请欣赏比的基本性质教学设计(精选50篇),由笔构网整理,希望能够帮助到大家。
比的基本性质教学设计 篇1
学习目标:
1、理解并掌握比的基本性质。
2、能应用比的基本性质化简比。
教学重点:
比的基本性质,化简比的方法。
教学难点:
化简比与求比值的区别。
教学过程:
一、激情导课
1、复习导入
上节课我们学习了比,说说你对比的理解?怎样求比值?
你还记得除法有什么性质?分数又有什么性质吗?
除法有商不变的性质,分数有分数的基本性质,联系比和除法、分数的关系,同学们猜想一下在比中是否也有类似的性质呢?
2、学习目标:
(1)理解比的基本性质。
(2)会运用比的基本性质化简比。
二、民主导学
1、探究比的基本性质
温馨提示:
自学书上50页的内容,可以利用比和除法的关系来研究,也可以根据比和分数的关系来研究。
(1)小组合作学习。
(2)全班汇报交流。
(3)总结归纳:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。
(4)根据商不变性质,我们可以进行除法的简算。根据分数的基本性质,我们可以把分数化成最简单的整数比,即化简比。
理解最简单的整数比的.意义。
①举例:4:6=2:3
前项、后项同时除以2,前、后项必须是整数,而且互质
符合最简单的整数比要符合两个条件:一是比的前项,后项必须是整数,二是这两个整数必须是互质数,也就是这两个整数只有公约数1。
②判断:下面哪些比是最简比
6:92:94:22 7:13
2、探究化简比的方法。
出示例题:
(1)“神舟”五号搭载了两面联合国旗,一面长15cm,宽10cm,另一面长180cm,宽120cm。
①学生尝试完成,师巡视指导,要求写出化简过程。
②师生共同讲评:教师板书过程。问:化简比的结果是什么?
让学生明确还是一个比。
(2)把下面各比化成最简单的整数比。
0.75:2
观察0.75:2这个比,并与例1比较,有什么不同之处,怎样把小数转化成整数,比值不变?
引导学生可以乘整十整百的数,变成整数。学生独立完成。
除此之外还有没有其他的方法?
可以把0.75转化成分数,:2怎样化简呢?
引导学生想办法去掉分母,前项和后项可以同时乘4。
最后出示:,想一想怎样化简?
总结归纳:①化简比的方法
②不管选择哪种方法,最后的结果都是一个最简单的整数比,而不是一个数。
三、检测导结
1、化简下列各比。
15:210
12:0.4
3(2):2(1)
1:3(2)
2、判断:下面说法对吗?
(1)0.48∶0.6化简后是0.8。()
(2)4(3):2(1)化简后是12(1)。()
(3)0.4∶1化简后是2:5。()
3、连线:帮小蜗牛找家
4、写出各杯子中糖与水的质量比。
这几杯糖水有一样甜的吗?
四、反思总结:
这节课我们学习了什么知识?
和同学们分享一下你的收获吧。
板书设计:
比的基本性质
比的前项和后项同时乘或除以相同的数(0除外),比值不变。
求比值:结果是一个数
化简比:结果是一个比
比的基本性质教学设计 篇2
教学内容:人教版新课标小学数学六年级下册《比例的意义和基本性质》P32—34页以及相应的“做一做”,练习六第5题.
教学目标:
知识目标:学生理解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别。
能力目标:能应用比例的意义和比例的基本性质正确判断两个比能否组成比例。
情感目标:激发学生的学习兴趣,引导学生自主参与知识探究的全过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生思维。
教学重点:理解比例的意义和基本性质.
教学难点:应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.
教学理念:充分发挥学生的主体作用,让学生自主参与知识探究的全过程,主动构建新知,发展学生思维,培养学生研究数学的能力。
教学准备:课件
教学过程:
一、激趣导入
1、今天能和在座的同学们一起上课我感到非常高兴,听说同学们都非常聪明、爱动脑筋,课上积极回答问题。今天,我和在座的领导老师们想看一看同学们的表现如何,这节课同学们想不想证明一下自己?
2、请同学们看大屏幕,课件出示P32页四幅图。
二、探究新知
1、比例的意义
师问:
①这四幅图中有什么共同的事物?(齐说)
②这四面国旗出现在什么场合或什么地点?(指生回答)
③这四面国旗的长与宽分别是多少?(指生回答)
④这四面国旗的大小相同吗?
说明:虽然国旗的大小不同,但是,这四面国旗都是按一定的比制作的,那么,我国的国旗法是怎样规定国旗的大小的呢?同学们想不想了解这方面的知识?下面我们就从国旗开始,新知识的学习。
⑤请同学们分别写出这四面国旗长与宽的比并求出比值。(指生回答师板书)
⑥请同学们看我们写出的国旗长与宽的比及求出的比值,谁发现了我国国旗法是怎样规定国旗的大小的?(国旗法规定:国旗的长与宽的比值是3/2也可以说成国旗长与宽的比是3:2)
师问:
①现在我们选取其中的两个比,如:2、4:1、6和60:40。这两个比的比值都是3/2相等。那么这两个比是什么关系?生:相等。
那么我们能用什么符号可以把它们连接成等式?生:等号
谁来用等号把这两个比写成等式?师板书:2、4:1、6=60:40
②如果用比的分数形式来表示这个式子也可写成:或2、4/1、6=60/40
③根据我们写出的四面国旗长与宽的比及比值,你还能找出这样的两个比并用“=”连接成等式吗?(指生回答并说说是怎样找到这两个比相等的?)
师小结:请同学们观察板书的等式,揭示:数学中规定,像这样的式子就叫做比例。(板书:比例)
师:观察这些式子,你能说说什么样的式子叫比例吗?(找3名同学回答)
师:同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。
出示板书:表示两个比相等的式子叫做比例。这就是今天我们学习的第一个新知识。板书:比例的意义
问题:
①从比例的意义可以知道,比例是由几个比组成的?这两个比必须具备什么条件?(板书重点符号)
②判断两个比能不能组成比例,关键要看什么?
③看大屏幕,刚才我们找出的比都是长与宽的比,现在你能找出这四面国旗宽与长的两个比组成比例吗?(指生回答并说说是怎样找到这两个比相等的?)
我们已经了解了比例的意义,下面我来考一考大家:
课件出示P33页做一做1题要求及逐一出示各题,学生回答,教师课件演示。
2、比例各部分名称
师:同学们都知道比的各部分都有自己的名称,那么比例各部分名称叫什么呢?下面请同学们自学P34页前两行及例题。同时思考(课件出示)什么是比例的项?什么是比例的外项?什么是比例的内项?你能举例说明吗?
学生回答上面的问题,教师课件演示。
做一做:指出下面比例的内项和外项(课件出示)
4、5∶2、7=10∶6240/160=144/96
3、比例的基本性质(课件出示)
观察:2、4∶1、6=60∶40
思考:两个内项和两个外项之间有什么关系?看看你能发现什么?(可以相互讨论)
用下面的比例验证你的发现:
6∶10=9∶158∶2=20∶5
你能用一句话把发现的规律说出来吗?(找3名同学回答)
下面我们计算2、4:1、6=60:40的两个內项积与两个外项积,共同验证一下这三位同学发现的规律对不对?集体计算后师问:这三位同学发现的规律对不对?你们发现这个规律了吗?同学们通过自己的观察、计算、验证发现了数学上一个非常重要的规律,同学们真了不起,同学们发现的这个规律就叫做比例的基本性质。(师出示板书,指生读)在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。(这就是今天我们学习的第二个新知识。板书:比例的基本性质)
师:看大屏幕(课件出示)2、4/1、6=60/40
问题:如果把比例写成分数形式,根据比例的基本性质我们应该怎样计算两个内项的积和两个外项的积?
指生回答师小结:把比例写成分数形式,比例的基本性质是不是可以理解为:等号两边的分子和分母分别交叉相乘,积相等。师课件
演示2、4/1、6=60/40→2、4X40=1、6X60
4、我们已经理解了比例的基本性质,那么你能根据比例的基本性质来判断两个比是否可以组成比例吗?
课件出示:你能根据比例的基本性质判断10:2与2、5:0、5是否可以组成比例?
讲解时可启发:如果这两个比能组成比例,哪两个数是內项,,哪两个数是外项,那么根据比例的基本性质,能否计算两个外项的积和两个内项的`积。
因为10X0、5=52X2、5=5,所以假设成立,10:2与2、5:0、5能组成比例,即10:2=2、5:0、5
5、你会用比例的基本性质判断两个比是否可以组成比例吗?课件出示P34页做一做题目要求及逐一出示各题,学生回答,教师课件演示
6、师:学习到这里,我们学习了几种判断两个比能否组成比例的方法?
生:两种。一种是根据比例的意义,看两个比的比值是否相等;另一种是根据比例的基本性质,看两个外项和两个內项的积是否相等。
三、巩固新知(课件出示)
做一做,相信你能行!
1、判断
①10∶5=2是比例。()
②在比例里,两个外项的积与两个內项的积的差是O、()
2、填空
①在一个比例中,两个外项互为倒数,其中一个內项是1/9,则另一个內项是()
②2:9=8:()
3、用你喜欢的方法判断下面每组中的两个比是否可以组成比例(P37页5题,逐一出示各题,学生回答,教师课件演示)
四、通过这节课的学习,说说你有什么收获或学到了那些知识?
五、课后作业:搜集生活中的比例,看看比例在生活中的作用?
板书设计比例的意义和基本性质
2、4:1、6=3/260:40=3/2
2、4:1、6=60:40或2、4/1、6=60/40表示两个比相等的式子叫做比例。
2、4:1、6=5:10/32、4;1、6=15:10
5:10/3=15:105:10/3=60:40
60:40=15:10
2、4X40=96在比例里,两个外项的积等于两
1、6X60=96个内项的积。这叫做比例的基本性质。
《比例的意义和基本性质》教学反思
本节课是在学生学过比的意义和性质的基础上教学的,它包括比例的意义和组成比例的各部分名称,比例的基本性质。
教学比例的意义中,我通过出示课本图先了解图意,再写出四面国旗长与宽的比并求比值,根据比值相等进行国旗法教育。然后根据学校里两面国旗的比,得出两个比相等。最后通过四面国旗长与宽的比,写出多个等式,从而概括出比例的意义。其后通过四面国旗宽与长的比巩固比例的意义。比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先通过观察,比较、抽象概括出比例的意义,这样充分发挥了学生的主体作用,让新知不知不觉被学生掌握理解。
在认识比例的各部分名称时,比例各部分名称我是让学生通过自主看书学习。设计意图是通过重视自学,培养良好的学习习惯。这部分内容非常容易理解,采用自学的方式,通过两个问题检验,培养学生会看书的习惯。在揭示比例的基本性质时,我先让学生先观察比例式,在思考讨论两个內项和两个外项之间的关系,然后观察发现规律,进一步验证规律,最后概括出比例的基本性质。这样学生通过亲身经历的计算、观察、验证、交流表达的活动过程,不仅获得了比例的基本性质,更重要的是在学习科学探究的方法,培养学生主动获取知识的能力。
习题设计时,旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在巩固新知,开阔视野,培养学生逻辑思维能力。
通过本节课的教学,我深知有意义的数学学习必须建立在学生的主观愿望和知识经验的基础之上,有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在教学中,我对教材进行了有效的处理,让学生在算一算、想一想、说一说中理解了比例的意义,探究出了比例的基本性质,激发了学生学好数学的信心和积极情感。
我们知道,数学教学的实质是如何教会学生思维。而这节概念课不是对知识简单的复述和再现,恰恰是通过教师的“再创造”,为学生展现出了“活生生”的思维活动过程。于简单的谈话间,简单的提问中,让学生自己观察比较、通过自己分析思考,总结出了“比例”这一数学概念。于不经意的诱导,促使学生自主探究比例的基本性质,通过计算、观察、比较、验证让学生的思维从先前的不知所向到最后的豁然明朗,个个实实在在地当了一名小小“数学家”,经历了一个愉快的探究过程,获得了成功的体验。整节课处处透出浓浓的数学味。
本节课把比例的意义和基本性质放在一起学习觉得内容较多,完成教学有些困难,同时比例的灵活应用题目没有达到预先的效果有些遗憾,同时比例在生活中的应用再多一些题目就好了,让学生更加深刻地体会到数学和生活的密切联系。
比的基本性质教学设计 篇3
教学内容:苏教版下数学第38—39页例4,练习七第1—4题
教学目标:
1、让学生认识比例的内项和外项;发现并使理解和掌握比的基本性质。
2、通过自主学习,让学生学会根据比例的基本性质正确判断两个比能否组成比例。
3、培养学生的抽象概括能力。使学生体验数学学习成功的快乐。
教学重点和难点:
1、理解并掌握比例的基本性质。
2、探究、发现比例的基本性质。
教学准备:多媒体课件
教学过程:
一、复习旧知
1、师:同学们,上节课我们学习了比例,什么叫做比例?生:表示两个比相等的式子叫作比例。
2、师:如何判断两个比能否组成比例?生:化简比、求比值。
3、判断下面每组的比能否组成比例?
4:8和3:6 20:5和28:7
生1:因为4∶8 = 1∶2
3∶6 =1∶2
所以6∶10 = 9∶15
生2:因为20∶5 = 4∶1
28∶7 = 4∶1
所以20∶5=28∶7
(学生边说教师边用课件展示解题过程,目的在于引导学生规范解题格式。)
4、师:除了化简比,求比值,还有没有其他更简单的方法呢?这就是今天我们要学习的内容。
[设计意图:借助现代电教媒体,用形象、直观的图片,来激发学生的求知欲望,同时也培养了学生爱祖国、爱科学的情感。]
二、探究比例的基本性质
1、教学例4请看屏幕,把左边的三角形按比例缩小后得到右边的三角形。回答问题:把原来的三角形按几比几来缩小的?
两个三角形的底和高分别是多少?你能根据图中的数据写出比例吗?学生独立完成,然后汇报。
2、认识比例的项
(1)观察这几组比例,它们有什么共同点?
说明:组成比例的四个数,叫作比例的项。两端的两项叫作比例的外项,中间的两项叫作比例的內项。
(2)结合6:3=4:2具体说一说
在比例6:3=4:2中,组成比例的四个数“6、3、4、2”叫作这个比例的项。两端的两项“6和2”叫作比例的外项。中间的两项“3和4”叫作比例的內项。
(3)提问:你能说出其它三个比例的內项和外项各是多少吗?和你的.同桌说一说。
3、探究比例的基本性质
认真观察所写出的比例,你有什么发现?
(1)6和2(或3和4)可以同时是比例的外项,也可以同时是比例的內项。
(2)6×2=3×4,两个外项的积等于两个內项的积。
4、验证是不是所有的比例都有这样的规律呢?请同学们任意写出一个比例,验证规律。
(1)与同桌每人写出一个比例,交换验证。
(2)全班交流:有没有谁举出的比例不符合这个规律?
5、如果用表示比例的四个项,即a:b=c:d,那么,这个规律可以表示成什么?(ad=bc)
6、小结
其实这个规律就是今天我们要学习的内容:在比例中,两个外项的积等于两个內项的积,这叫作比例的基本性质。(板书)学生齐读比例的基本性质、
7、如果把比例6:3=4:2改写成分数形式,可以怎么改写?
(1)在这里,谁是内项,谁是外项?
(2)如果把等号两端的分子、分母交叉相乘,结果会怎样呢?
(3)为什么交叉相乘的积相等?明确:等号两端的分子、分母交叉相乘,就是把两个內项和两个外项分别相乘,所以它们的积是相等的。
8、教学“试一试”
(1)假设每组两个比能组成比例,说出组成比例的内外项分别是什么。
(2)应用比例的基本性质判断能否组成比例
(3)交流:以前判断两个比能否组成比例是用什么方法?通过今天的学习,我们知道还可以用什么方法?[设计意图:从学生熟悉的比入手教学,充分重视了学生原有的认知基础,找准了新知识的生长点。然后放手让学生自学,让学生亲自经历知识的发生、发展过程,充分发挥了学生的主体作用。]
三、巩固练习
1、完成“练一练”第1题。
(1)从表中你知道哪些信息?
(2)从表中选择两组数据,写出一个乘积相等的式子。
追问:为什么每两个数相乘的积相等?(因为每两个数分别表示速度和时间,它们相乘的积表示路程,甲乙两地路程一定,所以乘积都相等。)
(3)根据“80×6=120×4”写出比例。
学生独立完成,教师巡视。
交流:像这样一个一个举例写出,难免会有重复或遗漏,怎样思考才能很快地一个不漏地写出来呢?根据比例的基本性质,先把80和6当做外项,再把80和6同时当做内项。这样一共能写出几个比例?
2、练习七第2题
(1)下面四个数
5、7、15和21可以组成比例吗?你是怎样想的?
(2)学生独立完成,然后观察能写出的有什么规律?
说明:任意给出4个数判断能否组成比例,可以找出最大和最小项相乘,再把其他两数相乘。
(3)判断2、4、6、8这四个数。若不能组成,你能换掉一个数,使之组成比例吗?
3、任意从1—10中,写出4个数,判断能否组成比例?
与同桌合作完成。一个写,另一个判断。
4、我是小法官,对错我来判。
(1)在比例中,两个外项的积减去两个内项的积,差是0。()
(2)如果4a=3b,(a和b均不为0),那么a:b=4:3。()
(3)2:3=9:6()
(4)因为3×10=5×6,所以3:5=10:6。()
5、完成“练一练”第2题
(1)6和4是比例的什么?联系比例的基本性质,括号里可以填什么?指名填空,并说理由。
(2)学生独立完成第2小题。
四、全课总结
今天我们学习了什么内容?你有什么收获?
比的基本性质教学设计 篇4
教学目标:
1、使学生认识比例的“项”以及“内项”和“外项”。
2、理解并掌握比例的基本性质,会应用比例的基本性质正确判断两个比能否组成比例。
3、通过自主学习,让学生经历探究的过程,体验成功的快乐。
教学重点:
理解并掌握比例的基本性质。
教学难点:
引导观察,自主探究发现比例的基本性质
设计理念:
本课时设计,在“项”以及“内项”和“外项”的认识的设计上,以学生在老师的引导下逐步理解比例的有关知识,是以教师讲授为主。而在本课时第二大块内容,理解并掌握比例的基本性质,本课时设计中,为学生提供开放真实的问题,通过学生自主收集信息,尝试探索规律,引导学生写出不同比例,在此基础上放手让学生在观察中发现、思考,引导学生主动探索比例的基本性质。
教学过程:
一、从知识的矛盾冲突中导入并引入。
3:8=9:( ) 0.5:( )=5:17
制造冲突,也为后面的思考题做理论铺垫,顺便起到引入课题,探索性质后回应开头的知识,也起到一定的教育作用。(请勇敢的同学配合老师)
师:某某你出生的时间哪一年哪一月哪一日?(根据学生的'回报板书两次分子分母上下易位,同为比例的外项)
你还想知道教师内谁的生日,请他告诉你.(板书一次,做一个内项,那么括号应该怎样填呢)今天学习了比例的基本性质我们就可以迅速的填出了。(板书:比例的基本性质)
二、探索发现新知。
1、引用练习中的3:8=9:24为例子,比例中的四个数叫什么名字呢?两端的两项叫做什么,中间的两项叫做什么?(自学课本)
学生回报,师完成板书:
(注意板书的时候教师的手势要指明确到位)
2、练习:请指出下列比例的两个外项和内项各是多少?
80:2=200:5
6:10=9:15
1/2:1/3=6:4
0.2:2.5=4:50
2.4:1.6=60:40
3、这么多的比例,每个比例的两个外项和两个内项之间存在有什么共同的特点么?可以说的具体一些。
带着问题小组内展开讨论。(教师可以参与当中若干组的活动)时间2分钟。
4、小组汇报初步形成共识:在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。(多找几个小组发表意见)
回到板书例题验证:两个外项的积是:3×24=72
两个内项的积是:8×9=72
5、拿出自己任意找的5个比例,验证是否存在相同的特点。(请学生在展台展示自己的5个比例,并说明外项和内项的积情况)2明,如果出现不相等的,要观察反例,说明两个比组不成比例。
6、完成板书:在比例里,两个外项的积等于两个内项的积
如果把比例写成分数的形式呢,以板书的例子,写成分数的形式,引入等号两边的分子和分母交叉相乘,所得的积相等。
三、基本练习。
1、应用比例的基本性质,判断下面两个比是否能组成比例。
(1)6:3和8:5
(2)1∶5和0.8∶4
(3)1/3:1/4和12∶9
(4)1.2:3/和4/5:5
(注意学生语言叙述的规范性:如1)两个外项的积是6×3=18,两个内项的积是3×8=24,18≠24,所以不能组成比例)
2、在括号里填上适当的数
(1)12:3=( ):5
(2)( ):1/3=1/4:1/6
(3)0.2:0.6=6:( )
(4)4:3=80:( )
3、用5、3、4、8这四个数组比例,看看你能组几个?为什么?
4、把5、3、4、8这四个数换掉其中的一个,组成比例。
5、在例一个比中,两个外项的积互为倒数,其中的一个内项是4/5,另一个内项是( )。
6、回顾矛盾冲突题目:9解决因为两个外项乘积是1,所以两个外项乘积是1,另一个数就是那个已知数据的倒数。
四、全课总结:
谈一谈通过这节课的学习你有哪些收获?(质疑,并完成课题总结),提出预习任务,(那么利用比的基本性质如和求比例中的未知数呢,请自觉预习课本35页的例题2和3)
比的基本性质教学设计 篇5
教学目标:
1、使学生理解并掌握比例的基本性质,学会应用比例的基本性质判断两个比能否组成比例,并能正确组成比例。
2、培养学生的观察能力、判断能力
教学重点:引导学生观察、讨论、试算,探究比例的基本性质。
教学难点:应用比例基本性质判断两个比能否组成比例,并能正确地组成比例。
教学过程:
一、激趣导入
1、今天老师给大家带来了一件东西,放在口袋里呢,这东西大家平时都玩过,还挺熟悉的,四四方方的,猜猜看是什么?(学生猜)
2、还是让老师给你点提示吧!
课件逐句出示:买来方方一小盒,用时却有几十张,红黑兄弟各一半,还有一对“双胞胎”。
3、现在知道是什么了吧!课件出示:扑 克牌
(设计说明:通过一则小小的谜语导入新课,与之后的新授的比赛巧妙衔接,以扑 克牌激发学生的兴趣。)
二、探究新知
(一)我们今天这堂课研究的数学问题就跟扑 克牌有关。你们都知道扑克牌有四种花色,而每一种花色都有13张。(课件出示)A,2,3,4,5,6,7,8,9,10,J,Q,K
1、同学们你们都学过比例,请同学们用最快的速度从这13个数字中选择你所需要的数字来写出一个比例。
2、学生汇报写出的比例并说明理由。
3、们都是选择4个数字来组成比例。那你们想知道组成比例的4个数叫什么名字呢?(想)那就请同学们自己预习课本43页最后两段(师出示课件预习提纲)。(板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项。中间的两项叫做比例的内项。)
4、就学生汇报的比例,找出内项与外项。
(设计说明:通过一个写比例的小活动,一是复习了比例的意义,二是教学了内项与外项。)
(二)在刚才同学们写比例的过程中,老师发现同学们的脑子转得可真快,王老师想跟你们比一比,比谁能更快地按要求写出比例。怎样?敢接受老师的挑战吗?(生:敢)
1、那我们就开始吧,请同学们先看“冠军攻略”(比赛规则)
课件出示:
冠军攻略
参赛者:王老师,全班同学
规则:迅速判断由电脑随机抽取出来的4张牌面上的数学能否组成比例,如果能,请写下来。(至少写两个)(完成的可先举手示意)
2、第一轮:6、8、9、12
(老师比学生提前写完,并由学生验证,得出老师胜)
第二轮:3、5、4、8
(老师比学生提前判断出不能组成比例,并由学生验证,老师胜)第三轮:4、8、6、3
(老师比学生提前写完比例,并由学生验证,老师胜)
(设计说明:由扑 克牌引出三轮比赛,设计都由老师胜出,学生由此产生疑问,为什么老师能这么厉害,这么快地写出8个比例,借此激发学生探究。)
3、同学们一定很好奇,老师为什么能这么快地判断出这4个数能否组成比例,并能很快地写出比例,其中有什么奥秘?其实老师是有冠军秘籍的,而秘密就藏在这些比例中。请同学们仔细观察老师所写的比例的内项与外项,小组交流讨论,看看有什么发现?
4、学生汇报,验证,课件出示“比例的基本性质以及字母公式”
5、师讲解如何很快的判断4个数能否组成比例。
(设计说明:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。)
看样子,同学们对新知掌握的不错,愿意接受挑战吗?
(三)练习运用。
1、应用比例的基本性质,判断下面哪组中的两个比可以组成比例
6∶3和8∶50 2∶2.5和4∶50
2、如果把2.4:1.6=60:40,改写成分数的形式,你会写吗?等号两边的分子和分母分别交叉相乘,所得的积有什么关系?
