六年级圆的周长教学设计

笔构网

2026-01-07教案

请欣赏六年级圆的周长教学设计(精选7篇),由笔构网整理,希望能够帮助到大家。

六年级圆的周长教学设计 篇1

一、教学内容:

圆的周长计算方法与应用

二、教学目的:

1.使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单的计算。

2.培养学生的观察、比较、分析、综合及动手操作能力。

3.领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法。

4.结合圆周率的学习,对学生进行爱国主义教育。

三、教学重点:

1.理解圆周率的意义。

2.推导出圆的周长的计算公式并能够正确计算。

四、教学难点:

理解圆周率的意义。

五、教学过程:

(一)创设情境,引入新课

1、用多媒体出示:龟兔赛跑路线图。

第一次龟兔赛跑,小白兔输了不服气,于是进行了第二次比赛,这回小白兔画了两条比赛路线,小白兔跑圆形路线,乌龟跑正方形路线,结果小白兔赢了,观众纷纷表示比赛不公平,你们知道为什么吗?

2、师问:a.小乌龟跑的路程就是正方形的什么?小白兔呢?

b.什么是圆的周长?请你摸一摸你手中圆的周长。

3、师:今天我们就来研究圆的周长。并出示课题。

(二)引导探究,学习新知

1.推导圆的周长公式

(1)学生讨论

a.正方形的周长跟什么有关系?有什么关系?

b.你认为圆的周长和什么有关系?

(2)猜测

看图后讨论:圆的周长大约是直径的几倍?为什么?

小结:通过观察大家都已经注意到了圆的周长肯定是直径的2~4倍,那到底是多少倍呢?你有什么好办法吗?

(3)动手操作

a.以小组合作学习方式进行实践,1人拿学具、1人测量、1人记录、1人用计算机算出周长与直径的比值。师:拿出老师为你们每个小组准备的'学具,大家相互配合测量它的周长与直径,然后算出周长与直径的比值。

师:看哪一组配合好,速度快,较精确。开始!

b.汇报小结。

师:用实物投影展示整理的表格。

师:引导学生观察,看了几组不同的结果,虽然倍数不同,但周长大约是直径的三倍多一些?

2.认识圆周率、介绍祖冲之

(1)我们把圆的周长与直径的比值叫做圆周率,用希腊字母π表示。π≈3.14

(2)介绍祖冲之

3.归纳圆的周长公式

(1)怎样求周长?若我们用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?

师板书:C=πd

(2)圆的周长还可以怎样求?由于d=2r则:C=2πr。师板书:C=2πr

师问:圆的周长分别是直径与半径的几倍?

(三)巩固应用,强化新知

1.求下面各圆的周长。

1)d=2米2)d=1.5厘米

2.求下面各圆的周长。

1)r=6分米2)r=1.5厘米

3.判断题

(1)π=3.14 ( )

(2)计算圆的周长必须知道圆的直径( )

(3)只要知道圆的半径或直径,就可以求圆的周长。 ( )

4.选择题

(1)较大的圆的圆周率( )较小的圆的圆周率。

a大于b小于c等于

(2)半圆的周长( )圆周长。

a大于b小于c等于

5.课堂反馈

你能够准确的判断出小乌龟和小白兔谁跑的远了吗?为什么?

6.实践操作

请同学们,画一个周长是12.56厘米的圆,先以小组为单位讨论:画多大?如何画?再操作。

(四)课堂总结,梳理知识

师:通过这堂课的学习,你有什么收获?你还有什么问题吗?

