思维活跃,对各种事物充满好奇,学习情绪易于调动,学习积极性高的特点,但学生的抽象思维能力个体差异较大,并且班级中已出现分化现象。

2.学生的年龄特点和认知特点

班级学生的年龄大多在15岁到17岁间。他们已具备了一定的独立分析、解决问题的能力,表现欲望较为强烈,喜好发表个人见解并且具有一定的合作交流、共同探讨的意识与经验,因此在课程内容的安排中,适当地创设一些具有一定思维深度的问题,加强学生在学习过程中自主探索与合作交流的紧密结合,促使学生在探究的过程中,更多地获得成功的体验,感受学习思考的乐趣。

教学过程

一:复习巩固,建立联系

教师活动

问题设置:①平行四边形、矩形,菱形各有哪些性质?

②()的四边形是平行四边形。()的平行四边形是矩形。()的平行四边形是菱形。()的四边形是矩形。()的四边形是菱形。

学生活动

学生回忆,并举手回答,对于填空题,让更多的学生参与,说出更多的答案。

教师活动

评析学生的结果,给予表扬。

总结性质从边角对角线考虑,在填空时也考虑这几方面之外,还应该考虑三者之间的联系与区别。

演示平行四边形变为矩形菱形的过程。

二:动手操作,探索发现

活动一:拿出一张矩形纸片,拉起一角,使其宽AB落在长AD边上,如下图所示,沿着B′E剪下,能得到什么图形?

学生活动

学生拿出自备矩形纸片,动手操作,不难发现它是正方形。

设置问题:①什么是正方形?

观察发现,从活动中体会。

【教师活动】:演示矩形变为正方形的过程,菱形变为正方形的过程。

【学生活动】认真观察变化过程,思考之间的联系,举手回答设置问题。

设置问题②正方形是矩形吗,是菱形吗?是平行四边形吗?为什么?

【学生活动】

小组讨论,分组回答。

【教师活动】

总结板书:㈠(一组邻边相等)的矩形是正方形,(一个角是直角)的菱形是正方形。

设置问题③正方形有那些性质?

【学生活动】

小组讨论,举手抢答。

教师活动

表扬学生发言,板书学生发现,㈡正方形每一条对角线平分一组对角

活动二:拿出活动一得到的正方形折一折,正方形是轴对称图形吗?有几条对称轴?

学生活动

折纸发现,说出自己的发现。得到正方形的又一性质。正方形是轴对称图形。

教师活动

演示从平行四边形变为正方形的过程,擦去板书㈠中的括号内容,出示一下问题:你还可以怎样填空?

()的菱形是正方形,()的矩形是正方形,()的平行四边形是正方形,()的四边形是正方形。

学生活动

小组充分交流,表达不同的意见。

教师活动

评析活动,总结发现:

一组邻边相等的矩形是正方形,对角线互相平分的矩形是正方形;

有一个角是直角的菱形是正方形,对角线相等的菱形是正方形,;

有一组邻边相等且有一个角是直角的平行四边形是正方形,对角线相等且互相平分的平行四边形是正方形;

四边相等且有一角是直角的四边形是正方形,对角线相等且互相垂直平分的四边形是正方形。

以上是正方形的判定方法。

正方形是一个多么完美的平行四边形呀?大家互相说一说,它的完美体现在哪里?生活中有哪些利用正方形的例子?

学生交流,感受正方形

三,应用体验,推理证明。

出示例一:正方形ABCD的两条对角线AC,BD交与O,AB长4cm,求AC,AO长,及的度数。

方法一解:∵四边形ABCD是正方形

∴∠ABC=90°(正方形的四个角是直角)

BC=AB=4cm(正方形的四条边相等)

∴=45°(等腰直角三角形的底角是45°)

∴利用勾股定理可知,AC===4cm

∵AO=AC(正方形的对角线互相平分)

∴AO=×4=2cm

方法二:证明△AOB是等腰直角三角形,即可得证。

学生活动

独立思考,写出推理过程,再进行小组讨论,并且各小组指派代表写在黑板上,共同交流。

教师活动

总结解题方法,从正方形的性质全面考虑,准确利用条件,减少麻烦。评析解题步骤,表扬突出学生。

出示例二:在正方形ABCD中,E、F、G、H分别在它的四条边上,且AE=BF=CG=DH,四边形EFGH是什么特殊的四边形,你是如何判断的?

学生活动

小组交流,分析题意,整理思路,指名口答。

教师活动

说明思路,从已知出发或者从已有的判定加以选择。

四,归纳新知,梳理知识。

这一节课你有什么收获?

学生举手谈论自己的收获。

请把平行四边形,矩形,菱形,正方形分别填写在下图的ABCDC处,说明它们的关系。

发表评论

教学目标:

情意目标:培养学生团结协作的精神,体验探究成功的乐趣。

能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。

认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。

教学重点、难点

重点:等腰梯形性质的探索;

难点:梯形中辅助线的添加。

教学课件:PowerPoint演示文稿

教学方法:启发法、

学习方法:讨论法、合作法、练习法

教学过程:

(一)导入

1、出示图片,说出每辆汽车车窗形状(投影)

2、板书课题:5梯形

3、练习:下列图形中哪些图形是梯形?(投影)

结梯形概念:只有4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。

5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)

6、特殊梯形的分类:(投影)

(二)等腰梯形性质的探究

【探究性质一】

思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)

猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)

如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C

想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?

等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。

【操练】

(1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影)

(2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)

【探究性质二】

如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)

如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)

等腰梯形性质:等腰梯形的两条对角线相等。

【探究性质三】

问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)

问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)

等腰梯形性质:同以底上的两个内角相等,对角线相等

(三)质疑反思、小结

让学生回顾本课教学内容,并提出尚存问题;

学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。

初中数学教案 篇44

教学目标:

1、理解切线的判定定理,并学会运用。

2、知道判定切线常用的方法有两种,初步掌握方法的选择。

教学重点:切线的判定定理和切线判定的方法。

教学难点:切线判定定理中所阐述的圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视一.

教学过程:

一、复习提问

【教师】问题1.怎样过直线l上一点P作已知直线的垂线?

问题2.直线和圆有几种位置关系?

问题3.如何判定直线l是⊙O的切线?

启发:(1)直线l和⊙O的公共点有几个?

(2)圆心O到直线L的距离与半径的数量关系 如何?

学生答完后,教师强调(2)是判定直线 l是⊙O的切线的常用方法,即: 定理:圆心O到直线l的距离OA 等于圆的半 (如图1,投影显示)

再启发:若把距离OA理解为 OA⊥l,OA=r;把点A理解为半径在圆上的端点 ,请同学们试将上面定理用新的理解改写成新的命题,此命题就 是这节课要学的“切线的判定定理”(板书课题)

二、引入新课内容

【学生】命题:经过半径的在圆上的端点且垂直于半 径的直线是圆的切线。

证明定理:启发学生分清命题的题设和结论,写出已 知、求证,分析证明思路,阅读课本P60。

定理:经过半径外端并且垂直于这条半径的直线是圆的切线.

定理的证明:已知:直线l经过半径OA的外端点A,直线l⊥OA,

求证:直线l是⊙O的切线

证明:略

定理的符号语言:∵直线l⊥OA,直线l经过半径OA的外端A

∴直线l为⊙O的切线。

是非题:

(1)垂直于圆的半径的直线一定是这个圆的切线。 ( )

(2)过圆的半径的外端的直线一定是这个圆的切线。 ( )

三、例题讲解

例1、已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB。

求证:直线AB是⊙O的切线。

引导学生分析:由于AB过⊙O上的点C,所以连结OC,只要证明AB⊥OC即可。

证明:连结OC.

∵OA=OB,CA=CB,

∴AB⊥OC

又∵直线AB经过半径OC的外端C

∴直线AB是⊙O的切线。

练习1、如图,已知⊙O的半径为R,直线AB经过⊙O上的点A,并且AB=R,∠OBA=45°。求证:直线AB是⊙O的切线。

练习2、如图,已知AB为⊙O的直径,C为⊙O上一点,AD⊥CD于点D,AC平分∠BAD。

求证:CD是⊙O的切线。

例2、如图,已知AB是⊙O的直径,点D在AB的延长线上,且BD=OB,过点D作射线DE,使∠ADE=30°。

求证:DE是⊙O的切线。

思考题:在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,以D为圆心,BD为半径作圆,问⊙D的切线有几条?是哪几条?为什么?

四、小结

1.切线的判定定理。

2.判定一条直线是圆的切线的方法:

①定义:直线和圆有唯一公共点。

②数量关系:直线到圆心的距离等于该圆半径(即d = r)。[

③切线的判定定理:经过半径外端且与这条半径垂直的直线是圆的切线。

3.证明一条直线是圆的切线的辅助线和证法规律。

凡是已知公共点(如:直线经过圆上的点;直线和圆有一个公共点;)往往是"连结"圆心和公共点,证明"垂直"(直线和半径);若不知公共点,则过圆心作一条线段垂直于直线,证明所作的`线段等于半径。即已知公共点,“连半径,证垂直”;不知公共点,则“作垂直,证半径”。

五、布置作业:略

《切线的判定》教后体会

本课例《切线的判定》作为市考试院调研课型兼区级研讨课,我以“教师为引导,学生为主体”的二期课改的理念出发,通过学生自我活动得到数学结论作为教学重点,呈现学生真实的思维过程为教学宗旨,进行教学设计,目的在于让学生对知识有一个本质的、有效的理解。本节课切实反映了平时的教学情况,为前来调研和研讨的老师提供了真实的样本。反思本节课,有以下几个成功与不足之处:

成功之处:

一、 教材的二度设计顺应了学生的认知规律

这批学生习惯于单一知识点的学习,即得出一个知识点,必须由浅入深反复进行练习,巩固后方能加以提升与综合,否则就会混淆概念或定理的条件和结论,导致错误,久之便会失去学习数学的兴趣和信心。本教时课本上将切线判定定理和性质定理的导出作为第一课时,两个定理的运用和切线的两种常用的判定方法作为第二课时,学生往往会因第一时间得不到及时的巩固,对定理本质的东西不能很好地理解,在运用时抓不住关键,解题仅仅停留在模仿层次上,接受能力薄弱的学生更是因知识点多不知所措,在云里雾里。二度设计将切线的判定方法作为第一课时,切线的性质定理以及两个定理的综合运用作为第二课时,这样的设计即是对前面所学的“直线与圆相切的判定方法”的复习,又是对后面学习综合运用两个定理,合理选择两种方法判定切线作了铺垫,教学呈现了一个循序渐进、温过知新的过程。从学生的反馈情况判断,教学效果较为理想。

二、重视学生数感的培养呼应了课改的理念

数感类似与语感、乐感、美感,拥有了感觉,知识便会融会贯通,学习就会轻松。拥有数感,不仅会对数学知识反应灵敏,更会在生活中不知不觉运用数学思维方式解决实际问题。本节课中,两个例题由教师诱导,学生发现完成的,而三个习题则完全放手让学生去思考完成,不乏有不会做和做得复杂的学生,但在展示和交流中,撞击出思维的火花,难以忘怀。让学生尝试总结规律,也是对学生能力的培养,在本节课中,辅助线的规律是由学生得出,事实证明,学生有这样的理解、概括和表达能力。通过思考得出正确的结论,这个结论往往是刻骨铭心的,长此以往,对数和形的感觉会越来越好。

不足之处:

一、这节课没有“高潮”,没有让学生特别兴奋激起求知欲的情境,整个教学过程是在一个平静、和谐的氛围中完成的。

二、课的引入太直截了当,脱离不了应试教学的味道。

三、教学风格的定势使所授知识不能很合理地与生活实际相联系,一定程度上阻碍了学生解决实际问题能力的发展。

通过本节课的教学,我深刻感悟到在教学实践中,教师要不断地充实自己,拓宽知识面,努力突破已有的教学形状,适应现代教育,适应现代学生。课堂教学中,敢于实验,舍得放手,尽量培养学生主体意识,问题让学生自己去揭示,方法让学生自己去探索,规律让学生自己去发现,知识让学生自己去获得,教师只提供给学生现实情境、充足的思考时间和活动空间,给学生表现自我的机会和成功的体验,培养学生的自我意识,发挥学生的主体作用,来真正实现《数学课程标准》中提出的“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者”这一教学理念。

初中数学教案 篇45

一、内容和内容解析

(一)内容

概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.

(二)内容解析

现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的'解集有很大的帮助.基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.

二、目标和目标解析

(一)教学目标

1.理解不等式的概念

2.理解不等式的解与解集的意义,理解它们的区别与联系

3.了解解不等式的概念

4.用数轴来表示简单不等式的解集

(二)目标解析

1.达成目标1的标志是:能正确区别不等式、等式以及代数式.

2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.

3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.

4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.

三、教学问题诊断分析

本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.

因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集.

四、教学支持条件分析

利用多媒体直观演示课前引入问题,激发学生的学习兴趣.

五、教学过程设计

(一)动画演示情景激趣多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.

(二)立足实际引出新知

问题一辆匀速行驶的汽车在11︰20距离a地50km,要在12︰00之前驶过a地,车速应满足什么条件?

小组讨论,合作交流,然后小组反馈交流结果.最后,老师将小组反馈意见进行整理(学生没有讨论出来的思路老师进行补充)

1.从时间方面虑:

2.从行程方面:<>50 3.从速度方面考虑:x>50÷

设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解.老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力.

(三)紧扣问题概念辨析

1.不等式

设问1:什么是不等式?

设问2:能否举例说明?由学生自学,老师可作适当补充.比如:是不等式.

2.不等式的解

设问1:什么是不等式的解?设问

2:不等式的解是唯一的吗?由学生自学再讨论.

老师点拨:由x>50÷得x>75说明x任意取一个大于75的数都是不等式

3.不等式的解集

设问1:什么是不等式的解集?<,>50的解.<,>50,x>50÷都设问

2:不等式的解集与不等式的解有什么区别与联系?由学生自学后再小组合作交流.

老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合.

4.解不等式

设问1:什么是解不等式?由学生回答.

老师强调:解不等式是一个过程.

设计意图:培养学生的自学能力,进一步培养学生合作交流的意识.遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识.老师再适当点拨,加深理解.

(四)数形结合,深化认识

问题1:由上可知,x>75既是不等式的解集.那么在数轴上如何表示x>75呢?问题

2:如果在数轴上表示x≤ 75,又如何表示呢?由老师讲解,注意规范性,准确性.老师适当补充:“≥”与“≤”的意义,并强调用“≥”或“≤”连接的式子也是不等式.比如x≤ 75就是不等式.

设计意图:通过数轴的直观让学生对不等式的解集进一步加深理解,渗透数形结合思想.

(五)归纳小结,反思

提高教师与学生一起回顾本节课所学主要内容,并请学生回答如下问题

1、什么是不等式?

<的解集,也是不等式>50

2、什么是不等式的解?

3、什么是不等式的解集,它与不等式的解有什么区别与联系?

4、用数轴表示不等式的解集要注意哪些方面?

设计意图:归纳本节课的主要内容,交流心得,不断积累学习经验.

(六)布置作业,课外反馈

教科书第119页第1题,第120页第2,3题.

设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.

六、目标检测设计1.填空

下列式子中属于不等式的有___________________________

①x +7>

②②x≥ y + 2 = 0④ 5x + 7设计意图:让学生正确区分不等式、等式与代数式,进一步巩固不等式的概念.

2.用不等式表示① a与5的和小于7 ② a的与b的3倍的和是非负数

③正方形的边长为xcm,它的周长不超过160cm,求x满足的条件设计意图:培养学生审题能力,既要正确抓住题目中的关键词,如“大于(小于)、非负数(正数或负数)、不超过(不低于)”等等,正确选择不等号,又要注意实际问题中的数量的实际意义.