指出:2.4与40的乘积等于1.6与60的`乘积。
三、课堂巩固,练习提升
1、用你喜欢的方法来判断哪组中的两个比能否组成比例。
(1)14:21和6:9 (2)3/4:1/10和15/2:1
(3)9:12和12:15 (4)1.4:2和7:10
2、把图A按比例放大得到图B,按比例缩小得到图C。根据图中的数据组成比例。(课本46页第3题)
3、根据比例的基本性质,在括号里填上合适的数。
8:2=24:( ) ( )/15=4/5 1.5:3=( ):3.4 48:( )=3.6:9
四、实践活动题
8:A=B:1.5,那么A和B可能是( )和( )
如果A是小数,那么A可能是( ),B可能是( )。
如果A-B=1,那么A可能是( ),B可能是( )
如果A+B=7,那么A可能是( ),B可能是( )
(设计说明:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一)
五、全课总结
通过这节课的学习,你有哪些收获?
比的基本性质教学设计 篇6
教学内容:教科书第70~71页的例3、例4以及相应的“练一练”,练习十三的第6~9题
教学目标:
(一)使学生理解和掌握比的基本性质,能应用比的基本性质进行化简比;
(二)使学生在经历和探索比的基本性质的过程中,进一步体会数学知识之间的内在联系,培养观察、比较、抽象、概括及合情推理的能力。
教学过程:
(一)复习旧知识,做好新课铺垫
1、提问:①什么叫做比?
②除法、分数、比之间有什么联系吗?
根据学生的回答板书。
被除数÷除数==前项:后项
2、观察下面的每组题目,你有什么发现吗?
第一组:12÷4=3
(12×3)÷(4×3)=3 商不变
(12÷2)÷(4÷2)=3
第二组:=3
==3 分数值不变
==3
先让学生分组讨论,再组织全班交流。
根据交流情况适时板书
被除数÷除数==前项:后项
商不变性质 分数基本性质
[评析:为了激发学生的求知欲,也为了让学生更好地理解比的基本性质,在新课之前,让学生回忆旧知,使学生在回忆旧知识的过程中,自然地过渡到了新课,使学生很清楚地知道知识的内在联系。]
(二)新课,概括比的基本性质。
1、再观察一组题目
例3:下面是小冬在实验里测量几瓶液体的质量和体积的记录表。
填写下表,并把比值相等的比填入等式。
质量/g 体积/cm3 质量和体积的比值
第一瓶 4 5
第二瓶 16 20
第三瓶 50 50
第四瓶 40 50
( ):( )=( ):( )=( ):( ) }比值不变
1、学生独立填写后。
2、提问:观察上面的等式,联系商不变性质和分数的基本性质,想一想,比会有什么性质?
学生观察思考,再把自己的想法在小组里交流。教师巡视,了解学生的讨论情况,对有困难的学生给予指导。
引导发现:比的前项和后项同时乘或除以相同的数(0除外),比值不变。这是比的基本性质(板书)
问:为什么比的后项不能为0?指出:比的后项相当于除数或分母。除数和分母不能为0,所以比的后项也不能为0。
3、上面三个相等的比哪个更简单一些?
学生比较后发现应用比的基本性质,可以把一些比化成最简单的整数比。
(三)利用比的'基本性质化简比
例4:把下面各比化成最简单的整数比。
(1)12:18 (2) (3)1.8:0.09
讨论:你是怎样理解“化成最简单的整数比”的?你能根据“比的基本性质”进行化简吗?
根据学生的回答,整理后板书。 板书后追问:
12:18=(12÷6):(18÷6) 为什么要同时除以6?
=2:3
=(×12):(×12) 为什么要同时乘以12?
=10:9
1.8:0.09=(1.8×100):(0.09×100) 为什么要同时乘100?
=180:9
=20:1
小结:化成最简单的整数比,就是根据比的基本的性质,直到比的前项和后项互质为止。
[评析:当问题出现时,老师并没有急于去讲解,而是放手让学生自己去讨论、去交流,因为学生有了对商不变的性质和分数基本性质的理解,所以学生很快就理解了比的基本性质,并能化简比。]
四、沟通联系,深化认识
1、指导完成“练一练”
做第1题。学生独立填完后,要求说说是怎样想的?
做第2题。学生黑板上板演,集体订正时说出做每道题的理由。
2、指导完成练习十三第6~9题
做第6题。先让学生独立完成,再要求说说整数比,分数比和小数比化简的方法。
做第7题。先让学生独立完成,再通过小组交流,发现每种规格国旗长和宽的比是一定的,都是3:2,并对学生进行爱护国旗的教育。
做第8题。先让学生独立完成,学生完成后,指名说说思考的过程。
做第9题。分组完成,组织交流,让学生知道化简比与求比值的方法是不同的。但有时可以互相利用。如4:16化简后是1:4,写成分数形式是,这个结果也可以看成比值;75:25的比值是3,写成分数形式是,这个结果也可以看成一个比。
五、课堂总结:
今天这节课,学习了什么内容?通过学习,有什么收获?你今天在课堂上的表现怎么样?
教学评析:
1、“最好的学习动机是学生对所学内容产生浓厚的兴趣”在新课开始,为了让学生更好地理解比的基本性质,在复习时,让学生回忆起商不变的性质和分数的基本性质,在学生的回忆中,很自然地过渡到比的基本性质,由于学生已经知道了商不变的性质和分数的基本性质;又理解了除法、分数、比之间的联系,所以很快理解了比的基本性质。这样激发学生的求知欲和主动参与学习的动机,使学生学习情绪高涨,达到学习的最佳境界。
2、注重学生的合作学习,例如:在发现比的基本性质时,让学生先观察思考,再把自己的想法在小组里交流。再比如:让学生讨论是怎样理解“化成最简单的整数比的”?你能根据“比的基本性质”进行化简吗?学生在小组合作学习时,老师创设了一个积极探讨,合作研究的空间,让学生在小组里自由地各抒己见,展开议论,互帮互学,强化理解。通过反馈汇报,给学生提供展示自己思维的机会,充分发挥了学生的积极性、主动性和创造性,使学生最大限度地参与探究新知的活动。并让学生获得成功的喜悦。
3、这节课,通过学生“回忆知识”“小组合作发现比的基本性质”……使学生兴趣浓厚,学得积极主动,这样的设计发挥学生的自主性和积极性,为学生创设了一个愉悦轻松的学习氛围,提高了课堂教学的效率。
比的基本性质教学设计 篇7
【教学内容】
义务教育教科书六年级上册第50-51页。
【教学目标】
1、理解并掌握比的基本性质,掌握化简比的方法,能正确地把一个比化成最简整数比。
2、通过迁移类推,培养学生的概括归纳能力,渗透转化的数学思想,并使学生认识事物之间都是存在内在联系的。
3、通过自主探究、合作交流等活动,发展学生概括推理能力。【教学重点】掌握化简比的方法,能正确地把一个比化成最简整数比。
【教学难点】
理解并掌握比的基本性质。
【教具学具】
课件。教学过程:
一、回顾旧知。
1、谈话引入:“昨天我们学习了比的意义,我们说什么是比?”
2、比与除法和分数有什么关系?
比前项:(比号)后项
比值除法
被除数÷(除号)除数商分数
分子-(分数线)分母分数值
二、探究新知。
探究一:比的基本性质
1、同学看这个除法算式:
它们是正确的吗?为什么?运用了除法的什么性质?
2、我们说比和除法有紧密的联系,那么根据除法商不变的性质,我们看看比是不是也有类似的规律呢?
3、根据比与分数的关系,我们还能怎么研究比的规律?
【设计意图:通过除法商不变的性质、分数的基本性质进行类比推理,概括推理出比的基本性质,使学生利用旧的知识识得新的知识。】
4、即时练习,强化巩固
在比的基本性质中,大家觉得要注意什么?让我们一起来看看:
(1).根据108:18=6,说出下面各比的比值。54:9=(6)216:36=(6)10800:1800=(6)
(2).判断并说明理由。
(1)6:7=(6×0):(7×0)=0(2)1:2=(1+2):(2+2)=0.75(3)2:8=2:(8÷2)=0.5
探究二:根据比的性质我们能做什么?(化简比)
1、明确什么是“最简整数比”。出示一些比,让学生说说哪些是整数比,哪些是最简整数比。
2、出示例题,明确问题。
例1:“神舟”五号搭载了两面联合国旗,一面长15cm,宽10cm,另一面长180cm,宽120cm。这两面联合国旗的`长和宽的最简单的整数比分别是多少?
分别写出两个旗子的长宽比(15:10,180:120),他们是最简整数比吗?怎么才能化成最简整数比呢?引导学生说出比的前项和后项同时除以5(5是15和10的什么数?为什么要除以5?)
学生总结方法:整数比化简就是比的前项和后项同时除以它们的最大公因数。
那么用这个方法,我们能把180:120,化成最简整数比吗?(学生自行求最简比)。
3、刚才我们讨论了整数比的化简问题。我们知道两个数相除就可以写成比的形式。分数和小数也是数,它们的比又应该怎么化简呢?
出示例题,全班讨论猜想。学生独立完成。
集体订正,总结方法“将分数比、小数比先化成整数比,然后再化成最简整数比。”
1212:?(?18):(?18)?3:269690.75:2?(0.75?100):(2?100)?75:200?3:8
探究三:一个比中有分数,又有小数该怎么化简呢?
3出示0.125:,学生讨论,汇报结果。
8【设计意图:在探究一的基础上,学生通过探究二和探究三获得将“新知识转换成旧知识来解决”的能力。通过探究二、三突破本节课的难点。】
三、强化新知,达标检测。
通过数学课本51页“做一做”,强化认识。32:1648:400.15:0.35173::66128
【设计意图:强化训练】
四、总结评价
这节课你有什么收获?还有什么疑问?
比的基本性质教学设计 篇8
教学目标:
1.认识比例各部分名称,理解比例的基本性质。
2.能根据比例的基本性质,正确判断两个比能否组成比例。 3.在自主探究、观察比较中,培养学生分析、概括能力。
教学重、难点:
重点:理解比例的基本性质,能正确判断两个比能否组成比例。 难点:自主探究比例的基本性质。
教学过程:
一、引入
同学们,前段时间在上海举办了一个举世闻名的盛会,知道是什么吗?(世博会)
对,老师也去参观了,参观中,老师还拍下了我最喜欢的建筑(出示:中国馆图片),知道这是什么吗?(中国馆)
对,中国馆的造型很独特,寓意也很深刻,老师想把他放大放到家里做装饰品,看看,哪一副图是按比例放大后的照片,为什么?
生:第二幅只扩大了长,宽没变,第三幅图只扩大了宽,长没变,第三幅图长和宽都扩大了。
二、探索新知
师:通过观察选择了第三幅图,如果给出相应的数据,你能结合前面学习的比例知识和大家说一说,为什么选第三幅图吗?
(给出数据: 20cm、10cm, 30cm、15cm) 师:有道理,根据这两幅图,你还能写出哪些比例? (生独立写)
反馈板书: 20∶30=10∶15
30∶15=20∶10
10∶15=20∶30
20∶10=30∶15 讲解:内项与外项
刚才我们用四个数组成了多个比例,在数学里,我们把组成了比例的四个数,叫做比例的项,其中中间的两个数叫做比例的内项,外面的两个数叫做比例的外项。(板书)
观察:组成比例的内项和外项,你有什么发现,并在小组内交流你的发现.反馈: 在比例里,两个内项的积等于两个外项的积。
师:同意吗?
师:说说你是怎么想的,(板书:20×15=30×10)
师:每一个人再写一个比例,然后在小组内交流一下,看看是否有同样的规律?
学生写并小组内交流。
谁再来说一说这一发现?
师:PPT出示(在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。)
如果a∶b=c∶d,那么这个规律可以表示成什么?
学生口答,教师板书;a×d=b×c 如果把比例写成分数形式,把等号两端的分子、分母分别交叉相乘,结果怎样?
说一说 1.应用比例的基本性质,判断下面的`两个比例能否组成比例,并说明理由。
313115 ∶ 和 ∶ 511133( )×( )=( ) ( )×( )=( ) 填一填
根据比例的基本性质,在括号里填上合适的数。
2∶3=4∶( )(口答) 再出示:
2∶4=3∶( ) ( ) ∶3=4∶2 让学生填一填 为什么都填的是6?
看来用
2、
3、
4、6可以组成不同的比例,还可以组成哪些比例呢? 学生自己独立写一写。
反馈:有什么好方法能写的又对又快。
三、课堂小结
比的基本性质教学设计 篇9
教材分析
本节课的教学内容是比的基本性质和化简比。教材例3先用表格呈现了4瓶液体的质量和体积,要求学生求出各瓶液体质量和体积的比值,然后把比值相等的3个比写成等式,通过提示“联系分数的基本性质想一想,比会有什么性质”,让学生联想到分数基本性质类比出比的基本性质。由于有分数的基本性质和除法商不变规律的经验,学生理解.得出比的性质不会太难。在此基础上,教材进一步引导学生比较“这三个相等的比,哪一个更简单一些”。
学情分析
在以前的学习中,学生学习了分数基本性质.商不变的.性质以及比与除法.分数之间的关系,但是对本节课具有直接的真正迁移作用的仅有分数的基本性质以及比与除法。分数之间的关系。从语言学的角度说,分数.比的基本性质在句式上是一致的,容易被学生理解;从过程来说,分数的化简和比的化简具有较高的相似度,学生容易掌握。
教学目标
1.学生理解和掌握比的基本性质,并会运用这个性质把比化简成最简单的整数比。
2.经历在实际情境中化简比,体会化简比的必要性。
3.学生通过观察.类比来建构比的基本性质和探索化简比的方法;在化简的过程中,加深对比与除法.分数之间关系的理解。
教学重点和难点
重点:学生掌握比的基本性质,并正确地化简比。
难点:灵活应用比的基本性质化简比。
教学过程
一、情景激趣,提出问题
1、出示例3的表格
2、分析表格中的数学信息和数学问题,并解决这些数学问题。
3、分析、讨论表格中的数据,并尝试把表格中的比分类。
小结:我们可以把比值相等的比分为一类。
二、小组合作,探究新知
1、讨论一:如果第五瓶溶液的质量和体积的比值也是4/5,你觉得它的质量和体积的比会是几比几呢?为什么?
2、讨论二:可以写出多少个比值是4/5的比呢?
3、讨论三:小组用比的基本性质解释一下,第一瓶、第二瓶、第四瓶以及第五瓶液体为什么分为一类/这些比中哪一个最简洁?
三、尝试运用,解决问题
先尝试独立完成“练一练”,再在小组内交流方法。
四、全课总结
师:通过这节课的学习,你有什么收获?
比的基本性质教学设计 篇10
【教材分析】
在新课程改革中,教材是重要的教育教学因素。等式的基本性质是学生解方程的依据,它是系统学习方程的开始。这节课的内容在简易方程中就起到了承上启下的作用。原来的教材中对于等式的基本性质只是初步的认识,并没有总结成概念性的东西,但学生实际运用时却需要概念来作支撑,所以在教材中作了调整,让学生通过观察天平演示实验,由具体实物之间的平衡关系抽象概括出等式的两个基本性质就成了本节课的教学重点。本课“等式的基本性质”是在上一节刚刚认识了等式和方程的基础上进行教学的。,其核心思想是构建等量关系的数学模型。课程标准要求学生能“理解等式的性质,会利用等式的性质解简单的方程”。
【教学目标】
1.通过天平演示保持平衡的几种变换情况,初步认识等式的基本性质。
2.利用观察天平保持平衡所发现的规律,能直接判断天平发生变化后能否保持平衡。
3.逐步养成观察与概括.比较与分析的能力。
【教学重点】
掌握等式的基本性质。
【教学难点】
理解并掌握等式的性质,能根据具体情境列出相应的方程。
【数学思想】
转化的思想,数形结合的思想,符号化的思想
【教学过程】
一.创设情境,引出问题
教师活动
学生活动及达成目标
师:同学们,你们做过天平游戏吗?这节课我们要利用天平一起来探索等式的性质。(板书课题:等式的性质)
达成目标:由熟悉的天平引出课题激发学生的兴趣。
二.共同探索,总结方法
教师活动
学生活动及达成目标
(一)等式的基本性质一
1.出示教材第64页情境图1第一个天平图。
让学生仔细观察图,并说一说:通过图你知道了什么?
教师小结:1个茶壶的重量=2个茶杯的'重量。
追问:如果设一个茶壶的重量是a克,1个茶杯的重量是b克,能用式子表示吗?
(师板书)
引导学生思考:如果在天平的两边同时再各放上一个茶杯,天平会发生什么变化呢?为什么?
教师先进行实际操作天平验证,再演示这一过程,并明确:两边仍然相等。
提问:如果两边各放上2个茶杯,还保持平衡吗?
两边各放同样的一把茶壶呢?
2.出示教材第64页图2的第一个天平图。
(1)如果用a表示一个花盆的重量,用b表示一个花瓶的重量,怎样用等式来表示这幅图呢?
(2)如果把两边都拿掉1个花瓶,天平还平衡吗?让学生尝试用等式怎样表示?
从图上你能知道什么?(出示教材第64页图2第二个天平图)
3.通过这几个实验,你发现了什么?
4.你能用一句话来表示你的发现吗?
(二)等式的基本性质二
1.猜猜:除了向前面这样的变化,天平仍保持平衡外,还可以怎么做能使天平保持平衡?
这时教师一定要及时强调:这都是把等式的两边加上或减去同一个数,并提示学生如果把等式的两边同时乘或除以一个相同的数(O除外),会怎么样呢?
2.出示教材第65页图1的第一个天平图,让学生观察并说明。
引导学生用a表示墨水的重量,用b表示铅笔盒的重量,用式子怎样表示?
猜一猜:左边墨水的数量扩大到原来的2倍,右边铅笔盒的数量也扩大到原来的2倍,天平还保持平衡吗?
如果把天平的两边物品的数量分别扩大到原来的3倍.4倍呢?
3.出示教材第65页图2的第一个天平图,让学生观察并说明知道了什么。
质疑:如果把两边的球都平均分成2份,各去掉一份,天平还能平衡吗?
教师演示。
4.通过刚才的试验,你发现了什么?
5.你能用一句话总结一下等式的这个性质吗?
6.为什么等式两边不能除以O?
1.自主回答,学生可能会回答:天平的左边放了一把茶壶,右边放了两个茶杯,天平保持平衡;这说明一个茶壶的重量与2个茶杯的重量相等。
尝试写出:a=2b
先猜一猜,学生可能会猜测出天平仍然平衡,因为两边加上的重量一样多。
观察小结:实验证明1个茶壶+1个茶杯的质量=3个茶杯的质量。
同时学生尝试用字母表示这个式子:a+b=2b+b
学生回答后,教师演示,并让学生分别用式子表示:a+2b=2b+2ba+a=2b+a
观察现在的天平是什么样的?(平衡)
生尝试写出:a+b=4b
先猜一猜,再回答,平衡:a+b-b=4b-b
得出1个花盆和3个花瓶同样重。
3.学生思考后小结:平衡的天平两边加上同样的物品,天平还保持平衡。平衡的天平两边减去同样的物品,天平还保持平衡。
4.学生归纳等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。
达成目标:通过演示在天平的两边同时放上或拿走同样的物品,天平仍然平衡。给学生思考.感悟天平保持平衡的变化规律,提供了直观的观察材料。从而得出天平平衡的原理,即等式的一条基本性质:等式两边加上或减去相等的数,等式不变。
1.如:学生猜测天平的两边同时放2个.3个杯子;同时减去一把茶壶等。
2.学生观察并说明:
一瓶墨水的重量=一盒铅笔盒的重量
写出等式:a=b。
学生猜测平衡后,教师进行实际天平操作,验证学生的猜测。
学生用等式表示:2a=2b。
天平仍然保持平衡
3.学生观察得出:
2个排球的质量=6个皮球的质量
有了前面的经验学生用a表示排球的重量,用6表示皮球的重量,写出等式:2a=6b。
学生猜测:平衡,并能用等式a=3b表示。
4.学生会发现:平衡的天平两边的物品扩大到原来的相同倍数,天平仍然平衡。平衡的天平两边的物品都缩小到原来的几分之一,天平仍然平衡。
5.学生归纳小结:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。
达成目标:等式基本性质2的推导在性质1的基础上,让学生自己通过实验探究,运用知识的迁移得出,这样培养了学生的逻辑思维能力,抽象概括能力和口头表达能力。
6.学生交流,汇报:O不能做除数。
三.运用方法,解决问题
教师活动
学生活动及达成目标
出示教材第66页练习十四第4.5题。
学生试做集体订正,注意学生列式计算时的取值是否正确。
四.反馈巩固,分层练习
教师活动
学生活动及达成目标
基础练习:利用等式的性质填空
1.如果2x-5=9,那么2x=9+()
2.如果5=10+x,那么5x-()=10
3.如果3x=7,那么6x=()
4.如果5x=15,那么x=()
拓展练习:见课件
让学生回忆等式的性质,再自主完成填空。
达成目标:等式的基本性质一是简易方程部分重要的概念,不仅要理解,而且还要会应用。
五.课堂总结,提升认识
教师活动
学生活动及达成目标
这节课你运用了哪些学习方法,你有什么收获?你对自己这堂课的表现是怎么评价的?
学生总结本节课的收获,在梳理总结过程中提高学生对性质的认识和理解。
比的基本性质教学设计 篇11
教学内容:苏教版六年级下数学第38-39页例4,练习七第1-4题
教学目标:
1、让学生认识比例的内项和外项;发现并使理解和掌握比的基本性质。
2、通过自主学习,让学生学会根据比例的基本性质正确判断两个比能否组成比例。
3、培养学生的抽象概括能力。使学生体验数学学习成功的快乐。
教学重点和难点 :
1.理解并掌握比例的基本性质。
2.探究、发现比例的基本性质。
教学准备:多媒体课件
教学过程:
一、复习旧知
1.师:同学们,上节课我们学习了比例,什么叫做比例? 生:表示两个比相等的式子叫作比例。 2.师:如何判断两个比能否组成比例?生:化简比、求比值。
3.判断下面每组的比能否组成比例? 4:8和3:6 20:5和28:7 生1:因为 4∶8 = 1∶2
3∶6 =1∶2
所以 6∶10 = 9∶15 生2: 因为 20∶5 = 4∶1
28∶7 = 4∶1
所以 20∶5=28∶7.
(学生边说教师边用课件展示解题过程,目的在于引导学生规范解题格式。)4.师:除了化简比,求比值,还有没有其他更简单的方法呢?这就是今天我们要学习的内容。
[设计意图:借助现代电教媒体,用形象、直观的图片,来激发学生的求知欲望,同时也培养了学生爱祖国、爱科学的情感。]
二、探究比例的基本性质 1.教学例4 请看屏幕,把左边的三角形按比例缩小后得到右边的三角形。回答问题:?把原来的三角形按几比几来缩小的?
?两个三角形的底和高分别是多少? ?你能根据图中的数据写出比例吗? 学生独立完成,然后汇报。 2.认识比例的项
(1)观察这几组比例,它们有什么共同点?
说明:组成比例的四个数,叫作比例的项。两端的两项叫作比例的外项,中间的两项叫作比例的內项。 (2)结合6:3=4:2具体说一说
在比例6:3=4:2中,组成比例的四个数“
6、
3、
4、2”叫作这个比例的项。两端的两项“6和2”叫作比例的外项。中间的两项“3和4”叫作比例的內项。
(3)提问:你能说出其它三个比例的內项和外项各是多少吗?和你的同桌说一说。
3.探究比例的基本性质
认真观察所写出的比例,你有什么发现? (1)6和2(或3和4)可以同时是比例的外项,也可以同时是比例的內项。
(2)6×2=3×4,两个外项的积等于两个內项的积。 4.验证 是不是所有的比例都有这样的规律呢?请同学们任意写出一个比例,验证规律。
(1)与同桌每人写出一个比例,交换验证。
(2)全班交流:有没有谁举出的比例不符合这个规律? 5.如果用字母表示比例的四个项,即a:b=c:d,那么,这个规律可以表示成什么?(ad=bc)6.小结
其实这个规律就是今天我们要学习的内容:在比例中,两个外项的积等于两个內项的`积,这叫作比例的基本性质。(板书) 学生齐读比例的基本性质.7.如果把比例6:3=4:2改写成分数形式,可以怎么改写? (1)在这里,谁是内项,谁是外项?
(2)如果把等号两端的分子、分母交叉相乘,结果会怎样呢? (3)为什么交叉相乘的积相等?明确:等号两端的分子、分母交叉相乘,就是把两个內项和两个外项分别相乘,所以它们的积是相等的。 8.教学“试一试”
(1)假设每组两个比能组成比例,说出组成比例的内外项分别是什么。
(2)应用比例的基本性质判断能否组成比例
(3)交流:以前判断两个比能否组成比例是用什么方法?通过今天的学习,我们知道还可以用什么方法?[设计意图:从学生熟悉的比入手教学,充分重视了学生原有的认知基础,找准了新知识的生长点。然后放手让学生自学,让学生亲自经历知识的发生、发展过程,充分发挥了学生的主体作用。]
三、巩固练习
1.完成“练一练”第1题。 (1)从表中你知道哪些信息? (2)从表中选择两组数据,写出一个乘积相等的式子。
追问:为什么每两个数相乘的积相等? (因为每两个数分别表示速度和时间,它们相乘的积表示路程,甲乙两地路程一定,所以乘积都相等。)(3)根据“80×6=120×4”写出比例,。
学生独立完成,教师巡视。
交流:像这样一个一个举例写出,难免会有重复或遗漏,怎样思考才能很快地一个不漏地写出来呢?根据比例的基本性质,先把80和6当做外项,再把80和6同时当做内项。这样一共能写出几个比例?