反思:

“圆的周长”是周长概念的一次扩展。为了使学生对周长的概念有一个较为完整的认识,让学生在获取知识的同时学会思考、学会合作。为此设计了两个以学生自主活动为主的学习环节。

1.动手实践,探究圆周长的测量方法。

怎样测量圆的周长呢?首先让学生在教师提供的学习材料——圆片、细绳、直尺中开动脑筋自主地选择解决问题的材料,接着让学生亲自动手实践,探究解决问题的方法。

当学生通过“看——想——做——悟”等一系列活动,探究出解决问题的方法后,抑制不住兴奋的心情,在小组内自觉地展示交流。同时,教师需要引导学生在全班交流中形成共识。

学生在动手、动脑、动口,调动多种器官参与学习的过程中,不仅自己求出了问题的答案,体验了自主获取知识的快乐,而且在探究的过程中,加深了对圆的周长概念的理解,并为以后探究圆的周长公式打下基础。

2.探究圆周长与直径的关系,寻找圆周长的计算方法。

在这个活动中,让学生按合作学习的要求,以小组合作学习为主要形式来测量大小不等的圆的周长和直径的长度,并通过计算求出周长除以直径的数值,进行汇报、总结。

学生在经历了观察、思考、合作的学习过程,会发现无论大圆、小圆,其周长除以它的直径的商总是三倍多一些的特征后,教师及时引导学生实现知识的迁移。

在测量、计算、比较中,使学生理解了圆周率是周长除以直径的商,而且从知识的深度和广度上体验了周长与直径的关系。

六年级圆的周长教学设计 篇2

教学目的:

1.让学生明白什么是圆的周长。

2.理解圆周率的好处。

3.理解和掌握圆的周长计算公式,并能初步运用公式解决一些简单的实际问题。

教学重点:

推导圆的周长计算公式。

教学难点:

理解圆周率的好处。

教具学具:

1.学生准备直径为4厘米、2厘米、3厘米圆片各一个,线,直尺。

2.电脑软件及演示教具.

教学过程:

一、复习:

上节课我们认识了圆,谁能说说什么是圆心?圆的半径?圆的直径?在同圆或等圆中圆的半径和直径有什么关系?用字母怎样表示?

二、导入:

这节课我们继续研究圆的周长(板书课题)。

1.指幻灯图片(长方形正方形三角形)问:这些是什么图形?谁能指出它的周长?

2.指实物图片(圆)问:这是什么图形?谁能指出它的周长?

问:什么是周长?

出示:平面上封闭图形一周的长度,就是它的周长。

想一想:什么叫元的周长

出示:围成圆的曲线的长叫做圆的周长。

3.你能测量出这个圆的周长吗?(能)

4.指实物(用铁丝围成的圆)问:你能测量出这个圆的周长吗?

5.用拴线的小球在空中旋转画圆.问:你能测量它的周长吗?

回答:不能.

想一想圆的周长都能够用测量的方法得到吗?(不能)这样做也会不方便、不准确.有没有更好的方法计算圆的周长呢?这天我们就来研究这个问题.

三、请同学们用圆规在练习本上画几个大小不同的圆,想一想圆的周长可能和哪些部分有关?(半径或直径)再看电脑演示(半径不同周长不同)圆的周长和它的直径或半径究竟有什么样的关系?请同学们测量手中圆片的周长(用线或滚动测量),再和直径比一比,看谁能发现其中的秘密?

四、学生动手测量、教师巡视指导。

五、统计测量结果。

观察表中数据,想一想发现什么?圆的周长总是直径的三倍多一些!任何圆的周长都是直径的3倍多吗?

六、电脑出示:

(几个大小不同的圆,它们的周长都是直径的3倍多一些)这是一个了不起的发现!谁明白我国历史上最早发现这个规律的人是谁?圆的周长到底是直径的3倍多多少?请同学们带着这个问题认真读书63页,默读“其实”到“π≈3.14”。以及“你明白吗?”

七、看书后回答问题:

1.什么叫圆周率?

2.你明白是谁把圆周率的'值精确到7位小数吗?

师:早在一千五百年前祖冲之就已经把圆周率精确到了7位小数了,他的发现比外国数学家早一千多年,一千多年是何等漫长的时间啊!为了纪念他,科学家把月球上的一座环形山脉命名为祖冲之山,这是我们中华民族的骄傲!

3.明白了圆周率,还需明白什么条件就能够计算圆的周长?

4.如果用字母c表示圆的周长,d表示直径,r表示半径,π表示圆周率,圆的周长的计算公式就应怎样表示?