初中数学教案 篇46

教学目标

1、进一步掌握有理数的运算法则和运算律;

2、使学生能够熟练地按有理数运算顺序进行混合运算;

3、注意培养学生的运算能力。

教学重点和难点

重点:有理数的混合运算。

难点:准确地掌握有理数的运算顺序和运算中的符号问题。

课堂教学过程设计

一、从学生原有认知结构提出问题

1、计算(五分钟练习:

(5)-252;(6)(-2)3;(7)-7+3-6;(8)(-3)×(-8)×25;

(13)(-616)÷(-28);(14)-100-27;(15)(-1)101;(16)021;

(17)(-2)4;(18)(-4)2;(19)-32;(20)-23;

(24)3.4×104÷(-5)。

2、说一说我们学过的有理数的运算律:

加法交换律:a+b=b+a;

加法结合律:(a+b)+c=a+(b+c);

乘法交换律:ab=ba;

乘法结合律:(ab)c=a(bc);

乘法分配律:a(b+c)=ab+ac.

二、讲授新课

前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个算式里,含有以上的混合运算,按怎样的顺序进行运算?

1、在只有加减或只有乘除的同一级运算中,按照式子的顺序从左向右依次进行。

审题:

(1)运算顺序如何?

(2)符号如何?

说明:含有带分数的加减法,方法是将整数部分和分数部分相加,再计算结果。带分数分成整数部分和分数部分时的符号与原带分数的符号相同。

课堂练习

审题:运算顺序如何确定?

注意结果中的.负号不能丢。

课堂练习

计算:(1)-2.5×(-4.8)×(0.09)÷(-0.27);

2、在没有括号的不同级运算中,先算乘方再算乘除,最后算加减。

例3计算:

(1)(-3)×(-5)2;

(2)[(-3)×(-5)]2;

(3)(-3)2-(-6);

(4)(-4×32)-(-4×3)2。

审题:运算顺序如何?

解:(1)(-3)×(-5)2=(-3)×25=-75。

(2)[(-3)×(-5)]2=(15)2=225。

(3)(-3)2-(-6)=9-(-6)=9+6=15。

(4)(-4×32)-(-4×3)2

=(-4×9)-(-12)2

=-36-144

=-180。

注意:搞清(1),(2)的运算顺序,(1)中先乘方,再相乘,(2)中先计算括号内的,然后再乘方。(3)中先乘方,再相减,(4)中的运算顺序要分清,第一项(-4×32)里,先乘方再相乘,第二项(-4×3)2中,小括号里先相乘,再乘方,最后相减。

课堂练习

计算:

(1)-72;(2)(-7)2;(3)-(-7)2;

(7)(-8÷23)-(-8÷2)3。

例4计算

(-2)2-(-52)×(-1)5+87÷(-3)×(-1)4。

审题:(1)存在哪几级运算?

(2)运算顺序如何确定?

解:(-2)2-(-52)×(-1)5+87÷(-3)×(-1)4

=4-(-25)×(-1)+87÷(-3)×1(先乘方)

=4-25-29(再乘除)

=-50。(最后相加)

注意:(-2)2=4,-52=-25,(-1)5=-1,(-1)4=1。

课堂练习

计算:

(1)-9+5×(-6)-(-4)2÷(-8);

(2)2×(-3)3-4×(-3)+15。

3、在带有括号的运算中,先算小括号,再算中括号,最后算大括号。

课堂练习

计算:

三、小结

教师引导学生一起总结有理数混合运算的规律。

1、先乘方,再乘除,最后加减;

2、同级运算从左到右按顺序运算;

3、若有括号,先小再中最后大,依次计算。

四、作业

1、计算:

2、计算:

(1)-8+4÷(-2);(2)6-(-12)÷(-3);

(3)3·(-4)+(-28)÷7;(4)(-7)(-5)-90÷(-15);

3、计算:

4、计算:

(7)1÷(-1)+0÷4-(-4)(-1);(8)18+32÷(-2)3-(-4)2×5。

5、计算(题中的字母均为自然数):

(1)(-12)2÷(-4)3-2×(-1)2n-1;

(4)[(-2)4+(-4)2·(-1)7]2m·(53+35)。

初中数学教案 篇47

教学建议

知识结构

重难点分析

本节的重点是的性质和判定定理。是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。

本节的难点是性质的灵活应用。由于是特殊的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。如果得到一个平行四边形是,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措,教师在教学过程中应给予足够重视。

教法建议

根据本节内容的特点和与平行四边形的关系,建议教师在教学过程中注意以下问题:

1.的知识,学生在小学时接触过一些,可由小学学过的知识作为引入。

2.在现实中的实例较多,在讲解的性质和判定时,教师可自行准备或由学生准备一些生活实例来进行判别应用了哪些性质和判定,既增加了学生的参与感又巩固了所学的知识.

3.如果条件允许,教师在讲授这节内容前,可指导学生按照教材148页图4-33所示,制作一个平行四边形作为教学过程中的道具,既增强了学生的动手能力和参与感,有在教学中有切实的体例,使学生对知识的掌握更轻松些.

4.在对性质的讲解中,教师可将学生分成若干组,每个学生分别对事先准备后的图形进行边、角、对角线的测量,然后在组内进行整理、归纳.

5.由于和的性质定理证明比较简单,教师可引导学生分析思路,由学生来进行具体的证明.

6.在性质应用讲解中,为便于理解掌握,教师要注意题目的层次安排。

一、教学目标

1.掌握概念,知道与平行四边形的关系.

2.掌握的性质.

3.通过运用知识解决具体问题,提高分析能力和观察能力.

4.通过教具的演示培养学生的学习兴趣.

5.根据平行四边形与矩形、的从属关系,通过画图向学生渗透集合思想.

6.通过性质的学习,体会的图形美.

二、教法设计

观察分析讨论相结合的方法

三、重点·难点·疑点及解决办法

1.教学重点:的性质定理.

2.教学难点:把的性质和直角三角形的知识综合应用.

3.疑点:与矩形的性质的区别.

四、课时安排

1课时

五、教具学具准备

教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具

六、师生互动活动设计

教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨

七、教学步骤

【复习提问】

1.什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?

2.矩形中对角线与大边的夹角为,求小边所对的两条对角线的夹角.

3.矩形的一个角的平分线把较长的边分成、,求矩形的周长.

【引入新课】

我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,这时可将事先按课本中图4-38做成的一个短边也可以活动的教具进行演示,如图,改变平行四边形的边,使之一组邻进相等,引出概念.

【讲解新课】

1.定义:有一组邻边相等的平行四边形叫做.

讲解这个定义时,要抓住概念的本质,应突出两条:

(1)强调是平行四边形.

(2)一组邻边相等.

2.的性质:

教师强调,既然是特殊的平行四边形,因此它就具有平行四边形的一切性质,此外由于它比平行四边形多了“一组邻边相等”的条件,和矩形类似,也比平行四边形增加了一些特殊性质.

下面研究的性质:

师:同学们根据的定义结合图形猜一下有什么性质(让学生们讨论,并引导学生分别从边、角、对角线三个方面分析).

生:因为是有一组邻边相等的平行四边形,所以根据平行四边形对边相等的性质可以得到.

性质定理1:的四条边都相等.

由的四条边都相等,根据平行四边形对角线互相平分,可以得到

性质定理2:的对角线互相垂直并且每一条对角线平分一组对角.

引导学生完成定理的规范证明.

师:观察右图,被对角线分成的四个直角三角形有什么关系?

生:全等.

师:它们的底和高和两条对角线有什么关系?

生:分别是两条对角线的一半.

师:如果设的两条对角线分别为、,则的面积是什么?

生:

教师指出当不易求出对角线长时,就用平行四边形面积的一般计算方法计算面积.

例2已知:如右图,是△的角平分线,交于,交于.

求证:四边形是.

(引导学生用定义来判定.)

例3已知的边长为,,对角线,相交于点,如右图,求这个的对角线长和面积.

(1)按教材的方法求面积.

(2)还可以引导学生求出△一边上的高,即的高,然后用平行四边形的面积公式计算的面积.

【总结、扩展】

1.小结:(打出投影)(图4)

(1)、平行四边形、四边形的从属关系:

(2)性质:图5

①具有平行四边形的所有性质.

②特有性质:四条边相等;对角线互相垂直,且平分每一组对角.

八、布置作业

教材P158中6、7、8,P196中10

九、板书设计

标题

定义……

性质例2…… 小结:

性质定理1:……例3…… ……

性质定理2:……

十、随堂练习

教材P151中1、2、3

补充

1.的两条对角线长分别是3和4,则周长和面积分别是___________、___________.

2.周长为80,一对角线为20,则相邻两角的度数为___________、____________.

初中数学教案 篇48

第一课时

素质教育目标

(一)知识教学点

1.使学生初步了解统计知识是应用广泛的数学内容 .

2.了解平均数的意义,会计算一组数据的平均数 .

3.当一组数据的数值较大时,会用简算公式计算一组数据的平均数 .

(二)能力训练点

培养学生的观察能力、计算能力 .

(三)德育渗透点

1.培养学生认真、耐心、细致的学习态度和学习习惯 .

2.渗透数学来源于实践,反地来又作用于实践的观点 .

(四)美育渗透点

通过本课的学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美 .

重点·难点·疑点及解决办法

1.教学重点:平均数的概念及其计算 .

2.教学难点:平均数的简化计算 .

3.教学疑点:平均数简化公式的应用,a如何选择 .

4.解决办法:分清两个公式,公式②的运用要选择一个适当的a .

教学步骤

(一)明确目标

在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报第二天当地的最低气温与最高气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的人数等.这些都涉及数据的计算问题.请同学们思考下面问题.(教师出示幻灯片)

为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验.两人在相同条件下各射靶10次,命中的环数如下:

甲 7 8 6 8 6 5 9 10 7 4

乙 9 5 7 8 7 6 8 6 7 7

1.怎样比较两个人的成绩?2.应选哪一个人参加射击比赛?

教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法.

对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的平均数结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题).这样做的目的是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的注意,还能诱发学生探求新知识的浓厚兴趣.

(二)整体感知

解决类似上述的问题要用到统计学的知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质.在当今的信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面.本章我们将学习统计学的一些初步知识.

(三)教学过程

这节课我们首先来学习平均数.

1.(出示幻灯片)请同学看下面问题:

某班第一小组一次数学测验的成绩如下:

86 91 100 72 93 89 90 85 75 95

这个小组的平均成绩是多少?

教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求平均数方法,这样做使学生对平均数的计算公式能有深刻的认识 .

2.平均数的概念及计算公式

一般地,如果有n个数 .

那么 ①

叫做这n个数的平均数, 读作“x拨” .

这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法 .学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性 .教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义 .

3.平均数计算公式①的应用

例1 一个地区某年1月上旬各天的最低气温依次是(单位:℃):

-6,-5,-7,-6,-4,-5,-7,-8,-7

求它们的平均气温 .

让学生动手计算,以巩固平均数计算公式(一名学生板演)

教师应强调:①解题格式 .②在统计学里处理的数据包括负数 .③在本章中,如无特殊说明,平均数计算结果保留的位数与原数据相同 .

例2 从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克):

210 208 200 205 202 218 206 214 215 207 195 207 218 192 202 216 185 227 187 215

计算它们的平均质量 .(用投影仪打出)

引导学生两人一组完成计算,然后一起对答案 .由于数据较大,计算较繁,可能会出现不同的答案 .正好为下面提出简化计算公式作好铺垫 .

教师提出问题:像例2这样,数据较大,计算较繁,因而容易出错,有没有较为简便的算法呢?引导学生观察数据有什么特点?都接近于哪一个数?启发学生讨论,寻找简便算法 .

学生回答:数据都在200左右波动,可将各数据同时减去200,转而计算一组数值较小的新数据的平均数,至此让学生再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样 .

讲完例2后,教师指出几点:常数a的'取法不是惟一的; 读作“x——撇——拨”;;简化计算的结果与前面毛算的结果相同 .

通过学生的动手计算,若产生困难或错误,教师及时点拨,引导学生寻找解决问题的方法,这不仅可以激发学生学习的兴趣,更培养了学生的发散思维能力,同时也使学生对公式②的推导更容易接受 .

3.推导公式②

一般地,当一组数据 的各个数值较大时,可将各数据同时减去一个适当的常数a,得到,

那么 ,

因此,

即 ②

为了加深学生对公式②的认识,再让学生指出例2的 、 、 各是什么?(学生回答)

课堂练习:

教材P148中~P149中1,2,3

(四)总结、扩展

知识小结:1.统计学是一门与数据打交道的学问,应用十分广泛 .本章将要学习的是统计学的初步知识 .

2.求n个数据的平均数的公式① .

3.平均数的简化计算公式② .这个公式很重要,要学会运用 .

方法小结:通过本节课我们学到了示一组数据平均数的方法 .当数据比较小时,可用公式①直接计算 .当数据比较大,而且都在某一个数左右波动时,可选用公式②进行计算 .

八、布置作业

教材P153中1、2、3、4 .

初中数学教案 篇49

生活中的立体图形:(常见的有)圆柱、圆锥、正方体、长方体、棱柱、球。棱:相邻两个面的交线。

侧棱:相邻两个侧面的交线。棱柱的所有侧棱长都相等。

底面:棱柱有上、下两个底面,形状相同。

侧面:棱柱的侧面都是平行四边形。

立体图形的分类:锥体、柱体、球体。也可分为有曲面、无曲面。还可以分为有顶点、无顶点。

棱柱:分为直棱柱、斜棱柱。直棱柱的侧面是长方形。

特殊的四棱柱:长方体、正方体。正方体的每个面都是正方形。

圆柱:上、下两个面都是圆形,侧面展开图是长方形。

圆锥:底面是圆形,侧面展开图是扇形。

截面:用一个平面去截一个几何体,截出的面。

球:用一个平面去截,截面图形是圆形。

正方体的截面:可以是正方形、长方形、梯形、三角形。

圆柱体的`截面:可以是长方形、圆形、椭圆形、三角形。

展开与折叠:两个面出现在同一位置的展开图形,是不可折叠的。

从三个方向看物体的形状:正面看(主视图)、左面看(侧视图)、上面看(俯视图)

初中数学教案 篇50

教材分析

立体图形的翻折问题是高二《代数》(下)中立体几何的一个学习内容,它融会贯通于各种立体几何和几何体中,对学生进一步理解立体图形起着至关重要的作用。立体图形的翻折是从学生生活周围熟悉的物体入手,使学生进一步认识立体图形于平面图形的关系;不仅要让学生了解几何体可由平面图形折叠而成,更重要的是让学生通过观察、思考和自己动手操作、经历和体验图形的变化过程,使学生了解研究立体图形的方法。

教学重点

了解平面图形于折叠后的立体图形之间的关系,找到变化过程中的不变量。

教学难点

转化思想的运用及发散思维的培养。

学生分析

学生在前面已经对一些简单几何体有了一定的认识,对于求解空间角及空间距离已具备了一定的能力,并且在班级中已初步形成合作交流,敢于探索与实践的良好习惯。学生间相互评价、相互提问的互动的气氛较浓。

设计理念

根据教育课程改革的具体目标,结合“注重开放与生成,构建充满生命活力的课堂教学运行体系”的要求,改变课程过于注重知识传授的倾向,强调形成积极生动的学习态度,关注学生的学习兴趣和经验,实施开放式教学,让学生主动参与学习活动,并引导学生在课堂活动中感悟知识的生成、发展与变化。

教学目标

1、使学生掌握翻折问题的解题方法,并会初步应用。

2、培养学生的动手实践能力。在实践过程中,使学生提高对立体图形的分析能力,并在设疑的同时培养学生的发散思维。

3、通过平面图形与折叠后的立体图形的对比,向学生渗透事物间的变化与联系观点,在解题过程中,使学生理解,将立体图形中的问题化归到平面图形中去解决的转化思想。

教学流程

一、创设问题情境,引导学生观察、设想、导入课题。

1、如图(图略),是一个正方体的展开图,在原正方体中,有下列命题

(1)AB与EF所在直线平行

(2)AB与CD所在直线异面

(3)MN与EF所在直线成60度

(4)MN与CD所在直线互相垂直其中正确命题的序号是

2、引入课题----翻折

二、学生通过直观感知、操作确认等实践活动,加强对图形的认识和感受(引导学生在解题的过程中如何突破难点,从而体现在平面图形中求解一些不变量对于解空间问题的重要性)。

1、给学生一个展示自我的空间和舞台,让学生自己讲解。教师根据学生的讲解进一步提出问题。

(1)线段AE与EF的夹角为什么不是60度呢?