2、练习七第2题
(1)下面四个数
5、
7、15和21可以组成比例吗?你是怎样想的? (2)学生独立完成,然后观察能写出的有什么规律?
说明:任意给出4个数判断能否组成比例,可以找出最大和最小项相乘,再把其他两数相乘。
(3)判断2.4.6.8这四个数。若不能组成,你能换掉一个数,使之组成比例吗?
3.任意从1-10中,写出4个数,判断能否组成比例?
与同桌合作完成。一个写,另一个判断。 4.我是小法官,对错我来判。
(1)在比例中,两个外项的积减去两个内项的积,差是0。 ( ) (2)如果4a=3b,(a和b均不为0),那么a:b=4:3。 ( )(3)2:3=9:6 ( ) (4)因为3×10=5×6,所以3:5=10:6。 ( ) 5.完成“练一练”第2题
(1)6和4是比例的什么?联系比例的基本性质,括号里可以填什么?指名填空,并说理由。 (2)学生独立完成第2小题。
四、全课总结
今天我们学习了什么内容?你有什么收获?
比的基本性质教学设计 篇12
教学目标
1、经历探索分数的基本性质的过程,理解分数的基本性质。
2、能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
3、经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
教学重点:
理解掌握分数的基本性质。
教学难点:
归纳性质
教学设计
(一)创设情境,引起学生参与兴趣
1、猴王变戏法(学生模仿复习)
除法式子变形
分数与除法变形
2、教师出示三只可爱的小猴图片,奖励听故事:
有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成两块,分给第一只小猴一块,第二只小猴见到说:“太小了,我要两块。”猴王就把第二块饼平均切成四块,分给第二只小猴两块。第三只小猴更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切6块,分给第三只小猴三块。
同学们,你知道哪只猴子分得的'多吗?(哪只猴子分得的多?让学生发表自己的意见)
3、教师出示三块大小一样的饼,通过师生分饼,观察验收后得出结论:三只猴子分得的饼一样多。聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的呢?同学们想知道有什么规律吗?
(二)探究新知
1、动手操作、形象感知
请同学们拿出三张相同形状同样大的纸,把每张纸都看作一个整体。动手折出平均分的份数2份、4份、6份,动笔把其中的1份、2份、3份画上阴影,再把阴影部分剪下来,将剪下的阴影部分重叠,比一比记录下结论。
比的基本性质教学设计 篇13
教学内容:课本第50页例2;练一练;《作业本》第22页。
教学目标:
1、理解并掌握比的基本性质,知道最简单的整数比,会根据比的基本性质将比化成最简单的整数比。
2、培养学生自主迁移、自主构建知识的能力。
教学重点:比的基本性质和化简比
教学过程:
一、准备练习:
1、求下列各比的比值。
12:201:1:1.5:2.5
2、在()里填上适当的数。
⑴=()()=():()
⑵====
(第1题:分数与除法的关系;第2题:分数的基本性质)
3、复习比与除法、分数的关系。(完成上堂课的表格)
二、教学新课:
1、引入。
分数基本性质是怎样的?除法的商不变性质又怎么说?根据分数、除法和比的关系,你能猜出比的基本性质应该是怎样的呢?
(1)学生试着叙述。
(2)反馈小结。
分数基本性质、除法的商不变性质中的都有0除外,为什么?比的基本性质要不要也加上这个条件?应该怎么说才最完整呢?
2、看书验证自己的猜想。P50页。
3、什么是最简单的整数比?
(1)下面哪些是整数比?哪些整数比最简单?为什么?
6:1012:210.3:0.40.25:1
3:54:73:4:
(2)教师小结:
像3:5、4:7、3:4等这些整数比,比的前项和后项都是整数,而且这两个数是互质数,,我们称这样的比为最简整数比,化成最简整数比简称化简比。
4、教学例2。化简比。
(1)应用比的'基本性质可以把比化成整数比。
自学课本P50、51例2、例3)
(2)小结:
①整数比化简的方法是把比的前项和后项同时都除以它们的最大公约数。
②分数比化简的方法是先把前、后项同时都乘以分母的最小公倍数。
(3)试一试。
三、巩固练习:练一练
四、小结:
今天你学会了什么?比和比值的区别怎样?(比值是一个数,可以用分数、小数、整数来表示;而比必须清楚的看出比的前项和后项,只能用比的形式表示。)
五、《作业本》第22页。
比的基本性质教学设计 篇14
教学目标:
1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。
2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。
3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。
教学重点:探索并掌握比例的基本性质。
教学难点:根据乘法等式写出正确的比例。
教学准备:多媒体课件
整体设计说明:
本班的孩子基础较差,很多孩子没有养成好的学习习惯,好的思考方法,所以课堂上的重点放在了发现并概括出比例的基本性质上。在比例的基本性质应用时,重点突出孩子的思考过程,强调孩子有根据地思考,养成独立思考的习惯。
教学过程
一、旧知铺垫导入。
1、一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。说一说上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?
2、比和比例有什么区别?
设计意图:注重从学生已有的知识出发,为新课做好铺垫。
二、自主探究
过渡:同学们,比有各部位的名称,把比组成比例后我们有了新的名称,请自学课本第34页。生阅读后,请同学说出黑板上比例各部分的名称。
设计意图:组成比例的四个数的名称的认识对孩子们来说是比较简单的,所以让孩子们自学,培养孩子的自主学习能力,养成读数学书的习惯。
三、反馈练习。
指出下面比例的外项和内项。(投影出示)
先小组之内说一说,然后在指名回答。重点说分数形式的比例外项和内项。
设计意图:这一环节重点学习组成一个比例的两个比哪两个数是外项,哪两个数是内项。重点突出分数形式下怎么去找比例的内项和外项。
四、探究比例的基本性质
(1)投影出示几组比例,让学生观察看看能有什么发现?细心的同学很快会发现这几组比例数字相同,但是书写位置不同。然后老师在质疑,为什么这些比例里的四个数书写位置不同却能组成比例呢?请小组合作找个这个秘密。
(2)学生找出原因后,教师引导学生用一句话总结出来。并指出这叫做比例的基本性质,板书课题。
(3)继续提出:是不是所有的比例都具有这样的性质,举例验证,最后得出结论。
(4)比例写出分数形式后,也就是等号两端的分子分母交叉相乘,乘得的积也一定相等。
设计意图:这一环节我根据学生好奇的心理,用质疑的方式来激发学生的学习兴趣,让学生主动去探索新知,这样也能让学生体会到总结归纳的`过程,并渗透科学态度的教育。
五、巩固练习
1、应用比例的基本性质,判断下面哪组中的两个比能否组成比例(投影出示练习)。
2、应用比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例。
(学生独立完成后,用展示台展示)
3、根据比例的基本性质,在( )里填上适当的数。(投影出示)
六、全课总结:这节课你有什么收获。
设计意图:关注学生知识与技能的掌握情况,并且留给孩子质疑问难的空间。
七、拓展练习:把下面的等式改写成比例。
3×40=8×15
比的基本性质教学设计 篇15
教学要求
①使学生理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。
②培养学生观察、分析和抽象概括能力。③渗透“事物之间是相互联系”的辩证唯物主义观点。
教学重点理解分数的基本性质。
教学用具每位学生准备三张同样的长方形纸条;教师:纸条、投影片等。
教学过程
一、创设情境
1.120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?
2.说一说:(1)商不变的性质是什么?(2)分数与除法的关系是什么?
3.填空。
1÷2=(1×2)÷(2×2)==。
二、揭示课题
让学生大胆猜测:在除法里有商不变的性质,在分数里会不会也有类似的性质存在呢?这个性质是什么呢?
随着学生的回答,教师板书课题:分数的基本性质。
三、探索研究
1.动手操作,验证性质。
(1)让学生拿出三张同样的长方形纸条,分别平均分成2份、4份、6份,并分别把其中的1份、2份、3份涂上色,把涂色的部分用分数表示出来。
(2)观察比较后引导学生得出:==
(3)从左往右看:==
由变成,平均分的份数和表示的份数有什么变化?
把平均分的份数和表示的份数都乘以2,就得到,即==(板书)。
把平均分的份数和表示的份数都乘以3,就得到,即:==(板书)。
引导学生初步小结得出:分数的分子、分母同时乘以相同的数,分数的大小不变。
(4)从右往左看:==
引导学生观察明确:的分子、分母同时除以2,得到。同理,的分子、分母同时除以3,也可以得到。
板书:====
让学生再次归纳:分数的分子、分母同时除以相同的数,分数的大小不变。
(5)引导学生概括出分数的基本性质,并与前面的猜想相回应。
(6)提问:这里的“相同的数“,是不是任何数都可以呢?(补充板书:零除外)
2.分数的基本性质与商不变的性质的比较。
在除法里有商不变的性质,在分数里有分数的基本性质。
想一想:根据分数与除法的关系以及整数除法中商不变的性质,你能说明分数的基本性质吗?
3.学习把分数化成指定分母而大小不变的分数。
(1)出示例2,帮助学生理解题意。
(2)启发:要把和化成分母是12而大小不变的分数,分子应该怎样变化?变化的根据是什么?
(3)让学生在书上填空,请一名学生口答。教师板书:
====
4.练习。教材第108页的做一做。
四、课堂实践。
练习二十三的1、3题。
五、课堂小结
1.这节课我们学习了什么内容?
2.什么是分数的基本性质?
六、课堂作业
练习二十三的第2题。
七、思考练习
练习二十三的第10题。
教学反思:
“分数的基本性质”是西师版小学数学五年级下册的内容,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点课。这节课我大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到的不仅是数学基本知识,更重要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。目的是让学生学会学习,学会思考,学会创造,进而培养学生用数学的思想方法,思考并解决在实际生活中所遇到的各种问题,这也是学生适应未来生活必须的基本素质。
这节课是在学生已掌握了商不变的性质之后,并在已有应用经验的.基础上进行的,我是这样设计教学的:
1、通过商不变的性质、除法与分数的关系的复习,帮助学生意识到商不变的变规律与新知识的联系,为新知识的学习做好必要的准备。让学生根据商不变的性质大胆猜想,分数的基本性质是什么?说出自己的想法。
2、充分发挥学生主体作用,引导学生自主探究。让学生通过折纸游戏,操作、观察、比较,验证自己的猜想。涂色部分可用不同的分数表示,从而培养学生的动手能力,以及观察问题、解决问题的能力。
3、运用知识,解决实际问题。为了把知识转化为能力,练习的设计注意了典型性、多样性、深刻性、灵活性。归纳总结出分数的基本性质后,先进行基本练习,深化对分数的基本性质认识。在学完整个新知以后,在进行综合练习,巩固提高。通过应用拓展,使学生加深对分数的基本性质的理解,并培养学生运用所学的知识解决实际问题的能力。
4、0除外的环节设计。在学生归纳出分数的基不性质后,缺少0除外这个难点,我设计了判断一个分数的分子和分母同时乘0,让学生通过练习,马上想到0不能做除数,在分数中分母不能为0,引出:分子和分母同时乘或除以相同的数,必须0除外,突破难点。
比的基本性质教学设计 篇16
一、教学目标
1、使学生理解和掌握分数的基本性质,能应用分数的基本性质把一个分数化成指定分母而大小不变的分数。
2、学生通过观察、比较、发现、归纳、应用等过程,经历探究分数的基本性质的过程,初步学习归纳概括的方法。
3、激发学生积极主动的情感状态,体验互相合作的乐趣。
二、教学重点
1、理解、掌握分数的基本性质,能正确应用分数的基本性质。
2、自主探究出分数的基本性质。
三、教学准备
课件、正方形的纸
四、教学设计过程
(一)迁移旧知.提出猜想
1、回忆旧知
根据“288÷24=12”填空
28.8÷2.4=
2880÷240=
2.88÷0.24=
0.288÷()=12
被除数÷除数=()
说一说你是根据什么算的?引导学生回忆商不变的性质?媒体出示:商不变的性质:
被除数和除数同时乘或除以相同的数(零除外),商不变。
2、提出猜想
既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。(学生可能根据商不变性质推导出分数的基本性质,学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。)
(二)验证猜想,建构新知
1、你有什么办法来验证自己的猜想?(折一折、分一分、涂一涂等方法。)
2、出示学习提示。
学习提示
A、同桌合作,借助手中的学具,选择喜欢的方法,验证自己的猜想。
B、验证结束后,把你的验证方法和结论与小组同学交流。
3、汇报交流
指名3到4名同学到讲台前与全班同学交流自己的验证方法和过程,教师相机板书。
C、总结规律
1、师:请同学们看黑板上的两组分数,说说它们的分子和分母分别是按什么规律变化的。指名回答,教师板书。
2、总结:对于任何一个分数,只要满足:分数的分子和分母同时乘或除以相同的数,分数的.大小就不会发生变化。
3、强调0除外。哪位同学将分数的分子和分母同时乘或除以0进行验证的?
如果有,问他是否验证出猜想,验证过程中出现了什么问题,如果没有,肯定他们的做法是对的,从而出示完整的规律:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
师:为什么要0除外?
师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)
教师以3/4为例说明分数的分子和分母同时乘或除以0是没有意义的。
师:再次出示分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。(板书课题)
D教学例2
把2/3和10/24都化为分母为12而大小不变的分数。
学生独立完成,集体订正。
(三)练习升华
1、填空
2、下面算式对吗?如果有错,错在哪里?
3、把相等的分数写在同一个圈里。
4、老师给出一个分数,同学们迅速说出和它相等的分数。
(四)作业
教材59页第9题。
(五)思维拓展
(六)总结延伸
师:这节课你有什么收获?
六、板书设计
分数基本性质
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
比的基本性质教学设计 篇17
教学目标:
1、经历探究“分数的基本性质”的过程,理解分数的基本性质。
2、能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
3、经历观察、操作和讨论等学习活动,感受数学问题的探索性和挑战性,体验数学学习的乐趣。
教学重点:
理解与掌握分数的基本性质。
教学难点:
运用分数的基本性质解决实际问题。
教学准备:
三张一样的正方形纸、CA1课件等。
教学过程:
一、复习准备
1、根据120÷30=4在下面里填数并回答“商不变的性质”是什么?
(120×3)÷(30×3)=
(120÷)÷(30÷)=4
2、根据分数与除法的关系填空。
被除数÷除数=
提问:通过刚才的复习,你们有什么联想或猜想?(分数是否也有与除法类似的性质呢?)
二、实践操作,找出相等的分数
活动与反馈要点:
(1)要使你们的猜想成为科学结论,还必须加以证明。你们能用三张完全一样的正方形纸、尺子、水彩等等材料(工具),通过折纸或其他方法说明自己找的分数(几个)相等吗?(可独立操作完成或与同伴协作完成。)
(2)先让同桌互相说说,现展示学生的方法。
结合展示追问学生:你是怎么知道相等的呢?从这3幅图中你发现什么变了,什么没变?(平衡分的份数和涂色的份数变了,但涂色部分的大小不变。)
(3)教师利用多媒体演示整个验证过程。从图中可直接看出:==
三、探究交流,归纳分数的基本性质
1、归纳分数的基本性质。
观察这组相等的分数,它们的分子、分母之间有什么变化规律吗?先独立思考,再在小组内与同学交流。
活动与反馈要点:
(1)组织学生展开讨论时,允许学生用自己的语言进行表述。如:“我发现=,分子、分母都乘4,得到的分数大小不变。”
(2)结合学生汇报,教师辅以必要的板书:
(3)根据学生的回答逐步归纳:分数的分子、分母都乘或者除以相同的数(零除外),分数的大小不变。
(4)在初步归纳得到结论后,进一步追问学生:分子、分母同时乘或者除以相同的数,相同的.数是不是可以是任何数?这是老师心中的疑问,为什么要把“0”除外?在引发学生讨论与思考中,逐步完善学生的发现,并揭示分数的基本性质。
(5)通过观察、验证,我们得到这个规律。(多媒体演示得出分数的基本性质的过程。)
(6)用笔画出教科书第75页,性质中的重点词,强调“0”除外。(齐读一遍)
(7)(揭示课题)板书:分数的基本性质
(8)质疑。(启发学生在理解“分数的基本性质”的同时,思考并提出问题,师生讨论解决。)
2、沟通“商不变的性质”和“分数的基本性质”之间的联系。
(1)你能说说“商不变的性质”和“分数的基本性质”之间的联系吗?(进一步强化分数与除法的关系。)
(2)多媒体出示小结。(略)
3、运用分数的基本性质解决问题。
教学例2(要求学生独立完成)。和同桌说说你是怎样想的?(指名口答后教师演示帮助学生深入理解。)
四、应用拓展,深化理解
1、完成教科书第76页做一做。反馈后继续完成练习十四第1、2、3、5、8、10题。
2、讨论:李小明同学学习了“分数的基本性质”后,写了这样一道算式:=,你认为他写得对吗?你是怎么想的?
五、本课小结
这节课研究了什么?你认为本节课最大的收获是什么?
教学反思:
1、整节课以学生“自主探索”为核心,由复习旧知导入,提出猜想(或联想),以验证猜想为线索,学生动手操作(独立完成或与同伴协作完成),全体学生积极参与到活动中,经历思考―操作―归纳―总结的过程。学生能用多种方法找到相等的分数,激起学生的探究兴趣。如,有的学生通过折纸验证,有的用涂色、画数轴、画线段图等方法探究,有的学生居然想到计算=0。5、=0。5、=0。5,说明==。整个教学重在让学生自己发现规律,提出问题并解决问题。使学生在经历观察、操作和讨论等学习活动中,感受数学问题的探索性和挑战性,体验数学学习的乐趣。
2、课前,我没有想到学生能在实际操作中想出如此多的方法验证猜想,而且对分数的基本性质理解得如此之深。我深深感到,我们应该相信学生,要与学生在同一平台上互动探究,让数学课堂再现学生与教师、学生与学生之间思维的交流与碰撞。
3、课堂教学不仅是贯彻教师的预设,更应该成为师生共同参与的一种生性活动。教学存在许多不确定性,正是因为这种不确定性的存在,才使我们的课堂教学充满动态美,进而构成师生共同参与、共同创造的精彩课堂。
比的基本性质教学设计 篇18
教学内容:教科书第70~71页的例3、例4以及相应的“练一练”,练习十三的第6~9题
教学目标:
(一)使学生理解和掌握比的基本性质,能应用比的基本性质进行化简比;
(二)使学生在经历和探索比的基本性质的过程中,进一步体会数学知识之间的内在联系,培养观察、比较、抽象、概括及合情推理的能力。
教学过程:
(一)复习旧知识,做好新课铺垫
1、提问:①什么叫做比?
②除法、分数、比之间有什么联系吗?
根据学生的回答板书。
被除数÷除数==前项:后项
2、观察下面的每组题目,你有什么发现吗?
第一组:12÷4=3
(12×3)÷(4×3)=3 商不变
(12÷2)÷(4÷2)=3
第二组:=3
==3 分数值不变
==3
先让学生分组讨论,再组织全班交流。
根据交流情况适时板书
被除数÷除数==前项:后项
商不变性质 分数基本性质
[评析:为了激发学生的求知欲,也为了让学生更好地理解比的基本性质,在新课之前,让学生回忆旧知,使学生在回忆旧知识的过程中,自然地过渡到了新课,使学生很清楚地知道知识的内在联系。]
(二)新课,概括比的基本性质。
1、再观察一组题目
例3:下面是小冬在实验里测量几瓶液体的质量和体积的记录表。
填写下表,并把比值相等的比填入等式。
质量/g 体积/cm3 质量和体积的比值
第一瓶 4 5
第二瓶 16 20
第三瓶 50 50
第四瓶 40 50
( ):( )=( ):( )=( ):( ) }比值不变
1、学生独立填写后。
2、提问:观察上面的等式,联系商不变性质和分数的基本性质,想一想,比会有什么性质?
学生观察思考,再把自己的想法在小组里交流。教师巡视,了解学生的讨论情况,对有困难的学生给予指导。
引导发现:比的前项和后项同时乘或除以相同的数(0除外),比值不变。这是比的基本性质(板书)
问:为什么比的后项不能为0?指出:比的后项相当于除数或分母。除数和分母不能为0,所以比的后项也不能为0。
3、上面三个相等的比哪个更简单一些?
学生比较后发现应用比的基本性质,可以把一些比化成最简单的整数比。
(三)利用比的基本性质化简比
例4:把下面各比化成最简单的整数比。
(1)12:18 (2) (3)1.8:0.09
讨论:你是怎样理解“化成最简单的整数比”的?你能根据“比的基本性质”进行化简吗?
根据学生的回答,整理后板书。 板书后追问:
12:18=(12÷6):(18÷6) 为什么要同时除以6?
=2:3
=(×12):(×12) 为什么要同时乘以12?
=10:9
1.8:0.09=(1.8×100):(0.09×100) 为什么要同时乘100?
=180:9
=20:1
小结:化成最简单的整数比,就是根据比的基本的性质,直到比的前项和后项互质为止。
[评析:当问题出现时,老师并没有急于去讲解,而是放手让学生自己去讨论、去交流,因为学生有了对商不变的性质和分数基本性质的理解,所以学生很快就理解了比的基本性质,并能化简比。]
四、沟通联系,深化认识
1、指导完成“练一练”
做第1题。学生独立填完后,要求说说是怎样想的?
做第2题。学生黑板上板演,集体订正时说出做每道题的`理由。
2、指导完成练习十三第6~9题
做第6题。先让学生独立完成,再要求说说整数比,分数比和小数比化简的方法。
做第7题。先让学生独立完成,再通过小组交流,发现每种规格国旗长和宽的比是一定的,都是3:2,并对学生进行爱护国旗的教育。
做第8题。先让学生独立完成,学生完成后,指名说说思考的过程。
做第9题。分组完成,组织交流,让学生知道化简比与求比值的方法是不同的。但有时可以互相利用。如4:16化简后是1:4,写成分数形式是,这个结果也可以看成比值;75:25的比值是3,写成分数形式是,这个结果也可以看成一个比。
五、课堂总结:
今天这节课,学习了什么内容?通过学习,有什么收获?你今天在课堂上的表现怎么样?
教学评析:
1、“最好的学习动机是学生对所学内容产生浓厚的兴趣”在新课开始,为了让学生更好地理解比的基本性质,在复习时,让学生回忆起商不变的性质和分数的基本性质,在学生的回忆中,很自然地过渡到比的基本性质,由于学生已经知道了商不变的性质和分数的基本性质;又理解了除法、分数、比之间的联系,所以很快理解了比的基本性质。这样激发学生的求知欲和主动参与学习的动机,使学生学习情绪高涨,达到学习的最佳境界。
2、注重学生的合作学习,例如:在发现比的基本性质时,让学生先观察思考,再把自己的想法在小组里交流。再比如:让学生讨论是怎样理解“化成最简单的整数比的”?你能根据“比的基本性质”进行化简吗?学生在小组合作学习时,老师创设了一个积极探讨,合作研究的空间,让学生在小组里自由地各抒己见,展开议论,互帮互学,强化理解。通过反馈汇报,给学生提供展示自己思维的机会,充分发挥了学生的积极性、主动性和创造性,使学生最大限度地参与探究新知的活动。并让学生获得成功的喜悦。
3、这节课,通过学生“回忆知识”“小组合作发现比的基本性质”……使学生兴趣浓厚,学得积极主动,这样的设计发挥学生的自主性和积极性,为学生创设了一个愉悦轻松的学习氛围,提高了课堂教学的效率。
比的基本性质教学设计 篇19
教材分析
1.分数基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数基本性质显得尤为重要。而分数与除法的关系以及除法中的商不变规律,与这部分知识紧密联系,是学习这部分内容的基础。
2.教材安排了两个学习活动,让学生寻找相等的分数,通过活动使学生初步体验分数的大小相等关系,为观察发现分数的基本性质提供的丰富的学习资料,然后引导学生分别观察这两组相等的分数,寻找每组分数的分子、分母的变化规律,并展开充分的交流讨论,在此基础上归纳出:分数的分子和分母都乘或除以相同的数(零除外),分数的大小不变。
学情分析
学生已明确商不变规律,分数与除法的关系等知识,这些都为本课学习做了知识上的'铺垫。五年级学生已经初步养成了合作学习的习惯,并具有了一定的分析和解决问题的能力,因此能够在教师的引导下完成“质疑—探索——释疑——应用”这一完整的学习过程。
因此在教学中,我主要采用引导学生探索以及小组合作学习相结合的方法,让学生探索出分数的基本性质,并会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,能有效地提高教学效率。
教学目标
经历探索分数基本性质的过程,理解分数基本性质。
能运用分数基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
教学重点和难点
理解分数基本性质,能运用分数基本性质转化分数。
教学过程
一、复习导入
二、探究新知
实践操作,探究规律
观察发现:初步概括分数基本性质
括归纳分数基本性质
三、课堂练习
四、课堂小结
出示复习题口答卡片, 复习商不变的规律、分数与除法的关系。
1、 讲述唐僧分饼的故事:“……贪吃的猪八戒抢着说要吃这个饼的9/12,孙悟空说要吃这个饼的6/8,沙僧说要吃这个饼的3/4。同学们可知道谁吃的饼最多?”