八、出示例1:

一辆自行车车轮的半径是33厘米。车轮滚动一周,自行车前进多少米?小明家离学校一千米,骑车从家到学校,轮子C大约转了多少圈(π取3.14,得数保留两位小数。)

请同学们想一想:车轮滚动一周的距离实际指的是什么?

解:c=0.33单位:米

c=2πr1000÷2=500(圈)

=2x3.14×0.33

答:骑车从家到学校,轮子大约转了500圈。

=207.24(cm)

≈2(米)

答:车轮滚动一周约前进2米。

六年级圆的周长教学设计 篇3

六年级圆的周长教学设计

作为一位不辞辛劳的人民教师,通常需要准备好一份教学设计,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。写教学设计需要注意哪些格式呢?以下是小编整理的六年级圆的周长教学设计,仅供参考,欢迎大家阅读。

六年级圆的周长教学设计 篇4

一,指导思想和理论依据:

新课程标准:有效的数学学习活动不能简单依靠模仿和记忆,亲身实践,独立探索和合作是学生学习数学的重要途径。数学学习活动应该是一个活泼,积极和丰富的人格过程。

根据这个概念,在本课设计中,我强调两点,一是让学生主动体验猜测动手操作,练习和演示过程的数学结论;第二是让学生,也是学生的自主空间,自我探索,合作和交流的学习方法在整个教室。

二,教材与学习分析:

教科书是在掌握了矩形和正方形圆周的学生的基础上学习的,以及对圆的初步理解。它是学生初步学习曲线图形的基本方法的开始,是学习圆形区域和未来学习圆柱形,锥形等知识的基础。学习分析:虽然学生有计算线图长度的基础,但第一次接触曲线图形,更抽象的概念不容易理解,推导出圆周的计算方法,理解pi的意义有一些困难。

三,教学目标,关键和难点:

1,知识和技能:

学习学生理解圆的周长,掌握圆的圆周的计算,理解pi的含义,并正确应用公式来解决简单的实际问题。

2,工艺和方法:

(1)通过组织学生观察和实验活动,指导学生体验猜测归纳,一般学习过程,理解pi。

(2)体验圆周圆周的发现,探索过程,培养学生分析,抽象,概括和发现法律的能力。

3,情绪和态度:

(1)通过学生的动手操作,找到,激发学习兴趣,让学生体验到探索问题的乐趣;

(2)结合引进pi,使学生受爱国科学精神的教育。

(3)在解决问题的过程中,增强意识的应用。

教学重点:

学生使用实验的手段,通过测量,计算,猜测圆的周长和直径之间的关系,验证过程的理解和掌握圆的计算方法。

理解pi。

教学准备:

⒈圆形对象实物,课件。

⒉每个学生准备三种不同尺寸的光盘,一条线,一条尺。

四,教学方法:

1,独立探索法。通过实践学生的实践,找到长途的测量学生,培养学生动手操作的能力,激活学生思维。

2,合作交流法。合作沟通是学生学习数学的主要方式。通过学生的团结合作,自我探索,讨论交流,培养学生团结合作精神,激发学生对学习兴趣。

五,主要教学环节和设计:

通过以下链接教授本课:

一,创造形势,初步认识

二,合作交流,探索新知识

三,实际应用,解决问题四,谈论收获,课外推广

六,教学过程:

第一个链接:创建情境,初步感觉的分裂:

哪些学生会骑自行车?当骑车时,车轮向前滚动一周,他们旅行多长时间?如何计算?(课件用于显示滚动向前滚动视频的滚轮。)要求圆形周长的距离有多长。

老师:了解如何计算今天的圆周长。

这部分的设计目的:从熟悉自行车的学生开始,让学生感觉到车轮滚动周是圆周的圆周,刺激学生学习新的兴趣。

第二环节:合作交流,探究新知识

(A)通过以下活动直观地感知圆的周长,帮助学生了解圆的周长。

1,请指出老师在圆形物体的手中。准备一些硬币,杯子,让学生在圆圈上滑动触摸等方式来理解和了解圆周的圆周。

2,分析矩形,正方形和圆周的圆是否不同?

