初中数学教案

笔构网

2026-01-03教案

请欣赏初中数学教案(精选11篇),由笔构网整理,希望能够帮助到大家。

初中数学教案 篇1

一、新授

利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?

在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为

100t+120(t-0.5)千米①

冻土地段与非冻土地段相差

100t-120(t-0.5)千米②

上面的式子①、②都带有括号,它们应如何化简?

思路点拨:教师引导,启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:

利用分配律,可以去括号,合并同类项,得:

100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60

100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60

我们知道,化简带有括号的整式,首先应先去括号.

上面两式去括号部分变形分别为:

+120(t-0.5)=+120t-60③

-120(t-0.5)=-120+60④

比较③、④两式,你能发现去括号时符号变化的规律吗?

思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕)展示:

如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;

如果括号外的因数是负数,去括号后原括号内各项的`符号与原来的符号相反.

特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).

利用分配律,可以将式子中的括号去掉,得:

+(x-3)=x-3(括号没了,括号内的每一项都没有变号)

-(x-3)=-x+3(括号没了,括号内的每一项都改变了符号)

去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项.

二、范例学习

例1.化简下列各式:

(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).

思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号.

解答过程按课本,可由学生口述,教师板书.

例2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/时,水流速度是a千米/时.

(1)2小时后两船相距多远?

(2)2小时后甲船比乙船多航行多少千米?

教师操作投影仪,展示例2,学生思考、小组交流,寻求解答思路.

思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度,船逆水航行速度=船在静水中行驶速度-水流速度.因此,甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50-a)千米.两船从同一洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和.

解答过程按课本.

去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,括号内每一项都要变号.为了防止出错,可以先用分配律将数字2与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号.

三、巩固练习

1.课本第68页练习1、2题.

2.计算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.[5xy2]

思路点拨:一般地,先去小括号,再去中括号.

四、课堂小结

去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.

五、作业布置

1.课本第71页习题2.2第2、3、5、8题.

2.选用课时作业设计.

初中数学教案 篇2

教学目的

1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。

2.使学生会列一元一次方程解决一些简单的应用题。

3.会判断一个数是不是某个方程的解。

重点、难点

1.重点:会列一元一次方程解决一些简单的应用题。

2.难点:弄清题意,找出“相等关系”。

教学过程

一、复习提问

一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?

解:设小红能买到工本笔记本,那么根据题意,得1.2x=6

因为1.2×5=6,所以小红能买到5本笔记本。

二、新授

问题1:某校初中一年级328名 师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?(让学生思考后,回答,教师再作讲评)

算术法:(328-64)÷44=264÷44=6(辆)

列方程:设需要租用x辆客车,可得44x+64=328

解这个方程,就能得到所求的结果。

问:你会解这个方程吗?试试看?

问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”

通过分析,列出方程:13+x=(45+x)

问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,

因为左边=右边,所以x=3就是这个方程的解。

这种通过试验的方法得出方程的解,这也是一种基本的.数学思想方法。也可以据此检验一下一个数是不是方程的解。

问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?

同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?

三、巩固练习

教科书第3页练习1、2。

四、小结

本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。

五、作业

教科书第3页,习题6.1第1、3题。

初中数学教案 篇3

【学生分析】

大部分学生思维活跃,肯钻、肯想、敢说、敢问,对立体图形认识有一定知识积累,有探究、合作等学习方法积累,促进学生知识深化和延伸尤为重要。

【设计思路】

将电视娱乐节目的形式植入数学课堂,体现用活教材激活课堂的理念思想,方法教学成为主导,指导学习方向,复习活动贯穿课前、课中,采用分组竞赛、分组合作的形式,使学生在积极主动的状态下理解本课重点,疏通并构建知识网络,掌握复习方法。