2、提出问题: 这些分数都相等吗?
观察这组相等的分数,你发现了什么?把你的发现说给同伴听。
分子、分母都乘或除以一个数,这个数可以是0吗?为什么?
1、课本P43的“试一试”
2、数学游戏:说出相等的分数3、课本P44的“练一练”第1~2、4
通过这节课的学习、你学会了那些知识
口答
小组讨论
拿出准备好的圆形纸片,折一折,画一画、涂一涂
小组讨论、交流
小组讨论、交流
做练习,完成后集体交流。
说说,读分数基本性质
复习旧知,为学习新知识作铺垫。
将例1改编成故事 提出问题,让学生对故事中的人物进行直观评价,为后续探究营造良好氛围。
让学生通过实践操作,激发学生参与学习探究的兴趣,通过合作探究,初步感知有些分数的分子、分母不同,但分数的大小却相等。
引导学生通过不同形式的观察,逐步总结出存在的规律,这样由浅入深,循序渐进,有利于学生探究学习知识。
在学生初步发现规律的基础上,进一步理解分数的基本性质,并对分数的基本性质进行全面概括。
让学生利用分数的基本性质解决问题,使学生对分数的基本性质理解的更深刻,同时体验解决问题的乐趣。
对本节课的所学知识的回顾,及所学知识点的总结。
板书设计(需要一直留在黑板上主板书)分数基本性质被除数和除数同时扩大或缩小相同的倍数(零除外),商不变,这就是商不变的规律分数的分子和分母都乘或除以相同的数(零除外),分数的大小不变,这叫做分数基本性质。
教学反思:
分数的基本性质在小学阶段是数运算的又一次质的飞跃与扩展,是重要的一个环节。我在引导学生观察探究中,重视学生的主动参与,多次组织学生小组讨论交流,让每个小组成员都能充分的说说自己的看法,相互交流,相互启迪,以感知分数的分子、分母是按一定的规律变化而分数大小不变。体现了理解与掌握数与数之间联系、变化的观点。
在本节课中,由于我对学困生关注度不高,,使得他们在分数基本性质应用的过程中产生了困难。小组合作探究中的小组学习亦要不断地完善。
比的基本性质教学设计 篇20
【教学内容】
义务教育教科书六年级上册第50-51页。
【教学目标】
1、理解并掌握比的基本性质,掌握化简比的方法,能正确地把一个比化成最简整数比。
2、通过迁移类推,培养学生的概括归纳能力,渗透转化的数学思想,并使学生认识事物之间都是存在内在联系的。
3、通过自主探究、合作交流等活动,发展学生概括推理能力。【教学重点】掌握化简比的方法,能正确地把一个比化成最简整数比。
【教学难点】
理解并掌握比的基本性质。
【教具学具】
课件。教学过程:
一、回顾旧知。
1、谈话引入:“昨天我们学习了比的意义,我们说什么是比?”
2、比与除法和分数有什么关系?
比前项:(比号)后项
比值除法
被除数÷(除号)除数商分数
分子-(分数线)分母分数值
二、探究新知。
探究一:比的基本性质
1、同学看这个除法算式:
它们是正确的吗?为什么?运用了除法的什么性质?
2、我们说比和除法有紧密的联系,那么根据除法商不变的性质,我们看看比是不是也有类似的规律呢?
3、根据比与分数的关系,我们还能怎么研究比的规律?
【设计意图:通过除法商不变的性质、分数的基本性质进行类比推理,概括推理出比的基本性质,使学生利用旧的知识识得新的知识。】
4、即时练习,强化巩固
在比的基本性质中,大家觉得要注意什么?让我们一起来看看:
(1).根据108:18=6,说出下面各比的比值。54:9=(6)216:36=(6)10800:1800=(6)
(2).判断并说明理由。
(1)6:7=(6×0):(7×0)=0(2)1:2=(1+2):(2+2)=0.75(3)2:8=2:(8÷2)=0.5
探究二:根据比的性质我们能做什么?(化简比)
1、明确什么是“最简整数比”。出示一些比,让学生说说哪些是整数比,哪些是最简整数比。
2、出示例题,明确问题。
例1:“神舟”五号搭载了两面联合国旗,一面长15cm,宽10cm,另一面长180cm,宽120cm。这两面联合国旗的长和宽的最简单的整数比分别是多少?
分别写出两个旗子的长宽比(15:10,180:120),他们是最简整数比吗?怎么才能化成最简整数比呢?引导学生说出比的`前项和后项同时除以5(5是15和10的什么数?为什么要除以5?)
学生总结方法:整数比化简就是比的前项和后项同时除以它们的最大公因数。
那么用这个方法,我们能把180:120,化成最简整数比吗?(学生自行求最简比)。
3、刚才我们讨论了整数比的化简问题。我们知道两个数相除就可以写成比的形式。分数和小数也是数,它们的比又应该怎么化简呢?
出示例题,全班讨论猜想。学生独立完成。
集体订正,总结方法“将分数比、小数比先化成整数比,然后再化成最简整数比。”
1212:?(?18):(?18)?3:269690.75:2?(0.75?100):(2?100)?75:200?3:8
探究三:一个比中有分数,又有小数该怎么化简呢?
3出示0.125:,学生讨论,汇报结果。
8【设计意图:在探究一的基础上,学生通过探究二和探究三获得将“新知识转换成旧知识来解决”的能力。通过探究二、三突破本节课的难点。】
三、强化新知,达标检测。
通过数学课本51页“做一做”,强化认识。32:1648:400.15:0.35173::66128
【设计意图:强化训练】
四、总结评价
这节课你有什么收获?还有什么疑问?
比的基本性质教学设计 篇21
教学目标:
1、使学生认识比例的“项”以及“内项”和“外项”。
2、理解并掌握比例的基本性质,会应用比例的基本性质正确判断两个比能否组成比例。
3、通过自主学习,让学生经历探究的过程,体验成功的快乐。
教学重点:
理解并掌握比例的基本性质。
教学难点:
引导观察,自主探究发现比例的基本性质
设计理念:
本课时设计,在“项”以及“内项”和“外项”的认识的设计上,以学生在老师的引导下逐步理解比例的有关知识,是以教师讲授为主。而在本课时第二大块内容,理解并掌握比例的基本性质,本课时设计中,为学生提供开放真实的问题,通过学生自主收集信息,尝试探索规律,引导学生写出不同比例,在此基础上放手让学生在观察中发现、思考,引导学生主动探索比例的基本性质。
教学过程:
一、从知识的矛盾冲突中导入并引入。
3:8=9:( )0.5:( )=5:17
制造冲突,也为后面的思考题做理论铺垫,顺便起到引入课题,探索性质后回应开头的知识,也起到一定的教育作用。(请勇敢的同学配合老师)
师:某某你出生的时间哪一年哪一月哪一日?(根据学生的回报板书两次分子分母上下易位,同为比例的外项)
你还想知道教师内谁的生日,请他告诉你.(板书一次,做一个内项,那么括号应该怎样填呢)今天学习了比例的基本性质我们就可以迅速的填出了。(板书:比例的基本性质)
二、探索发现新知。
1、引用练习中的3:8=9:24为例子,比例中的四个数叫什么名字呢?两端的两项叫做什么,中间的两项叫做什么?(自学课本)
学生回报,师完成板书:
(注意板书的时候教师的手势要指明确到位)
2、练习:请指出下列比例的两个外项和内项各是多少?
80:2=200:5
6:10=9:15
1/2:1/3=6:4
0.2:2.5=4:50
2.4:1.6=60:40
3、这么多的比例,每个比例的两个外项和两个内项之间存在有什么共同的特点么?可以说的具体一些。
带着问题小组内展开讨论。(教师可以参与当中若干组的`活动)时间2分钟。
4、小组汇报初步形成共识:在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。(多找几个小组发表意见)
回到板书例题验证:两个外项的积是:3×24=72
两个内项的积是:8×9=72
5、拿出自己任意找的5个比例,验证是否存在相同的特点。(请学生在展台展示自己的5个比例,并说明外项和内项的积情况)2明,如果出现不相等的,要观察反例,说明两个比组不成比例。
6、完成板书:在比例里,两个外项的积等于两个内项的积
如果把比例写成分数的形式呢,以板书的例子,写成分数的形式,引入等号两边的分子和分母交叉相乘,所得的积相等。
三、基本练习。
1、应用比例的基本性质,判断下面两个比是否能组成比例。
(1)6:3和8:5
(2)1∶5和0.8∶4
(3)1/3:1/4和12∶9
(4)1.2:3/和4/5:5
(注意学生语言叙述的规范性:如1)两个外项的积是6×3=18,两个内项的积是3×8=24,18≠24,所以不能组成比例)
2、在括号里填上适当的数
(1)12:3=( ):5
(2)( ):1/3=1/4:1/6
(3)0.2:0.6=6:( )
(4)4:3=80:( )
3、用5、3、4、8这四个数组比例,看看你能组几个?为什么?
4、把5、3、4、8这四个数换掉其中的一个,组成比例。
5、在例一个比中,两个外项的积互为倒数,其中的一个内项是4/5,另一个内项是( )。
6、回顾矛盾冲突题目:9解决因为两个外项乘积是1,所以两个外项乘积是1,另一个数就是那个已知数据的倒数。
四、全课总结:
谈一谈通过这节课的学习你有哪些收获?(质疑,并完成课题总结),提出预习任务,(那么利用比的基本性质如和求比例中的未知数呢,请自觉预习课本35页的例题2和3)
比的基本性质教学设计 篇22
教学内容:义务教育教科书六年级上册第50-51页。
教学目标:
1、理解并掌握比的基本性质,掌握化简比的方法,能正确地把一个比化成最简整数比。
2、通过迁移类推,培养学生的概括归纳能力,渗透转化的数学思想,并使学生认识事物之间都是存在内在联系的。
3、通过自主探究、合作交流等活动,发展学生概括推理能力。 教学重点:掌握化简比的方法,能正确地把一个比化成最简整数比。教学难点:理解并掌握比的基本性质。 教具学具:课件。 教学过程:
一、回顾旧知。
1、谈话引入:“昨天我们学习了比的意义,我们说什么是比?”
2、比与除法和分数有什么关系?。 比
前项
:(比号) 后项
比值 除法
被除数 ÷(除号) 除数 商 分数
分子 -(分数线)分母 分数值
二、探究新知。 探究一:比的`基本性质
1、同学看这个除法算式:
它们是正确的吗?为什么?运用了除法的什么性质?
2、我们说比和除法有紧密的联系,那么根据除法商不变的性质,我们看看比是不是也有类似的规律呢?
3、根据比与分数的关系,我们还能怎么研究比的规律?
设计意图:通过除法商不变的性质、分数的基本性质进行类比推理,概括推理出比的基本性质,使学生利用旧的知识识得新的知识。:
4、即时练习,强化巩固
在比的基本性质中,大家觉得要注意什么?让我们一起来看看: (1).根据108:18=6,说出下面各比的比值。 54:9=(6) 216:36=(6)10800:1800=(6) (2).判断并说明理由。
(1)6:7=(6×0):(7×0)=0 (2)1:2=(1+2):(2+2)=0.75 (3)2:8=2:(8÷2)=0.5探究二:根据比的性质我们能做什么?(化简比)
1、明确什么是“最简整数比”。
出示一些比,让学生说说哪些是整数比,哪些是最简整数比。
2、出示例题,明确问题。
例1:“神舟”五号搭载了两面联合国旗,一面长15 cm,宽10 cm,另一面长180 cm,宽120cm。这两面联合国旗的长和宽的最简单的整数比分别是多少?
分别写出两个旗子的长宽比(15:10,180:120),他们是最简整数比吗?怎么才能化成最简整数比呢?引导学生说出比的前项和后项同时除以5(5是15和10的什么数?为什么要除以5?)
学生总结方法:整数比化简就是比的前项和后项同时除以它们的最大公因数。
那么用这个方法,我们能把180:120,化成最简整数比吗?(学生自行求最简比)。
3、刚才我们讨论了整数比的化简问题。我们知道两个数相除就可以写成比的形式。分数和小数也是数,它们的比又应该怎么化简呢?
出示例题,全班讨论猜想。 学生独立完成。
集体订正,总结方法“将分数比、小数比先化成整数比,然后再化成最简整数比。”
1212:?(?18):(?18)?3:2 69690.75:2?(0.75?100):(2?100)?75:200?3:8
探究三:一个比中有分数,又有小数该怎么化简呢?
3出示0.125:,学生讨论,汇报结果。
8设计意图:在探究一的基础上,学生通过探究二和探究三获得将“新知识转换成旧知识来解决”的能力。通过探究
二、三突破本节课的难点。:
三、强化新知,达标检测。
通过数学课本51页“做一做”,强化认识。 32:16 48:40 0.15:0.3 5173: : 66128设计意图:强化训练:
四、总结评价
这节课你有什么收获?还有什么疑问?
比的基本性质教学设计 篇23
教学内容:
人教版数学第11册,第45页比的基本性质,例1和“做一做”及练习十一2及补充题。
教学目标:
1、通过自主探索、比较类推出比的基本性质,使学生理解并掌握比的基本性质,理解最简单的整数比,能应用比的基本性质进行比的化简。
2、培养学生类比、推理和概括思维能力。
3、引导学生揭示知识间的联系,向学生进行对立统一的辩证唯物主义教育。
教学重点:理解比的基本性质。
教学难点:运用比的基本性质进行化简比。
教学准备:电子白板(课件)
教学过程:
一、复习铺垫
1、求比值(让学生独立练习)
18:2423:49 0.75:0.25
2、提出问题:
(1) 23:49 =23 ÷ 49= 32,是根据什么来约分的?分数的基本性质是什么?
(2)0.75:0.25= 0.75÷0.25=75÷25=3,我们把被除数转化为整数,根据什么?说说商不变的性质。
3、比与除法、分数有何联系?
白板课件出示商不变性质和分数的基本性质。
( 设计意图:为了激发学生的求知欲,也为了让学生更好地理解比的基本性质,让学生通过回忆旧知,小组内交流做题的依据及知识间的内在联系。激活学生的思维。同时,这种回顾旧知的方法,有利于培养学生主动将新旧知识相联系、相对比,形成良好的学习方法,并构成知识网络。自然地过渡到了新课,使学生很清楚地知道知识的内在联系。)
师:联系比和除法、分数的关系,想一想:在比中有怎样的规律?
二、探究新知
(一)对于比,你有何想法? 学生纷纷猜测比的基本性质是什么?
(二)验证交流
1、在白板上出示:6∶8、12∶16和3:4,要求学生分别求出比值。
提问:这三个比相等吗?为什么?学生:这三个比相等,因为它们的比值都是(0.75).
教师用等号连结三个比(6∶8=12∶16=3∶4),提问:在这个式子中的三个比,同学们看到什么变了?什么没有变?
2、教师引导学生观察后指出:为什么这几个比的前项、后项都变了,而它们的比值却不变呢?前项和后项的变化有没有规律呢?下面我们一起来探讨这个问题.
引导学生对等式(6∶8=12∶16=3∶4)进行分析,寻找规律.
先引导学生根据商不变性质进行观察,
[1][2][3]下一页
(1)6∶8怎么变成等于12∶16?教师用白板课件展示变化过程。
提问:请认真观察这些式子,谁能用一句话把其中的规律表达出来?
引导学生得出:比的前项和后项都乘相同的数,比值不变.
再引导学生认真观察.6∶8怎么会变成等于3∶4呢?课件展示变化过程,请学生说理由。
(2)问:谁能用一句话把其中的规律表达出来?
引导学生初步归纳出:比的前项和后项都除以相同的数,比值不变.
然后提问:比的前项和后项都乘或者除以相同的数,这里说的是不是什么数都行?乘0或者除以0可以吗?为什么?
组织学生讨论,使他们明确:因为除以0本身没有意义,乘0使比的后项没有意义.
最后让学生完整地归纳总结出比的基本性质,教师用课件出示。
(设计意图:因为有“分数的基本性质”作基础,所以学生的猜测较容易,这里完全放手,让学生大胆去猜,但并非单纯的模仿,得自己举例验证猜测的正确性。使学生养成严谨的思考问题的方式,任何猜想在没有得到证实的情况下,它的'可行性都是不确定的,从而影响到今后的生活方式这里安排小组活动非常有必要,留有足够的时间让学生充分猜想、举出充分的例子来说明他们猜想的正确性,然后小组交流、汇报验证方法,再用课件展示。使学生在汇报、质疑的过程中理解并掌握比的基本性质。)
3、指导学生看书,齐读性质后,问:在比的基本性质中,你认为哪些字词是关键字词?(要求学生说出“同时”、“相同的数”、“零除外”,教师用红笔圈上.)
(三)结合练习理解比的基本性质
(1)教师说一个比,学生抢答出和它比值相等的比。如2:5=( ):10,6:( )=3:4等。
(2)同桌互说。
师:为了使数量间的关系更加简明,并使计算简便,我们经常要应用比的基本性质,把比化成最简单的整数比.
问:什么是最简单的整数比?
然后引导学生联系最简分数的概念,使学生明确化成最简单的整数比就是(1)它是一个比(2)它的前项和后项必须是整数(3)它的前项和后项必须是互质数
(四)试一试.(学习书上例1)
根据比的基本,把下列比化成最简单的整数比.
1、(课件出示)你能看出这两面国旗有什么关系吗?学生试着化简。
(1)课件展示15:10=(15÷5):(10÷5)=3:2
180:120=(180÷60):(120÷60)=3:2
(2)问:5是15和10的什么数,为什么要除以5,60呢?
(课件答疑,学生理解它们都是两个数的最大公因数。)
(3)再问:两面国旗的长和宽的比值相等,说明什么?(大小不同,但形状一样。)再次强调化成最简单的整数比的重要性。
(4)完成书47页练习十一2题。
2、把下面各比化成最简单的整数比
上一页[1][2][3]下一页
16 :29 0.75:2
观察它们和刚才化简的比有什么不同?
(2)学生尝试解答,教师巡视辅导,并请2位同学在黑板上写。再同桌互相对照,说说自己这样做的理由.
(3)汇报化简的方法,教师结合课件讲解。
3、(课件出示)化简下列各比
15︰21 0.12︰0.4 0.1:0.125
3.2:4 0.1:23 23 :12
(五)小结化成最简整数比的一般方法。
①如果前项、后项都是整数,只要同时除以这两个的最大公因数,就可以化成最简单的整数比。
②如果前项、后项都是分数,化简时先要同时乘分母的最小公倍数,去掉分母,把它转化成整数比;然后再看是不是最简单的整数比。
③如果前项、后项都是小数,化简时先要同时扩大相同的倍数(10、100、1000……),把它转化成整数比;然后再看是不是最简单的整数比。
三、巩固练习
1、请你判断对错.
(1)0.48∶0.6化简后是0.8.(2)34 ∶12 化简后是32
(3)0.4∶1化简后是25 .
2、帮小蜗牛找家。
家的比为(6 : 300.1 : 0.4 2 :6 2 : 8 :1 16:20)
小蜗牛(45 、15、 13 、14、 23 )
上一页[1][2][3]
比的基本性质教学设计 篇24
【教材分析】
《比例的基本性质》这节课在学生理解比例的意义的基础上教学的,为下节课教学解比例打下基础。教材直接以比例“2.4:1.6=60:40”教学比例各项的名称,即什么叫做比例的项,什么是比例的內项,什么是比例的外项。引导学生计算两个外项的积和两个内项的积,并追问“如果把比例改写成分数形式,等号两边的分子和分母分别交叉相乘,所得的积有什么关系?”即呈现:
“2.4×40、1.6×60”。在此基础上,发现规律,揭示比例的基本性质。“做一做”教学利用比例的基本性质判断两个比能否组成比例的方法。个人认为这样的材料呈现方式至少存在两个弊端:
(1)例题缺乏意义和挑战性,不能激发学生的思考欲望;
(2)没有给学生想想的猜想和验证的空间。
【教学目标】
1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。
2、通过观察、猜测、举例验证归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。
【教学重点】
探索并掌握比例的基本性质。
【教学难点】
判断两个比能否组成比例,根据乘法等式写出正确的比例。
【教学设想】:
1、教学情境的呈现
创设有意义的、富有挑战性的学习情境,就好比创建了一个充满引力的磁场,将对学生产生巨大的吸引力,激发学生的学习主动性和积极性,实现课堂教学的“轻负高效”,增加课堂教学的厚度。为此,在准备这节课时,我对情境的创设有如下考虑:简单却能为学生提供思考的空间。
教材中直接呈现比例“2.4:1.6=60:40”,并跟进两个填空:两个外项的积是(),两个內项的积是(),从而得出结论:在比例中,两个外项的积等于两个內项的积,这叫做比例的基本性质。个人认为这样的情境太直接,牵住学生的思维走,没有提供可探究的'空间。为此,我简单创设了这样一个情境:老师这里有一个比例“12∶□=□∶2”,不过它的两个内项看不清了,想一想,这两个内项可能是哪两个数?这个问题简单却开放,答案不唯一,为学生的思考打开了空间,同时学生可以通过求比值的方法解决:先填进一个数,然后就出比值,再确定另一个数。只要老师有意识的把学生的回答有序板书,可以达到引导有序思考的作用。
2、教学方式的选择
教育的真谛应该是促进人的发展,人的发展当然需要积累一定量的基础知识,更重要的是思维水平的提升和分析问题、解决问题能力的发展。我们的课堂教学要引领学生掌握知识,更要侧重引领学生经历知识的形成过程,让学生在探索知识形成过程的学习中,不断拓展思维的宽度和增加思维的厚度。
比例的基本性质本身并没有难度,难在通过观察、猜测、验证、归纳等数学活动探索“在比例中,两个外项的积等于两个內项的积”这个结论的形成过程。我想,这个探究过程应该就是一个合作、探究学习的过程吧。只有当学生经历了这个探究式学习过程,才有可能真正体验思考与合作的成就感,才能真正激发学生对数学的学习兴趣。
3、练习的设计
(1)判断下面哪组中的两个比可以组成比例。旨在巩固对比例基本性质的掌握,应用比例的基本性质解决问题,渗透假设、验证的解决问题方法,假设两个比能组成比例,然后根据比例的基本性质,分别算出两个外项和两个內项的积。补问引出求比值的方法判断两个比能否组成比例,追问引领学生对求比值判断两个比能否组成比例和用比例的基本性质判断两个比能否组成比例的方法进行比较优化,凸显了比例基本性质的应用价值。
(2)根据乘法等式“2×9=3×6”写比例。既是对比例基本性质的逆用,又旨在渗透有序思考的解决问题策略和方法。
(3)如果a×2=b×4,则a:b=():(),旨在将比例的基本性质逆用推广到一般。追问:如果a:b=4:2,则a=4,b=2。这种说法对吗?为什么?旨在激发学生的思维矛盾,引领学生打破思维定势,体验变与不变的思想。那么a、b还可能是多少?你发现了什么?旨在引导学生经历一个列举、归纳的过程,提升思维水平。
(4)猜猜我是谁?6:()=5:4,旨在应用比例的基本性质时,渗透方程思想,为解比例的学生作铺垫。
【教学预设】
一、认识比例各部分的名称
1、呈现:4:5和8:10
(1)认识吗?叫什么?
(2)正确吗?为什么?(4:5=0.8,8:10=0.8,所以4:5=8:10)
(3)求比值,判断两个比能否组成比例。
2、介绍比例各部分的名称
4:5=8:10中,组成比例的四个数“4、5、8、10”叫做这个比例的项。两端的两项“4和10”叫做比例的外项。中间的两项“5和8”叫做比例的內项。
3、你能说出下面比例的内项和外项各是多少吗?
(1)1.4:=:5(2)=
二、探究比例的基本性质
1、猜数
呈现比例“12∶□=□∶2”。
(1)想一想,这两个内项可能是哪两个数?如1和24,2和12,……
(2)这样的例子举得完吗?
2、猜想
仔细观察这组等式,你有什么发现?(两个外项的积等于两个内项的积”;两个內项的位置可以交换……)
3、验证
(1)是不是所有的比例都有这样的规律呢,有什么好办法?
(2)你觉得应该怎样举例呢?
(3)合作要求
1)前后4个同学为一个小组;
2)每个同学写出一个比例,小组内交换验证。
3)通过举例验证,你们能得出什么结论?
4、小结
老师这里也有一个比例3:5=4:6,为什么两个外项的积不等于两个內项的积?