3,指的是手指,他们自己手在圆片的圆周上的描述。

设计意图:让学生双手触摸,圆周的初始感知是一周的周长。而且还增强了知觉知识的周边,并使图像理解周围的意义。

(B)探讨计算方法的周长

圆周计算公式中扣除这个内容,我安排了三个链接:

1,揭示矛盾,导致探索新知识的愿望。要求学生考虑我们的手,有什么办法来衡量他们的周长吗?

预设几种情况:

(1)滚动用绳子包起圆圈并拉直;

(2)折叠圆纸几次,然后测量计算;

总结:以上几方法律是改变歌曲是直的。

课件展示地球图片。

如果你想计算地球赤道周的长度,用绕组法,滚动法显然不能测量怎么办?我们需要探索圆周的一般方法。

设计意图:这个过程允许学生理解绕组,滚动方式有限,触发其计算公式的探索计算的热情和必要性,以便进一步研究问题床面的计算周长。这种矛盾,更多的是刺激学生的好奇心。 2,实验操作,探究圆周的计算方法在本文的内容中,为了探究pi,理解pi是本课的难点,所以我设计学生进行子组合作,通过猜测总结结论要做。

(1)猜想,目的是让学生了解圆周和直径之间的关系,着重解决圆周和什么相关问题。

老师:圆的圆周是否与它相关?

圆的圆周与其直径有关。圆直径长,圆周大;直径短,周长长。

(2)实验验证,目的是让学生找到圆周和直径之间的固定倍数关系,着重解决圆周和直线什么样的物理关系问题。

老师:我们知道方形周长是4倍,那么圆的圆周是直径的几倍?我们可以找到一般的方法来找到一个圆周像一个正方形的圆周吗?

请分组学生做一个小实验,请使用工具的手,用你最喜欢的方式验证圆周长和直径的多重关系,记录在窗体中。请按照我们小组使用什么方法,过程如何?的顺序报告实验。

面板报告:

健康:我们测量的第一个圆的直径是10厘米,圆周是31厘米,圆周是直径的3.1倍。第二圆直径为2cm,圆周为6.5cm,圆周为直径的3.25倍。第三圆直径为5.5cm,圆周为16.5cm,圆周为直径的3倍。

老师:通过计算你发现什么?

健康:每个圆的`圆周是其直径的三倍。

问题:它不是所有的圆周和它的直径有这种关系吗?

最后,老师和学生一起总结:圆的任何圆周总是其直径的长度的三倍。

老师:由于测量错误,导致结果不一样,是正常的。您的研究结果非常接近数学家的结果。谁知道我们称之为这个3倍多?

健康:

老师:你对pi有什么认识?

这是数学家数量的三倍以上,仔细计算后是一个固定数,我们称之为pi的倍数。读为π。发现pi的最杰出贡献者是祖崇志。 Pi是一个无限小的数字,在当今科学技术的飞速发展,计算机已经计算到十亿后的小数点。小学阶段约为3.14。黑板:π≈3.14(课件生成相关信息)

设计意图:通过学生在小组操作,沟通,观察等活动中,见证了知识的发现,了解目的。一些学生早就知道,pi的知识是在交换教师和学生,反映学生为主体获得的。祖崇志的事迹是爱国主义教育的一个很好的例子。使学生感受到中国深厚的文化,发展学生的情感态度价值观目标。

(3)得出结论:你知道计算方法的周长吗?

健康:知道。黑板公式:c =πd,c =2πr

设计意图:推导公式的圆周,解决圆周的问题,圆周的计算只是一个问题。

第三环节:实际应用,解决问题

这部分是使用我们探讨的结果,也就是使用圆周长公式来解决生活中的实际问题。

1,解决课堂上提出的问题:车轮向前滚一周,行程多长?这样就结束了回声。

2,设计三者有一定的实践梯度:①d = 5米,c =?

②r= 5cm c = ③c = 6.28 m d = 3,区分对错,下面的语句对吧?

①π= 3.14()

②大圆的圆周小于小圆的圆周。 ()

③圆的圆周是其半径的2π。 ()

意图:关于pi的设计判断是帮助学生巩固新概念,加深对pi的理解。

第四个链接:谈论收获,课外推广操作:

赤道象地球带,长约40,000公里。你知道地球的半径是多少?