(2)AE与FG所成角呢?

(3)AE与GC所成角呢?

(4)在此正四棱柱上若有一小虫从A点爬到C点最短路径是什么?经过各面呢?

(通过对发散问题的提出培养学生的培养精神及转化的教学思想方法,让学生体会折叠图与展开图的不同应用。)

2、让学生观察电脑演示折叠过程后,再亲自动手折叠,针对问题做出回答。

(1)E、F分别处于G1G2、G2G3的什么位置?

(2)选择哪种摆放方式更利于求解体积呢?

(3)如何求G点到面PEF的距离呢?

(4)PG与面PEF所成角呢?

(5)面GEF与面PEF所成角呢?

(学生会发现这几个问题可在同一个直角三角形中找到答案,然后让学生在折纸中找到这个三角形的位置,既而发现折叠过程中的不变量。)

3、演示MN的运动过程,让学生观察分析解题过程强调证PN垂直AB的困难性。与学生共同品位解出这道2002高考题的喜悦的同时,引导学生用上题的思路能否更快捷地解出此题呢?

(学生大胆想象,并通过模型制作确认想象结果的正确性,从而开辟一条简捷的翻折思想解题思路。)

三、小结

1、画平面图,并折前图与折后图中的字母尽量保持一致。

2、寻找立体图形中的`不变量到平面图形中求解是关键。

3、注意培养转化思想和发散思维。

(通过提问方式引导学生小结本节主要知识及学习活动,养成学习、总结、学习的良好学习习惯,发散自我评价的作用,培养学生的语言表达能力。)

四、课外活动

1、完成课上未解决的问题。

2、对与1题折成正三棱柱结果会怎样?对于2题改变E、F两点位置剪成正三棱柱呢?

(通过课外活动学习本节知识内容,培养学生的发散思维。)

课后反思

本课设计中,有梯度性的先安排三个小题,让学生经历先动手、思考、预习这一学习过程,然后在课堂上给学生一个充分展示自我的空间,并且适时发问的同时帮助学生找到解决方法。归纳总结解翻折问题的技巧和作为解题方法的优越性。在实施开放式教学的过程中,注重引导学生在课堂活动过程中感悟知识的生成、发展与变化,培养学生主动探索、敢于实践、善于发现的科学精神以及合作交流的精神和创新意识,将创新的教材、创新的教法与创新的课堂环境有机地结合起来,将学生自主学习与创新意识的培养落到实处。

初中数学教案 篇51

平行线的判定(1)

课型:新课: 备课人:韩贺敏 审核人:霍红超

学习目标

1.经历观察、操作、想像、推理、交流等活动,进一步发展推理能力和有条理表达能力.

2.掌握直线平行的条件,领悟归纳和转化的数学思想

学习重难点:探索并掌握直线平行的条件是本课的重点也是难点.

一、探索直线平行的条件

平行线的判定方法1:

二、练一练1、判断题

1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.( )

2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.( )

2、填空1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.

(2)

(3)

2.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

三、选择题

1.如图3所示,下列条件中,不能判定AB∥CD的是( )

A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3

2.右图,由图和已知条件,下列判断中正确的是( )

A.由∠1=∠6,得AB∥FG;

B.由∠1+∠2=∠6+∠7,得CE∥EI

C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;

D.由∠5=∠4,得AB∥FG

四、已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b的位置关系,并说明理由.

五、作业课本15页-16页练习的1、2、3、

5.2.2平行线的`判定(2)

课型:新课: 备课人:韩贺敏 审核人:霍红超

学习目标

1.经历观察、操作、想像、推理、交流等活动,进一步发展空

间观念,推理能力和有条理表达能力.

毛2.分析题意说理过程,能灵活地选用直线平行的方法进行说理.

学习重点:直线平行的条件的应用.

学习难点:选取适当判定直线平行的方法进行说理是重点也是难点.

一、学习过程

平行线的判定方法有几种?分别是什么?

二.巩固练习:

1.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

(第1题) (第2题)

2.如图,一个合格的变形管道ABCD需要AB边与CD边平行,若一个拐角∠ABC=72°,则另一个拐角∠BCD=_______时,这个管道符合要求.

二、选择题.

1.如图,下列判断不正确的是( )

A.因为∠1=∠4,所以DE∥AB

B.因为∠2=∠3,所以AB∥EC

C.因为∠5=∠A,所以AB∥DE

D.因为∠ADE+∠BED=180°,所以AD∥BE

2.如图,直线AB、CD被直线EF所截,使∠1=∠2≠90°,则( )

A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4

三、解答题.

1.你能用一张不规则的纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法.

2.已知,如图2,点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?试用两种方法说明理由.

初中数学教案 篇52

一、指导思想

教育教学工作是一个头绪众多的系统工程,在纷繁的头绪中需要各项工作有序进展,尤为重要的是强化常规,做好细节,教学常规是对学校教学工作的基本要求,落实教学常规是学校教学工作得以正常有序开展的根本保证。只有搞好教学常规才有可能获得成功的教育。教师教学水平的高低体现于教学各个步骤的细节中,空洞地谈教学能力是苍白的,只有用教师的备课情况、讲课细节、作业批改情况。教学常规培养着教师的基本功,决定着教师的教学能力,可以说教师的教学水平就是在这些常规细节中培养起来。

二、检查反馈

本次检查大多数教师都比较重视,检查内容完整、全面。现将检查情况总结如下教案方面的特点与不足。

特点:

1、绝大多数教案设计完整,教学重点、难点突出,设置得当,紧紧围绕新课标,例如:刘兴华、孙菊、江文等能突出对学科素养的高度关注。教师撰写的课后反思能体现教师对教材处理的新方法,能侧重对自己教法和学生学法的指导,并且还能对自己不得法的教学手段、方式、方法进行深刻地解剖,能很好地体现课堂教学的反思意识,反思深刻、务实、有针对性。

2、教学环节齐全,注重引语与小结,使教学设计前后呼应,环节完整。

3、注重选择恰当的教学方法,注重在灵活多样的教学方法中培养学生的`合作意识和创新精神。

4、教案能体现多媒体教学手段,注重培养学生的探究精神和创新能力。

不足:

1、教案后的教学反思不够认真、不够详细,没能对本堂课的得与失作出记录与小结,从中也可以看出我们对课后反思还不够重视。

2、个别教师教案过于简单。

作业方面的特点与不足

特点:

1、能按进度布置作业,作业设置量度适中,难易适中,上交率较高,且都能做到全批全改。

2、作业批改公平、公正,有一定的等级评定。教师批改要求严格、细致,能够反映学生作业中的错误做法及纠正措施。

不足:

1、对于学生书写的工整性,还需加强教育。

2、教师在批阅作业时,要稍细心些,发现问题就让学生当时改正,学生也就会逐渐养成做事认真的习惯。

初中数学教案 篇53

一、学生起点分析

学生已经了勾股定理,并在先前其他内容学习中已经积累了一定百度一下的逆向思维、逆向研究的经验,如:已知两直线平行,有什么样的结论?

反之,满足什么条件的两直线是平行?因而,本课时由勾股定理出发逆向思考获得逆命题,学生应该已经具备这样的意识,但具体研究中

可能要用到反证等思路,对现阶段学生而言可能还具有一定困难,需要教师适时的引导。

二、学习任务分析

本节课是北师大版数学八年级(上)第一章《勾股定理》第2节。教学任务有:探索勾股定理的逆定理

并利用该定理根据边长判断一个三角形是否是直角三角形,利用该定理解决一些简单的实际问题;通过具体的数,增加对勾股数的直观体验。为此确定教学目标:

● 知识与技能目标

1.理解勾股定理逆定理的具体内容及勾股数的概念;

2.能根据所给三角形三边的条件判断三角形是否是直角三角形。

● 过程与方法目标

1.经历一般规律的探索过程,发展学生的抽象思维能力;

2.经历从实验到验证的过程,发展学生的数学归纳能力。

● 情感与态度目标

1.体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣;

2.在探索过程中体验成功的喜悦,树立学习的自信心。

教学重点

理解勾股定理逆定理的具体内容。

三、教法学法

1.教学方法:实验猜想归纳论证

本节课的教学对象是初二学生,他们的参与意识较强,思维活跃,对通过实验获得数学结论已有一定的体验

但数学思维严谨的同学总是心存疑虑,利用逻辑推理的方式,让同学心服口服显得非常迫切,为了实现本节课的教学目标,我力求从以下三个方面对学生进行引导:

(1)从创设问题情景入手,通过知识再现,孕育教学过程;

(2)从学生活动出发,通过以旧引新,顺势教学过程;

(3)利用探索,研究手段,通过思维深入,领悟教学过程。

2.课前准备

教具:教材、电脑、多媒体课件。

学具:教材、笔记本、课堂练习本、文具。

四、教学过程设计

本节课设计了七个环节。第一环节:情境引入;第二环节:合作探究;第三环节:小试牛刀;第四环节:

登高望远;第五环节:巩固提高;第六环节:交流小结;第七环节:布置作业。

第一环节:情境引入

内容:

情境:1.直角三角形中,三边长度之间满足什么样的关系?

2.如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢?

意图:

通过情境的创设引入新课,激发学生探究热情。

效果:

从勾股定理逆向思维这一情景引入,提出问题,激发了学生的求知欲,为下一环节奠定了良好的基础。

第二环节:合作探究

内容1:探究

下面有三组数,分别是一个三角形的三边长 ,①5,12,13;②7,24,25;③8,15,17;并回答这样两个问题:

1.这三组数都满足 吗?

2.分别以每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?学生分为4人活动小组,每个小组可以任选其中的一组数。

意图:

通过学生的合作探究,得出若一个三角形的三边长 ,满足 ,则这个三角形是直角三角形这一结论;在活动中体验出数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律。

效果:

经过学生充分讨论后,汇总各小组实验结果发现:①5,12,13满足 ,可以构成直角三角形;②7,24,25满足 ,可以构成直角三角形;③8,15,17满足 ,可以构成直角三角形。

从上面的分组实验很容易得出如下结论:

如果一个三角形的三边长 ,满足 ,那么这个三角形是直角三角形

内容2:说理

提问:有同学认为测量结果可能有误差,不同意这个发现。你认为这个发现正确吗?你能给出一个更有说服力的理由吗?

意图:让学生明确,仅仅基于测量结果得到的结论未必可靠,需要进一步通过说理等方式使学生确信结论的可靠性,同时明晰结论:

如果一个三角形的三边长 ,满足 ,那么这个三角形是直角三角形

满足 的三个正整数,称为勾股数。

注意事项:为了让学生确认该结论,需要进行说理,有条件的班级,还可利用几何画板动画演示,让同学有一个直观的认识。

活动3:反思总结

提问:

1.同学们还能找出哪些勾股数呢?

2.今天的结论与前面学习勾股定理有哪些异同呢?

3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢?

4.通过今天同学们合作探究,你能体验出一个数学结论的发现要经历哪些过程呢?

意图:进一步让学生认识该定理与勾股定理之间的关系

第三环节:小试牛刀

内容:

1.下列哪几组数据能作为直角三角形的三边长?请说明理由。

①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22

解答:①②

2.一个三角形的三边长分别是 ,则这个三角形的面积是( )

A 250 B 150 C 200 D 不能确定

解答:B

3.如图1:在 中, 于 , ,则 是( )

A 等腰三角形 B 锐角三角形

C 直角三角形 D 钝角三角形

解答:C

4.将直角三角形的三边扩大相同的倍数后, (图1)

得到的三角形是( )

A 直角三角形 B 锐角三角形

C 钝角三角形 D 不能确定

解答:A

意图:

通过练习,加强对勾股定理及勾股定理逆定理认识及应用

效果

每题都要求学生独立完成(5分钟),并指出各题分别用了哪些知识。

第四环节:登高望远

内容:

1.一个零件的形状如图2所示,按规定这个零件中 都应是直角。工人师傅量得这个零件各边尺寸如图3所示,这个零件符合要求吗?

解答:符合要求 , 又 ,

2.一艘在海上朝正北方向航行的轮船,航行240海里时方位仪坏了,凭经验,船长指挥船左传90,继续航行70海里,则距出发地250海里,你能判断船转弯后,是否沿正西方向航行?

解答:由题意画出相应的图形

AB=240海里,BC=70海里,,AC=250海里;在△ABC中

=(250+240)(250-240)

=4900= = 即 △ABC是Rt△

答:船转弯后,是沿正西方向航行的。

意图:

利用勾股定理逆定理解决实际问题,进一步巩固该定理。

效果:

学生能用自己的语言表达清楚解决问题的过程即可;利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形( ),以便于计算。

第五环节:巩固提高

内容:

1.如图4,在正方形ABCD中,AB=4,AE=2,DF=1, 图中有几个直角三角形,你是如何判断的?与你的同伴交流。

解答:4个直角三角形,它们分别是△ABE、△DEF、△BCF、△BEF

2.如图5,哪些是直角三角形,哪些不是,说说你的理由?

图4 图5

解答:④⑤是直角三角形,①②③⑥不是直角三角形

意图:

第一题考查学生充分利用所学知识解决问题时,考虑问题要全面,不要漏解;第二题在于考查学生如何利用网格进行计算,从而解决问题。

效果:

学生在对所学知识有一定的熟悉度后,能够快速做答并能简要说明理由即可。注意防漏解及网格的应用。

第六环节:交流小结

内容:

师生相互交流总结出:

1.今天所学内容①会利用三角形三边数量关系 判断一个三角形是直角三角形;②满足 的三个正整数,称为勾股数;

2.从今天所学内容及所作练习中总结出的经验与方法:①数学是源于生活又服务于生活的;②数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律;③利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形, 便于计算。

意图:

鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史;敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识。

效果:

学生畅所欲言自己的切身感受与实际收获,总结出利用三角形三边数量关系 判断一个三角形是直角三角形从古至今在实际生活中的广泛应用。

第七环节:布置作业

课本习题1.4第1,2,4题。

五、教学反思:

1.充分尊重教材,以勾股定理的逆向思维模式引入如果一个三角形的三边长 ,满足 ,是否能得到这个三角形是直角三角形的问题;充分引用教材中出现的例题和练习。

2.注重引导学生积极参与实验活动,从中体验任何一个数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律。

3.在利用今天所学知识解决实际问题时,引导学生善于对公式变形,便于简便计算。

4.注重对学习新知理解应用偏困难的学生的进一步关注。

5.对于勾股定理的逆定理的论证可根据学生的实际情况做适当调整,不做要求。

由于本班学生整体水平较高,因而本设计教学容量相对较大,教学中,应注意根据自己班级学生的状况进行适当的删减或调整。

附:板书设计

能得到直角三角形吗

情景引入 小试牛刀: 登高望远

初中数学教案 篇54

一学期的工作结束了,可以说紧张忙碌却收获多多。回顾这学期的工作,我教九(4)班的数学,我总是在不断地摸索和学习中进行教学,工作中有收获和快乐,也有不尽如人意的地方,为了更好地总结经验,吸取教训,使以后的工作能够有效、有序地进行,现将教学所得总结如下:

一、在备课方面

在上课前我总是查阅很多教参、教辅,力求深入理解教材,准确把握难重点,总是要经过深思熟虑之后才写教案,力争做到熟知知识要点,心中有数。

二、在教学过程方面

在课堂教学中我一直注重学生的参与。让学生参与到课堂教学中来,让他们自主的去探究问题,发现知识。波利亚说:“学习任何知识的最佳途径都是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的内在规律、性质和联系。”只有充分发挥学生的主体作用,让学生人人参与,才能最大限度地促进学生的发展。但还是难免受传统教学观念的影响,加之经验不足,不太敢放手,怕完成不了当趟课的教学任务。后来在学校“”的教学模式下,才开始进一步尝试,并在不断的尝试中总结经验。

三、工作中存在的问题

1)、教材挖掘不深入。

2)、教法不灵活,不能吸引学生学习,对学生的引导、启发不足。

3)、新课标下新的教学思想学习不深入。对学生的自主学习,合作学习,缺乏理论指导

4)、差生末抓在手。由于对学生的了解不够,对学生的学习态度、思维能力不太清楚。上课和复习时该讲的都讲了,学生掌握的情况怎样,教师心中无数。导致了教学中的盲目性。

四、今后努力的方向

1)、加强学习,学习新教学模式下新的教学思想。

2)、熟读初一到初三的数学教材,深入挖掘教材,进一步把握知识点和考点。

3)、多听课,学习老教师对知识点的处理和对教材的把握,以及他们处理突发事件方法。

4)、加强转差培优力度。

5)、加强教学反思,加大教学投入。

一学期的教学工作即将结束,这半年的教学工作很苦,很累,但在不断的摸索中,自己学到了很多东西。今后我会更加努力提高自己的业务水平。

初中数学教案 篇55

案例主题:学生参与教学,体现了现代教学理念:活动、合作、自由、民主、创新。

背景:我在进行数学七年级上册图形的认识的应用教学时,处理定理时,随着教学过程的深入,很有感想:??