【课前准备】

每组据分工专门研究一个立体图形的特征,整理出3个有关的涵盖面宽,较富挑战性的,主要针对基础知识的问题。同时,据猜测准备好别组涉及问题的答案。

【教学目标】

1、知识目标:使学生进一步识记各图形特征,掌握不同图

形之间的异同,学会观察体会几何图形间的联系和区别。

2、能力目标:通过小组竞赛合作整理知识框架,提高学习的系统性,培养学生回忆、质疑、梳理、归纳、总结等自主复习整理的意识和方法以及能力,同时也加强合作学习能力。

3、情感目标:利用几何图形的美,增进学生对数学的兴趣,复习方法自主构建的尝试,激发学生自信心,渗透事物普遍联系的辩证唯物主义观点。

【重难点】

教学重点

沟通各图形内在联系,培养学生主动整理知识的意识,使学生掌握一定的复习整理方法。

教学难点

描述几何图形特征的语言的准确性训练,以及知识延伸,进一步发展学生空间观念。

【教学过程】

一、构建几何图形的简单知识网络,感知平面图形和立体图形的密切联系。

1、完善几何图形知识图:

师:除了平面图形,你觉得还有哪类图形?(立体图形)

2、感知平面图形和立体图形的密切联系。

师:这是一个平面图形还是立体图形?

师:从它的表面上,你观察到哪些平面图形?

3、强调平面图形和立体图形的区别。

(1)试一试:把下列几何图形分类?

(2)你感觉二者的区别主要是什么?师举例说明。

强调:各部分是否在同一平面

二、展开复习活动,自主系统整理,感知立体图形和立体图形的联系。

(1)梳理五种立体图形的基本构成,加强和生活联系。

1、出示五种立体图形。

(1)忆一忆:你认识这些几何体吗?说名称

(2)畅所欲言:举出日常生活中和它们类似的物体。

(小组比赛,看谁说得多,让学生感觉正是这些基本图形构成我们生活的空间)

(3)议一议,认真观察,识记图形。

出示情景图:图中你熟悉的物体类似于哪些图形?

2、说出各立体图形各部分名称,各字母表示什么?

3、立体图形分类

师:分两类,怎么分?为什么?

(二)主动回忆,梳理知识。

1、谈话引入:关于我们要复习的知识你想留下深刻清晰的印象吗?老师给大家介绍一个复习的好方法。

2、出示复习方法:

关于要复习的知识

(1)我已知道什么?

(2)你想怎样去整理它?

(3)怎样得到更多、更好的整理方法?

(4)动手检测自己

(5)你还有什么不明白的?

3、据复习方法依次展开活动

(1)关于立体图形,我已知道了什么?

以电视节目“开心辞典”和小组竞赛的形式进行。

每组提出关于本组研究内容的.三个问题,其他组回答,教师宣布好比赛规则,充当裁判和记分员。

(2)你想怎样去整理?

①师引导给出学生整理的方法。

a:正方体、长方体在一块儿整理......

b:找相同点、不同点

c:据构成名称分层分类对比整理。

②小组合作:尝试整理正、长方体的特点

③实物展台展示学生成果

④师课件演示整理结果:正、长方体的特征

⑤按上述复习整理方法自主整理圆柱、圆锥、球的特征,先独立整理,再小组交流,展台展示学生不同方法的成果,教师课件演示。

三、知识检测,形成反馈

1、一组判断题

(1)长方体和正方体都有六个面,而且六个面都相等。

(2)长方体的三条棱就是它的长,宽,高。

(3)上下两个底面是圆形且相等的形体一定是圆柱。

(4)圆柱的侧面展开后是一个正方形,那么它的底面周长和高一定相等。

(5)圆锥的顶点到底面只有一条垂线段。

(6)从圆柱体的上底面到下底面的任何一条连线都是这个圆柱的高。

(7)正方体的棱长总和是48厘米,它的每条棱长是8厘米。

2、一组填空题

(1)把一个边长31.4厘米的正方形铁皮卷成一个圆筒,这个圆筒的底面周长是( )厘米,高是( )厘米。

(2)把一个长94.2米,宽31.4米的长方形铁皮卷成一个圆筒,这个圆筒的底面周长是( )米,高是( )米。

3、抢答游戏:师说出一些特征,学生随时猜几何图形的名称

四、巩固延伸,再次加强平面图形和立体图形的联系。

1、点、线、面、体的形成联系。

师:观察三幅运动的图片,可看成什么几何图形在运动?