比的基本性质教学设计 篇25
教学内容:人教版小学数学教材六年级上册第50~51页内容及相关练习。
教学目标:
1.理解和掌握比的基本性质,并能应用比的基本性质化简比,初步掌握化简比的方法。
2.在自主探索的过程中,沟通比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。
3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。
教学重点:理解比的基本性质
教学难点:正确应用比的基本性质化简比
教学准备:课件,答题纸,实物投影。
教学过程:
一、 复习引入
1.师:同学们先来回忆一下,关于比已经学习了什么知识?
预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。
2.你能直接说出700÷25的商吗?
(1)你是怎么想的?
(2)依据是什么?
3.你还记得分数的基本性质吗?举例说明。
【设计意图】影响学生学习的一个重要因素就是学生已经知道了什么,于是此环节意在通过复习、回忆让学生沟通比、除法和分数之间的关系,重现商不变性质和分数的基本性质,为类比推出比的基本性质埋下伏笔。同时,还有机渗透了转化的数学思想,使学生感受知识之间存在着紧密的`内在联系。
二、新知探究
(一)猜想比的基本性质
1.师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变性质,分数有分数的基本性质,联想这两个性质,想一想:在比中又会有怎样的规律或性质?
预设:比的基本性质。
2.学生纷纷猜想比的基本性质。
预设:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
3.根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
【设计意图】比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。
(二)验证比的基本性质
师:正如大家想的,比和除法、分数一样,也具有属于它自己的规律性质,那么是否和大家猜想的“比的前项和后项同时乘或除以相同的数(0除外),比值不变”一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。
1.教师说明合作要求。
(1)独立完成:写出一个比,并用自己喜欢的方法进行验证。
(2)小组讨论学习。
①每个同学分别向组内同学展示自己的研究成果,并依次交流(其他同学表明是否赞同此同学的结论)。
②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。
③选派一个同学代表小组进行发言。
2.集体交流(要求小组发言代表结合具体的例子在展台上进行讲解)。
预设:根据比与除法、分数的关系进行验证;根据比值验证。
3.全班验证。
教学总结
比的基本性质教学设计 篇26
教材分析
分数的基本性质是我们学习分数运算的重要基础,它包括约分和通分。约分是将分数化简为最简形式的过程,通分是将不同分母的分数转化为相同分母的过程。掌握了分数的基本性质,我们才能顺利进行分数的四则运算。除法是分数运算中的重要内容,分数其实就是除法的一种表达方式。在进行除法运算时,我们要特别注意商不变的规律,即被除数乘以一个数得到的商是不变的。理解分数与除法的关系,能够帮助我们更好地掌握分数的运算规律,为学习更复杂的数学内容打下坚实的基础。
教材设计了两个学习活动,让学生在寻找相等的分数中感受分数的大小相等关系,为后续观察分数的基本性质提供了丰富的素材。学生将通过这两组相等的分数,分别观察并寻找每组分数的分子和分母的变化规律,然后展开交流讨论,最终总结出:当分数的分子和分母同时乘以或除以相同的数(零除外)时,分数的大小保持不变。
学情分析
学生已经掌握了分数与除法的关系,以及商不变规律等知识,为本课学习打下了坚实的基础。五年级学生已经开始养成合作学习的习惯,具备一定的问题分析和解决能力,能够在老师的指导下完成“提出问题—探索—解决问题—应用”的学习过程。
在教学中,我通常采用引导学生探索和小组合作学习相结合的方式。通过这种方法,学生可以自己发现分数的基本性质,并学会运用这些性质将一个分数化简为分母不同但值相等的分数。这种教学方法能够有效提高教学效果,激发学生的学习兴趣,培养他们的独立思考能力和团队合作精神。
教学目标
经历探索分数基本性质的过程,理解分数基本性质。
能运用分数基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
教学重点和难点
理解分数基本性质,能运用分数基本性质转化分数。
教学过程
一、复习导入
二、探究新知
实践操作,探究规律
观察发现:初步概括分数基本性质
括归纳分数基本性质
三、课堂练习
四、课堂小结
出示复习题口答卡片, 复习商不变的规律、分数与除法的关系。
1、讲述唐僧分饼的故事:“……贪吃的猪八戒抢着说要吃这个饼的'9/12,孙悟空说要吃这个饼的6/8,沙僧说要吃这个饼的3/4。同学们可知道谁吃的饼最多?”
提出问题: 这些分数都相等吗?
观察这组相等的分数,你发现了什么?把你的发现说给同伴听。
分子、分母都乘或除以一个数,这个数可以是0吗?为什么?
1、课本P43的“试一试”
2、数学游戏:说出相等的分数3、课本P44的“练一练”第1~2、4
通过这节课的学习、你学会了那些知识
口答
小组讨论
拿出准备好的圆形纸片,折一折,画一画、涂一涂
小组讨论、交流
小组讨论、交流
做练习,完成后集体交流。
说说,读分数基本性质
复习旧知,为学习新知识作铺垫。
将例1改编成故事 提出问题,让学生对故事中的人物进行直观 评价 ,为后续探究营造良好氛围。
让学生通过动手操作,激发他们对学习的兴趣,通过合作探索,初步了解到一些分数的分子和分母不同,但这些分数的大小却是相等的。
通过观察不同形式的现象,我们可以逐步总结出其中的规律。这种由表面到深层的探索方式,有助于我们逐步深入了解事物,逐步发现其中的奥秘。
学生们通过观察和实践,逐渐探索出了分数的基本性质。为了更深入地理解分数的特点,我们需要全面概括分数的基本性质。
让学生利用分数的基本性质解决问题,使学生对分数的基本性质理解的更深刻,同时体验解决问题的乐趣。
对本节课的所学知识的回顾,及所学知识点的总结。
板书设计(需要一直留在黑板上主板书)分数基本性质被除数和除数同时扩大或缩小相同的倍数(零除外),商不变,这就是商不变的规律分数的分子和分母都乘或除以相同的数(零除外),分数的大小不变,这叫做分数基本性质。
教学反思:
分数的基本性质在小学阶段是数学学习中的一个重要环节。通过引导学生观察和探究,可以帮助他们更好地理解分数的概念。在教学中,我注重让学生参与讨论和交流,组织小组活动让每个学生都有机会表达自己的观点,互相启发,共同探讨。通过这种方式,学生能够逐渐理解分数的分子和分母按照一定规律变化,而分数的大小却保持不变的特点。这样的教学方法有助于帮助学生建立起数与数之间联系和变化的认识。
在本节课中,由于我对学困生关注度不够高,导致他们在应用基本分数性质的过程中遇到困难。小组合作探究中的小组学习也需要不断改进。
比的基本性质教学设计 篇27
教学目标:
1、使学生理解并掌握比例的基本性质,学会应用比例的基本性质判断两个比能否组成比例,并能正确组成比例。
2、培养学生的观察能力、判断能力。
教学重点:
引导学生观察、讨论、试算,探究比例的基本性质。
教学难点:
应用比例基本性质判断两个比能否组成比例,并能正确地组成比例。
教学过程:
一、激趣导入
1、今天老师给大家带来了一件东西,放在口袋里呢,这东西大家平时都玩过,还挺熟悉的,四四方方的,猜猜看是什么?(学生猜)
2、还是让老师给你点提示吧!
课件逐句出示:买来方方一小盒,用时却有几十张,红黑兄弟各一半,还有一对“双胞胎”。
3、现在知道是什么了吧!课件出示:扑克牌
(设计说明:通过一则小小的谜语导入新课,与之后的新授的比赛巧妙衔接,以扑克牌激发学生的兴趣。)
二、探究新知
(一)我们今天这堂课研究的数学问题就跟扑克牌有关。你们都知道扑克牌有四种花色,而每一种花色都有13张。(课件出示)A,2,3,4,5,6,7,8,9,10,J,Q,K
1、同学们你们都学过比例,请同学们用最快的速度从这13个数字中选择你所需要的数字来写出一个比例。
2、学生汇报写出的比例并说明理由。
3、们都是选择4个数字来组成比例。那你们想知道组成比例的4个数叫什么名字呢?(想)那就请同学们自己预习课本43页最后两段(师出示课件预习提纲)。(板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项。中间的两项叫做比例的内项。)
4、就学生汇报的比例,找出内项与外项。
(设计说明:通过一个写比例的小活动,一是复习了比例的意义,二是教学了内项与外项。)
(二)在刚才同学们写比例的过程中,老师发现同学们的脑子转得可真快,王老师想跟你们比一比,比谁能更快地按要求写出比例。怎样?敢接受老师的挑战吗?(生:敢)
1、那我们就开始吧,请同学们先看“冠军攻略”(比赛规则)
课件出示:
冠军攻略
参赛者:王老师,全班同学
规则:迅速判断由电脑随机抽取出来的4张牌面上的数学能否组成比例,如果能,请写下来。(至少写两个)(完成的可先举手示意)
2、第一轮:6、8、9、12
(老师比学生提前写完,并由学生验证,得出老师胜)
第二轮:3、5、4、8
(老师比学生提前判断出不能组成比例,并由学生验证,老师胜)第三轮:4、8、6、3
(老师比学生提前写完比例,并由学生验证,老师胜)
(设计说明:由扑克牌引出三轮比赛,设计都由老师胜出,学生由此产生疑问,为什么老师能这么厉害,这么快地写出8个比例,借此激发学生探究。)
3、同学们一定很好奇,老师为什么能这么快地判断出这4个数能否组成比例,并能很快地写出比例,其中有什么奥秘?其实老师是有冠军秘籍的,而秘密就藏在这些比例中。请同学们仔细观察老师所写的'比例的内项与外项,小组交流讨论,看看有什么发现?
4、学生汇报,验证,课件出示“比例的基本性质以及字母公式”
5、师讲解如何很快的判断4个数能否组成比例。
(设计说明:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。)
看样子,同学们对新知掌握的不错,愿意接受挑战吗?
(三)练习运用。
1、应用比例的基本性质,判断下面哪组中的两个比可以组成比例
6∶3和8∶502∶2.5和4∶50
2、如果把2.4:1.6=60:40,改写成分数的形式,你会写吗?等号两边的分子和分母分别交叉相乘,所得的积有什么关系?
指出:2.4与40的乘积等于1.6与60的乘积。
三、课堂巩固,练习提升
1、用你喜欢的方法来判断哪组中的两个比能否组成比例。
(1)14:21和6:9(2)3/4:1/10和15/2:1
(3)9:12和12:15(4)1.4:2和7:10
2、把图A按比例放大得到图B,按比例缩小得到图C。根据图中的数据组成比例。(课本46页第3题)
3、根据比例的基本性质,在括号里填上合适的数。
8:2=24:( )( )/15=4/51.5:3=( ):3.448:( )=3.6:9
四、实践活动题
8:A=B:1.5,那么A和B可能是( )和( )
如果A是小数,那么A可能是( ),B可能是( )。
如果A-B=1,那么A可能是( ),B可能是( )
如果A+B=7,那么A可能是( ),B可能是( )
(设计说明:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一)
五、全课总结
通过这节课的学习,你有哪些收获?
比的基本性质教学设计 篇28
教具准备:
天平及相关物品。(也可以将插图制作成课件让学生逐步观察思考)
教学过程:
一、导入新课:同学们用天平做过实验吗?今天我们就要用天平去发现一些重要的规律,有信心吗?
二、新知探究
(一)探寻发现“天平保持平衡的规律1”。
第一步,出示天平,左盘放一茶壶,右盘放两茶杯,天平保持平衡。问:这说明什么?如果设一把茶壶重a克,1个茶杯重b克,则可以用一个等式来表示:即a=2b(板),
第二步,问:想一想,怎样变换能使天平仍然保持平衡呢?待学生思考片刻,进而问:往两边各放一个茶杯,天平会发生什么变化?教师演示加以验证,在已平衡的天平两边同时增加一个相同的杯子,天平保持平衡。这个过程可以表示为a+b=2b+b 。
第三步,问:如果两边各放上2个茶杯,天平还保持平衡?两边各放上同样的一个茶壶呢?学生回答后,老师一一演示验证。
第四步,想一想,怎样变换能使天平保持平衡?天平两边增加同样的物品,天平保持平衡。如果天平两边减少同样的物品,天平会保持平衡吗?
第五步,在第三步的基础上同时减少一个茶壶,天平保持平衡,用式子表示就是2a-a=2b+a-a 。因此天平保持平衡的规律概括起来可以怎么说?天平两边增加或减少同样的物品,天平会保持平衡。(课件)
第六步,应用,进一步验证。展示数学书P55页第2幅图的场景,1个花盆和几个花瓶同样重呢?该怎么办?两边同时减少一个花瓶,天平保持平衡。
(二)探寻发现“天平保持平衡的规律2”。
第一步,出示天平,左盘放一瓶墨水,右盘放两个铅笔盒,天平保持平衡。一瓶墨水等于两个铅笔盒的质量,如果设一瓶墨水重c克,1个铅笔盒重d克,则可以用一个等式来表示:即c=2d(板),
第二步,问:想一想,如果在左边再放上1瓶墨水,右边再放上2个铅笔盒,天平还保持平衡吗?验证,天平两边加的.东西不同,数量也不同,为什么还能保持平衡呢?学生可能会说,因为两边增加的质量相同,肯定;同时引导,天平左边的质量在原来的基础上发生了什么变化?(扩大了2倍),右边呢?(也扩大了两倍)因此,天平两边尽管所增加的东西不同,数量不同,但两边质量所发生的变化是相同的,都扩大了2倍,所以天平仍然保持平衡。用式子表示就是c×2=2d×2 。
第三步,刚才的演示反过来,就是天平两边同时缩小相同的倍数,天平保持平衡,用式子表示就是2c÷2=4d÷2。因此,天平除了在两边同时增加或减少同样的物品会保持平衡外,还可怎么变换也可以保持平衡?归纳得出:天平两边物品的质量同时扩大或缩小相同的倍数,天平保持平衡。
第四步,进一步验证,出示P56的情景,问要求1个排球和几个皮球同样重该怎么办?两边质量同时缩小2倍,即把两边的球都平均分成2份,保留其中的一份,按其操作,天平保持平衡,得出结论:1个排球和3个皮球同样重。
(三)小结天平保持平衡的变换规律,引出等式不变的规律。
通过刚才的实验,我们发现了什么,谁来总结一下。
得出天平保持平衡的变换规律:
(1)天平两边同时增加或减少同样的物品,天平保持平衡;
(2)天平两边的质量同时扩大或缩小相同的倍数,天平保持平衡。
老师引导:我们可以发现,天平保持平衡时可以用一个等式来表示,当天平两边发生变化时,等式的两边也在发生变化,天平保持平衡,等式也保持不变。从天平保持平衡的规律,我们可以发现等式保持不变的规律吗?想一想,四人小组讨论。
交流,发现:等式保持不变的规律:
(1)等式两边都加上或减去相同的数,等式保持不变;
(2)等式两边都乘或除以相同的数(0除外),等式不变。
三、练习。
实物演示并判断:(准备8袋花生,4袋盐)
天平两端分别放有一袋500克的盐和两袋250克的花生。
1、当两边各增加3袋同样的花生(250克/袋)时,天平是否保持平衡?为什么?
2、在“1”的基础上,现在将把天平两端的东西减少,怎样变化?可使天平依然保持平衡?怎么想的?(可抽学生上台动手操作。)
3、假如天平两端只能加与先前完全一样的东西,要保持平衡可以怎么做?怎么想的?
4、一端放有两袋1千克的白糖,另一端放有4袋500克的盐,问一袋白糖与几袋盐同样重,怎么想的?
四、小结。
有什么收获?还有什么问题?
教学内容:数学书P55-56及“做一做”。
教学目标:
1、通过天平演示保持平衡的几种变换情况,让学生初步认识等式的基本性质。
2、利用观察天平保持平衡所发现的规律能直接判断天平变化后能否保持平衡。
3、培养学生观察与概括、比较与分析的能力。
比的基本性质教学设计 篇29
教学目标:
1、使学生理解并掌握比例的基本性质,学会应用比例的基本性质判断两个比能否组成比例,并能正确组成比例。
2、培养学生的观察能力、判断能力。
教学重点:
引导学生观察、讨论、试算,探究比例的基本性质。
教学难点:
应用比例基本性质判断两个比能否组成比例,并能正确地组成比例。
教学过程:
一、激趣导入
1、今天老师给大家带来了一件东西,放在口袋里呢,这东西大家平时都玩过,还挺熟悉的,四四方方的,猜猜看是什么?(学生猜)
2、还是让老师给你点提示吧!
课件逐句出示:买来方方一小盒,用时却有几十张,红黑兄弟各一半,还有一对“双胞胎”。
3、现在知道是什么了吧!课件出示:扑克牌
(设计说明:通过一则小小的谜语导入新课,与之后的新授的比赛巧妙衔接,以扑克牌激发学生的兴趣。)
二、探究新知
(一)我们今天这堂课研究的数学问题就跟扑克牌有关。你们都知道扑克牌有四种花色,而每一种花色都有13张。(课件出示)A,2,3,4,5,6,7,8,9,10,J,Q,K
1、同学们你们都学过比例,请同学们用最快的速度从这13个数字中选择你所需要的数字来写出一个比例。
2、学生汇报写出的比例并说明理由。
3、们都是选择4个数字来组成比例。那你们想知道组成比例的4个数叫什么名字呢?(想)那就请同学们自己预习课本43页最后两段(师出示课件预习提纲)。(板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项。中间的两项叫做比例的内项。)
4、就学生汇报的比例,找出内项与外项。
(设计说明:通过一个写比例的小活动,一是复习了比例的意义,二是教学了内项与外项。)
(二)在刚才同学们写比例的过程中,老师发现同学们的`脑子转得可真快,王老师想跟你们比一比,比谁能更快地按要求写出比例。怎样?敢接受老师的挑战吗?(生:敢)
1、那我们就开始吧,请同学们先看“冠军攻略”(比赛规则)
课件出示:
冠军攻略
参赛者:王老师,全班同学
规则:迅速判断由电脑随机抽取出来的4张牌面上的数学能否组成比例,如果能,请写下来。(至少写两个)(完成的可先举手示意)
2、第一轮:6、8、9、12
(老师比学生提前写完,并由学生验证,得出老师胜)
第二轮:3、5、4、8
(老师比学生提前判断出不能组成比例,并由学生验证,老师胜)第三轮:4、8、6、3
(老师比学生提前写完比例,并由学生验证,老师胜)
(设计说明:由扑克牌引出三轮比赛,设计都由老师胜出,学生由此产生疑问,为什么老师能这么厉害,这么快地写出8个比例,借此激发学生探究。)
3、同学们一定很好奇,老师为什么能这么快地判断出这4个数能否组成比例,并能很快地写出比例,其中有什么奥秘?其实老师是有冠军秘籍的,而秘密就藏在这些比例中。请同学们仔细观察老师所写的比例的内项与外项,小组交流讨论,看看有什么发现?
4、学生汇报,验证,课件出示“比例的基本性质以及字母公式”
5、师讲解如何很快的判断4个数能否组成比例。
(设计说明:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。)
看样子,同学们对新知掌握的不错,愿意接受挑战吗?
(三)练习运用。
1、应用比例的基本性质,判断下面哪组中的两个比可以组成比例
6∶3和8∶502∶2.5和4∶50
2、如果把2.4:1.6=60:40,改写成分数的形式,你会写吗?等号两边的分子和分母分别交叉相乘,所得的积有什么关系?
指出:2.4与40的乘积等于1.6与60的乘积。
三、课堂巩固,练习提升
1、用你喜欢的方法来判断哪组中的两个比能否组成比例。
(1)14:21和6:9(2)3/4:1/10和15/2:1
(3)9:12和12:15(4)1.4:2和7:10
2、把图A按比例放大得到图B,按比例缩小得到图C。根据图中的数据组成比例。(课本46页第3题)
3、根据比例的基本性质,在括号里填上合适的数。
8:2=24:( )( )/15=4/51.5:3=( ):3.448:( )=3.6:9
四、实践活动题
8:A=B:1.5,那么A和B可能是( )和( )
如果A是小数,那么A可能是( ),B可能是( )。
如果A-B=1,那么A可能是( ),B可能是( )
如果A+B=7,那么A可能是( ),B可能是( )
(设计说明:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一)
五、全课总结
通过这节课的学习,你有哪些收获?
比的基本性质教学设计 篇30
教学内容:比例的基本性质
教学目标:
1.使学生进一步理解比例的意义,懂得比例各部分名称。
2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。
3.能运用比例的基本性质判断两个比能否组成比例。
教学重点:比例的基本质性。
教学难点:发现并概括出比例的基本质性。
教学过程:
一、旧知铺垫
1.什么叫做比例?
2.应用比例的意义,判断下面的比能否组成比例。
2.4:1.6和60:40
二、探索新知
1.比例各部分名称。
(1)教师说明组成比例的四个数的名称。
板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。
例如:2.4:1.6=60:40
内项
外项
(2)学生认一认,说一说比例中的.外项和内项。
如::=:
外内内外
项项项项
2.比例的基本性质。
你能发现比例的外项和内项有什么关系吗?
(1)学生独立探索其中的规律。
(2)与同学交流你的发现。
(3)汇报你的发现,全班交流。
板书:两个外项的积是2.4×40=96
两个内项的积是1.6×60=96
外项的积等于内项的积。
(4)举例说明,检验发现。
如::0.5=1.2:
两个外项的积是×=0.6
两个内项的积是0.5×1.2=0.6
外项的积等于内项的积。
如果把比例改成分数形式呢?
如:=
2.4×40=1.6×60
等号两边的分子和分母分别交叉相乘,所得的积相等。
(5)归纳。
在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。
3.填一填。
(1)=
()×()=()×()
(2)0.8:1.2=4:6
()×()=()×()
(3)4×5=2×10
4:()=():()
=
4.做一做。
完成课文中的“做一做”。
5.课堂小结
(1)说一说比例的基本性质。
(2)你可以用什么方法来判断两个比能否组成比例?
三、作业
完成课文练习六第4~6题。
课后记:
比的基本性质教学设计
作为一名优秀的教育工作者,常常要根据教学需要编写教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。怎样写教学设计才更能起到其作用呢?下面是小编为大家整理的比的基本性质教学设计,欢迎阅读,希望大家能够喜欢。
比的基本性质教学设计 篇31
【教材分析】
在新课程改革中,教材是重要的教育教学因素。等式的基本性质是学生解方程的依据,它是系统学习方程的开始。这节课的内容在简易方程中就起到了承上启下的作用。原来的教材中对于等式的基本性质只是初步的认识,并没有总结成概念性的东西,但学生实际运用时却需要概念来作支撑,所以在教材中作了调整,让学生通过观察天平演示实验,由具体实物之间的平衡关系抽象概括出等式的两个基本性质就成了本节课的教学重点。本课“等式的基本性质”是在上一节刚刚认识了等式和方程的基础上进行教学的。,其核心思想是构建等量关系的数学模型。课程标准要求学生能“理解等式的性质,会利用等式的性质解简单的方程”。
【教学目标】
1.通过天平演示保持平衡的几种变换情况,初步认识等式的基本性质。
2.利用观察天平保持平衡所发现的规律,能直接判断天平发生变化后能否保持平衡。
3.逐步养成观察与概括.比较与分析的能力。
【教学重点】
掌握等式的基本性质。
【教学难点】
理解并掌握等式的性质,能根据具体情境列出相应的方程。
【数学思想】
转化的思想,数形结合的思想,符号化的思想
【教学过程】
一.创设情境,引出问题
教师活动
学生活动及达成目标
师:同学们,你们做过天平游戏吗?这节课我们要利用天平一起来探索等式的性质。(板书课题:等式的性质)
达成目标:由熟悉的天平引出课题激发学生的兴趣。
二.共同探索,总结方法
教师活动
学生活动及达成目标
(一)等式的基本性质一
1.出示教材第64页情境图1第一个天平图。
让学生仔细观察图,并说一说:通过图你知道了什么?
教师小结:1个茶壶的重量=2个茶杯的重量。
追问:如果设一个茶壶的重量是a克,1个茶杯的重量是b克,能用式子表示吗?
(师板书)
引导学生思考:如果在天平的两边同时再各放上一个茶杯,天平会发生什么变化呢?为什么?
教师先进行实际操作天平验证,再演示这一过程,并明确:两边仍然相等。
提问:如果两边各放上2个茶杯,还保持平衡吗?
两边各放同样的一把茶壶呢?
2.出示教材第64页图2的第一个天平图。
(1)如果用a表示一个花盆的重量,用b表示一个花瓶的重量,怎样用等式来表示这幅图呢?
(2)如果把两边都拿掉1个花瓶,天平还平衡吗?让学生尝试用等式怎样表示?
从图上你能知道什么?(出示教材第64页图2第二个天平图)
3.通过这几个实验,你发现了什么?
4.你能用一句话来表示你的发现吗?
(二)等式的基本性质二
1.猜猜:除了向前面这样的变化,天平仍保持平衡外,还可以怎么做能使天平保持平衡?
这时教师一定要及时强调:这都是把等式的两边加上或减去同一个数,并提示学生如果把等式的两边同时乘或除以一个相同的数(O除外),会怎么样呢?