设计意图:在课程结束时,我设置了在室外的延伸的赤道的回声前面。这个设置,课堂教学延伸到课外,提高学生的学习能力。

你有什么?(引导学生学习内容,学习方法,情感体验等)。

七,黑板设计:

圆周

圆是圆的圆周÷直径= pi C÷d =π3.14×20 = 62.8(英寸)

C =πdA:车轮向前滚动一周,行驶62.8英寸。

六年级圆的周长教学设计 篇5

【教学目标】

1、使学生理解圆周率的好处,理解和掌握圆的周长计算公式,并能解决简单的实际问题

2、培养学生操作、计算潜力,在学生操作、计算的过程中发现规律,培养学生抽象概括潜力。

3、培养学生创新思维潜力。

4、通过“圆的直径、周长的变化,圆周率不变”的探索,对学生渗透辩证唯物主义的启蒙教育。结合我古代数学家祖冲之的故事,对学生进行爱祖国、爱中华民族的教育。

【教学重点】

探索圆的周长公式

【教学难点】

对圆周率π的理解

【学具准备】

每四个学生一组

1、直径1厘米、2厘米、3厘米、4厘米的圆片各一个

2、直尺一把

3、细绳一条、两根长31.4厘米的细铁丝

4、实验表格

5、计算器

【教具准备】

实物投影议、电脑

【教学过程】

一、设疑导入、培养创新意识

1、电脑演示:有甲、乙两学生争论。

甲说:“我脑袋大。”

乙说:“我脑袋比你在大。”

师:“如果你是裁判员应如何评判,两人才能都服气?”

2、学生四人小组讨论

请学生说一说自己的方法

甲生:“看谁的.脑袋大。”

师:“如果看不出来怎样办?”

乙生:“把头放入水中,看谁的水面上升得高谁的头就大。”

师:“十分好!很有创意。”

丙生:“用绳绕头一周,测量绳的长度。”

师:“你的办法很有新意,我们的头近似球体,横切面近似于圆,你用绳子测的长度(线测方法),就是脑袋的横切面的周长,谁的周长大谁的头就大。这天我们共同学习“圆的周长”。师板书圆的周长的定义。

二、动手尝试操作,探求新知

1、动手尝试操作

(1)组织学生四人小组用绳测量直径是1厘米和2厘米的小圆的周长,并把测量的结果填入实验表格。

圆的周长c(厘米)

直径d(厘米)

周长÷直径(c÷d)

(2)组织学生讨论,除了用绳作测量工具外,还有什么办法能测出圆的周长。

讨论后得出:也能够把圆放在尺上滚动一周,来直接量出它的周长(滚动方法测量),把圆对折进行测量(折叠法)。

(3)用滚动的方法测出直径是3厘米、4厘米的圆的周长,并填好实验表格。

2、探索规律

(1)师将填好的实验表格在实物投影议上出示。

学生观察、分析、讨论得出:圆的周长和直径变化,比值不变,都是3倍多一点。

(2)思想教育

师:“任何圆的周长和直径的比值都是3倍多一点,是一个固定不变的数。我们把圆的周长和直径的比值叫做圆周率,圆周率用字母π(读pai)来表示。其实,约20xx年前,中国的古代数学著作《周髀算经》中就有:“周三径一”的说法,意思是说圆的周长是直径的3倍。约1500年前,我国有一位伟大的数学家、天文学家祖冲之,他计算出圆周率应在3.1415926和3.1415927之间,成为世界上第一个把圆周率的值计算精确到6位小数的人。他的这一项伟大成就比国外数学家得出这样的精确数值的时间至少早一千年。π是个无限不循环小数,在计算过程中通常取3.14。

教师用绳的一端系一粉笔头,手拿另一端,绕动绳粉笔头在空中“画出一圈”。

师:“像这个圆你能用线测和滚动的方法量出它的周长吗?”

生:“不能”。

师:“这说明用线测和滚动的方法测量圆的周长是有局限的。那么,我们能不能找出圆周长的计算方法呢?”

(3)推导圆周长公式

师:“从公式看出,明白什么条件能够求出圆周长?”