师:他们的运动又形成了什么几何图形?

2、这些立体图形是由哪个平面图形旋转而成?

五、总结:我们周围充满着数学,智慧的人塑造了各种几何美,数学几何美又经常装点我们的生活。

师:你有哪些收获?(知识方面、方法方面)

六、温馨提醒:作业

感受几何构图之美,学会运用复习方法。

1、①先欣赏平面图形组成的图案

②作业一:用平面图形设计一幅美丽的图案,配解说词。

2、①先欣赏各国建筑物

②作业二:用立体图形设计一个美丽的建筑物,配上解说词。(给小动物设计家也行,渗透关爱思想教育)

3、小猫小狗冬天为什么蜷着身子睡觉?

作业三:自己用这堂课的复习方法整理有关立体图形的表面积、体积的知识。

初中数学教案 篇4

一、教学目的:

1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;

2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.

二、重点、难点

1.教学重点:菱形的两个判定方法.

2.教学难点:判定方法的证明方法及运用.

三、例题的意图分析

本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的.题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算.这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成.程度好一些的班级,可以选讲例3.

四、课堂引入

1.复习

(1)菱形的定义:一组邻边相等的平行四边形;

(2)菱形的性质1 菱形的四条边都相等;

性质2 菱形的对角线互相平分,并且每条对角线平分一组对角;

(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)

2.【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?

3.【探究】(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?

通过演示,容易得到:

菱形判定方法1 对角线互相垂直的平行四边形是菱形.

注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.

通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:

菱形判定方法2 四边都相等的四边形是菱形.

五、例习题分析

例1 (教材P109的例3)略

例2(补充)已知:如图 ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.

求证:四边形AFCE是菱形.

证明:∵ 四边形ABCD是平行四边形,

∴ AE∥FC.

∴ ∠1=∠2.

又 ∠AOE=∠COF,AO=CO,

∴ △AOE≌△COF.

∴ EO=FO.

∴ 四边形AFCE是平行四边形.

又 EF⊥AC,

∴ AFCE是菱形(对角线互相垂直的平行四边形是菱形).

※例3(选讲) 已知:如图,△ABC中, ∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F.

求证:四边形CEHF为菱形.

略证:易证CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因为∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.

所以,CF=CE=EH,CF∥EH,所以四边形CEHF为菱形.

六、随堂练习

1.填空:

(1)对角线互相平分的四边形是 ;

(2)对角线互相垂直平分的四边形是________;

(3)对角线相等且互相平分的四边形是________;

(4)两组对边分别平行,且对角线 的四边形是菱形.

2.画一个菱形,使它的两条对角线长分别为6cm、8cm.

3.如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。

七、课后练习

1.下列条件中,能判定四边形是菱形的是 ( ).

(A)两条对角线相等 (B)两条对角线互相垂直

(C)两条对角线相等且互相垂直 (D)两条对角线互相垂直平分

2.已知:如图,M是等腰三角形ABC底边BC上的中点,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求证:四边形MEND是菱形.

3.做一做:

设计一个由菱形组成的花边图案.花边的长为15 cm,宽为4 cm,由有一条对角线在同一条直线上的四个菱形组成,前一个菱形对角线的交点,是后一个菱形的一个顶点.画出花边图形.

初中数学教案 篇5

教学目标:

1、经历收集数据、分析数据的活动,体会统计在实际生活中的应用。

2、收集统计在生活中应用的例子,整理收集数据的方法。

3、在解决问题的过程中,整理所学习的统计图,和统计量,能用自己的语言描述过各种统计图的特点,掌握整理收集数据的方法。

教学过程:

一、课前预习,出示预习提纲:

1、我们学习了哪几种统计图?

2、这几种统计图各有什么特点?

3、概率的知识有哪些?