例题:课本p123证明两个角之间的关系,

请同学们总结一下他们可能出现的情况。

活动过程:师:谁能总结一下判定两个角比较大小的方法?(学生都在紧张的思考中)(突然间,我发现一名平时学习较困难的学生闫家衔这次第一个举起了手,很惊奇,便马上让他发言了。也有了我思想上的一次飞跃。)

生:我认为前面,度量,而刚才第一条,第二条的叠合法。(这时,教室里鸦雀无声,个别同学在讥笑,这位学生顿时有些难堪,想坐下去,我赶紧制止。)

师:很好!那你准备应该怎么做呢?生:嗯,(一下子来劲了):接着这位同学上黑板画了图,写出自己度量的方法和自己的想法。

师:刚才闫家衔同学真的不错,不但提出了新的方法,而且还给出了说理,我和全班同学都为你今天的表现感到非常高兴(教室里响起一片掌声)。要有勇气展示自己,你今天的表现就非常非常地出色,你今后的表现一定会更出色。好,下面我就让我们一同来总结一下菱形的证明方法。

在师生的共同研讨下得出了这些方法。

师:今天的课程内容还有一项,那就是请闫家衔同学谈谈这堂课的感想。

生:以前我不敢发言,我怕说的不对会被同学们笑话,而今天的.他的方法恰好是我前几天才预习过的,所以一下子??我今天才发现不是这样??我今后还会努力发言的??

理念反思:从这一个学生的举手发言到说得头头是道的“意外”中,我明白了:学生需要一个能充分展示自我的自由空间,作为老师,我们需要给学生一个自由的民主的氛围,能充分培养学生的自信,使“学困生”也能产生发言的欲望,也能对问题畅所欲言,教师还应能及时捕捉到这一闪光点,给每一位学生都有展示的机会。也就是说要使学生全部积极参与教学,因为它集中体现了现代课程理念:活动、合作、自由、民主、创新。

1、活动、合作是现代课程中的新的理念,只有参与,才能合作创新。

2、民主是现代课程中的重要理念。民主最直接的体现是在课程实施中学生能够平等地参与。没有主动参与,只有被动接受,就没有民主可言。相反,如果没有民主,学生的参与

就不是主动性参与,而是被动的、消极的参与。

3、在提问时,应设计开放性的问题,如:“请你帮助设计一下,有几种方案等问题?这样才没有限制学生的思维,给学生创设一个自由的空间,学生在这个空间中可以按自己的方式展开想象,才能畅所欲言。

4、在课堂上,老师应不只关注“优等生”,而应平等地对待每一个学生,让学困生”和“学优生”同时享有尊严和拥有一份自信。特别是发现到一个学困生在举了手时,应及时给“学困生”展示的机会,让他们发言,学生在发言中,虽然有时不能把问题完全解决,老师也要充分的肯定这个学生的成绩和能够大胆发言的勇气。

初中数学教案 篇56

一、素质教育目标

(一)知识教学点:

使学生会用列一元二次方程的方法解有关面积、体积方面的应用问题

(二)能力训练点:

进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养用数学的意识

二、教学重点、难点

1.教学重点:

会用列一元二次方程的方法解有关面积、体积方面的应用题

2.教学难点:

找等量关系列一元二次方程解应用题时,应注意是方程的解,但不一定符合题意,因此求解后一定要检验,以确定适合题意的`解.例如线段的长度不为负值,人的个数不能为分数等

三、教学步骤

(一)明确目标

(二)整体感知

(三)重点、难点的学习和目标完成过程

1.复习提问

(1)列方程解应用题的步骤?

(2)长方形的周长、面积?长方体的体积?

2.例1?现有长方形纸片一张,长19cm,宽15cm,需要剪去边长是多少的小正方形才能做成底面积为77cm2的无盖长方体型的纸盒?

解:设需要剪去的小正方形边长为xcm,则盒底面长方形的长为(19—2x)cm,宽为(15—2x)cm,

据题意:(19—2x)(15—2x)=77

整理后,得x2—17x+52=0,

解得x1=4,x2=13

∴当x=13时,15—2x=—11(不合题意,舍去)

答:截取的小正方形边长应为4cm,可制成符合要求的无盖盒子

练习1章节前引例.

学生笔答、板书、评价

练习2教材P。42中4

学生笔答、板书、评价

注意:全面积=各部分面积之和

剩余面积=原面积—截取面积

例2要做一个容积为750cm3,高是6cm,底面的长比宽多5cm的长方形匣子,底面的长及宽应该各是多少(精确到0。1cm)?

分析:底面的长和宽均可用含未知数的代数式表示,则长x宽x高=体积,这样便可得到含有未知数的等式——方程

解:长方体底面的宽为xcm,则长为(x+5)cm,

解:长方体底面的宽为xcm,则长为(x+5)cm,

据题意,6x(x+5)=750,

整理后,得x2+5x—125=0

解这个方程x1=9。0,x2=—14。0(不合题意,舍去)

当x=9。0时,x+17=26。0,x+12=21。0.

答:可以选用宽为21cm,长为26cm的长方形铁皮

教师引导,学生板书,笔答,评价

(四)总结、扩展

1.有关面积和体积的应用题均可借助图示加以分析,便于理解题意,搞清已知量与未知量的相互关系

2.要深刻理解题意中的已知条件,正确决定一元二次方程的取舍问题,例如线段的长不能为负

3.进一步体会数字在实践中的应用,培养学生分析问题、解决问题的能力

四、布置作业

教材P42中A3、6、7

教材P41中3、4

五、板书设计

略。

初中数学教案 篇57

一学期的工作结束了,可以说紧张忙碌却收获多多。回顾这学期的工作,我教九(4)班的数学,我总是在不断地摸索和学习中进行教学,工作中有收获和快乐,也有不尽如人意的地方,为了更好地总结经验,吸取教训,使以后的工作能够有效、有序地进行,现将教学所得总结如下:

一、在备课方面

在上课前我总是查阅很多教参、教辅,力求深入理解教材,准确把握难重点,总是要经过深思熟虑之后才写教案,力争做到熟知知识要点,心中有数。

二、在教学过程方面

在课堂教学中我一直注重学生的参与。让学生参与到课堂教学中来,让他们自主的去探究问题,发现知识。波利亚说:“学习任何知识的最佳途径都是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的内在规律、性质和联系。”只有充分发挥学生的主体作用,让学生人人参与,才能最大限度地促进学生的发展。但还是难免受传统教学观念的影响,加之经验不足,不太敢放手,怕完成不了当趟课的教学任务。后来在学校“”的教学模式下,才开始进一步尝试,并在不断的尝试中总结经验。

三、工作中存在的问题

1)、教材挖掘不深入。

2)、教法不灵活,不能吸引学生学习,对学生的引导、启发不足。

3)、新课标下新的教学思想学习不深入。对学生的自主学习,合作学习,缺乏理论指导

4)、差生末抓在手。由于对学生的了解不够,对学生的学习态度、思维能力不太清楚。上课和复习时该讲的.都讲了,学生掌握的情况怎样,教师心中无数。导致了教学中的盲目性。

四、今后努力的方向

1)、加强学习,学习新教学模式下新的教学思想。

2)、熟读初一到初三的数学教材,深入挖掘教材,进一步把握知识点和考点。

3)、多听课,学习老教师对知识点的处理和对教材的把握,以及他们处理突发事件方法。

4)、加强转差培优力度。

5)、加强教学反思,加大教学投入。

一学期的教学工作即将结束,这半年的教学工作很苦,很累,但在不断的摸索中,自己学到了很多东西。今后我会更加努力提高自己的业务水平。

初中数学教案 篇58

教学目标

1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;

3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。

教学建议

1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。

2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法 ,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:

(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.

(2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,m都是代数式.

等都不是代数式.

3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。

如:说出代数式7(a-3)的意义。

分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。

4.书写代数式的注意事项:

(1)代数式中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面.

如3×a ,应写作3.a 或写作3a ,a×b 应写作3.a 或写作ab .带分数与字母相乘,应把带分数化成假分数,

#FormatImgID_0#

.数字与数字相乘一般仍用“×”号.

(2)代数式中有除法运算时,一般按照分数的写法来写.

(3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来.

5.对本节例题的分析:

例1是用代数式表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍.

例2是说出一些比较简单的代数式的意义.因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.

6.教法建议

(1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。

(2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是代数式,理清代数式中的运算和运算顺序,才能正确说出一个代数式所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列代数式做准备。

(3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。

(4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。

(5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。

7.教学重点、难点:

重点:用字母表示数的意义

难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。

教学设计示例

课堂教学过程设计

一、从学生原有的认知结构提出问题

1在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?

(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)

(1)加法交换律 a+b=b+a;

(2)乘法交换律 a·b=b·a;

(3)加法结合律 (a+b)+c=a+(b+c);

(4)乘法结合律 (ab)c=a(bc);

(5)乘法分配律 a(b+c)=ab+ac

指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;

(2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数

2(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?

3若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?

4(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?

(用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)

此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b,s/t 以及a2等等都叫代数式.那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容.

三、讲授新课

1代数式

单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式.学习代数,首先要学习用代数式表示数量关系,明确代数上的意义

2举例说明

例1 填空:

(1)每包书有12册,n包书有__________册;

(2)温度由t℃下降到2℃后是_________℃;

(3)棱长是a厘米的正方体的.体积是_____立方厘米;

(4)产量由m千克增长10%,就达到_______千克

(此例题用投影给出,学生口答完成)

解:(1)12n; (2)(t-2); (3)a3; (4)(1+10%)m

例2 说出下列代数式的意义:

解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;

(5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方

说明:(1)本题应由教师示范来完成;

(2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等

例3 用代数式表示:

(1)m与n的和除以10的商;

(2)m与5n的差的平方;

(3)x的2倍与y的和;

(4)ν的立方与t的3倍的积

分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面

四、课堂练习

1填空:(投影)

(1)n箱苹果重p千克,每箱重_____千克;

(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;

(3)底为a,高为h的三角形面积是______;

(4)全校学生人数是x,其中女生占48%?则女生人数是____,男生人数是____

2说出下列代数式的意义:(投影)

3用代数式表示:(投影)

(1)x与y的和; (2)x的平方与y的立方的差;

(3)a的60%与b的2倍的和; (4)a除以2的商与b除3的商的和

五、师生共同小结

首先,提出如下问题:

1本节课学习了哪些内容?2用字母表示数的意义是什么?

3什么叫代数式?

教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号

六、作业

1一个三角形的三条边的长分别的a,b,c,求这个三角形的周长

2张强比王华大3岁,当张强a岁时,王华的年龄是多少?

3飞机的速度是汽车的40倍,自行车的速度是汽车的1/3 ,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?

4a千克大米的售价是6元,1千克大米售多少元?

5圆的半径是R厘米,它的面积是多少?

6用代数式表示:

(1)长为a,宽为b米的长方形的周长;

(2)宽为b米,长是宽的2倍的长方形的周长;

(3)长是a米,宽是长的1/3 的长方形的周长;

(4)宽为b米,长比宽多2米的长方形的周长

初中数学教案 篇59

【学生分析】

大部分学生思维活跃,肯钻、肯想、敢说、敢问,对立体图形认识有一定知识积累,有探究、合作等学习方法积累,促进学生知识深化和延伸尤为重要。

【设计思路】

将电视娱乐节目的形式植入数学课堂,体现用活教材激活课堂的理念思想,方法教学成为主导,指导学习方向,复习活动贯穿课前、课中,采用分组竞赛、分组合作的形式,使学生在积极主动的状态下理解本课重点,疏通并构建知识网络,掌握复习方法。

【课前准备】

每组据分工专门研究一个立体图形的特征,整理出3个有关的涵盖面宽,较富挑战性的,主要针对基础知识的问题。同时,据猜测准备好别组涉及问题的答案。

【教学目标】

1、知识目标:使学生进一步识记各图形特征,掌握不同图

形之间的异同,学会观察体会几何图形间的联系和区别。

2、能力目标:通过小组竞赛合作整理知识框架,提高学习的系统性,培养学生回忆、质疑、梳理、归纳、总结等自主复习整理的意识和方法以及能力,同时也加强合作学习能力。

3、情感目标:利用几何图形的美,增进学生对数学的兴趣,复习方法自主构建的尝试,激发学生自信心,渗透事物普遍联系的辩证唯物主义观点。

【重难点】

教学重点

沟通各图形内在联系,培养学生主动整理知识的意识,使学生掌握一定的复习整理方法。

教学难点

描述几何图形特征的语言的准确性训练,以及知识延伸,进一步发展学生空间观念。

【教学过程】

一、构建几何图形的简单知识网络,感知平面图形和立体图形的密切联系。

1、完善几何图形知识图:

师:除了平面图形,你觉得还有哪类图形?(立体图形)

2、感知平面图形和立体图形的密切联系。

师:这是一个平面图形还是立体图形?

师:从它的表面上,你观察到哪些平面图形?

3、强调平面图形和立体图形的区别。

(1)试一试:把下列几何图形分类?

(2)你感觉二者的区别主要是什么?师举例说明。

强调:各部分是否在同一平面

二、展开复习活动,自主系统整理,感知立体图形和立体图形的联系。

(1)梳理五种立体图形的基本构成,加强和生活联系。

1、出示五种立体图形。

(1)忆一忆:你认识这些几何体吗?说名称

(2)畅所欲言:举出日常生活中和它们类似的物体。

(小组比赛,看谁说得多,让学生感觉正是这些基本图形构成我们生活的空间)

(3)议一议,认真观察,识记图形。

出示情景图:图中你熟悉的物体类似于哪些图形?

2、说出各立体图形各部分名称,各字母表示什么?

3、立体图形分类

师:分两类,怎么分?为什么?

(二)主动回忆,梳理知识。

1、谈话引入:关于我们要复习的知识你想留下深刻清晰的印象吗?老师给大家介绍一个复习的好方法。

2、出示复习方法:

关于要复习的知识

(1)我已知道什么?

(2)你想怎样去整理它?

(3)怎样得到更多、更好的整理方法?

(4)动手检测自己

(5)你还有什么不明白的?

3、据复习方法依次展开活动

(1)关于立体图形,我已知道了什么?

以电视节目“开心辞典”和小组竞赛的形式进行。

每组提出关于本组研究内容的.三个问题,其他组回答,教师宣布好比赛规则,充当裁判和记分员。

(2)你想怎样去整理?