2.出示教材第65页图1的`第一个天平图,让学生观察并说明。
引导学生用a表示墨水的重量,用b表示铅笔盒的重量,用式子怎样表示?
猜一猜:左边墨水的数量扩大到原来的2倍,右边铅笔盒的数量也扩大到原来的2倍,天平还保持平衡吗?
如果把天平的两边物品的数量分别扩大到原来的3倍.4倍呢?
3.出示教材第65页图2的第一个天平图,让学生观察并说明知道了什么。
质疑:如果把两边的球都平均分成2份,各去掉一份,天平还能平衡吗?
教师演示。
4.通过刚才的试验,你发现了什么?
5.你能用一句话总结一下等式的这个性质吗?
6.为什么等式两边不能除以O?
1.自主回答,学生可能会回答:天平的左边放了一把茶壶,右边放了两个茶杯,天平保持平衡;这说明一个茶壶的重量与2个茶杯的重量相等。
尝试写出:a=2b
先猜一猜,学生可能会猜测出天平仍然平衡,因为两边加上的重量一样多。
观察小结:实验证明1个茶壶+1个茶杯的质量=3个茶杯的质量。
同时学生尝试用字母表示这个式子:a+b=2b+b
学生回答后,教师演示,并让学生分别用式子表示:a+2b=2b+2ba+a=2b+a
观察现在的天平是什么样的?(平衡)
生尝试写出:a+b=4b
先猜一猜,再回答,平衡:a+b-b=4b-b
得出1个花盆和3个花瓶同样重。
3.学生思考后小结:平衡的天平两边加上同样的物品,天平还保持平衡。平衡的天平两边减去同样的物品,天平还保持平衡。
4.学生归纳等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。
达成目标:通过演示在天平的两边同时放上或拿走同样的物品,天平仍然平衡。给学生思考.感悟天平保持平衡的变化规律,提供了直观的观察材料。从而得出天平平衡的原理,即等式的一条基本性质:等式两边加上或减去相等的数,等式不变。
1.如:学生猜测天平的两边同时放2个.3个杯子;同时减去一把茶壶等。
2.学生观察并说明:
一瓶墨水的重量=一盒铅笔盒的重量
写出等式:a=b。
学生猜测平衡后,教师进行实际天平操作,验证学生的猜测。
学生用等式表示:2a=2b。
天平仍然保持平衡
3.学生观察得出:
2个排球的质量=6个皮球的质量
有了前面的经验学生用a表示排球的重量,用6表示皮球的重量,写出等式:2a=6b。
学生猜测:平衡,并能用等式a=3b表示。
4.学生会发现:平衡的天平两边的物品扩大到原来的相同倍数,天平仍然平衡。平衡的天平两边的物品都缩小到原来的几分之一,天平仍然平衡。
5.学生归纳小结:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。
达成目标:等式基本性质2的推导在性质1的基础上,让学生自己通过实验探究,运用知识的迁移得出,这样培养了学生的逻辑思维能力,抽象概括能力和口头表达能力。
6.学生交流,汇报:O不能做除数。
三.运用方法,解决问题
教师活动
学生活动及达成目标
出示教材第66页练习十四第4.5题。
学生试做集体订正,注意学生列式计算时的取值是否正确。
四.反馈巩固,分层练习
教师活动
学生活动及达成目标
基础练习:利用等式的性质填空
1.如果2x-5=9,那么2x=9+()
2.如果5=10+x,那么5x-()=10
3.如果3x=7,那么6x=()
4.如果5x=15,那么x=()
拓展练习:见课件
让学生回忆等式的性质,再自主完成填空。
达成目标:等式的基本性质一是简易方程部分重要的概念,不仅要理解,而且还要会应用。
五.课堂总结,提升认识
教师活动
学生活动及达成目标
这节课你运用了哪些学习方法,你有什么收获?你对自己这堂课的表现是怎么评价的?
学生总结本节课的收获,在梳理总结过程中提高学生对性质的认识和理解。
比的基本性质教学设计 篇32
教学目标:
1、使学生认识比例的“项”以及“内项”和“外项”。
2、理解并掌握比例的基本性质,会应用比例的基本性质正确判断两个比能否组成比例。
3、通过自主学习,让学生经历探究的过程,体验成功的快乐。
教学重点:
理解并掌握比例的基本性质。
教学难点:
引导观察,自主探究发现比例的基本性质
设计理念:
本课时设计,在“项”以及“内项”和“外项”的认识的设计上,以学生在老师的引导下逐步理解比例的有关知识,是以教师讲授为主。而在本课时第二大块内容,理解并掌握比例的基本性质,本课时设计中,为学生提供开放真实的问题,通过学生自主收集信息,尝试探索规律,引导学生写出不同比例,在此基础上放手让学生在观察中发现、思考,引导学生主动探索比例的基本性质。
教学过程:
一、从知识的矛盾冲突中导入并引入。
3:8=9:( ) 0.5:( )=5:17
制造冲突,也为后面的思考题做理论铺垫,顺便起到引入课题,探索性质后回应开头的知识,也起到一定的教育作用。(请勇敢的同学配合老师)
师:某某你出生的时间哪一年哪一月哪一日?(根据学生的回报板书两次分子分母上下易位,同为比例的外项)
你还想知道教师内谁的生日,请他告诉你。(板书一次,做一个内项,那么括号应该怎样填呢)今天学习了比例的基本性质我们就可以迅速的填出了。(板书:比例的基本性质)
二、探索发现新知。
1、引用练习中的3:8=9:24为例子,比例中的四个数叫什么名字呢?两端的两项叫做什么,中间的两项叫做什么?(自学课本)
学生回报,师完成板书:
(注意板书的时候教师的手势要指明确到位)
2、练习:请指出下列比例的两个外项和内项各是多少?
80:2=200:5
6:10=9:15
1/2:1/3=6:4
0.2:2.5=4:50
2.4:1.6=60:40
3、这么多的比例,每个比例的.两个外项和两个内项之间存在有什么共同的特点么?可以说的具体一些。
带着问题小组内展开讨论。(教师可以参与当中若干组的活动)时间2分钟。
4、小组汇报初步形成共识:在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。(多找几个小组发表意见)
回到板书例题验证:两个外项的积是:3×24=72
两个内项的积是:8×9=72
5、拿出自己任意找的5个比例,验证是否存在相同的特点。(请学生在展台展示自己的5个比例,并说明外项和内项的积情况)2明,如果出现不相等的,要观察反例,说明两个比组不成比例。
6、完成板书:在比例里,两个外项的积等于两个内项的积
如果把比例写成分数的形式呢,以板书的例子,写成分数的形式,引入等号两边的分子和分母交叉相乘,所得的积相等。
三、基本练习。
1、应用比例的基本性质,判断下面两个比是否能组成比例。
(1)6:3和8:5
(2)1∶5和0.8∶4
(3)1/3:1/4和12∶9
(4)1。2:3/和4/5:5
(注意学生语言叙述的规范性:如1)两个外项的积是6×3=18,两个内项的积是3×8=24,18≠24,所以不能组成比例)
2、在括号里填上适当的数
(1)12:3=( ):5
(2)( ):1/3=1/4:1/6
(3)0.2:0。6=6:( )
(4)4:3=80:( )
3、用5、3、4、8这四个数组比例,看看你能组几个?为什么?
4、把5、3、4、8这四个数换掉其中的一个,组成比例。
5、在例一个比中,两个外项的积互为倒数,其中的一个内项是4/5,另一个内项是( )。
6、回顾矛盾冲突题目:9解决因为两个外项乘积是1,所以两个外项乘积是1,另一个数就是那个已知数据的倒数。
四、全课总结:
谈一谈通过这节课的学习你有哪些收获?(质疑,并完成课题总结),提出预习任务,(那么利用比的基本性质如和求比例中的未知数呢,请自觉预习课本35页的例题2和3)
比的基本性质教学设计 篇33
一、教学目标:
1、让学生经历分数基本性质的探究过程,理解和掌握分数的基本性质,初步建立数学模型。
2、利用分数的基本性质把一个分数化为指定分母(或分子)而大小不变的分数。
3、培养学生的观察、概括等思维能力及(渗透变与不变)数学学习兴趣。
二、教学重点:
理解掌握分数的基本性质,它是约分,通分的依据
三、教学难点:
理解和掌握分数的基本性质,初步建立数学模型。
四、教学准备:
课件、正方形的纸。
五、教学设计过程:
(一)迁移旧知.提出猜想
1、回忆旧知
猜信封:老师手上的信封里有一个数、一道算式,我抽出其中一张 ,谁能猜出另一张是什么?出示: 2÷3
你为什么这样猜呢?引导学生回忆分数与除法的关系。媒体演示:分数与除法的关系:
被除数÷除数=
谁能说一道与2÷3商一样的除法算式?学生一边说,教师一边板书算式。你为什么认为这些算式的商是一样的?引导学生回忆什么是商不变的性质?媒体出示:商不变的性质:
被除数和除数同时乘或除以相同的数(零除外),商不变。
2、提出猜想:
既然分数与除法的关系这么紧密.除法有商不变性质,那分数是否也会有这样的性质,请大家大胆猜想一下。(学生可能根据商不变性质推导出分数的基本性质,学生汇报后投影出示:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。)
(二)验证猜想,建构新知
A、 看图分类
下面是一组相等的正方形,请写出每个图形阴影部分所表示的分数,并把相同的分数分在一起。
B、 讨论方法
师:你是怎么判断它们相等的?
师:它们相等,用算式可以怎么表示?
1/2 = 2/4 = 4/8
C、研究规律
师:这些相等的式子,除了我们从图上看到的大小相等之外,还有没有其他的秘密呢?
利用研究卡进行研究。
确定的研究对象
分子和分母同时乘上或者
除以一个相同的数
得到的分数
研究对象与得到的分数相等吗?
相等( )不相等( )
猜想是否成立?
成立( )不成立( )
充分利用学生的生成资源:揭示课题:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。(板书)
师:为什么要0除外?
师:对于这句话,你是怎么理解的?(让学生互相讨论,并进行说明。)
练习:2/3=( )/18、 6/21=2/( )、 3/5=21/( )、 27/39=( )/13
师:这里面什么变了,什么不变?(生:分子和分母变了,但分数的'大小不变)
师:分子与分母是怎样变化的?(同时乘或除以相同的数,0除外)
师:分数的基本性质与商不变性质有什么联系?
D、质疑完善
3/4 = 3×( )/ 4×( )
师:括号中可以填哪些数?
预设:可以填无数个数
师:如果只用一个数来表示,填什么数好?
预设:字母
师:这个字母有什么特殊要求吗?(0除外)
得到一个初级的数学模型。3/4= 3×X/ 4×X(X≠0)
让学生打开课本进行阅读、内化,并想一想还有什么问题吗?
(三) 练习升华
1、5/7=( )/35 、3/4=9/( )、 3/( )=12/20、 16/24=( )/3
2、把5/6和1/4都化为分母为12而大小不变的分数。
3、把2/3和3/4都化为分子为6而大小不变的分数。
4、把2/5的分子加上2以后,要使分数的大小不变,分母应加上多少?
5、 和 哪一个分数大,你能讲出判断的依据吗?
(四)总结延伸
师:这节课学了什么?
师:如果一个分数为A/B,你能用一个式子来表示分数的基本性质吗?
A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)(板书)
六、作业p87-1、2
板书设计
分数基本性质
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)
6÷8
3÷4
12÷16
比的基本性质教学设计 篇34
教学内容:人教版小学数学教材六年级上册第50~51页内容及相关练习。
教学目标:
1.理解和掌握比的基本性质,并能应用比的基本性质化简比,初步掌握化简比的方法。
2.在自主探索的过程中,沟通比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。
3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。
教学重点:理解比的基本性质
教学难点:正确应用比的基本性质化简比
教学准备:课件,答题纸,实物投影。
教学过程:
一、 复习引入
1.师:同学们先来回忆一下,关于比已经学习了什么知识?
预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。
2.你能直接说出700÷25的商吗?
(1)你是怎么想的?
(2)依据是什么?
3.你还记得分数的基本性质吗?举例说明。
【设计意图】影响学生学习的一个重要因素就是学生已经知道了什么,于是此环节意在通过复习、回忆让学生沟通比、除法和分数之间的关系,重现商不变性质和分数的基本性质,为类比推出比的基本性质埋下伏笔。同时,还有机渗透了转化的数学思想,使学生感受知识之间存在着紧密的内在联系。
二、新知探究
(一)猜想比的基本性质
1.师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变性质,分数有分数的基本性质,联想这两个性质,想一想:在比中又会有怎样的规律或性质?
预设:比的基本性质。
2.学生纷纷猜想比的基本性质。
预设:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
3.根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
【设计意图】比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的.语言表达能力。
(二)验证比的基本性质
师:正如大家想的,比和除法、分数一样,也具有属于它自己的规律性质,那么是否和大家猜想的“比的前项和后项同时乘或除以相同的数(0除外),比值不变”一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。
1.教师说明合作要求。
(1)独立完成:写出一个比,并用自己喜欢的方法进行验证。
(2)小组讨论学习。
①每个同学分别向组内同学展示自己的研究成果,并依次交流(其他同学表明是否赞同此同学的结论)。
②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。
③选派一个同学代表小组进行发言。
2.集体交流(要求小组发言代表结合具体的例子在展台上进行讲解)。
预设:根据比与除法、分数的关系进行验证;根据比值验证。
3.全班验证。
教学总结
比的基本性质教学设计 篇35
教学目标:
1、使学生认识比例的“项”以及“内项”和“外项”。
2、理解并掌握比例的基本性质,会应用比例的基本性质正确判断两个比能否组成比例。
3、通过自主学习,让学生经历探究的过程,体验成功的快乐。
教学重点:
理解并掌握比例的基本性质。
教学难点:
引导观察,自主探究发现比例的基本性质
设计理念:
本课时设计,在“项”以及“内项”和“外项”的认识的设计上,以学生在老师的引导下逐步理解比例的有关知识,是以教师讲授为主。而在本课时第二大块内容,理解并掌握比例的基本性质,本课时设计中,为学生提供开放真实的问题,通过学生自主收集信息,尝试探索规律,引导学生写出不同比例,在此基础上放手让学生在观察中发现、思考,引导学生主动探索比例的基本性质。
教学过程:
一、从知识的矛盾冲突中导入并引入。
3:8=9:( )0.5:( )=5:17
制造冲突,也为后面的思考题做理论铺垫,顺便起到引入课题,探索性质后回应开头的知识,也起到一定的`教育作用。(请勇敢的同学配合老师)
师:某某你出生的时间哪一年哪一月哪一日?(根据学生的回报板书两次分子分母上下易位,同为比例的外项)
你还想知道教师内谁的生日,请他告诉你.(板书一次,做一个内项,那么括号应该怎样填呢)今天学习了比例的基本性质我们就可以迅速的填出了。(板书:比例的基本性质)
二、探索发现新知。
1、引用练习中的3:8=9:24为例子,比例中的四个数叫什么名字呢?两端的两项叫做什么,中间的两项叫做什么?(自学课本)
学生回报,师完成板书:
(注意板书的时候教师的手势要指明确到位)
2、练习:请指出下列比例的两个外项和内项各是多少?
80:2=200:5
6:10=9:15
1/2:1/3=6:4
0.2:2.5=4:50
2.4:1.6=60:40
3、这么多的比例,每个比例的两个外项和两个内项之间存在有什么共同的特点么?可以说的具体一些。
带着问题小组内展开讨论。(教师可以参与当中若干组的活动)时间2分钟。
4、小组汇报初步形成共识:在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。(多找几个小组发表意见)
回到板书例题验证:两个外项的积是:3×24=72
两个内项的积是:8×9=72
5、拿出自己任意找的5个比例,验证是否存在相同的特点。(请学生在展台展示自己的5个比例,并说明外项和内项的积情况)2明,如果出现不相等的,要观察反例,说明两个比组不成比例。
6、完成板书:在比例里,两个外项的积等于两个内项的积
如果把比例写成分数的形式呢,以板书的例子,写成分数的形式,引入等号两边的分子和分母交叉相乘,所得的积相等。
三、基本练习。
1、应用比例的基本性质,判断下面两个比是否能组成比例。
(1)6:3和8:5
(2)1∶5和0.8∶4
(3)1/3:1/4和12∶9
(4)1.2:3/和4/5:5
(注意学生语言叙述的规范性:如1)两个外项的积是6×3=18,两个内项的积是3×8=24,18≠24,所以不能组成比例)
2、在括号里填上适当的数
(1)12:3=( ):5
(2)( ):1/3=1/4:1/6
(3)0.2:0.6=6:( )
(4)4:3=80:( )
3、用5、3、4、8这四个数组比例,看看你能组几个?为什么?
4、把5、3、4、8这四个数换掉其中的一个,组成比例。
5、在例一个比中,两个外项的积互为倒数,其中的一个内项是4/5,另一个内项是( )。
6、回顾矛盾冲突题目:9解决因为两个外项乘积是1,所以两个外项乘积是1,另一个数就是那个已知数据的倒数。
四、全课总结:
谈一谈通过这节课的学习你有哪些收获?(质疑,并完成课题总结),提出预习任务,(那么利用比的基本性质如和求比例中的未知数呢,请自觉预习课本35页的例题2和3)
比的基本性质教学设计 篇36
教学内容:义务教育教科书六年级上册第50-51页。
教学目标:
1、理解并掌握比的基本性质,掌握化简比的方法,能正确地把一个比化成最简整数比。
2、通过迁移类推,培养学生的概括归纳能力,渗透转化的数学思想,并使学生认识事物之间都是存在内在联系的。
3、通过自主探究、合作交流等活动,发展学生概括推理能力。 教学重点:掌握化简比的方法,能正确地把一个比化成最简整数比。教学难点:理解并掌握比的基本性质。 教具学具:课件。 教学过程:
一、回顾旧知。
1、谈话引入:“昨天我们学习了比的`意义,我们说什么是比?”
2、比与除法和分数有什么关系?。 比
前项
:(比号) 后项
比值 除法
被除数 ÷(除号) 除数 商 分数
分子 -(分数线)分母 分数值
二、探究新知。 探究一:比的基本性质
1、同学看这个除法算式:
它们是正确的吗?为什么?运用了除法的什么性质?
2、我们说比和除法有紧密的联系,那么根据除法商不变的性质,我们看看比是不是也有类似的规律呢?
3、根据比与分数的关系,我们还能怎么研究比的规律?
设计意图:通过除法商不变的性质、分数的基本性质进行类比推理,概括推理出比的基本性质,使学生利用旧的知识识得新的知识。:
4、即时练习,强化巩固
在比的基本性质中,大家觉得要注意什么?让我们一起来看看: (1).根据108:18=6,说出下面各比的比值。 54:9=(6) 216:36=(6)10800:1800=(6) (2).判断并说明理由。
(1)6:7=(6×0):(7×0)=0 (2)1:2=(1+2):(2+2)=0.75 (3)2:8=2:(8÷2)=0.5探究二:根据比的性质我们能做什么?(化简比)
1、明确什么是“最简整数比”。
出示一些比,让学生说说哪些是整数比,哪些是最简整数比。
2、出示例题,明确问题。
例1:“神舟”五号搭载了两面联合国旗,一面长15 cm,宽10 cm,另一面长180 cm,宽120cm。这两面联合国旗的长和宽的最简单的整数比分别是多少?
分别写出两个旗子的长宽比(15:10,180:120),他们是最简整数比吗?怎么才能化成最简整数比呢?引导学生说出比的前项和后项同时除以5(5是15和10的什么数?为什么要除以5?)
学生总结方法:整数比化简就是比的前项和后项同时除以它们的最大公因数。
那么用这个方法,我们能把180:120,化成最简整数比吗?(学生自行求最简比)。
3、刚才我们讨论了整数比的化简问题。我们知道两个数相除就可以写成比的形式。分数和小数也是数,它们的比又应该怎么化简呢?
出示例题,全班讨论猜想。 学生独立完成。
集体订正,总结方法“将分数比、小数比先化成整数比,然后再化成最简整数比。”
1212:?(?18):(?18)?3:2 69690.75:2?(0.75?100):(2?100)?75:200?3:8
探究三:一个比中有分数,又有小数该怎么化简呢?
3出示0.125:,学生讨论,汇报结果。
8设计意图:在探究一的基础上,学生通过探究二和探究三获得将“新知识转换成旧知识来解决”的能力。通过探究
二、三突破本节课的难点。:
三、强化新知,达标检测。
通过数学课本51页“做一做”,强化认识。 32:16 48:40 0.15:0.3 5173: : 66128设计意图:强化训练:
四、总结评价
这节课你有什么收获?还有什么疑问?
比的基本性质教学设计 篇37
教学目标:
1、让学生理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2.根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。
学习目标:
1、理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数
重点难点:
1、使学生理解分数的基本性质。
2、让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
过程设计:
一、激情导入
1、导入课题
生读故事。
唐僧师徒四人在西天取经的路上得到了一个大西瓜,他们知道猪八戒想多吃。师傅说:“分给他二分之一,他嫌少,分给他四分之二,他还嫌少,之后师傅说分给他八分之四,这次猪八戒觉得已经很多了,高兴得答应了。可是悟空却在旁边一个劲地笑,你知道孙悟空为什么笑吗?
师:孙悟空为什么笑呢?二分之一、四分之二、八分之四这三个分数到底有什么关系呢?下面我们用折纸的方法来看一下它们之间有什么样的关系?
2、明确目标
理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系;并会应用分数的基本性质。
3、预期效果
达到教学目标
二、民主导学
任务一
任务呈现
动手操作验证性质
自主学习
师:拿出准备好的三张正方形纸。按照下面的要求来进行操作。请一同学读学习要求
1、把三张正方形纸平均对折一次、二次、三次,将纸平均分成2、4、8份,分别把2分之二、4分之二、8分之四涂上颜色,并标出二分之一、四分之二、8分之四。
2、仔细观察三张纸的涂色部份,你们能发现什么?
师:同位分工合作完成。现在开始。
师选择一份作品粘贴在黑板上,请一同学说一说你们有什么发现?
请二至三位同学说一说。
师:我们都发现了涂色部份的面积是相等的,那你们能不能把二分之一、四分之二、八分之四列成一个等式呢?
生回答。师:现在你们知道孙悟空为什么笑了吗?请同学回答。
师:猪八戒每次分到的都是一样多的。它还以为啊,开始分得少,后来分得多。不过猪八戒也许也正纳闷呢?这几个分数的分子和分母各不一样,那它们的大小怎么会一样呢?你们想帮猪八戒解决这个问题吗?(想)
下面请同学们把这个式子从左往右地观察,看一下每个分数的分子分母怎样变化?才得到下一个分数。
生:我发现了二分之一的分子与分母同时乘以2得到了四分之二、四分之二的分子和分母同时乘以2得到了八分之四。
请二名同学重复。
师:你们想得一样吗?我把二分之一的分子分母同时乘2得到了四分之二、四分之二的分子和分母同时乘2又得到了八分之四。那在这个式子中我们是把分子分母同时乘2,分数的大小不变,那如果我们把分数的分子分母同时乘5分数的大小变吗?同时乘以10呢?那你们能不能根据这个式子来总结一个规律呢?
生回答:一个分数的分子分母同时扩大相同的倍数,它们分数的大小不变。
请一至二名同学回答。
师板书:分数的分子分母同时乘相同的数,分数的大小不变。
师:谁来举一个例子。指名三位同学回答,师板书,并问:同时乘以了几?
师:这样的例子我们可以举出很多很多,刚才我们是从左往右观察的,如果把这个式子从右往右观察,你们又会发现什么呢?
请一同学回答,
生:我们发现了8分之四的分子与分母同时除以2得了四分之二,四分之二的分子与分母同时除以2得到了二分之一。
师:嗯,分数的分子分母同时除以2分数的大小不变,如果同时除以4大小会变吗?同时除以5呢?能不能根据这个式子再总结出一句话呢?
生:分数的分子分母同时除以相同的数,分数的大小不变。 (二名学生重复)
师板书:或者除以
师:你能根据刚才总结的'规律举一个例子吗?
让三名学生举出例子,师板书。并问:分子分母同时除以了几?
展示交流
师指着板书说明:我们说分子分母同时乘或除以相同的数,分数的大小不变,那是不是包括所有的数呢?我们一起来看这样一个分数。板书八分之四同时除以0,问:这个式子成立吗?(打上问号)
生:不成立,
师:为什么
生:因为0不能作除数,
师:0不能作除数,所以这个式子是错误的。(画叉)
师:我再说一个式子,我不除以0了,我乘以0,这个式子成立吗?(板书:8分之四乘以0,打上问号)
生:不成立,因为在分数当中分母相当于除数,除数不能为0。
师:对,大家都知道0不能作除数,所以这两个式子都是不成立的?(画叉)我们刚才总结的分数的分子分母同时乘或者除以相同的数,不是所有的数需要加上一句什么话
生:0除外
师板书0除外
师:到现在为止这个规律我们就总结完了,那在这个规律里你觉得什么地方需要我们注意一下呢?