二、展示与交流

(一)提出问题

1、(出示问题情境)我们班要和希望小学的六(1)班建立手拉手班级,怎么样向他们介绍我们班的一些情况呢?(指名回答)

2、师:先独立列出几个你想调查的问题。(写在练习本上)

3、四人小组交流,整理出你们小组都比较感兴趣的,又能实施的3个问题。(小组汇报、交流、整理)

4、接着全班汇报交流(师罗列在黑板上)

师:大家想调查这么多的问题,现在我们班选择其中有价值又能实施的问题进行调查。(师根据生的回答进行归纳、整理)

(二)收集数据和整理数据

1、师:调查这几个问题,你需要收集哪些数据?怎么样收集这些数据?与同伴交流收集数据的方法。

2、师:开展实际调查的话,如何进行调查比较有效?在调查的时候,大家需要注意什么?

(三)开展调查

1、针对学生提出的某个问题,先组织小组有效的开展收集和整理数据的活动,然后把数据记录下来,并进行整理。

2、师:谁来说一说你们小组是怎么样分工,怎么样调查和记录数据的'?(指名汇报)

3、全班汇总、整理、归纳各小组数据。(板书)

4、师:分析上面的数据,你能得到哪些信息?

5、师:根据整理的数据,想一想绘制什么统计图比较好呢?

6、师:根据这些信息,你还能提出什么数学问题?

(四)回顾统计活动

1、师:在刚才的统计活动,我们都做了些什么?你能按顺序说一说吗?

师板书:提出问题——收集数据——整理数据——分析数据——作出决策。

2、收集在生活中应用统计的例子,并说说这些例子中的数据告诉人们哪些信息。(全班交流)

指名同学汇报,其他同学注意听,并指出这个同学举的例子中你可以获得什么信息?

3、结合生活中的例子说说收集数据有哪些方法?

(1)先让学生在小组内交流,引导学生结合例子(充分利用第2题中收集来

的实例)来说说自己的方法。

(2)师归纳:常用的收集数据的方法有:查阅资料、询问他人、调查实验等。

4、师:同学们,我们已经对统计表和统计图进行了系统的学习,回忆一下我们已经学过了哪些统计图,对这些统计图,你已经知道了哪些知识?

初中数学教案 篇6

一、教学目标

1、了解二次根式的意义;

2、掌握用简单的一元一次不等式解决二次根式中字母的取值问题;

3、掌握二次根式的性质和,并能灵活应用;

4、通过二次根式的计算培养学生的逻辑思维能力;

5、通过二次根式性质和的介绍渗透对称性、规律性的数学美。

二、教学重点和难点

重点:

(1)二次根的意义;

(2)二次根式中字母的取值范围。

难点:确定二次根式中字母的取值范围。

三、教学方法

启发式、讲练结合。

四、教学过程

(一)复习提问

1、什么叫平方根、算术平方根?

2、说出下列各式的意义,并计算

(二)引入新课

新课:二次根式

定义:式子叫做二次根式。

对于请同学们讨论论应注意的问题,引导学生总结:

(1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?

若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的.限制也是根式的一部分。

(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次根式指的是某种式子的“外在形态”。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答。

例1当a为实数时,下列各式中哪些是二次根式?

例2 x是怎样的实数时,式子在实数范围有意义?

解:略。

说明:这个问题实质上是在x是什么数时,x—3是非负数,式子有意义。

例3当字母取何值时,下列各式为二次根式:

分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。

解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。

(2)—3x≥0,x≤0,即x≤0时,是二次根式。

(3),且x≠0,∴x>0,当x>0时,是二次根式。

(4),即,故x—2≥0且x—2≠0,∴x>2。当x>2时,是二次根式。

例4下列各式是二次根式,求式子中的字母所满足的条件:

分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义。即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。

解:(1)由2a+3≥0,得。

(2)由,得3a—1>0,解得。

(3)由于x取任何实数时都有|x|≥0,因此|x|+0.1>0,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。

(4)由—b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0。

初中数学教案 篇7

一、主题分析与设计

本节课是苏科版义务教育课程标准实验教科书七年级数学(下册)第七章第2节内容——探索平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是"空间与图形"的重要组成部分。