①师引导给出学生整理的方法。

a:正方体、长方体在一块儿整理......

b:找相同点、不同点

c:据构成名称分层分类对比整理。

②小组合作:尝试整理正、长方体的特点

③实物展台展示学生成果

④师课件演示整理结果:正、长方体的特征

⑤按上述复习整理方法自主整理圆柱、圆锥、球的特征,先独立整理,再小组交流,展台展示学生不同方法的成果,教师课件演示。

三、知识检测,形成反馈

1、一组判断题

(1)长方体和正方体都有六个面,而且六个面都相等。

(2)长方体的三条棱就是它的长,宽,高。

(3)上下两个底面是圆形且相等的形体一定是圆柱。

(4)圆柱的侧面展开后是一个正方形,那么它的底面周长和高一定相等。

(5)圆锥的顶点到底面只有一条垂线段。

(6)从圆柱体的上底面到下底面的任何一条连线都是这个圆柱的高。

(7)正方体的棱长总和是48厘米,它的每条棱长是8厘米。

2、一组填空题

(1)把一个边长31.4厘米的正方形铁皮卷成一个圆筒,这个圆筒的底面周长是( )厘米,高是( )厘米。

(2)把一个长94.2米,宽31.4米的长方形铁皮卷成一个圆筒,这个圆筒的底面周长是( )米,高是( )米。

3、抢答游戏:师说出一些特征,学生随时猜几何图形的名称

四、巩固延伸,再次加强平面图形和立体图形的联系。

1、点、线、面、体的形成联系。

师:观察三幅运动的图片,可看成什么几何图形在运动?

师:他们的运动又形成了什么几何图形?

2、这些立体图形是由哪个平面图形旋转而成?

五、总结:我们周围充满着数学,智慧的人塑造了各种几何美,数学几何美又经常装点我们的生活。

师:你有哪些收获?(知识方面、方法方面)

六、温馨提醒:作业

感受几何构图之美,学会运用复习方法。

1、①先欣赏平面图形组成的图案

②作业一:用平面图形设计一幅美丽的图案,配解说词。

2、①先欣赏各国建筑物

②作业二:用立体图形设计一个美丽的建筑物,配上解说词。(给小动物设计家也行,渗透关爱思想教育)

3、小猫小狗冬天为什么蜷着身子睡觉?

作业三:自己用这堂课的复习方法整理有关立体图形的表面积、体积的知识。

人教版初中数学教案(精选31篇)

作为一无名无私奉献的教育工作者,有必要进行细致的教案准备工作,教案是备课向课堂教学转化的关节点。那么什么样的教案才是好的呢?下面是小编整理的人教版初中数学教案,仅供参考,大家一起来看看吧。

初中数学教案 篇60

教学目标:

1、通过解题,使学生了解到数学是具有趣味性的。

2、培养学生勤于动脑的习惯。

教学过程:

一、出示趣味题

师:老师这里有一些有趣的问题,希望大家开动脑筋,积极思考。

1、小卫到文具店买文具,他买毛笔用去了所带钱的一半,买铅笔用去了剩下钱的一半,最后用去剩下的8分,问小卫原有( )钱?

2、苹苹做加法,把一个加数22错写成12,算出结果是48,问正确结果是( )。

3、小明做减法,把减数30写成20,这样他算出的得数比正确得数多

( ),如果小明算出的结果是10,正确结果是( )。

4、同学们种树,要把9棵树分3行种,每一行都是4棵,你能想出几种

办法来用△表示。

5、把一段布5米,一次剪下1米,全部剪下要( )次。

6、李小松有10本本子,送给小刚2本后,两人本子数同样多,小刚原来

有( )本本子。

二、小组讨论

三、指名讲解

四、评价

1、同学互评

2、老师点评

五、小结

师:通过今天的学习,你有哪些收获呢?

初中数学教案 篇61

教学目标

(一)知识认知要求

1、回顾收集数据的方式、

2、回顾收集数据时,如何保证样本的代表性、

3、回顾频率、频数的概念及计算方法、

4、回顾刻画数据波动的统计量:极差、方差、标准差的概念及计算公式、

5、能利用计算器或计算机求一组数据的算术平均数、

(二)能力训练要求

1、熟练掌握本章的知识网络结构、

2、经历数据的收集与处理的过程,发展初步的统计意识和数据处理能力、

3、经历调查、统计等活动,在活动中发 展学生解决问题的能力、

(三)情感与价值观要求

1、通过对本章内容的回顾与思考,发展学 生用数学的意识、

2、在活动中培养学生团队精神、

教学重点

1、建立本章的知识框架图、

2、体会收集数据的方式,保证样本的代表性,频率、频数及刻画数据离散程度的统 计量在实际情境中的意义和应用、

教学难点

收集数据的方式、抽样时保证样本的代表性、频率、频数、刻画数据离散程度的统计量在不同情境中的应用、

教学过程

一、导入新课

本章的内容已全部学完、现在如何让你调查一个情况、并且根据你获得数据,分析整理,然后写出调查报告,我想大家现在心里应该有数、

例如,我们要调查一下“上网吧的人的年龄”这一情况,我们应如何操作?

先选择调查方式,当然这个调查应采用抽样调查的方式,因为我们不可能调查到所有上网吧的人,何况也没有必要、

同学们感兴趣的话,下去以后可以以小组为单位,选择自己感兴趣的事情做调查,然后再作统计分析,然后把调查结果汇报上来,我们可以比一比,哪一个组表现最好?

二、讲授新课

1、举例说明收集数据的方式主要有哪几种类型、

2、抽样调查时,如何保证样本的代表性?举例说明、

3、举出与频数、频率有关的几个生活实例?

4、刻画数据波动的统计量有 哪些?它们有什么作用?举例说明、

针对上面的几个问题,同学们先独 立思考,然后可在小组内交流你的想法,然后我们每组选出代表来回答、

(教师可参与到学生的讨论中,发现同学们前面知识掌握不好的地方,及时补上)、

收集数据的方式有两种类型:普查和抽样调查、

例如:调查我校八年级同学每天做家庭作业的时间,我们就可以用普查的形式、

在这次调查中,总体:我校八年级全体学生每天做家庭作业的'时间;个体:我校八年级每个学生每天做家庭作业的时间、

用普查的方式可以直接获得总体情况、但有时总体中个体数目太多,普查的工作量较大;有时受客观条件的限制,无法对所有个体进行普查;有时调查具有破坏性,不允许普查,此时可用抽样调查、

例如把上面问题改成“调查全国八年级同学每天做家庭作业的时间”,由于个体数目太多,普查的工作量也较大,此时就采取抽样调查,从总体中抽取一个样本,通过样本的特征数字来估计总体,例如平均数、中位数、众数 、极差、方差等、

上面我们回顾了为了了解某种情况而采取的调查方式:普查和抽样调查,但抽样调查必须保证数据具有代表性,因为只 有这样,你抽取的样本才能体现出总体的情况,不然,就会失去可靠性和准确性、

例如对我们班里某门学科的成绩情况,有时不仅知道平均成绩,还要知道90分以上占多少,80到90分之间占多少,……,不及格的占多少等,这时,我们只要看一下每个学生的成绩落在哪一个分数段,落在这个分数段的分数有几个,表明数据落在这个小组的频数就是多少,数据落在这个小组的频率就是频数与数据总个数的商、

刻画数据波动的统计量有极差、方差、标准差、它们是用来描述一组数据的稳定性的、一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定、

例如:某农科所在8个试验点,对甲、乙两种玉米进行对比试验,这两种玉米在各试验点的亩产量如下(单位:千克)

甲:450 460 450 430 450 460 440 460

乙:440 470 460 440 430 450 470 4 40

在这个试验点甲、乙两种玉米哪一种产量比较稳定?

我们可以算极差、甲种玉米极差为460-430=30千克;乙种玉米极差为470-430=40千克、所以甲种玉米较稳定、

还可以用方差来比较哪一种玉米稳定、

s甲2=100,s乙2=200、

s甲2<s乙2,所以甲种玉米的产量较稳定、

三、建立知识框架图

通 过刚才的几个问题回顾思考了我们这一章的重点内容,下面构建本章的知识结构图、

四、随堂练习

例1一家电脑生产厂家在某城市三个经销本厂产品的大商场调查,产品的销量占这三个 大商场同类产品销量的40%、由此在广告中宣传,他们的产品在国内同类产品的销售量占40%、请你根据所学的统计知识,判断该宣传中的数据是否可靠:________,理由是________、

分析:这是一道判断说理型题,它要求借助于统计知识,作出科学的判断, 同时运 用统计原理给予准确的解释、因此,该电脑生产厂家凭借挑选某城市经销本产品情况,断然说他们的产品在国内同类产品的销量占40%,宣传中的数据是不可靠的,其理由有二:第一,所取样本容量太小;第二,样本抽取缺乏代表性和广泛性、

例2在举国上下众志成城抗击“非典” 的斗争中,疫情变化牵动着全国人民的心 、请根据下面的疫情统计图表回答问题:

(1)图10是5月11日至5月29日全国疫情每天新增数据统计走势图,观察后回答:

①每天新增确诊病例与新增疑似病例人数之和超过100人的天数共有__________天;

②在本题的统计中,新增确诊病例的人数的中位数是___________;

③本题在对新增确诊病例的统计中,样本是__________,样本容量是__________、

(2)下表是我国一段时间内全国确诊病例每天新增的人数与天数的频率统计表、(按人数分组)

①100人以下的分组组距是________;

②填写本统计表中未完成的空格;

③在统计的这段时期中,每天新增确诊

病例人数在80人以下的天数共有_________天、

解:(1)①7 ②26 ③5月11日至29日每天新增确诊病例人数 19

(2)①10人 ②11 40 0、125 0、325 ③25

五.课时小结

这节课我们通过回顾与思考这一章的重点内容,共同建立的知识框架图,并进一步用统计的思想和知识解决问题,作出决策、

六.课后作业:

七.活动与探究

从鱼塘捕得同时放养的草鱼240尾,从中任选9尾,称得每尾鱼的质量分别是1、5,1、6,1、4,1、6,1、3,1、4,1、2,1、7,1、8(单位:千克)、依此估计这240尾鱼的总质量大约是

A、300克 B、360千克C、36千克 D、30千克

初中数学教案 篇62

三维目标

一、知识与技能

1.能灵活列反比例函数表达式解决一些实际问题.

2.能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题.

二、过程与方法

1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题.

2. 体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.

三、情感态度与价值观

1.积极参与交流,并积极发表意见.

2.体验反比例函数是有效地描述物理世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具.

教学重点

掌握从物理问题中建构反比例函数模型.

教学难点

从实际问题中寻找变量之间的关系,关键是充分运用所学知识分析物理问题,建立函数模型,教学时注意分析过程,渗透数形结合的思想.

教具准备

多媒体课件.

教学过程

一、创设问题情境,引入新课

活动1

问 属:在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用.下面的例子就是其中之一.

在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培.

(1)求I与R之间的函数关系式;

(2)当电流I=0.5时,求电阻R的值.

设计意图:

运用反比例函数解决物理学中的一些相关问题,提高各学科相互之间的综合应用能力.

师生行为:

可由学生独立思考,领会反比例函数在物理学中的综合应用.

教师应给“学困生”一点物理学知识的引导.

师:从题目中提供的信息看变量I与R之间的反比例函数关系,可设出其表达式,再由已知条件(I与R的一对对应值)得到字母系数k的值.

生:(1)解:设I=kR ∵R=5,I=2,于是

2=k5 ,所以k=10,∴I=10R .

(2) 当I=0.5时,R=10I=100.5 =20(欧姆).

师:很好!“给我一个支点,我可以把地球撬动.”这是哪一位科学家的名言?这里蕴涵着什么 样的原理呢?

生:这是古希腊科学家阿基米德的名言.

师:是的.公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”: 若两物体与支点的距离反比于其重量,则杠杆平衡,通俗一点可以描述为;

阻力×阻力臂=动力×动力臂(如下图)

下面我们就来看一例子.

二、讲授新课

活动2

小伟欲用撬棍橇动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0.5米.

(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力?

(2)若想使动力F不超过题(1)中所用力的一半,则动力臂至少要加长多少?

设计意图:

物理学中的很多量之间的变化是反比例函数关系.因此,在这儿又一次借助反比例函数的图象和性质解决一些物理学中的问题,即跨学科综合应用.

师生行为:

先由学生根据“杠杆定律”解决上述问题.

教师可引导学生揭示“杠杆乎衡”与“反比例函数”之间的关系.

教师在此活动中应重点关注:

①学生能否主动用“杠杆定律”中杠杆平衡的条件去理解实际问题,从而建立与反比例函数的关系;

②学生能否面对困难,认真思考,寻找解题的途径;

③学生能否积极主动地参与数学活动,对数学和物理有着浓厚的兴趣.

师:“撬动石头”就意味着达到了“杠杆平衡”,因此可用“杠杆定律”来解决此问题.

生:解:(1)根据“杠杆定律” 有

Fl=1200×0.5.得F =600l

当l=1.5时,F=6001.5 =400.

因此,撬动石头至少需要400牛顿的力.

(2)若想使动力F不超过题(1)中所用力的一半,即不超过200牛,根据“杠杆定律”有

Fl=600,

l=600F .

当F=400×12 =200时,

l=600200 =3.

3-1.5=1.5(米)

因此,若想用力不超过400牛顿的一半,则动力臂至少要如长1.5米.

生:也可用不等式来解,如下:

Fl=600,F=600l .

而F≤400×12 =200时.

600l ≤200

l≥3.

所以l-1.5≥3-1.5=1.5.

即若想用力不超过400牛顿的一半,则动力臂至少要加长1.5米.

生:还可由函数图象,利用反比例函数的性质求出.

师:很棒!请同学们下去亲自画出图象完成,现在请同学们思考下列问题:

用反比例函数的知识解释:在我们使用橇棍时,为什么动力臂越长越省力?

生:因为阻力和阻力臂不变,设动力臂为l,动力为F,阻力×阻力臂=k(常数且k>0),所以根据“杠杆定理”得Fl=k,即F=kl (k为常数且k>0)

根据反比例函数的性质,当k>O时,在第一象限F随l的增大而减小,即动力臂越长越省力.

师:其实反比例函数在实际运用中非常广泛.例如在解决经济预算问题中的应用.

活动3

问题:某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)元成反比例.又当x=0.65元时,y=0.8.(1)求y与x之间的函数关系式;(2)若每度电的成本价0.3元,电价调至0.6元,请你预算一下本年度电力部门的纯收人多少?

设计意图:

在生活中各部门,经常遇到经济预算等问题,有时关系到因素之间是反比例函数关系,对于此类问题我们往往由题目提供的信息得到变量之间的函数关系式,进而用函数关系式解决一个具体问题.

师生行为:

由学生先独立思考,然后小组内讨论完成.

教师应给予“学困生”以一定的帮助.

生:解:(1)∵y与x -0.4成反比例,

∴设y=kx-0.4 (k≠0).

把x=0.65,y=0.8代入y=kx-0.4 ,得

k0.65-0.4 =0.8.

解得k=0.2,

∴y=0.2x-0.4=15x-2

∴y与x之间的函数关系为y=15x-2

(2)根据题意,本年度电力部门的纯收入为

(0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(亿元)

答:本年度的纯收人为0.6亿元,

师生共析:

(1)由题目提供的信息知y与(x-0.4)之间是反比例函数关系,把x-0.4看成一个变量,于是可设出表达式,再由题目的条件x=0.65时,y=0.8得出字母系数的值;

(2)纯收入=总收入-总成本.

三、巩固提高

活动4

一定质量的二氧化碳气体,其体积y(m3)是密度ρ(kg/m3)的反比例函数,请根据下图中的已知条件求出当密度ρ=1.1 kg/m3时二氧化碳气体的体积V的值.

设计意图:

进一步体现物理和反比例函数的关系.

师生行为

由学生独立完成,教师讲评.

师:若要求出ρ=1.1 kg/m3时,V的值,首先V和ρ的函数关系.

生:V和ρ的反比例函数关系为:V=990ρ .

生:当ρ=1.1kg/m3根据V=990ρ ,得

V=990ρ =9901.1 =900(m3).

所以当密度ρ=1. 1 kg/m3时二氧化碳气体的气体为900m3.

四、课时小结

活动5

你对本节内容有哪些认识?重点掌握利用函数关系解实际问题,首先列出函数关系式,利用待定系数法求出解 析式,再根据解析式解得.

设计意图:

这种形式的小结,激发了学生的主动参与意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功的体验机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的个体差异,满足多样化的学习需要,从而使小结不流于形式而具有实效性.

师生行为:

学生可分小组活动,在小组内交流收获, 然后由小组代表在全班交流.