生:同时和相同的数
师:“同时”和“相同的数”(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。(师板书课题)
师:我相信如果当时猪八戒会这个分数的基本性质,那就不会出现这样的笑话了,那咱们同学们千万不要范它那样的错误了。下面让我们一起把分数的基本性质边读边记。
生齐读二遍。
师:这个分数的基本性质特别有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数。
任务二
任务呈现
课本76页的例2,请一同学读题。
自主学习
生独立完成,完成后和同位的同学说一说你是怎样想的。
展示交流
每题请二名同学回答,(集体订正答案)
检测导结
1、目标练习
76页“做一做”
练习十四的1、2、6、7题
2、结果反馈
生做完后同桌交流,再指名说说结果。
3、反思总结
今天这节课你都学会了哪些知识?请大家谈谈学习了分数的基本性质的收获。
三、辅助设计
教具课件设计
小黑板正方形纸数块
板书设计
分数的基本性质
练习和作业设计
1、完成课本76页做一做中的1、2题。
生独立完成,师指名回答。
2、完成练习十四中的1、2、5、6、7题。
师小结:这节课我们学习了分数基本性质,而且我们还学会了根据分数的基本性质把一个分数转化成和它相等的另外一个分数,其实生活当中还有许多的数学知识,如果你留心观察,你就能够发现,我希望大家都能做一个在学习上面的有心人。
比的基本性质教学设计 篇38
教学目标:
知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小不变的分数;培养学生观察比较、抽象概括及动手实践的能力,进一步发展学生的思维。
过程与方法:经历探究分数基本性质的过程,感受“变与不变”,“转化”等数学思想方法。情感态度与价值观:激发学生积极主动的情感状态,养成注意倾听的习惯,体验互助合作的乐趣。
教学重点:理解和掌握分数的基本性质,会运用分数的基本性质。
教学难点:自主探究出分数的基本性质
教学准备:PPT课件、每小组准备三个同样大小的'圆形纸片、三张完全一样的长方形(正方形)纸、直尺、彩笔等。
教学流程:
一、故事导入激趣引思
引言:细心的同学一定听出来了,刚刚老师播放的是哪部动画片的主题歌?对,我们今天的学习就从西游记的故事说起。
讲故事:话说唐僧师徒四人去西天取经,一路上历经磨难。一天,他们走得又累又饿,幸好路过一个村庄,化缘得到三块同样大小的饼。唐僧心想:三块饼,四个人不太好分呀!但是很快他就想到了一个分饼的方案,他对徒弟们说:我准备将第一块饼,平均分成2份,八戒吃其中的二分之一;将第二块饼平均分成4份,沙和尚吃其中的四分之二;将第三块饼平均分成8份,悟空吃其中的八分之四,你们同意这样的分配方案吗?师父的话音未落,猪八戒便跳出来说:“我不同意这样的分法,师父你太偏心了,凭什么猴哥吃那么多有八分之四,而我却吃那么少才二分之一。同学们,请你们判断一下,猪八戒说的对吗,师父真的偏心吗?
生发表见解。
二、自主合作探索规律
1、反馈引导:1/2=2/4=4/8。“三个徒弟分得的饼一样多---等式---仔细瞧瞧这组分数等式的分子分母相同么?但是它们的大小却?再用变化的眼光瞧瞧,(师画正反向两箭头)我们发现分数的分子分母改变了,什么却没有变?师贴板帖分数可真与众不同呵!
2、提出探究任务:那如果我让们动手做或者联系生活实际想,像这样大小相等的分数,只有一组吗?你们能不能找出一些给老师看看?找之前请位同学为我们读一读小组合作学习要求:
(1)每个小组找出一组大小相等的分数,并想办法证明这组分数大小相等。
(2)思考:在写分数的过程中你们发现了什么规律?
组内商量一下然后开始行动!
3、小组研究教师巡视
4、全班汇报
交流评价(教师相机板书)圆纸片汇报长方形纸汇报正方形纸汇报及联系一组人数说发现规律把每组数从左往右或者从右向左仔细观察你能发现分子分母的怎样的变化规律?(可以举例说演绎推理深入)随机更换贴图
板书课题:分数的基本性质打出幻灯
5、反思规律看书对照找出关键词要求重读共同读
6、引证规律:3/4=12/16刚刚动手做我们验证了这组大小相等的分数的正确性并由此发现了分数的基本性质那你能否利用分数与除法的关系以及整数除法中商不变性质,再一次说明分数的基本性质。
三、自学例题运用规律
过渡:同学们刚刚的精彩表现展示出了你们强大的学习能力,所以在接下来的一段时间里,老师请你们自学课本96页的例2并完成相应“练一练”。现在开始
生自学
集体评议:例2练一练1和2,请说说你的根据和想法!重点让学生说说根据什么,分母、分子是如何变化的。
四、多层练习巩固深化
1、判断对错并说明理由
2/9=8/36,4/9=2/3,3/4=3a/4a,5/10=3/6,1/5=4/8
2、把6/20,70/100,45/50,1/2,4/5化成分母相同而大小不变的分数
思考:分数的分母相同,能有什么作用?
3、圈分数游戏圈出与1/2相等的分数
4、对对碰与1/2,2/3,3/4生生组组师生互动
五、课堂小结课堂作业
结语:你看,运用数学知识玩游戏,也是乐趣无穷。这节课我们就上到这儿,
作业:余下来的时间请完成课本97页练习十八的1-3题,做在书上。
比的基本性质教学设计 篇39
教学内容:义务教育教科书六年级上册第50-51页。
教学目标:
1、理解并掌握比的基本性质,掌握化简比的方法,能正确地把一个比化成最简整数比。
2、通过迁移类推,培养学生的概括归纳能力,渗透转化的数学思想,并使学生认识事物之间都是存在内在联系的。
3、通过自主探究、合作交流等活动,发展学生概括推理能力。 教学重点:掌握化简比的方法,能正确地把一个比化成最简整数比。教学难点:理解并掌握比的基本性质。 教具学具:课件。 教学过程:
一、回顾旧知。
1、谈话引入:“昨天我们学习了比的意义,我们说什么是比?”
2、比与除法和分数有什么关系?。 比
前项
:(比号) 后项
比值 除法
被除数 ÷(除号) 除数 商 分数
分子 -(分数线)分母 分数值
二、探究新知。 探究一:比的'基本性质
1、同学看这个除法算式:
它们是正确的吗?为什么?运用了除法的什么性质?
2、我们说比和除法有紧密的联系,那么根据除法商不变的性质,我们看看比是不是也有类似的规律呢?
3、根据比与分数的关系,我们还能怎么研究比的规律?
设计意图:通过除法商不变的性质、分数的基本性质进行类比推理,概括推理出比的基本性质,使学生利用旧的知识识得新的知识。:
4、即时练习,强化巩固
在比的基本性质中,大家觉得要注意什么?让我们一起来看看: (1).根据108:18=6,说出下面各比的比值。 54:9=(6) 216:36=(6)10800:1800=(6) (2).判断并说明理由。
(1)6:7=(6×0):(7×0)=0 (2)1:2=(1+2):(2+2)=0.75 (3)2:8=2:(8÷2)=0.5探究二:根据比的性质我们能做什么?(化简比)
1、明确什么是“最简整数比”。
出示一些比,让学生说说哪些是整数比,哪些是最简整数比。
2、出示例题,明确问题。
例1:“神舟”五号搭载了两面联合国旗,一面长15 cm,宽10 cm,另一面长180 cm,宽120cm。这两面联合国旗的长和宽的最简单的整数比分别是多少?
分别写出两个旗子的长宽比(15:10,180:120),他们是最简整数比吗?怎么才能化成最简整数比呢?引导学生说出比的前项和后项同时除以5(5是15和10的什么数?为什么要除以5?)
学生总结方法:整数比化简就是比的前项和后项同时除以它们的最大公因数。
那么用这个方法,我们能把180:120,化成最简整数比吗?(学生自行求最简比)。
3、刚才我们讨论了整数比的化简问题。我们知道两个数相除就可以写成比的形式。分数和小数也是数,它们的比又应该怎么化简呢?
出示例题,全班讨论猜想。 学生独立完成。
集体订正,总结方法“将分数比、小数比先化成整数比,然后再化成最简整数比。”
1212:?(?18):(?18)?3:2 69690.75:2?(0.75?100):(2?100)?75:200?3:8
探究三:一个比中有分数,又有小数该怎么化简呢?
3出示0.125:,学生讨论,汇报结果。
8设计意图:在探究一的基础上,学生通过探究二和探究三获得将“新知识转换成旧知识来解决”的能力。通过探究
二、三突破本节课的难点。:
三、强化新知,达标检测。
通过数学课本51页“做一做”,强化认识。 32:16 48:40 0.15:0.3 5173: : 66128设计意图:强化训练:
四、总结评价
这节课你有什么收获?还有什么疑问?
比的基本性质教学设计 篇40
教学目标
使学生能够联系商不变的性质和分数的基本性质,概括并理解比的基本性质,能够正确地运用比的基本性质,把比化成最简单的整数比;通过数学培养学生的抽象概括能力和迁移类推的能力。渗透转化的数学思想,并使学生认识到事物之间都是存在内在的联系的。
教学重点和难点
1、理解比的基本性质
2、正确运用比的基本性质把比化成最简单的整数比。
教学过程
一、师:在前面的.学习中我们学习了比的意义,谁来说出什么是比?
师:比与我们学过的那些知识有联系?有什么联系?
师:在以前学习除法时,我们学习了商不变的性质,还学习了分数的基本性质,大家还记得吗?谁来说一说?
师:看来大家对前面学过的知识掌握得比较好。
(导入新课)
二、师:同学们,大家有没有想过,既然比与分数与除法有很多关系,分数中有分数基本性质,除法中有商不变的性质,那么比会不会也有自己的性质呢?如果有,会是什么呢?
师:大家想一想这个猜想有没有研究的价值?
师:所有的猜想都需要一个验证的过程才能最终被我们接受,现在就请同学们利用以前学过的知识来验证这一猜想。请举例验证。
师:这位同学说得怎样?他不但举了例子来验证,而且为了使自己的例子更有说服力,还举了不同的例子进行验证。非常好,还有谁想汇报?
师:是吗?同学们想不想听一听这位同学的高见?
师:这位同学运用了以前学过的知识也证明了猜测是正确的。非常好!通过大家的验证,看来这个猜想是完全成立的,那大家还有没有其他问题?
师:这位同学问的非常好,对呀,到底是为什么呢?谁来回答?
师:大家同意吗?
师:今天我们依靠自己的力量验证了数学中一个非常重要的性质---比的基本性质。请同桌互相说一说什么是比的基本性质?
三、1.师:我们在学分数的基本性质时,利用它化简分数,约分、通分,其实我们学习比的基本性质也可以用来化简比,把比化成最简整数比,知道什么是最简整数比吗?
师:能举例说明吗?比如180:120化成最简整数比是什么?
师:怎么化简的?根据是什么?
教师根据学生的讲述板书:
180÷120=(180÷60):(120÷60)=3:2
2.师:大家都会了吗?那老师考一考大家行吧?出示(1)48:40
(2):出示教材中的一组分数和分数、小数和小数、分数和小数、分数和整数、整数和小数的对比练习,请大家独立化简,指名板演。
师:上面几位同学做得对吗?为什么这样做?能说一说理由吗?根据是什么?
师:看来大家对这部分知识掌握的的确非常好了。
四、这节课我们重点研究了什么?你有什么收获?运用比的基本性质应注意什么?
五、人教版小学数学六年级上册第47--48页练习.十一第1、3
板书设计
比的基本性质
比的前项与后项同时乘或除以同一个数(0除外),比值不变。
180÷120=(180÷60):(120÷60)=3:2 →最简整数比
同时除以这两个数的最大公因数。
比的基本性质教学设计 篇41
教学目标:
1、使学生理解掌握比的基本性质,能应用比的基本性质进行比的化简。
2、培养学生类比、推理和概括思维能力。
教学重点:
1、理解比的基本性质。
2、运用比的基本性质进行化简比。
一、探究新知
(一)比的基本性质
1、前面我们认识了比,想一想2:4与6:12这两个比的大小是相等的吗?你能证明吗?----小研究(后附)
(1)4人小组交流(2)全班交流
(3)比值相等可以证明,还可以运用学过的哪个知识也可以证明呢?
(4)商不变的性质是不是对每个比都适用呢?自己举例试一试。
2、联系除法中商不变的性质和分数的基本性质这两个已学过的知识,就得到今天的比的基本性质。能利用学过的知识解决新问题,是最棒的。谁能完整地说一说比的性质呢?
3、老师板书结语:比的前项和后项同时乘上(除以)相同的数,比值不变。这句话有问题吗?添上0除外,为什么?
4、学生齐读,我们学习比的基本性质有什么作用呢?分数的性质可以使分数化简,比的性质同样可以使比化简,那么,什么样的比才是最简单的整数比呢?(比的前项和后项是互质数)最简单的整数比就简称为最简比。
5、你能举例说几个最简比吗?说得很好,在计算结果时,我们一般要得到最简比。
(二)化简比---完成练习题(后附)
1、小组交流
2、全班交流
小结:化简比时,我们一般利用比的性质把比的前项和后项化成整数,再化简比较快。但在比的前项和后项都是分数时,用求比值的方法较快,只是注意最后结果要写成真分数、假分数或比的形式。
结合学生的汇报,引导学生注意化简比和求比值的区别。化简比:它是为了得到一个最简单的整数比。结果可以写成比的形式,也可以写成分数的'形式,但不能写成带分数、小数获整数的形式。
二、巩固练习
1、学校体育室有10个篮球,15个足球,篮球与足球的个数比是()。
2、李师傅8小时生产了72个零件,李师傅生产零件总个数和时间的比是()。
3、拓展练习
3:8=(3+6):(8+)
(让学生分小组讨论方法)
三、课堂总结
这节课有哪些收获?师生共同总结。
()年()班姓名
比的基本性质小研究
你知道2:4与6:12这两个比的大小相等吗?你能证明吗?你有什么发现?
方法一
方法二
方法三
方法四
我的发现:
聪明的同学:请你结合这节课所学的知识化简下面各比,说说你有什么发现?
序号
比
我的方法
(写出过程)
1
14:21
2
36:15
3
1/6:2/9
4
2/3:3/4
5
1.25:2
6
5.6:4.2
我的发现:
比的基本性质教学设计 篇42
一、教学目标
1.经历探索分数基本性质的过程,理解分数的基本性质。
2.能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
3.经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
二、 教学重、难点
教学重点是:分数的基本性质。
教学难点是:对分数的基本性质的理解。
三、教学方法
采用了动手做一做、观察、比较、归纳和直观演示的方法
四、教学过程
(一)、故事引入,揭示课题
1.教师讲故事。
猴山上的猴子最喜欢吃猴王做的饼了。有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成四块,分给猴1一块。猴2见到说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块。猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给猴3三块。小朋友,你知道哪只猴子分得多吗?
讨论:哪只猴子分得的多?让学生发表自己的意见,教师出示三块大小一样的饼,通过师生分饼、观察和验证,得出结论:三只猴子分得的饼一样多。
引导:聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题)
2.组织讨论。
(1)既然三只猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系,14=28=312,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。
(2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?通过观察演示得出:34=68=912。
(3)我们班有40名同学,分成了四组,每组10人。那么第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出:12=24=20xx。
3.引入新课:黑板上三组相等的分数有什么共同的特点?学生回答后板书:
分数的分子和分母变化了,
分数的大小不变。
它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。
( 二)、比较归纳,揭示规律
1.出示思考题。
比较每组分数的分子和分母:
(1)从左往右看,是按照什么规律变化的?
(2)从右往左看,又是按照什么规律变化的?
让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。
2.集体讨论,归纳性质。
(1)从左往右看,由34到68,分子、分母是怎么变化的?引导学生回答出:把34的分子、分母都乘以2,就得到68。原来把单位“1”平均分成4份,表示这样的3份,现在把分的份数和表示份数都扩大2倍,就得到68。
板书:
(2)34是怎样变化成912的呢? 怎么填?学生回答后填空。
(3)引导口述:34的分子、分母都乘以2,得到68,分数的大小不变。
(4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。
(板书:都乘以
相同的数)
(5)从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都除以相同的数,分数的大小不变。
(板书:都除以)
(6)引导思考:都乘以、都除以两个“都”字,去掉一个怎么改?(去掉第二个“都”字,换成“或者”)再对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?
(板书:零除外)
(7)齐读分数的.基本性质。先让学生找出性质中关键的字、词,如“都”、“相同的数”、“零除外”等。然后要求关键的字词要重读。师生共同读出黑板上板书的分数基本性质。
3.出示例2:把12和1024化成分母是12而大小不变的分数。
思考:要把12和1024化成分母是12而大小不变的分数,分子、分母怎么变化?变化的依据是什么?
4.讨论:猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?如果要五块呢?
5.质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。
( 三)、沟通说明,揭示联系
通过举例,沟通分数的基本性质与商不变性质之间的联系。引导学生运用分数与除数的关系,以及整数除法中商不变的性质,说明分数的基本性质。
如:34=3÷4=(3×3)÷(4×3)=9÷12=912
( 四)、多层练习,巩固深化
1.口答。(学生口答后,要求说出是怎样想的?)
2.判断对错,并说明理由。(运用反馈片判断,错的要求说明与分数的基本性质中哪几个字不相符。)
教学反思:
学生是学习的主人,教师是数学学习的组织者、引导者与合作者。因此数学课堂教学中必须把教师的教变成学生的学,必须深入研究学法,建立探究式的学习模式。教师应调动学生的学习积极性,向学生提供充分从事数学学习的机会,帮助他们在自主观察、讨论、合作、探究学习中真正理解和掌握基本的数学知识和技能,充分发挥学生的能动性和创造性。《分数的基本性质》的教学设计一个突出的特点就是学法的设计,从大胆猜想、实验感知、观察讨论到概括总结,完全是为学生自主探究、合作交流的学习而设计的。具体表现在:
1、学生在故事情境中大胆猜想。
通过创设“猴王分饼”的故事,让学生猜测一组三个分数的大小关系,为自主探索研究“分数的基本性质”作必要的铺垫,同时又很好地激发了学生的学习热情。
2、学生在自主探索中科学验证。
在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。整个教学过程以“猜想——验证——完善”为主线,每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、思路让学生自主探索,问题让学生自主解决,使学生获得成功的体验,增强自信心。
3、让学生在分层练习中巩固深化。
在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,有坡度。第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题通过游戏,加深学生对分数的基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。这样不仅能照顾到学生思维发展的过程,而且有效拓宽了学生的思维空间,真正做到了学以致用。
反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证,而不能局限于老师提供的几种方法。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。
比的基本性质教学设计
作为一名教职工,就不得不需要编写教学设计,教学设计是实现教学目标的计划性和决策性活动。如何把教学设计做到重点突出呢?下面是小编精心整理的比的基本性质教学设计,仅供参考,希望能够帮助到大家。
比的基本性质教学设计 篇43
【教材分析】
在新课程改革中,教材是重要的教育教学因素。等式的基本性质是学生解方程的依据,它是系统学习方程的开始。这节课的内容在简易方程中就起到了承上启下的作用。原来的教材中对于等式的基本性质只是初步的认识,并没有总结成概念性的东西,但学生实际运用时却需要概念来作支撑,所以在教材中作了调整,让学生通过观察天平演示实验,由具体实物之间的平衡关系抽象概括出等式的两个基本性质就成了本节课的教学重点。本课“等式的基本性质”是在上一节刚刚认识了等式和方程的基础上进行教学的。,其核心思想是构建等量关系的数学模型。课程标准要求学生能“理解等式的性质,会利用等式的性质解简单的方程”。
【教学目标】
1.通过天平演示保持平衡的几种变换情况,初步认识等式的基本性质。
2.利用观察天平保持平衡所发现的规律,能直接判断天平发生变化后能否保持平衡。
3.逐步养成观察与概括.比较与分析的能力。
【教学重点】
掌握等式的基本性质。
【教学难点】
理解并掌握等式的性质,能根据具体情境列出相应的方程。
【数学思想】
转化的思想,数形结合的思想,符号化的思想
【教学过程】
一.创设情境,引出问题
教师活动
学生活动及达成目标
师:同学们,你们做过天平游戏吗?这节课我们要利用天平一起来探索等式的性质。(板书课题:等式的性质)
达成目标:由熟悉的天平引出课题激发学生的兴趣。
二.共同探索,总结方法
教师活动
学生活动及达成目标
(一)等式的基本性质一
1.出示教材第64页情境图1第一个天平图。
让学生仔细观察图,并说一说:通过图你知道了什么?
教师小结:1个茶壶的重量=2个茶杯的重量。
追问:如果设一个茶壶的重量是a克,1个茶杯的重量是b克,能用式子表示吗?
(师板书)
引导学生思考:如果在天平的两边同时再各放上一个茶杯,天平会发生什么变化呢?为什么?
教师先进行实际操作天平验证,再演示这一过程,并明确:两边仍然相等。
提问:如果两边各放上2个茶杯,还保持平衡吗?
两边各放同样的一把茶壶呢?
2.出示教材第64页图2的第一个天平图。
(1)如果用a表示一个花盆的重量,用b表示一个花瓶的重量,怎样用等式来表示这幅图呢?
(2)如果把两边都拿掉1个花瓶,天平还平衡吗?让学生尝试用等式怎样表示?
从图上你能知道什么?(出示教材第64页图2第二个天平图)
3.通过这几个实验,你发现了什么?
4.你能用一句话来表示你的发现吗?
(二)等式的基本性质二
1.猜猜:除了向前面这样的变化,天平仍保持平衡外,还可以怎么做能使天平保持平衡?
这时教师一定要及时强调:这都是把等式的两边加上或减去同一个数,并提示学生如果把等式的两边同时乘或除以一个相同的数(O除外),会怎么样呢?
2.出示教材第65页图1的第一个天平图,让学生观察并说明。
引导学生用a表示墨水的重量,用b表示铅笔盒的重量,用式子怎样表示?
猜一猜:左边墨水的数量扩大到原来的2倍,右边铅笔盒的数量也扩大到原来的2倍,天平还保持平衡吗?
如果把天平的两边物品的数量分别扩大到原来的3倍.4倍呢?
3.出示教材第65页图2的第一个天平图,让学生观察并说明知道了什么。
质疑:如果把两边的球都平均分成2份,各去掉一份,天平还能平衡吗?
教师演示。
4.通过刚才的试验,你发现了什么?
5.你能用一句话总结一下等式的这个性质吗?
6.为什么等式两边不能除以O?
1.自主回答,学生可能会回答:天平的左边放了一把茶壶,右边放了两个茶杯,天平保持平衡;这说明一个茶壶的重量与2个茶杯的重量相等。
尝试写出:a=2b
先猜一猜,学生可能会猜测出天平仍然平衡,因为两边加上的重量一样多。
观察小结:实验证明1个茶壶+1个茶杯的质量=3个茶杯的质量。
同时学生尝试用字母表示这个式子:a+b=2b+b
学生回答后,教师演示,并让学生分别用式子表示:a+2b=2b+2ba+a=2b+a
观察现在的天平是什么样的?(平衡)
生尝试写出:a+b=4b
先猜一猜,再回答,平衡:a+b-b=4b-b
得出1个花盆和3个花瓶同样重。
3.学生思考后小结:平衡的天平两边加上同样的物品,天平还保持平衡。平衡的天平两边减去同样的物品,天平还保持平衡。
4.学生归纳等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。
达成目标:通过演示在天平的两边同时放上或拿走同样的物品,天平仍然平衡。给学生思考.感悟天平保持平衡的变化规律,提供了直观的`观察材料。从而得出天平平衡的原理,即等式的一条基本性质:等式两边加上或减去相等的数,等式不变。
1.如:学生猜测天平的两边同时放2个.3个杯子;同时减去一把茶壶等。
2.学生观察并说明:
一瓶墨水的重量=一盒铅笔盒的重量
写出等式:a=b。
学生猜测平衡后,教师进行实际天平操作,验证学生的猜测。
学生用等式表示:2a=2b。
天平仍然保持平衡
3.学生观察得出:
2个排球的质量=6个皮球的质量
有了前面的经验学生用a表示排球的重量,用6表示皮球的重量,写出等式:2a=6b。
学生猜测:平衡,并能用等式a=3b表示。
4.学生会发现:平衡的天平两边的物品扩大到原来的相同倍数,天平仍然平衡。平衡的天平两边的物品都缩小到原来的几分之一,天平仍然平衡。
5.学生归纳小结:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。
达成目标:等式基本性质2的推导在性质1的基础上,让学生自己通过实验探究,运用知识的迁移得出,这样培养了学生的逻辑思维能力,抽象概括能力和口头表达能力。
6.学生交流,汇报:O不能做除数。
三.运用方法,解决问题
教师活动
学生活动及达成目标
出示教材第66页练习十四第4.5题。
学生试做集体订正,注意学生列式计算时的取值是否正确。
四.反馈巩固,分层练习
教师活动
学生活动及达成目标
基础练习:利用等式的性质填空
1.如果2x-5=9,那么2x=9+()
2.如果5=10+x,那么5x-()=10
3.如果3x=7,那么6x=()
4.如果5x=15,那么x=()
拓展练习:见课件
让学生回忆等式的性质,再自主完成填空。
达成目标:等式的基本性质一是简易方程部分重要的概念,不仅要理解,而且还要会应用。
五.课堂总结,提升认识
教师活动
学生活动及达成目标
这节课你运用了哪些学习方法,你有什么收获?你对自己这堂课的表现是怎么评价的?