《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以"生活·数学"、"活动·思考"、"表达·应用"为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。

二、教学目标

1、知识与技能:掌握平行线的性质,能应用性质解决相关问题。

2、数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。初中数学教育叙事

3、解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。

4、情感态度与价值观:在探究活动中,让学生获得亲自参与研究的.情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。

三、教学重、难点

1、重点:对平行线性质的掌握与应用

2、难点:对平行线性质1的探究

四、教学用具

1、教具:多媒体平台及多媒体课件

2、学具:三角尺、量角器、剪刀

五、教学过程

(一)创设情境,设疑激思

1、播放一组幻灯片。

内容:

①供火车行驶的铁轨上;

②游泳池中的泳道隔栏;

③横格纸中的线。

2、提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?

3、学生活动:针对问题,学生思考后回答——①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;

4、教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:7.2探索平行线的性质(板书)

(二)数形结合,探究性质

1、画图探究,归纳猜想

教师提要求,学生实践操作:任意画出两条平行线(a ∥ b),画一条截线c与这两条平行线相交,标出8个角。(统一采用阿拉伯数字标角)

教师提出研究性问题一:

指出图中的同位角,并度量这些角,把结果填入下表:

教师提出研究性问题二:

将画出图中的同位角任先一组剪下后叠合。

学生活动一:画图————度量————填表————猜想

学生活动二:画图————剪图————叠合

让学生根据活动得出的数据与操作得出的结果归纳猜想:两直线平行,同位角相等。

教师提出研究性问题三:

再画出一条截线d,看你的猜想结论是否仍然成立?

学生活动:探究、按小组讨论,最后得出结论:仍然成立。

2、教师用《几何画板》课件验证猜想,让学生直观感受猜想

3、教师展示平行线性质1:两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)

(三)引申思考,培养创新

教师提出研究性问题四:

请判断两条平行线被第三条直线所截,内错角、同旁内角各有什么关系?

学生活动:独立探究————小组讨论————成果展示。

教师活动:评价学生的研究成果,并引导学生说理

因为a ∥ b(已知)

所以∠ 1= ∠ 2(两直线平行,同位角相等)

又∠ 1= ∠ 3(对顶角相等)

∠ 1+ ∠ 4=180°(邻补角的定义)

所以∠ 2= ∠ 3(等量代换)

∠ 2+ ∠ 4=180°(等量代换)

教师展示:

平行线性质2:两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等)

平行线性质2:两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补)

(四)实际应用,优势互补

1、(抢答)课本P13练一练1、2及习题7.2 1、5

2、(讨论解答)课本P13习题7.2 2、3、4

(五)课堂总结:这节课你有哪些收获?

1、学生总结:平行线的性质1、2、3

2、教师补充总结:

⑴用"运动"的观点观察数学问题;(如我们前面将同位角剪下叠合后分析问题)

⑵用数形结合的方法来解决问题;(如我们前面将同位角测量后分析问题)

⑶用准确的语言来表达问题;(如平行线的性质1、2、3的表述)

⑷用逻辑推理的形式来论证问题。(如我们前面对性质2和3的说理过程)

(六)作业

学习与评价P5 1、2、3(填空);4、5、6(选择);7、8(拓展与延伸)

六、教学反思:

数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为"过程"不仅能引导学生更好地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得"情感、态度、价值观"方面的体验。这节课的教学实现了三个方面的转变:

①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。教师成为了学生的导师、伙伴、甚至成为了学生的学生,在课堂上除了导引学生活动外,还要认真聆听学生"教"你他们活动的过程和通过活动所得的知识或方法。

②学的转变:学生的角色从学会转变为会学,跟老师学转变为自主去学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境,不是简单地"学"数学,而是深入地"做"数学。

③课堂氛围的转变:整节课以"流畅、开放、合作、‘隐导"为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以"对话"、"讨论"为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。

总之,在数学教学的花园里,教师只要为学生布置好和谐的场景和明晰的路标,然后就让他们自由地快活地去跳舞吧

初中数学教案 篇8

教学目标:

1、初步体会从不同方向观察同一物体可能看到不同的图形;

2、能识别简单物体的三视图,体会物体三视图的合理性;

3、会画立方体及其简单组合的三视图;

过程与方法

1、 在“观察”的活动过程中,积累数学活动经验,发展空间观念;

2、 能在与他人交流的过程中,合理清晰地表达自己的思维过程;

3、 渗透多侧面观察分析的思维方法;

情感与态度

通过系列学生感兴趣的活动,形成学习数学的积极情感,激发对空间与图形学习的好奇心,逐渐形成与他人合作交流的意识.

教学重、难点:

重点:体会从不同方向看同一物体可能看到不同的结果.

难点:能画立方体及简单组合的'三视图.

教法学法:

①发现式教学法

②动手实践与思考相结合法

教学过程设计:

一、创设情境,引入新课

1. 看录像;

2. 从学生熟悉的古诗入手,观察庐山;

3. 房屋的房型图.

二、观察体验、探索结论

活动1:观察一组图片,找出结论.

活动2:观察图片,注意这些图片的拍摄角度,你能挑出一组三视图的图片吗?

活动3:猜猜看:通过从不同角度拍摄的图片来猜测实物是什么?

活动4:观察下图

如果分别从正面、左面、上面看着三个几何体,分别得到什么平面图形?

三.学画简单几何体的三视图

给出由4个小正方体形成的组合图形, 从正面、左面、上面观察并画出相应的平面图形.

如: 从上面看

从左面看

从正面看 从左面看 从上面看

从正面看

做一做:以小组为单位,用6个小立方体块搭出不同的几何体,然后根据搭建的几何体画出从正面、左面、上面观察得到的平面图形,并在小组内交流验证,看谁画的图最标准。而后,全班同学根据某小组画的三视图来组合立体图形.

四、小结与反思:

1.本节课研究的主要内容是什么?

2.本节课数学知识对平时的学习生活有何作用?

五、练习与作业:

能力作业:画出我校教学楼的三视图(以面向南为“从正面看”),或者画出你家的房屋(或设计)的平面图.

初中数学教案 篇9

一、教学目标

1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;

2.培养学生观察能力,提高他们分析问题和解决问题的能力;

3.使学生初步养成正确思考问题的良好习惯。

二、教学重点和难点

一元一次方程解简单的应用题的方法和步骤。

三、课堂教学过程设计

(一)从学生原有的认知结构提出问题

在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

为了回答上述这几个问题,我们来看下面这个例题。

例1 某数的3倍减2等于某数与4的和,求某数。

(首先,用算术方法解,由学生回答,教师板书)

解法1:(4+2)÷(3-1)=3。

答:某数为3。

(其次,用代数方法来解,教师引导,学生口述完成)

解法2:设某数为x,则有3x-2=x+4。

解之,得x=3。

答:某数为3。

纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的`目的之一。

我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系。因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。

本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤。

(二)师生共同分析、研究一元一次方程解简单应用题的方法和步骤

例2 某面粉仓库存放的面粉运出15%后,还剩余42500千克,这个仓库原来有多少面粉?

师生共同分析:

1.本题中给出的已知量和未知量各是什么?

2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)

3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?

上述分析过程可列表如下:

解:设原来有x千克面粉,那么运出了15%x千克,由题意,得x-15%x=42 500,所以x=50 000。

答:原来有50 000千克面粉。

此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?

(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)

教师应指出:

(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;

(2)例2的解方程过程较为简捷,同学应注意模仿。

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

(1)仔细审题,透彻理解题意。即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;

(2)根据题意找出能够表示应用题全部含义的一个相等关系。(这是关键一步);

(3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;

(4)求出所列方程的解;

(5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义。

例3 (投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?

(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误。并严格规范书写格式。)

解:设第一小组有x个学生,依题意,得

3x+9=5x-(5-4),解这个方程:2x=10,所以x=5。

其苹果数为3× 5+9=24。

答:第一小组有5名同学,共摘苹果24个。

学生板演后,引导学生探讨此题是否可有其他解法,并列出方程。

(设第一小组共摘了x个苹果,则依题意,得)

(三)课堂练习

1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?