教师组织学生小结.

反比例函数与现实生活联系非常紧密,特别是为讨论物理中的一些量之间的关系打下了良好的基础.用数学模型的解释物理量之间的关系浅显易懂,同时不仅要注意跨学科间的综合,而本学科知识间的整合也尤为重要,例如方程、不等式、函数之间的不可分割的关系.

板书设计

17.2 实际问题与反比例函数(三)

1.

2.用反比例函数的知识解释:在我们使 用撬棍时,为什么动 力臂越长越省力?

设阻力为F1,阻力臂长为l1,所以F1×l1=k(k为常数且k>0).动力和动力臂分别为F,l.则根据杠杆定理,

Fl=k 即F=kl (k>0且k为常数).

由此可知F是l的反比例函数,并且当k>0时,F随l的增大而减小.

活动与探究

学校准备在校园内修建一个矩形的绿化带,矩形的面积为定值,它的一边y与另一边x之间的函数关系式如下图所示.

(1)绿化带面积是多少?你能写出这一函数表达式吗?

(2)完成下表,并回答问题:如果该绿化带的长不得超过40m,那么它的宽应控制在什么范围内?

x(m) 10 20 30 40

y(m)

过程:点A(40,10)在反比例函数图象上说明点A的横纵坐标满足反比例函数表达式,代入可求得反比例函数k的值.

结果:(1)绿化带面积为10×40=400(m2)

设该反比例函数的表达式为y=kx ,

∵图象经过点A(40,10)把x=40,y=10代入,得10=k40 ,解得,k=400.

∴函数表达式为y=400x .

(2)把x=10,20,30,40代入表达式中,求得y分别为40,20,403 ,10.从图中可以看出。若长不超过40m,则它的宽应大于等于10m。

初中数学教案 篇63

《正方形》教学设计

教学内容分析:

⑴学习特殊的平行四边形—正方形,它的特殊的性质和判定。

⑵前面学习了平行四边形、矩形菱形,类比他们的性质与判断,有利于对正方形的研究。

⑶对本节的学习,继续培养学生分类研究的思想,并且建立新旧知识的联系,类比的基础上进行归纳,梳理知识,进一步发展学生的推理能力。

学生分析

⑴学生在小学初步认识了正方形,并且本节课之前,学生又学习了几种平行四边形,已经具备了观察研究平行四边形的经验与知识基础。

⑵学生在上几节已有了推理的经历,但是对于证明,学生的思维能力还不成熟,有待于提高。

教学目标:

⑴知识与技能:了解正方形是特殊的平行四边形,掌握它的性质和判定,会利用性质与判定进行简单的说理。

⑵过程与方法:通过类比前边的四边形的研究,探索并归纳正方形的性质与判定。通过运用提高学生的推理能力。

⑶情感态度与价值观:在学习中体会正方形的完美性,通过活动获得成功的喜悦与自信。

重点:掌握正方形的性质与判定,并进行简单的推理。

难点:探索正方形的判定,发展学生的推理能

教学方法:类比与探究

教具准备:可以活动的四边形模型。

一、教学分析

(一)教学内容分析

1.教材:义务教育课程标准实验教科书《数学》九年级上册(人民教育出版社)

2.本课教学内容的地位、作用,知识的前后联系

《中心对称图形》是新人教版九年级数学上册第二十三章第二单元第二节课的内容。本节教材属于图形变换的内容,是在学习了“轴对称和轴对称图形”、“旋转和中心对称”后的一种对称图形,因此涉及归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义。

3.本课教学内容的特点,重点分析体现新课程理念的特点

本节课主要介绍中心对称图形的概念、中心对称图形的识别、中心对称图形与轴对称图形与中心对称的比较、中心对称图形的性质。为使学生感受、理解知识的产生和发展过程,培养学生的抽象思维,我将通过:(1)例举日常生活中的一些旋转对称图形引出中心对称图形的概念;(2)引导学生观察、猜想、实验、归纳、类比等方法探究中心对称图形的性质,(3)通过多媒体演示使学生对中心对称图形的性质有直观的表象。我认为这环环相扣、层层深入、循序渐进的活动过程,符合新课程标准理念和学生建构知识的规律,有利于激发学生的学习情趣。

(二)教学对象分析

1.学生所在地区、学校及班级的特色

我授课的班级是西安市阎良区振兴中学九年级一班,作为九年级的学生,在图形的对称方面已经积累一些经验,已经具有一定的观察、猜想、实验、归纳、类比等研究图形对称变换的能力;班级学生具有个性活泼,思维活跃,对各种事物充满好奇,学习情绪易于调动,学习积极性高的特点,但学生的抽象思维能力个体差异较大,并且班级中已出现分化现象。

2.学生的年龄特点和认知特点

班级学生的年龄大多在15岁到17岁间。他们已具备了一定的独立分析、解决问题的能力,表现欲望较为强烈,喜好发表个人见解并且具有一定的合作交流、共同探讨的意识与经验,因此在课程内容的安排中,适当地创设一些具有一定思维深度的问题,加强学生在学习过程中自主探索与合作交流的紧密结合,促使学生在探究的过程中,更多地获得成功的体验,感受学习思考的乐趣。

教学过程

一:复习巩固,建立联系

教师活动

问题设置:①平行四边形、矩形,菱形各有哪些性质?

②()的四边形是平行四边形。()的平行四边形是矩形。()的平行四边形是菱形。()的四边形是矩形。()的四边形是菱形。

学生活动

学生回忆,并举手回答,对于填空题,让更多的学生参与,说出更多的答案。

教师活动

评析学生的结果,给予表扬。

总结性质从边角对角线考虑,在填空时也考虑这几方面之外,还应该考虑三者之间的联系与区别。

演示平行四边形变为矩形菱形的过程。

二:动手操作,探索发现

活动一:拿出一张矩形纸片,拉起一角,使其宽AB落在长AD边上,如下图所示,沿着B′E剪下,能得到什么图形?

学生活动

学生拿出自备矩形纸片,动手操作,不难发现它是正方形。

设置问题:①什么是正方形?

观察发现,从活动中体会。

【教师活动】:演示矩形变为正方形的过程,菱形变为正方形的过程。

【学生活动】认真观察变化过程,思考之间的联系,举手回答设置问题。

设置问题②正方形是矩形吗,是菱形吗?是平行四边形吗?为什么?

【学生活动】

小组讨论,分组回答。

【教师活动】

总结板书:㈠(一组邻边相等)的矩形是正方形,(一个角是直角)的菱形是正方形。

设置问题③正方形有那些性质?

【学生活动】

小组讨论,举手抢答。

教师活动

表扬学生发言,板书学生发现,㈡正方形每一条对角线平分一组对角

活动二:拿出活动一得到的正方形折一折,正方形是轴对称图形吗?有几条对称轴?

学生活动

折纸发现,说出自己的发现。得到正方形的又一性质。正方形是轴对称图形。

教师活动

演示从平行四边形变为正方形的过程,擦去板书㈠中的括号内容,出示一下问题:你还可以怎样填空?

()的菱形是正方形,()的矩形是正方形,()的平行四边形是正方形,()的四边形是正方形。

学生活动

小组充分交流,表达不同的意见。

教师活动

评析活动,总结发现:

一组邻边相等的矩形是正方形,对角线互相平分的矩形是正方形;

有一个角是直角的菱形是正方形,对角线相等的菱形是正方形,;

有一组邻边相等且有一个角是直角的平行四边形是正方形,对角线相等且互相平分的平行四边形是正方形;

四边相等且有一角是直角的四边形是正方形,对角线相等且互相垂直平分的四边形是正方形。

以上是正方形的判定方法。

正方形是一个多么完美的平行四边形呀?大家互相说一说,它的完美体现在哪里?生活中有哪些利用正方形的例子?

学生交流,感受正方形

三,应用体验,推理证明。

出示例一:正方形ABCD的两条对角线AC,BD交与O,AB长4cm,求AC,AO长,及的度数。

方法一解:∵四边形ABCD是正方形

∴∠ABC=90°(正方形的四个角是直角)

BC=AB=4cm(正方形的四条边相等)

∴=45°(等腰直角三角形的底角是45°)

∴利用勾股定理可知,AC===4cm

∵AO=AC(正方形的对角线互相平分)

∴AO=×4=2cm

方法二:证明△AOB是等腰直角三角形,即可得证。

学生活动

独立思考,写出推理过程,再进行小组讨论,并且各小组指派代表写在黑板上,共同交流。

教师活动

总结解题方法,从正方形的性质全面考虑,准确利用条件,减少麻烦。评析解题步骤,表扬突出学生。

出示例二:在正方形ABCD中,E、F、G、H分别在它的四条边上,且AE=BF=CG=DH,四边形EFGH是什么特殊的四边形,你是如何判断的?

学生活动

小组交流,分析题意,整理思路,指名口答。

教师活动

说明思路,从已知出发或者从已有的判定加以选择。

四,归纳新知,梳理知识。

这一节课你有什么收获?

学生举手谈论自己的收获。

请把平行四边形,矩形,菱形,正方形分别填写在下图的ABCDC处,说明它们的关系。

发表评论

教学目标:

情意目标:培养学生团结协作的精神,体验探究成功的乐趣。

能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。

认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。

教学重点、难点

重点:等腰梯形性质的探索;

难点:梯形中辅助线的添加。

教学课件:PowerPoint演示文稿

教学方法:启发法、

学习方法:讨论法、合作法、练习法

教学过程:

(一)导入

1、出示图片,说出每辆汽车车窗形状(投影)

2、板书课题:5梯形

3、练习:下列图形中哪些图形是梯形?(投影)

结梯形概念:只有4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。

5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)

6、特殊梯形的分类:(投影)

(二)等腰梯形性质的探究

【探究性质一】

思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)

猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)

如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C

想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?

等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。

【操练】

(1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影)

(2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)

【探究性质二】

如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)

如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)

等腰梯形性质:等腰梯形的两条对角线相等。

【探究性质三】

问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)

问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)

等腰梯形性质:同以底上的两个内角相等,对角线相等

(三)质疑反思、小结

让学生回顾本课教学内容,并提出尚存问题;

学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。

初中数学教案 篇64

教学目标

1, 整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;

2, 能区分两种不同意义的量,会用符号表示正数和负数;

3, 体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

教学难点 正确区分两种不同意义的量。

知识重点 两种相反意义的量

教学过程(师生活动) 设计理念

设置情境

引入课题 上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生

活中仅有这些“以前学过的数”够用了吗?下面的例子

仅供参考.

师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XX,身高1.73米,体重58.5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…

问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?

学生活动:思考,交流

师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).

问题2:在生活中,仅有整数和分数够用了吗?

请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)

学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。 先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多

地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际.

这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。

以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。

分析问题

探究新知 问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?

这些问题都必须要求学生理解.

教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流.

这阶段主要是让学生学会正数和负数的表示.

强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量. 这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。

举一反三思维拓展经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.

问题4:请同学们举出用正数和负数表示的例子.

问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明.

能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性

课堂练习 教科书第5页练习

小结与作业

课堂小结 围绕下面两点,以师生共同交流的方式进行:

1, 0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;

2,正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。

本课作业 教科书第7页习题1.1 第1,2,4,5(第3题作为下节课的思考题。

作业可设必做题和选 做题,体现要求的层次性,以满足不同学生的需要

初中数学教案 篇65

八、 板书 设计

6.2? 不等式的解集

一、1.不等式的`解集:一般地,一个含有未知数的不等式的所有的解组成这个不等式的解的集合,简称不等式的解集.

2.解不等式:求不等式解的过程

二、在数轴上表示不等式的解集

1. 2.

三、注意:(1)“ · ”与“ °”;(2)“左边部分”与“右边部分”.

初中数学教案 篇66

教学目标

1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;

3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。

教学建议

1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。

2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法 ,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:

(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.

(2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,m都是代数式.

等都不是代数式.

3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。

如:说出代数式7(a-3)的意义。

分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。

4.书写代数式的注意事项:

(1)代数式中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面.

如3×a ,应写作3.a 或写作3a ,a×b 应写作3.a 或写作ab .带分数与字母相乘,应把带分数化成假分数,

#FormatImgID_0#

.数字与数字相乘一般仍用“×”号.

(2)代数式中有除法运算时,一般按照分数的写法来写.

(3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来.

5.对本节例题的分析:

例1是用代数式表示几个比较简单的.数量关系,这些小学都学过.比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍.

例2是说出一些比较简单的代数式的意义.因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.

6.教法建议

(1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。

(2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是代数式,理清代数式中的运算和运算顺序,才能正确说出一个代数式所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列代数式做准备。

(3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。

(4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。

(5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。

7.教学重点、难点:

重点:用字母表示数的意义

难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。

教学设计示例

课堂教学过程设计

一、从学生原有的认知结构提出问题

1在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?

(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)

(1)加法交换律 a+b=b+a;

(2)乘法交换律 a·b=b·a;

(3)加法结合律 (a+b)+c=a+(b+c);

(4)乘法结合律 (ab)c=a(bc);

(5)乘法分配律 a(b+c)=ab+ac

指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;

(2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数

2(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?

3若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?

4(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?

(用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)

此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b,s/t 以及a2等等都叫代数式.那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容.

三、讲授新课

1代数式

单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式.学习代数,首先要学习用代数式表示数量关系,明确代数上的意义

2举例说明

例1 填空:

(1)每包书有12册,n包书有__________册;

(2)温度由t℃下降到2℃后是_________℃;

(3)棱长是a厘米的正方体的体积是_____立方厘米;

(4)产量由m千克增长10%,就达到_______千克

(此例题用投影给出,学生口答完成)

解:(1)12n; (2)(t-2); (3)a3; (4)(1+10%)m

例2 说出下列代数式的意义:

解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;

(5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方

说明:(1)本题应由教师示范来完成;

(2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等

例3 用代数式表示:

(1)m与n的和除以10的商;

(2)m与5n的差的平方;

(3)x的2倍与y的和;

(4)ν的立方与t的3倍的积

分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面

四、课堂练习

1填空:(投影)

(1)n箱苹果重p千克,每箱重_____千克;

(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;

(3)底为a,高为h的三角形面积是______;

(4)全校学生人数是x,其中女生占48%?则女生人数是____,男生人数是____

2说出下列代数式的意义:(投影)

3用代数式表示:(投影)

(1)x与y的和; (2)x的平方与y的立方的差;

(3)a的60%与b的2倍的和; (4)a除以2的商与b除3的商的和

五、师生共同小结

首先,提出如下问题:

1本节课学习了哪些内容?2用字母表示数的意义是什么?

3什么叫代数式?

教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号

六、作业

1一个三角形的三条边的长分别的a,b,c,求这个三角形的周长

2张强比王华大3岁,当张强a岁时,王华的年龄是多少?

3飞机的速度是汽车的40倍,自行车的速度是汽车的1/3 ,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?

4a千克大米的售价是6元,1千克大米售多少元?

5圆的半径是R厘米,它的面积是多少?

6用代数式表示:

(1)长为a,宽为b米的长方形的周长;

(2)宽为b米,长是宽的2倍的长方形的周长;

(3)长是a米,宽是长的1/3 的长方形的周长;

(4)宽为b米,长比宽多2米的长方形的周长

初中数学教案 篇67

学习目标

1.理解平行线的意义两条直线的两种位置关系;

2.理解并掌握平行公理及其推论的内容;

3.会根据几何语句画图,会用直尺和三角板画平行线;

学习重点

探索和掌握平行公理及其推论.

学习难点

对平行线本质属性的理解,用几何语言描述图形的性质

一、学习过程:预习提问

两条直线相交有几个交点?

平面内两条直线的位置关系除相交外,还有哪些呢?

(一)画平行线

1、 工具:直尺、三角板

2、 方法:一"落";二"靠";三"移";四"画"。

3、请你根据此方法练习画平行线:

已知:直线a,点B,点C.

(1)过点B画直线a的平行线,能画几条?

(2)过点C画直线a的'平行线,它与过点B的平行线平行吗?