学生总结本节课的收获,在梳理总结过程中提高学生对性质的认识和理解。
比的基本性质教学设计 篇44
教学内容:人教版小学数学教材六年级上册第50~51页内容及相关练习。
教学目标:
1.理解和掌握比的基本性质,并能应用比的基本性质化简比,初步掌握化简比的方法。
2.在自主探索的过程中,沟通比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。
3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。
教学重点:理解比的基本性质
教学难点:正确应用比的基本性质化简比
教学准备:课件,答题纸,实物投影。
教学过程:
一、 复习引入
1.师:同学们先来回忆一下,关于比已经学习了什么知识?
预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。
2.你能直接说出700÷25的商吗?
(1)你是怎么想的?
(2)依据是什么?
3.你还记得分数的基本性质吗?举例说明。
【设计意图】影响学生学习的一个重要因素就是学生已经知道了什么,于是此环节意在通过复习、回忆让学生沟通比、除法和分数之间的'关系,重现商不变性质和分数的基本性质,为类比推出比的基本性质埋下伏笔。同时,还有机渗透了转化的数学思想,使学生感受知识之间存在着紧密的内在联系。
二、新知探究
(一)猜想比的基本性质
1.师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变性质,分数有分数的基本性质,联想这两个性质,想一想:在比中又会有怎样的规律或性质?
预设:比的基本性质。
2.学生纷纷猜想比的基本性质。
预设:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
3.根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
【设计意图】比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。
(二)验证比的基本性质
师:正如大家想的,比和除法、分数一样,也具有属于它自己的规律性质,那么是否和大家猜想的“比的前项和后项同时乘或除以相同的数(0除外),比值不变”一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。
1.教师说明合作要求。
(1)独立完成:写出一个比,并用自己喜欢的方法进行验证。
(2)小组讨论学习。
①每个同学分别向组内同学展示自己的研究成果,并依次交流(其他同学表明是否赞同此同学的结论)。
②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。
③选派一个同学代表小组进行发言。
2.集体交流(要求小组发言代表结合具体的例子在展台上进行讲解)。
预设:根据比与除法、分数的关系进行验证;根据比值验证。
3.全班验证。
教学总结
比的基本性质教学设计15篇
作为一名教学工作者,可能需要进行教学设计编写工作,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。那么大家知道规范的教学设计是怎么写的吗?下面是小编为大家收集的比的基本性质教学设计,希望能够帮助到大家。
比的基本性质教学设计 篇45
教学内容:苏教版五年级上册p34——35例5、例6,“试一试”、“练一练”,练习六1——5题。
教学目标:
1、理解并掌握小数的性质;
2、能运用小数的性质进行小数的化简和改写;
3、培养学生对所学知识的归纳概括,分析综合及灵活运用的能力。
教材的重点:通过探索,发现小数的性质,运用小数的性质解决相关问题。
教学难点:对小数的性质这一概念的理解是本节的难点。 教学过程:
一、导入新课
在商店里,经常把商品的标价写成这样的小数:手套每双2.50元,毛巾每条3.00元。这里的2.50元、3.00元分别是多少钱?(2.50元是2元5角,3.00元是3元)为什么能这样写呢?这是小数的一个重要性质,是我们今天要学习的内容,并板书“小数的性质”。
二、学习新知
1、研究小数的性质
(1)(板书“1”)师:在“1”的末尾依次添上1个“0”、2个“0”,数的大小变化了吗?怎么变?你能不能在括号里填上合适的单位名称,使下面的等式成立。
1( )=10( )=100( )
得出:1元=10角=100分
1米=10分米=100厘米
1分米=10厘米=100毫米
出示米尺,1分米是1/10米,可写成怎样的小数?(0.1米);10厘米是10个1/100米,可写成怎样的小数?(0.10米),100毫米是100个1/1000米可写成怎样的小数?(0.100米)
板书:因为1分米=10厘米=100毫米
所以0.1米=0.10米=0.100米
师:0.1、0.10、0.100是否相等?为什么?
(板书:0.1=0.10=0.100)
a、从左往右看,是什么情况?(小数的末尾添上“0”,小数大小不变)
b、从右往左看,是什么情况?(小数的末尾去掉“0”,小数大小不变)
c、由此,你发现了什么规律?(小数的末尾添上“0”或去掉“0”,小数大小不变)
(2)出示:0.3元、0.30元师:这两个数相等吗?说出理由。(学生交流,教师适时适当地引导)
(3)让学生在两张同样大小的正方形纸上(其中一张均分为100格,一张均分为10格)表示出0.30、0.3,比较其大小,说明30个1/100就是3个1/10,0.30=0.3
(4)师:如果在它们的末尾添上两个“0”呢,三个“0”呢?相等吗?为什么?
(5)0.3添上“0”成0.03,大小有没有变化?为什么?
(6)引导学生归纳出小数的性质。
2、小数性质的应用
师:根据这个性质,遇到小数末尾有“0”的时候,一般可以去掉末尾的'“0”,把小数化简。
(1)化简小数
出示例6:提问:价格表上的哪些“0”可以去掉?
提问:这样做的根据是什么?弄清题意后,学生回答,教师板书:2.80=2.8 4.00=4 10.50=10.5
(2)把整数或小数改写成指定数位的小数
师:有时根据需要,可以在小数的末尾添上“0”;还可以在整数的个位右下角点上小数点,再添上“0”,把整数写成小数的形式。
如:2.5元=2.50元 3元=3.00元
(3)做“试一试”
0.4=0.400 3.16=3.160 10=10.000
练习:口答“练一练”第2题。
讨论小结:改写小数时一定要注意下面三点:
a、不改变原数的大小;
b、只能在小数的末尾添上“0”;
c、把整数改写成小数时,一定要先在整数个位右下角点上小数点后再添“0”。(想一想为什么)
三、巩固练习
练一练
第1题:学生先独立做,再校对,说说为什么。
第2题:先涂色,再比较。根据小数的意义说一说。
练习六
第1题:口答,说说为什么。
第2题:把相等的数用线连起来,先在书
上填好后,再提问找朋友。一个同学在第一栏里按顺序报数,其他同学准备当朋友。
第3题(左边4题):化简下面小数,采取抢答来完成。
第4题(左边4题):先独立做再口答订正。
第5题:用元作单位,把下面的钱数改写成两位小数。2人板演,其余学生齐练,评价鼓励。
四、课堂作业
练习六3和4(右边4题)
教学反思:
在教学时,我首先通过联系学生的生活实际,让学生感知商品的价格,引入新课揭示并板书课题。教学例题时,我没有直接出示例6而是先在黑板上写了三个1。提问:这三个1中间可以用什么符号连接?创设这样一个问题情境,让学生回答。接着,我在第二个1后面添上一个“0”成10,在第三个1后面添上两个“0”成100。问:现在这三个数还能用等号连接吗?(不能)师:你能想办法使他们相等吗?这问题情境的创设立即引起了学生们的好奇。这个富有启发性、趣味性、挑战性的问题吸引着学生,引起了他们强烈的探索欲望,使他们情不自禁地注入自己的热情成为学习的主人。他们注意力迅速高度集中,纷纷开动脑筋、个个跃跃欲试。通过大家的回答和教师的评判不知不觉引入新课的学习,自然流畅。这样设计有利于引导学生根据小数的意义出发研究新问题是小数意义的运用。接着通过观察米尺,引导学生得出0.1=0.10=0.100。让学生从左往右看,是什么情况?再从右往左看,是什么情况?发现了什么规律?引导学生找出规律:小数的末尾添上“0”或去掉“0”时,小数的大小不变。接着让学生用手中的学具验证:0.3=0.30,再次理解并掌握小数的性质。
这节课,以学生找规律、验证规律、应用规律,环节清晰。但是正如所有的课一样有优点也有缺点,反思下来我觉得本节课中教师还是讲得多了一些,因此留给学生巩固练习时间少了一些。因此,在今后的教学中,要体现以学生为主体,让学生充分发表自己的意见,大胆地说出自己的想法。
比的基本性质教学设计 篇46
教材分析
1.分数基本性质是约分和通分的基础,而约分、通分又是分数四则运算的重要基础,因此,理解分数基本性质显得尤为重要。而分数与除法的关系以及除法中的商不变规律,与这部分知识紧密联系,是学习这部分内容的基础。
2.教材安排了两个学习活动,让学生寻找相等的分数,通过活动使学生初步体验分数的大小相等关系,为观察发现分数的基本性质提供的丰富的学习资料,然后引导学生分别观察这两组相等的分数,寻找每组分数的分子、分母的变化规律,并展开充分的交流讨论,在此基础上归纳出:分数的分子和分母都乘或除以相同的数(零除外),分数的大小不变。
学情分析
学生已明确商不变规律,分数与除法的关系等知识,这些都为本课学习做了知识上的铺垫。五年级学生已经初步养成了合作学习的习惯,并具有了一定的分析和解决问题的能力,因此能够在教师的引导下完成“质疑—探索——释疑——应用”这一完整的学习过程。
因此在教学中,我主要采用引导学生探索以及小组合作学习相结合的方法,让学生探索出分数的基本性质,并会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,能有效地提高教学效率。
教学目标
经历探索分数基本性质的过程,理解分数基本性质。
能运用分数基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
教学重点和难点
理解分数基本性质,能运用分数基本性质转化分数。
教学过程
一、复习导入
二、探究新知
实践操作,探究规律
观察发现:初步概括分数基本性质
括归纳分数基本性质
三、课堂练习
四、课堂小结
出示复习题口答卡片, 复习商不变的规律、分数与除法的关系。
1、 讲述唐僧分饼的故事:“……贪吃的猪八戒抢着说要吃这个饼的9/12,孙悟空说要吃这个饼的6/8,沙僧说要吃这个饼的3/4。同学们可知道谁吃的饼最多?”
提出问题: 这些分数都相等吗?
观察这组相等的分数,你发现了什么?把你的发现说给同伴听。
分子、分母都乘或除以一个数,这个数可以是0吗?为什么?
1、课本P43的“试一试”
2、数学游戏:说出相等的分数3、课本P44的.“练一练”第1~2、4
通过这节课的学习、你学会了那些知识
口答
小组讨论
拿出准备好的圆形纸片,折一折,画一画、涂一涂
小组讨论、交流
小组讨论、交流
做练习,完成后集体交流。
说说,读分数基本性质
复习旧知,为学习新知识作铺垫。
将例1改编成故事 提出问题,让学生对故事中的人物进行直观评价,为后续探究营造良好氛围。
让学生通过实践操作,激发学生参与学习探究的兴趣,通过合作探究,初步感知有些分数的分子、分母不同,但分数的大小却相等。
引导学生通过不同形式的观察,逐步总结出存在的规律,这样由浅入深,循序渐进,有利于学生探究学习知识。
在学生初步发现规律的基础上,进一步理解分数的基本性质,并对分数的基本性质进行全面概括。
让学生利用分数的基本性质解决问题,使学生对分数的基本性质理解的更深刻,同时体验解决问题的乐趣。
对本节课的所学知识的回顾,及所学知识点的总结。
板书设计(需要一直留在黑板上主板书)分数基本性质被除数和除数同时扩大或缩小相同的倍数(零除外),商不变,这就是商不变的规律分数的分子和分母都乘或除以相同的数(零除外),分数的大小不变,这叫做分数基本性质。
教学反思:
分数的基本性质在小学阶段是数运算的又一次质的飞跃与扩展,是重要的一个环节。我在引导学生观察探究中,重视学生的主动参与,多次组织学生小组讨论交流,让每个小组成员都能充分的说说自己的看法,相互交流,相互启迪,以感知分数的分子、分母是按一定的规律变化而分数大小不变。体现了理解与掌握数与数之间联系、变化的观点。
在本节课中,由于我对学困生关注度不高,,使得他们在分数基本性质应用的过程中产生了困难。小组合作探究中的小组学习亦要不断地完善。
比的基本性质教学设计 篇47
教学目标:
1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。
2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。
3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。
教学重点:
探索并掌握比例的基本性质。
教学难点:
根据乘法等式写出正确的比例。
教学准备:
多媒体课件
整体设计说明:
本班的孩子基础较差,很多孩子没有养成好的学习习惯,好的思考方法,所以课堂上的重点放在了发现并概括出比例的基本性质上。在比例的基本性质应用时,重点突出孩子的思考过程,强调孩子有根据地思考,养成独立思考的习惯。
教学过程
一、旧知铺垫导入。
1、一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。说一说上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?
2、比和比例有什么区别?
【设计意图】
注重从学生已有的知识出发,为新课做好铺垫。
二、自主探究
过渡:同学们,比有各部位的名称,把比组成比例后我们有了新的名称,请自学课本第34页。生阅读后,请同学说出黑板上比例各部分的名称。
【设计意图】
组成比例的四个数的名称的认识对孩子们来说是比较简单的,所以让孩子们自学,培养孩子的自主学习能力,养成读数学书的习惯。
三、反馈练习。
指出下面比例的外项和内项。(投影出示)
先小组之内说一说,然后在指名回答。重点说分数形式的'比例外项和内项。
【设计意图】
这一环节重点学习组成一个比例的两个比哪两个数是外项,哪两个数是内项。重点突出分数形式下怎么去找比例的内项和外项。
四、探究比例的基本性质
(1)投影出示几组比例,让学生观察看看能有什么发现?细心的同学很快会发现这几组比例数字相同,但是书写位置不同。然后老师在质疑,为什么这些比例里的四个数书写位置不同却能组成比例呢?请小组合作找个这个秘密。
(2)学生找出原因后,教师引导学生用一句话总结出来。并指出这叫做比例的基本性质,板书课题。
(3)继续提出:是不是所有的比例都具有这样的性质,举例验证,最后得出结论。
(4)比例写出分数形式后,也就是等号两端的分子分母交叉相乘,乘得的积也一定相等。
【设计意图】
这一环节我根据学生好奇的心理,用质疑的方式来激发学生的学习兴趣,让学生主动去探索新知,这样也能让学生体会到总结归纳的过程,并渗透科学态度的教育。
五、巩固练习
1、应用比例的基本性质,判断下面哪组中的两个比能否组成比例(投影出示练习)。
2、应用比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例。
(学生独立完成后,用展示台展示)
3、根据比例的基本性质,在( )里填上适当的数。(投影出示)
六、全课总结:
这节课你有什么收获。
【设计意图】
关注学生知识与技能的掌握情况,并且留给孩子质疑问难的空间。
七、拓展练习:把下面的等式改写成比例。
3×40=8×15
比的基本性质教学设计 篇48
【教材分析】
《比例的基本性质》这节课在学生理解比例的意义的基础上教学的,为下节课教学解比例打下基础。教材直接以比例“2.4:1.6=60:40”教学比例各项的名称,即什么叫做比例的项,什么是比例的內项,什么是比例的外项。引导学生计算两个外项的积和两个内项的积,并追问“如果把比例改写成分数形式,等号两边的分子和分母分别交叉相乘,所得的积有什么关系?”即呈现:
“2.4×40○1.6×60”。在此基础上,发现规律,揭示比例的基本性质。“做一做”教学利用比例的基本性质判断两个比能否组成比例的方法。个人认为这样的材料呈现方式至少存在两个弊端:(1)例题缺乏意义和挑战性,不能激发学生的思考欲望;(2)没有给学生想想的猜想和验证的空间。
【教学目标】
1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。
2、通过观察、猜测、举例验证归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。
【教学重点】探索并掌握比例的基本性质。
【教学难点】判断两个比能否组成比例,根据乘法等式写出正确的比例。
【教学设想】:
1、教学情境的呈现
创设有意义的、富有挑战性的学习情境,就好比创建了一个充满引力的磁场,将对学生产生巨大的吸引力,激发学生的学习主动性和积极性,实现课堂教学的“轻负高效”,增加课堂教学的厚度。为此,在准备这节课时,我对情境的创设有如下考虑:简单却能为学生提供思考的空间。
教材中直接呈现比例“2.4:1.6=60:40”,并跟进两个填空:两个外项的积是(),两个內项的积是(),从而得出结论:在比例中,两个外项的积等于两个內项的积,这叫做比例的基本性质。个人认为这样的情境太直接,牵住学生的思维走,没有提供可探究的空间。为此,我简单创设了这样一个情境:老师这里有一个比例“12∶□=□∶2”,不过它的两个内项看不清了,想一想,这两个内项可能是哪两个数?这个问题简单却开放,答案不唯一,为学生的思考打开了空间,同时学生可以通过求比值的方法解决:先填进一个数,然后就出比值,再确定另一个数。只要老师有意识的把学生的回答有序板书,可以达到引导有序思考的作用。
2、教学方式的选择
教育的真谛应该是促进人的发展,人的发展当然需要积累一定量的基础知识,更重要的是思维水平的提升和分析问题、解决问题能力的发展。我们的课堂教学要引领学生掌握知识,更要侧重引领学生经历知识的形成过程,让学生在探索知识形成过程的学习中,不断拓展思维的宽度和增加思维的厚度。
比例的基本性质本身并没有难度,难在通过观察、猜测、验证、归纳等数学活动探索“在比例中,两个外项的积等于两个內项的积”这个结论的形成过程。我想,这个探究过程应该就是一个合作、探究学习的过程吧。只有当学生经历了这个探究式学习过程,才有可能真正体验思考与合作的成就感,才能真正激发学生对数学的学习兴趣。
3、练习的设计
(1)判断下面哪组中的两个比可以组成比例。旨在巩固对比例基本性质的掌握,应用比例的基本性质解决问题,渗透假设、验证的解决问题方法,假设两个比能组成比例,然后根据比例的基本性质,分别算出两个外项和两个內项的积。补问引出求比值的方法判断两个比能否组成比例,追问引领学生对求比值判断两个比能否组成比例和用比例的基本性质判断两个比能否组成比例的方法进行比较优化,凸显了比例基本性质的应用价值。
(2)根据乘法等式“2×9=3×6”写比例。既是对比例基本性质的.逆用,又旨在渗透有序思考的解决问题策略和方法。
(3)如果a×2=b×4,则a:b=():(),旨在将比例的基本性质逆用推广到一般。追问:如果a:b=4:2,则a=4,b=2。这种说法对吗?为什么?旨在激发学生的思维矛盾,引领学生打破思维定势,体验变与不变的思想。那么a、b还可能是多少?你发现了什么?旨在引导学生经历一个列举、归纳的过程,提升思维水平。
(4)猜猜我是谁?6:()=5:4,旨在应用比例的基本性质时,渗透方程思想,为解比例的学生作铺垫。
【教学预设】
一、认识比例各部分的名称
1、呈现:4:5和8:10
(1)认识吗?叫什么?
(2)正确吗?为什么?(4:5=0.8,8:10=0.8,所以4:5=8:10)
(3)求比值,判断两个比能否组成比例。
2、介绍比例各部分的名称
4:5=8:10中,组成比例的四个数“4、5、8、10”叫做这个比例的项。两端的两项“4和10”叫做比例的外项。中间的两项“5和8”叫做比例的內项。
3、你能说出下面比例的内项和外项各是多少吗?
(1)1.4:=:5(2)=
二、探究比例的基本性质
1、猜数
呈现比例“12∶□=□∶2”。
(1)想一想,这两个内项可能是哪两个数?如1和24,2和12,……
(2)这样的例子举得完吗?
2、猜想
仔细观察这组等式,你有什么发现?(两个外项的积等于两个内项的积”;两个內项的位置可以交换……)
3、验证
(1)是不是所有的比例都有这样的规律呢,有什么好办法?
(2)你觉得应该怎样举例呢?
(3)合作要求
1)前后4个同学为一个小组;
2)每个同学写出一个比例,小组内交换验证。
3)通过举例验证,你们能得出什么结论?
4、小结
(1)老师这里也有一个比例3:5=4:6,为什么两个外项的积不等于两个內项的积?
比的基本性质教学设计
作为一名专为他人授业解惑的人民教师,常常需要准备教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。那么写教学设计需要注意哪些问题呢?下面是小编为大家整理的比的基本性质教学设计,欢迎阅读,希望大家能够喜欢。
比的基本性质教学设计 篇49
教学目标:
1、使学生理解掌握比的基本性质,能应用比的基本性质进行比的化简。
2、培养学生类比、推理和概括思维能力。
教学重点:
1、理解比的基本性质。
2、运用比的基本性质进行化简比。
一、探究新知
(一)比的基本性质
1、前面我们认识了比,想一想2:4与6:12这两个比的大小是相等的吗?你能证明吗?----小研究(后附)
(1)4人小组交流(2)全班交流
(3)比值相等可以证明,还可以运用学过的哪个知识也可以证明呢?
(4)商不变的性质是不是对每个比都适用呢?自己举例试一试。
2、联系除法中商不变的性质和分数的基本性质这两个已学过的知识,就得到今天的比的`基本性质。能利用学过的知识解决新问题,是最棒的。谁能完整地说一说比的性质呢?
3、老师板书结语:比的前项和后项同时乘上(除以)相同的数,比值不变。这句话有问题吗?添上0除外,为什么?
4、学生齐读,我们学习比的基本性质有什么作用呢?分数的性质可以使分数化简,比的性质同样可以使比化简,那么,什么样的比才是最简单的整数比呢?(比的前项和后项是互质数)最简单的整数比就简称为最简比。
5、你能举例说几个最简比吗?说得很好,在计算结果时,我们一般要得到最简比。
(二)化简比---完成练习题(后附)
1、小组交流
2、全班交流
小结:化简比时,我们一般利用比的性质把比的前项和后项化成整数,再化简比较快。但在比的前项和后项都是分数时,用求比值的方法较快,只是注意最后结果要写成真分数、假分数或比的形式。
结合学生的汇报,引导学生注意化简比和求比值的区别。化简比:它是为了得到一个最简单的整数比。结果可以写成比的形式,也可以写成分数的形式,但不能写成带分数、小数获整数的形式。
二、巩固练习
1、学校体育室有10个篮球,15个足球,篮球与足球的个数比是()。
2、李师傅8小时生产了72个零件,李师傅生产零件总个数和时间的比是()。
3、拓展练习
3:8=(3+6):(8+)
(让学生分小组讨论方法)
比的基本性质教学设计 篇50
教学目标:
1.认识比例各部分名称,理解比例的基本性质。
2.能根据比例的基本性质,正确判断两个比能否组成比例。
3.在自主探究、观察比较中,培养学生分析、概括能力。
教学重、难点:
重点:理解比例的基本性质,能正确判断两个比能否组成比例。
难点:自主探究比例的基本性质。
教学过程:
一、引入
同学们,前段时间在上海举办了一个举世闻名的盛会,知道是什么吗?(世博会)
对,老师也去参观了,参观中,老师还拍下了我最喜欢的建筑(出示:中国馆图片),知道这是什么吗?(中国馆)
对,中国馆的造型很独特,寓意也很深刻,老师想把他放大放到家里做装饰品,看看,哪一副图是按比例放大后的照片,为什么?
生:第二幅只扩大了长,宽没变,第三幅图只扩大了宽,长没变,第三幅图长和宽都扩大了。
二、探索新知
师:通过观察选择了第三幅图,如果给出相应的数据,你能结合前面学习的比例知识和大家说一说,为什么选第三幅图吗?
(给出数据: 20cm、10cm, 30cm、15cm) 师:有道理,根据这两幅图,你还能写出哪些比例? (生独立写)
反馈板书: 20∶30=10∶15
30∶15=20∶10
10∶15=20∶30
20∶10=30∶15 讲解:内项与外项
刚才我们用四个数组成了多个比例,在数学里,我们把组成了比例的四个数,叫做比例的项,其中中间的两个数叫做比例的内项,外面的两个数叫做比例的外项。(板书)
观察:组成比例的内项和外项,你有什么发现,并在小组内交流你的发现.反馈: 在比例里,两个内项的积等于两个外项的积。
师:同意吗?
师:说说你是怎么想的,(板书:20×15=30×10)
师:每一个人再写一个比例,然后在小组内交流一下,看看是否有同样的规律?
学生写并小组内交流。
谁再来说一说这一发现?
师:PPT出示(在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。)
如果a∶b=c∶d,那么这个规律可以表示成什么?
学生口答,教师板书;a×d=b×c 如果把比例写成分数形式,把等号两端的`分子、分母分别交叉相乘,结果怎样?
说一说 1.应用比例的基本性质,判断下面的两个比例能否组成比例,并说明理由。
313115 ∶ 和 ∶ 511133( )×( )=( ) ( )×( )=( ) 填一填
根据比例的基本性质,在括号里填上合适的数。
2∶3=4∶( )(口答) 再出示:
2∶4=3∶( ) ( ) ∶3=4∶2 让学生填一填 为什么都填的是6?
看来用
2、
3、
4、6可以组成不同的比例,还可以组成哪些比例呢? 学生自己独立写一写。
反馈:有什么好方法能写的又对又快。
三、课堂小结