2.我国城乡居民1988年末的储蓄存款达到3 802亿元,比1978年末的储蓄存款的18倍还多4亿元。求1978年末的储蓄存款。

3.某工厂女工人占全厂总人数的35%,男工比女工多252人,求全厂总人数。

(四)师生共同小结

首先,让学生回答如下问题:

1.本节课学习了哪些内容?

2.列一元一次方程解应用题的方法和步骤是什么?

3.在运用上述方法和步骤时应注意什么?

依据学生的回答情况,教师总结如下:

(1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;

(2)以上步骤同学应在理解的基础上记忆。

(五)作业

1.买3千克苹果,付出10元,找回3角4分。问每千克苹果多少钱?

2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

3.某厂去年10月份生产电视机2050台,这比前年10月产量的2倍还多150台。这家工厂前年10月生产电视机多少台?

4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?

5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元。求得到一等奖与二等奖的人数。

初中数学教案 篇10

教学目的

1、使学生了解无理数和实数的概念,掌握实数的分类,会准确判断一个数是有理数还是无理数。

2、使学生能了解实数绝对值的意义。

3、使学生能了解数轴上的点具有一一对应关系。

4、由实数的分类,渗透数学分类的思想。

5、由实数与数轴的一一对应,渗透数形结合的思想。

教学分析

重点:无理数及实数的概念。

难点:有理数与无理数的区别,点与数的一一对应。

教学过程

一、复习

1、什么叫有理数?

2、有理数可以如何分类?

(按定义分与按大小分。)

二、新授

1、无理数定义:无限不循环小数叫做无理数。

判断:无限小数都是无理数;无理数都是无限小数;带根号的数都是无理数。

2、实数的定义:有理数与无理数统称为实数。

3、按课本中列表,将各数间的联系介绍一下。

除了按定义还能按大小写出列表。

4、实数的相反数:

5、实数的绝对值:

6、实数的.运算

讲解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的`值是多少?

例2,判断题:

(1)任何实数的偶次幂是正实数。( )

(2)在实数范围内,若| x|=|y|则x=y。( )

(3)0是最小的实数。( )

(4)0是绝对值最小的实数。( )

解:略

三、练习

P148 练习:3、4、5、6。

四、小结

1、今天我们学习了实数,请同学们首先要清楚,实数是如何定义的,它与有理数是怎样的关系,二是对实数两种不同的分类要清楚。

2、要对应有理数的相反数与绝对值定义及运算律和运算性质,来理解在实数中的运用。

五、作业

1、P150 习题A:3。

2、基础训练:同步练习1。

初中数学教案 篇11

教材与学情:

解直角三角形的应用是在学生熟练掌握了直角三角形的解法的基础上进行教学,它是把一些实际问题转化为解直角三角形的数学问题,对分析问题能力要求较高,这会使学生学习感到困难,在教学中应引起足够的重视。

信息论原理:

将直角三角形中边角关系作为已有信息,通过复习(输入),使学生更牢固地掌握(贮存);再通过例题讲解,达到信息处理;通过总结归纳,使信息优化;通过变式练习,使信息强化并能灵活运用;通过布置作业,使信息得到反馈。

教学目标

⒈认知目标:

⑴懂得常见名词(如仰角、俯角)的意义

⑵能正确理解题意,将实际问题转化为数学

⑶能利用已有知识,通过直接解三角形或列方程的方法解决一些实际问题。

⒉能力目标:培养学生分析问题和解决问题的能力,培养学生思维能力的灵活性。

⒊情感目标:使学生能理论联系实际,培养学生的'对立统一的观点。

教学重点、难点:

重点:利用解直角三角形来解决一些实际问题

难点:正确理解题意,将实际问题转化为数学问题。

信息优化策略:

⑴在学生对实际问题的探究中,神经兴奋,思维活动始终处于积极状态

⑵在归纳、变换中激发学生思维的灵活性、敏捷性和创造性。

⑶重视学法指导,以加速教学效绩信息的顺利体现。

教学媒体:

投影仪、教具(一个锐角三角形,可变换图2-图7)

高潮设计:

1、例1、例2图形基本相同,但解法不同;这是为什么?学生的思维处于积极探求状态中,从而激发学生学习的积极性和主动性

2、将一个锐角三角形纸片通过旋转、翻折等变换,使学生对问题本质有了更深的认识

教学过程

一、复习引入,输入并贮存信息

1.提问:如图,在Rt△ABC中,∠C=90°。

⑴三边a、b、c有什么关系?

⑵两锐角∠A、∠B有怎样的关系?

⑶边与角之间有怎样的关系?

2.提问:解直角三角形应具备怎样的条件:

注:直角三角形的边角关系及解直角三角形的条件由投影给出,便于学生贮存信息

二、实例讲解,处理信息:

例1.(投影)在水平线上一点C,测得同顶的仰角为30°,向山沿直线 前进20为到D处,再测山顶A的仰角为60°,求山高AB。

⑴引导学生将实际问题转化为数学问题。

⑵分析:求AB可以解Rt△ABD和

Rt△ABC,但两三角形中都不具备直接条件,但由于∠ADB=2∠C,很容易发现AD=CD=20米,故可以解Rt△ABD,求得AB。

⑶解题过程,学生练习。

⑷思考:假如∠ADB=45°,能否直接来解一个三角形呢?请看例2。

例2.(投影)在水平线上一点C,测得山顶A的仰角为30°,向山沿直线前进20米到D处,再测山顶A的仰角为45°,求山高AB。

分析:

⑴在Rt△ABC和Rt△ABD中,都没有两个已知元素,故不能直接解一个三角形来求出AB。

⑵考虑到AB是两直角三角形的直角边,而CD是两直角三角形的直角边,而CD均不是两个直角三角形的直角边,但CD=BC=BD,启以学生设AB=X,通过 列方程来解,然后板书解题过程。

解:设山高AB=x米

在Rt△ADB中,∠B=90°∠ADB=45°

∵BD=AB=x(米)

在Rt△ABC中,tgC=AB/BC

∴BC=AB/tgC=√3(米)

∵CD=BC-BD

∴√3x-x=20 解得 x=(10√3+10)米

答:山高AB是(10√3+10)米

三、归纳总结,优化信息

例2的图开完全一样,如图,均已知∠1、∠2及CD,例1中 ∠2=2∠1 求AB,则需解Rt△ABD例2中∠2≠2∠1求AB,则利用CD=BC-BD,列方程来解。

四、变式训练,强化信息

(投影)练习1:如图,山上有铁塔CD为m米,从地上一点测得塔顶C的仰角为∝,塔底D的仰角为β,求山高BD。

练习2:如图,海岸上有A、B两点相距120米,由A、B两点观测海上一保轮船C,得∠CAB=60°∠CBA=75°,求轮船C到海岸AB的距离。

练习3:在塔PQ的正西方向A点测得顶端P的

仰角为30°,在塔的正南方向B点处,测得顶端P的仰角为45°且AB=60米,求塔高PQ。

教师待学生解题完毕后,进行讲评,并利用教具揭示各题实质:

⑴将基本图形4旋转90°,即得图5;将基本图形4中的Rt△ABD翻折180°,即可得图6;将基本图形4中Rt△ABD绕AB旋转90°,即可得图7的立体图形。

⑵引导学生归纳三个练习题的等量关系:

练习1的等量关系是AB=AB;练习2的等量关系是AD+BD=AB;练习3的等量关系是AQ2+BQ2=AB2

五、作业布置,反馈信息

《几何》第三册P57第10题,P58第4题。

板书设计:

解直角三角形的应用

例1已知:………例2已知:………小结:………

求:………求:………

解:………解:………

练习1已知:………练习2已知:………练习3已知:………

求:………求:………求:………

解:………解:………解:………

大家都在看