(二)平行公理及推论

1、思考:上图中,①过点B画直线a的平行线,能画 条;

②过点C画直线a的平行线,能画 条;

③你画的直线有什么位置关系? 。

②探索:如图,P是直线AB外一点,CD与EF相交于P.若CD与AB平行,则EF与AB平行吗?为什么?

二、自我检测:

(一)选择题:

1、下列推理正确的是 ( )

A、因为a//d, b//c,所以c//d B、因为a//c, b//d,所以c//d

C、因为a//b, a//c,所以b//c D、因为a//b, d//c,所以a//c

2.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为( )

A.0个 B.1个 C.2个 D.3个

(二)填空题:

1、在同一平面内,与已知直线L平行的直线有 条,而经过L外一点,与已知直线L平行的直线有且只有 条。

2、在同一平面内,直线L1与L2满足下列条件,写出其对应的位置关系:

(1)L1与L2 没有公共点,则 L1与L2 ;

(2)L1与L2有且只有一个公共点,则L1与L2 ;

(3)L1与L2有两个公共点,则L1与L2 。

3、在同一平面内,一个角的两边与另一个角的两边分别平行,那么这两个角的大小关系是 。

4、平面内有a 、b、c三条直线,则它们的交点个数可能是 个。

三、CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.

初中数学教案 篇68

【教学目标】

1、掌握多边形的内角和的计算方法,并能用内角和知识解决一些简单的问题。

2、经历探索多边形内角和计算公式的过程,体会如何探索研究问题。

3、通过将多边形"分割"为三角形的过程体验,初步认识"转化"的数学思想。

【教学重点与教学难点】

1、重点:多边形的内角和公式。

2、难点:多边形内角和的推导。

3、关键:。多边形"分割"为三角形。

【教具准备】

三角板、卡纸

【教学过程】

一、创设情景,揭示问题

1、在一次数学基础知识抢答赛中,老师出了这么一个问题,一个五边形的所有角相加等于多少度?一个学生马上能回答,你们能吗?

2、教具演示:将一个五边形沿对角线剪开,能分割成几个三角形?

你能说出五边形的内角和是多少度吗?(点题)意图:利用抢答问题和教具演示,调动学生的学习兴趣和注意力

二、探索研究学会新知

1、回顾旧知,引出问题:

(1)三角形的内角和等于_________。外角和等于____________

(2)长方形的内角和等于_____,正方形的内角和等于__________。

2、探索四边形的内角和:

(1)学生思考,同学讨论交流。

(2)学生叙述对四边形内角和的认识(第一二组通过测量相加,第三四组通过画对角线分成两个三角形。)回顾三角形,正方形,长方形内角和,使学生对新问题进行思考与猜想。以四边形的内角和作为探索多边形的。突破口。

(3)引导学生用"分割法"探索四边形的内角和:

方法一:连接一条对角线,分成2个三角形:

180°+180°=360°

从简单的思维方式发散学生的想象力达到"分割"问题,并让学生发现问题,解决问题教学步骤教学内容备注方法二:在四边形内部任取一点,与顶点连接组成4个三角形。

180°×4-360°=360°

3、探索多边形内角和的'问题,提出阶梯式的问题:

你能尝试用上面的方法一求出五边形的内角和吗?(第一二组)

你能尝试用上面的方法一求出六边形的内角和吗?(第三,四组)那么n边形呢?完成后填表:

n边形3456.。.n分成三角形的个数1234.。.n—2内角和。.。.

4、及时运用,掌握新知:

(1)一个八边形的内角和是_____________度

(2)一个多边形的内角和是720度,这个多边形是_____边形

(3)一个正五边形的每一个内角是________,那么正六边形的每个内角是_________

通过学生动手去用分割法求五(六)边形的内角和,从简单到复杂,从而归纳出n边形的内角和。

三、点例透析

运用新知例题:想一想:如果一个四边形的一组对角互补,那么另一组对角有什么关系呢?

四、应用训练强化理解

4、第83页练习1和2多边形内角和定理的应用

五、知识回放

课堂小结提问方式:本节课我们学习了什么?

1、多边形内角和公式。

2、多边形内角和计算是通过转化为三角形。

六、作业练习

1、书面作业:

2、课外练习:

初中数学教案 篇69

知识技能目标

1、理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;

2、利用反比例函数的图象解决有关问题。

过程性目标

1、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;

2、探索反比例函数的图象的性质,体会用数形结合思想解数学问题。

教学过程

一、创设情境

上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质。

二、探究归纳

1、画出函数的图象。

分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x≠0。

1、列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:

2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(—6,—1)、(—3,—2)、(—2,—3)等。

3、连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。这两个分支合起来,就是反比例函数的图象。

上述图象,通常称为双曲线(hyperbola)。

提问这两条曲线会与x轴、y轴相交吗?为什么?

学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤)。

学生讨论、交流以下问题,并将讨论、交流的结果回答问题。

1、这个函数的图象在哪两个象限?和函数的图象有什么不同?

2、反比例函数(k≠0)的图象在哪两个象限内?由什么确定?

3、联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?

反比例函数有下列性质:

(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

(2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。

1、双曲线的两个分支与x轴和y轴没有交点;

2、双曲线的两个分支关于原点成中心对称。

以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?

在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少。

在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小。

三、实践应用

例1若反比例函数的图象在第二、四象限,求m的值。

分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+1<0,由这两个条件可解出m的值。

解由题意,得解得。

例2已知反比例函数(k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx—k的图象经过的象限。

分析由于反比例函数(k≠0),当x>0时,y随x的增大而增大,因此k<0,而一次函数y=kx—k中,k0,所以直线与y轴的交点在x轴的上方。

解因为反比例函数(k≠0),当x>0时,y随x的增大而增大,所以k<0,所以一次函数y=kx—k的图象经过一、二、四象限。

例3已知反比例函数的图象过点(1,—2)。

(1)求这个函数的解析式,并画出图象;

(2)若点A(—5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上?

分析(1)反比例函数的图象过点(1,—2),即当x=1时,y=—2。由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;

(2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上。

解(1)设:反比例函数的解析式为:(k≠0)。

而反比例函数的图象过点(1,—2),即当x=1时,y=—2。

所以,k=—2。

即反比例函数的解析式为:。

(2)点A(—5,m)在反比例函数图象上,所以,

点A的坐标为。

点A关于x轴的对称点不在这个图象上;

点A关于y轴的对称点不在这个图象上;

点A关于原点的对称点在这个图象上;

例4已知函数为反比例函数。

(1)求m的值;

(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?

(3)当—3≤x≤时,求此函数的最大值和最小值。

解(1)由反比例函数的定义可知:解得,m=—2。

(2)因为—2<0,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大。

(3)因为在第个象限内,y随x的增大而增大,

所以当x=时,y最大值=;

当x=—3时,y最小值=。

所以当—3≤x≤时,此函数的最大值为8,最小值为。

例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米。

(1)写出用高表示长的函数关系式;

(2)写出自变量x的取值范围;

(3)画出函数的图象。

解(1)因为100=5xy,所以。

(2)x>0。

(3)图象如下:

说明由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。

四、交流反思

本节课学习了画反比例函数的图象和探讨了反比例函数的性质。

1、反比例函数的图象是双曲线(hyperbola)。

2、反比例函数有如下性质:

(1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

(2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。

五、检测反馈

1、在同一直角坐标系中画出下列函数的图象:

(1);(2)。

2、已知y是x的反比例函数,且当x=3时,y=8,求:

(1)y和x的函数关系式;

(2)当时,y的值;

(3)当x取何值时,?

3、若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。

4、已知反比例函数经过点A(2,—m)和B(n,2n),求:

(1)m和n的值;

(2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x1<0

初中数学教案 篇70

【学习目标】

1.了解圆周角的概念.

2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.

3.理解圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径.

4.熟练掌握圆周角的定理及其推理的灵活运用.

设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推导解决一些实际问题

【学习过程】

一、 温故知新:

(学生活动)同学们口答下面两个问题.

1.什么叫圆心角?

2.圆心角、弦、弧之间有什么内在联系呢?

二、 自主学习:

自学教材P90---P93,思考下列问题:

1、 什么叫圆周角?圆周角的两个特征: 。

2、 在下面空里作一个圆,在同一弧上作一些圆心角及圆周角。通过圆周角的概念和度量的方法回答下面的问题.

(1)一个弧上所对的圆周角的个数有多少个?

(2).同弧所对的圆周角的度数是否发生变化?

(3).同弧上的圆周角与圆心角有什么关系?

3、默写圆周角定理及推论并证明。

4、能去掉同圆或等圆吗?若把同弧或等弧改成同弦或等弦性质成立吗?

5、教材92页思考?在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?

三、 典型例题:

例1、(教材93页例2)如图, ⊙O的直径AB为10cm,弦AC为6cm,,ACB的'平分线交⊙O于D,求BC、AD、BD的长。

例2、如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?

四、 巩固练习:

1、(教材P93练习1)

解:

2、(教材P93练习2)

3、(教材P93练习3)

证明:

4、(教材P95习题24.1第9题)

五、 总结反思:

【达标检测】

1.如图1,A、B、C三点在⊙O上,AOC=100,则ABC等于( ).

A.140 B.110 C.120 D.130

(1) (2) (3)

2.如图2,1、2、3、4的大小关系是( )

A.3 B.32

C.2 D.2

3.如图3,(中考题)AB是⊙O的直径,BC,CD,DA是⊙O的弦,且BC=CD=DA,则BCD等于( )

A.100 B.110 C.120 D.130

4.半径为2a的⊙O中,弦AB的长为2 a,则弦AB所对的圆周角的度数是________.

5.如图4,A、B是⊙O的直径,C、D、E都是圆上的点,则2=_______.

(4) (5)

6.(中考题)如图5, 于 ,若 ,则

7.如图,弦AB把圆周分成1:2的两部分,已知⊙O半径为1,求弦长AB.

【拓展创新】

1.如图,已知AB=AC,APC=60

(1)求证:△ABC是等边三角形.

(2)若BC=4cm,求⊙O的面积.

3、教材P95习题24.1第12、13题。

【布置作业】教材P95习题24.1第10、11题。

初中数学教案 篇71

一年级学生认知水平处于启蒙阶段,尚未形成完整的知识结构体系。由于学生所特有的年龄特点,学生有意注意力占主要地位,以形象思维为主。从整体上看一年级学生都比较活跃,大多数学生上课基本上能够跟上教师讲课的思路,教师上课组织课堂纪律并不难,而且学生的学习积极性也很容易调动。但每个班都有个别的学生上课不注意听讲,我行我素。

对于他们数学知识和能力掌握情况的分析:

1、对于一年级的数学学习,新生无论在数学知识上还是数学能力上都有所准备。就数的认识来看,新生二十以内的数数非常流利和连贯,可以正数倒数。学生在这方面具有良好的知识准备的原因之一是学生受过这方面的训练,在幼儿园中大部分学生学习过十以内的加减法,同时在一些家长在家中也进行过辅导,另一方面,数数和十以内数的分解组合学生在生活中有机会使用,因此这方面的准备比较好。

2、在数的计算中,学生对于十以内数的计算较为熟练,这和学生的生活需要、学习需要有关。

3、新生在数感方面的发展是不平衡的数感——学生对数的意义理解有一定困难。通过个别访谈,了解到学生对于蕴涵在实际生活中的数的意义的理解较为准确,例如对于“你的小组中有几个小朋友,从前往后数,你是第几个,从后往前数,你是第几个,第几个小朋友是谁”这样的问题,学生的解答没有问题,都能根据实际情况作出正确的回答,但是对于图形,学生的理解有一定的困难。这可能是学生对图形的认识造成了对数的基数序数意义理解的干扰。

4、概括能力和推理能力——普遍学生关注的范围比较小,角度单一。全册教材分析

本册教材一共分为八个单元,本册教材主要是通过各种各样的活动对学生进行数感及观察能力、思维能力、口头表达能力、学习习惯、合作与交流的能力等方面的培养,让学生对数学产生浓厚的学习兴趣,同时鼓励学生用自己喜欢的方式去学习自己有用的知识,对学生进行有效地思想品德教育,初步了解一定的学习方法、思考方式。

全册教学目标

1、熟练地数出数量在20以内的物体的个数,会区分几个和第几个,掌握数的顺序和大小,掌握10以内各数的组成,会读、写0――20各数。

2、初步知道加、减法的含义和加减法算式中各部分部分名称,初步知道加法和减法的关系,比较熟练地计算一位数的加法和10以内的减法。

3、初步学会根据加、减法的含义和算法解决一些简单的实际问题。

4、认识符号“=”“<”“>”,会使用这些符号表示数的大小。

5、直观认识长方体、正方体、圆柱、球、长方形、正方形、三角形和圆。

6、初步了解分类的方法,会进行简单的分类。

7、初步了解钟表,会认识整时和半时。

8、体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。

9、认真作业、书写整洁的良好习惯。

10、通过实践活动体验数学与日常生活的密切联系。

全册重、难点:

教材重点:在具体的情境中能熟练的认读、写、20以内的数,能用数表示物体的个数或事物的位置与顺序;建立初步的空间观念;能按照给定的标准或选择某个标准对物体进行比较和分类。

教材难点:体会20以内加减法的意义,能熟练的口算20以内的数的加减法;初步形成空间观念;经历简单的数据收集过程,形成初步的统计观念。教学准备

画有田字格的小黑板挂图小棒圆片

多媒体课件视频展示台部分实物模型

智能培养

1、培养学生应用数学知识解决问题的能力。

2、培养学生独立思考与合作交流的能力。

3、培养学生学习数学的良好情感。

4、培养学生学习数学的兴趣和良好的学习习惯。

教学思路及措施

1.一年级学生的计算学习要和意义理解与思维训练相结合。在小学数学课堂教学中要重视计算策略的优化和算理的`渗透,同时在计算教学过程中要渗透思维的训练。

2.数学教学中加强学生的生活经验的积累和对学习对象的直接感知。学生的生活经验和已有的知识能力对学生解决问题有着很大的帮助,甚至很多学生都是建立在生活经验的基础上进行学习的。因此,一年级的数学教学应该加强学生的实际感知,丰富学生的生活经验,让学生在现实情景中把握数的意义和运算的意义,发展数感和符号感。扩大学生的信息贮备,提供有利于学生理解数学、探究数学的生活情景,给学生机会在实际情景中感知、操作、认识数学知识,理解数学,学习数学。

3.空间观念的培养要把握好度,在具体和抽象的空间观念的建立,在低段

要紧密和学生的动手操作相联系,可以通过观察、接触(摸、折、剪、拼等)等各种手段来让学生认识几何形体,建立空间观念。同时,要将生活材料数学化,在具体、半抽象、抽象之间建立一座桥梁,发展学生的空间想象能力。

4.在教学中要逐步渗透重要的数学概念和数学思想方法。数学思想方法已经作为数学知识的一部分,教师在教学中要逐步随着数学知识的学习进行渗透。例如一年级教材中有很多地方可以渗透一一对应思想、函数思想、符号化思想的,要在平时的教学中加以落实。

初中数学教案 篇72

一元一次不等式组

教学目标

1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;

2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力;

3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。

教学难点

正确分析实际问题中的不等关系,列出不等式组。

知识重点

建立不等式组解实际问题的数学模型。

探究实际问题

出示教科书第145页例2(略)

问:(1)你是怎样理解“不能完成任务”的'数量含义的?

(2)你是怎样理解“提前完成任务”的数量含义的?

(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?

师生一起讨论解决例2.

归纳小结

1、教科书146页“归纳”(略).

2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?

在讨论或议论的基础上老师揭示:

步法一致(设、列、解、答);本质有区别.(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。

初中数学教案 篇73

一、教学目标

1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;

2.培养学生观察能力,提高他们分析问题和解决问题的能力;

3.使学生初步养成正确思考问题的良好习惯。

二、教学重点和难点

一元一次方程解简单的应用题的方法和步骤。

三、课堂教学过程设计

(一)从学生原有的认知结构提出问题

在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

为了回答上述这几个问题,我们来看下面这个例题。

例1 某数的3倍减2等于某数与4的和,求某数。

(首先,用算术方法解,由学生回答,教师板书)

解法1:(4+2)÷(3-1)=3。

答:某数为3。

(其次,用代数方法来解,教师引导,学生口述完成)

解法2:设某数为x,则有3x-2=x+4。

解之,得x=3。

答:某数为3。

纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一。

我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系。因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。

本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤。

(二)师生共同分析、研究一元一次方程解简单应用题的方法和步骤

例2 某面粉仓库存放的面粉运出15%后,还剩余42500千克,这个仓库原来有多少面粉?

师生共同分析:

1.本题中给出的已知量和未知量各是什么?

2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)

3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?

上述分析过程可列表如下:

解:设原来有x千克面粉,那么运出了15%x千克,由题意,得

x-15%x=42 500,

所以x=50 000。

答:原来有50 000千克面粉。

此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?

(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)

教师应指出:

(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;

(2)例2的解方程过程较为简捷,同学应注意模仿。

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

(1)仔细审题,透彻理解题意。即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;

(2)根据题意找出能够表示应用题全部含义的一个相等关系。(这是关键一步);

(3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;

(4)求出所列方程的解;

(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义。

例3 (投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?

(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误。并严格规范书写格式。)

解:设第一小组有x个学生,依题意,得

3x+9=5x-(5-4),

解这个方程:2x=10,

所以x=5。

其苹果数为3× 5+9=24。

答:第一小组有5名同学,共摘苹果24个。

学生板演后,引导学生探讨此题是否可有其他解法,并列出方程。

(设第一小组共摘了x个苹果,则依题意,得)

(三)课堂练习

1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?

2.我国城乡居民1988年末的储蓄存款达到3 802亿元,比1978年末的储蓄存款的18倍还多4亿元。求1978年末的储蓄存款。

3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数。

(四)师生共同小结

首先,让学生回答如下问题:

1.本节课学习了哪些内容?

2.列一元一次方程解应用题的方法和步骤是什么?

3.在运用上述方法和步骤时应注意什么?

依据学生的回答情况,教师总结如下:

(1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;

(2)以上步骤同学应在理解的基础上记忆。

(五)作业

1.买3千克苹果,付出10元,找回3角4分。问每千克苹果多少钱?

2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

3.某厂去年10月份生产电视机20xx台,这比前年10月产量的2倍还多150台。这家工厂前年10月生产电视机多少台?

4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?

5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元。求得到一等奖与二等奖的人数。

初中数学教案 篇74

一、内容特点

在知识与方法上类似于数系的第一次扩张。也是后继内容学习的基础。

内容定位:了解无理数、实数概念,了解(算术)平方根的概念;会用根号表示数的(算术)平方根,会求平方根、立方根,用有理数估计一个无理数的大致范围,实数简单的四则运算(不要求分母有理化)。

二、设计思路

整体设计思路:

无理数的引入----无理数的表示----实数及其相关概念(包括实数运算),实数的应用贯穿于内容的始终。

学习对象----实数概念及其运算;学习过程----通过拼图活动引进无理数,通过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的方式,寻求实数的运算法则;学习方式----操作、猜测、抽象、验证、类比、推理等。

具体过程:

首先通过拼图活动和计算器探索活动,给出无理数的概念,然后通过具体问题的解决,引入平方根和立方根的概念和开方运算。最后教科书总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。

第一节:数怎么又不够用了:通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的.思想;会判断一个数是有理数还是无理数。

第二、三节:平方根、立方根:如何表示正方形的边长?它的值到底是多少?并引入算术平方根、平方根、立方根等概念和开方运算。

第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常通过估算来求它的近似值,为此这一节内容介绍估算的方法,包括通过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。

第五节:用计算器开方:会用计算器求平方根和立方根。经历运用计算器探求数学规律的活动,发展合情推理的能力。

第六节:实数。总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。

三、一些建议

1.注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的意义理解。

2.鼓励学生进行探索和交流,重视学生的分析、概括、交流等能力的考察。

3.注意运用类比的方法,使学生清楚新旧知识的区别和联系。

4.淡化二次根式的概念。

初中数学教案 篇75

学情分析:

高三(7)是我校理科重点班,该班的学生具有良好的数学功底,处于复习阶段的他们目标更明确,学习热情高,课堂投入,思考积极。就本节开课的内容而言,学生已掌握了“对称问题”本质属性,能够从图象和表达式上准确地理解对称问题。但也只是停留在就事论事的基础上,对问题的抽象、归纳概括,引申拓展还缺乏一定的能力和意识。对于周期概念,学生没有什么的问题。

教材分析:

1.对称问题是高中数学中比较难的问题,学生一般由于问题的抽象性,同时由于这中间存在关于点对称和关于直线对称这两类问题,而它们的数学表达式又是那么相似,学生如果没有真正理解很难分清谁是谁非。而且在高考的问题中经常会碰到,因此有必要加以澄清和深化理解。

2.对称问题和周期问题也存在一定的联系,本节可以通过足够的条件阐明这一联系的实质。

教学目标:

理解一个函数存在两次对称(可能关于两个点对称或两条直线对称或一个点加上一个对直线)时,如何判断函数具有周期性。

重点和难点

具有两次对称问题的抽象函数具有周期性,而且要求求出周期。

教学方法:

从简单到复杂,以启发思想为指导,精讲重思,暴露学生的思维,使学生整节课都处于思考之中。

教学程序:

一、引入

师:当一个人站在一面镜子前,面对镜子一定的距离,那么在镜中的像有什么特征?

生:(物理常识)人和像关于镜子对称。

师:现在在此人的身后再放一面镜子,镜面对着人的背面,此时在此人面前的镜子中的像又是什么?

生:如果镜子够大的话,里面将是无数个排列的人。

师:道理何在?

生:首先是人在前面镜中的像连同人一起要在后面镜中成像,这一像反过来连同人又在前面镜中成像,这样反反复复,就得到了无数个人像,而且具有周期性(即图象重复出现)。

师:如果将人看成一段函数,将镜子看成一条对称轴,那么整个函数的图象应该是怎样的(图象具有什么特征)。

引入课题:对称+对称=?

二、探究

回顾:关于图象的对称问题分为两类:一类是关于点对称,另一类是关于直线对称,今天我们来研究一般的函数对称问题,我们从函数表达式来研究,对于直线对称:若f(x)关于x=a对称,则有f(x)=f(2a-x)或f(a+x)=f(a-x);对于点对称:f(x)关于(a,0)对称,则有f(x)=-(2a-x)或f(a+x)=-f(a-x)。

对于奇函数[f(x)=-f(-x)]和偶函数[f(x)=f(-x)],则是这两类对称中的特例。

延伸:若是f(a+x)=f(b+x),则函数关于什么对称(关于直线x=(a+b)/2对称)

提问:请同学们找几个关于直线x=a对称的函数的表达式?

生:f(4a-x)=f(6a+x)

下面研究当函数具有两次对称时,结果有什么特征?

问题设计:

①函数f(x)

(1)是偶函数

(2)关于x=a对称

分析:由条件(2),可得f(a+x)=f(a-x),又由条件(1),所以f(x+a)=f(x-a)。

(以x+a代替上式中的x),所以f(x)=f(2a+x),由周期定义f(x)=f(T+x),所以f(x)是以|2a|为周期的函数

②函数f(x)

(1)是奇函数

(2)关于x=a对称

分析:由条件(2),可得f(x)=f(2a-x)又由条件(1)f(x)=-f(-x),所以-f(-x)=f(2a-x),即-f(x)=f(2a+x),所以f(4a+x)=-f(2a+x)=f(x),可得函数f(x)是以|4a|为周期的函数,

以此类推,

③函数f(x)满足

(1)是偶函数

(2)关于(a,0)对称

④函数f(x)满足

(1)是奇函数

(2)关于(a,0)对称

⑤函数f(x)满足

(1)关于x=b对称

(2)关于x=a对称

⑥函数f(x)满足

(1)关于(a,0)对称

(2)关于(b,0)对称

⑦函数f(x)满足

(1)关于x=a对称

(2)关于(b,0)对称

(师生共同完成)

学生练习:见复习参考书

评教:

教材处理恰当

1.前面的课堂教学中已经讲了关于图象平移,伸缩的问题,对于对称问题在前面也分析了关于含绝对值的函数图象问题(y=|f(x)|,y=f(|x|))。

2.今天这堂课分析非绝对值的对称问题,主要是关于点对称和直线对称的问题。

3.下一节殷老师构思,将一个函数的对称变成两个函数的对称问题,即如:函数f(x)和函数f(-x)的关系;函数f(x)和函数f(2a-x)的关系;函数-f(x)和函数f(2a+x)的关系,即对照这堂课的内容,将一个函数变成两个函数,再寻找二者关系,以便通过其中一个函数来解决另一个函数问题。如:已知函数-f(x)的图象,画出函数f(2a+x)的图象及分析其性质。

(点评:对于教学任务的分析是一个教师的教学水平的重要标志,同样的一个教师对教材的处理各不相同,当然所得的结果也各不相同,我们评一节课好坏,同时也要关注这堂课的前述及后续,只有知道前后的内容,才能把握上课之人想法,教学思路,处理教材的能力,我认为这样的处理比较有逻辑性,能够帮学生梳理知识,使学生对知识的结构比较清晰,符合建构主义观点。这对高考复习内容较多的情况下更容易帮助学生的理解,体现上课老师对教材具有较高的处理水平。)

引入贴近生活

数学知识通常被学生认为是最没用的,枯燥乏味的,原因是学生在实际生活中的问题很少能够和数学联系起来,而通常这样的联系确定很难寻找,现在的新教材就加强了这一方面的联系,这堂课殷老师就以是实际生活中常见的照镜子一事引入,这里我觉点有两个地方比较不错:

(1)将数学知识和实际联系起来,因此说联系还是有的,主要我们没有仔细体会,没有这种思维习惯,这样有联系的.问题学生就感兴趣,自然投入更多了;

(2)更为重要的是,这个引入不但引出了主题,还成功地解决了难点(抽象思维能力),如果是直接给出问题,学生可能不会想到结论是什么,但是由镜子引入,学生就很容易理解为什么函数具有周期性,为接下来从函数表达式上来分析埋下了垫脚石。对于问题情境的设置恰当与否,决定了能否激发学生的求知欲望,能否积极主动地参与到课堂教学中。

可改进之处:对于照镜子问题,在实际生活同时用两面镜子,可能不多,因此学生要推断也只凭想象再结合物理知识,可能有学生想出来,那么他对这一问题的理解就凭老师的讲解,还是存有疑惑,如果能现实操作,理解会更深,当然不可能真的取来两面大镜子,我们可借助于“几何画板”数学教学软件,它对于对称问题,操作简单,下面是本人做的图片:

(三)问题设计巧妙

函数f(x)满足

(1)是偶函数

(2)关于x=a对称

②函数f(x)满足

(1)是奇函数

(2)关于x=a对称

③函数f(x)满足

(1)是偶函数

(2)关于(a,0)对称

④函数f(x)满足

(1)是奇函数

(2)关于(a,0)对称

⑤函数f(x)满足

(1)关于x=b对称

(2)关于x=a对称

⑥函数f(x)满足

(1)关于(a,0)对称

(2)关于(b,0)对称

⑦函数f(x)满足

(1)关于x=a对称

(2)关于(b,0)对称

题组、变式训练是提高学生思维能力,分析问题解决问题能力的常用方法

(1)学生能通过辨析达到对问题真正理解,对于突破难点起关键作用。

(2)通过一连串的结论,使学生在以后拿到类似的问题,会引起重视,究竟是其中哪一种。

同时这里的问题设计遵循了由易到难,特殊到一般的过程,这和学生的思维认识规律相符合。

可改进之处:对于这类问题,当然有必要让学生理解,对于一连串问题的理解经过思考和老师的分析是可以理解但是学生的抽象思维能力还是有待于提高的,到最后可能在头脑里的印象还是比较模糊了,谁是谁非。⑤⑥⑦三个例子均可让学生自己来演练,以便让每个学生有独立思考的机会。以提高学生独立解决问题的能力,和真正检测学生对刚才问题的理解程度。

(四)善于捕捉归纳

在教学中处处留心,总能发现点什么,对于平时的练习也是一样,通过平时作问题,从问题中发现规律,进行提练、归纳。这节课的问题设计来自殷老师平时的留心观察,这一点确实提醒我们这些年青教师,要善于观察、思考、发现问题,总结规律。

(五)分析透彻易懂

课堂45分钟的效率如何是学生学好每一门课程的关键,教师分析有没有到位,直接影响着学生的听课效率,讲得多并不是好事,讲少了怕学生听不懂,这是很多新教师关心的问题,老教师上课时知道讲到哪就够了,知道学生在哪儿可能有疑惑,就重点讲解,有些地方一带而过,这节课很多地方分析的非常清楚,比如在讲解,关于直线对称和点对称时

求表达式,他这样讲解f(x)关于x=a对称,为什么会f(x)=f(2a-x)

(1)两点关于x轴对称,纵坐标(函数值y)没变,所以f()=f()(f()表示函数值)

(2)横坐标原来为x,对称后变了,由中点坐标公式得,x1=2a-x,所以f(x)=f(2a-x),讲解关于点(a,0)对称时求表达式,由于纵坐标变为原来相反数,所以f()=一f(),同样横坐标也可以由中点公式得2a-x,所以f(x)=一f(2a-x),分析得很清楚。

(六)暴露学生思维

本节课应该说学生的思维还是比较活跃的,在老师的帮助下,学生表现比较积极、投入,课堂气氛活跃,学生能够根据自己的理解提出方案,对于问题的解答反映还是比较快的,但是也不排除有个别学生可能由于问题的抽象性,对于问题的本质缺乏充分的认识及自身理解水平的问题,对于问题的下一步是什么,如何思考没有想法。

可改进建议:由于课堂容量较大,教师可能考虑到时间的问题,对于后几个问题没有让学生有充分的时间思考,有些思维慢,或理解不够的学生可能跟不上,在下面没有反应,建议教师事先出张学案,将要研究的问题罗列出一张提纲,让学生在课前去思考,这样上课的听课效率可能会更好。

初中数学教案 篇76

一学期的工作结束了,可以说紧张忙碌却收获多多。回顾这学期的工作,我教九(4)班的数学,我总是在不断地摸索和学习中进行教学,工作中有收获和快乐,也有不尽如人意的地方,为了更好地总结经验,吸取教训,使以后的工作能够有效、有序地进行,现将教学所得总结如下:

一、在备课方面

在上课前我总是查阅很多教参、教辅,力求深入理解教材,准确把握难重点,总是要经过深思熟虑之后才写教案,力争做到熟知知识要点,心中有数。

二、在教学过程方面

在课堂教学中我一直注重学生的参与。让学生参与到课堂教学中来,让他们自主的去探究问题,发现知识。波利亚说:“学习任何知识的最佳途径都是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的内在规律、性质和联系。”只有充分发挥学生的主体作用,让学生人人参与,才能最大限度地促进学生的发展。但还是难免受传统教学观念的影响,加之经验不足,不太敢放手,怕完成不了当趟课的教学任务。后来在学校“”的教学模式下,才开始进一步尝试,并在不断的尝试中总结经验。

三、工作中存在的问题

1)、教材挖掘不深入。

2)、教法不灵活,不能吸引学生学习,对学生的引导、启发不足。

3)、新课标下新的教学思想学习不深入。对学生的自主学习,合作学习,缺乏理论指导

4)、差生末抓在手。由于对学生的了解不够,对学生的学习态度、思维能力不太清楚。上课和复习时该讲的都讲了,学生掌握的情况怎样,教师心中无数。导致了教学中的盲目性。

四、今后努力的方向

1)、加强学习,学习新教学模式下新的教学思想。

2)、熟读初一到初三的数学教材,深入挖掘教材,进一步把握知识点和考点。

3)、多听课,学习老教师对知识点的处理和对教材的把握,以及他们处理突发事件方法。

4)、加强转差培优力度。

5)、加强教学反思,加大教学投入。

一学期的教学工作即将结束,这半年的教学工作很苦,很累,但在不断的摸索中,自己学到了很多东西。今后我会更加努力提高自己的业务水平。

大家都在看