生:“直径、半径。”

师:“如果圆的周长已知,怎样才能求出圆的半径或直径?”

三、圆周长公式的应用(尝试练习)

六年级圆的周长教学设计 篇6

教学目标:

1、通过复习整理圆的性质、圆的周长和面积计算等重点知识,使学生所学的知识形成系统,能运用圆的知识熟练地解答圆的周长和面积的计算问题。

2、通过将圆的知识与其他知识进行整合,进一步提高学生解决问题和综合应用的能力,发展学生的空间观念。

3、在自主探究圆与正方形的关系的学习中,积累数学活动经验,培养学生分析、概括的能力,感受数学学习的乐趣。

教学重点:

能正确、熟练地进行圆周长和面积的计算。

教学难点:

从探究活动过程中去发现圆与正方形之间的关系。

教学准备:

课件,学具。

教学过程:

一、复习旧知,梳理体系

直接揭题:今天我们来复习本学期所学习的圆的有关知识──“圆的周长和面积复习课”(板书课题:圆的周长和面积复习课)

教师:我们已经学习了有关圆的知识,同学们还记得我们学习了圆的哪些知识吗?

小组合作,让同学们把所学的知识整理一下,然后进行汇报。

汇报交流,课件出示相关内容。

(1)圆的认识:

圆心O:决定圆的位置;

直径d:决定圆的大小;

半径r:在同一圆内,所有的半径都相等,所有的直径都相等,d=2r;

圆是轴对称图形,有无数条对称轴。

(2)圆的周长:

围成圆的曲线的长度叫圆的周长。

圆周率:周长与直径的比,是个无限不循环小数。

圆周长的计算:。

(3)圆的面积:

由长方形的面积来推导出圆的面积,近似长方形的长相当于圆的周长的一半,宽相当于圆的半径。

圆面积计算:。

圆环的面积:。

【设计意图】通过小组交流合作,唤醒学生以前所学圆的有关知识,并在交流中进一步加深对圆的性质、圆的周长和面积的相关知识的掌握和理解,通过梳理形成知识体系。

二、基本练习,整合知识

教师:刚才我们对本学期圆的相关知识进行了梳理,现在我们来看看下面几个问题,你能回答吗?

1、说说下面各题的最简整数比:

(1)一个圆的半径和直径的比是多少?(1:2)

(2)一个圆的周长和直径的比是多少?

(3)两个圆的半径分别是2cm和3cm,,它们的直径比是多少?(2:3)

周长的比是多少?(2:3)

面积的比是多少?(4:9)

【设计意图】将圆的知识和比的知识结合起来,体现了知识的综合应用。并进一步理解圆的各部分知识之间的关系。

2、一个公园是圆形布局,半径长1km,圆心处设立了一个纪念碑。公园共有四个门,每两个相邻的门之间有一条笔直的水泥路相通,长约1.41km。(课件出示题目情境)

(1)这个公园的围墙有多长?

教师:请同学们思考,求公园的围墙的长度就是求什么?该怎么求?(因为公园是一个圆形布局,所以求公园围墙的长度就是求圆的周长,根据,=1km,就能求出圆的周长是6.28km。)

(2)北门在南门的什么方向?距离南门多远?(引导学生观察后得出,北门在南门的正北方向,距离南门的距离就是直径的长度,是2km。)

(3)如果公园里有一个半径为0.2km的圆形小湖,这个公园的陆地面积是多少平方千米?(引导学生用大圆面积减去小圆的面积来进行计算,也可以利用圆环的面积来计算这个公园的面积。)

(4)请你再提出一些数学问题并试着解决。(引导学生不仅可以从四个门的位置和方向去提出数学问题,也可以从圆和正方形的关系方面去提出数学问题并进行解决。)

【设计意图】通过观察平面图,提高学生的读图能力,并融合用方向和距离确定位置的内容,强化学生的.空间观念;求公园的陆地面积其实就是圆环面积的变式,提升学生的知识迁移能力;通过学生提问题这样一个开放式问题,提高学生应用能力。

三、探究学习,培养能力

1、用三张同样大小的正方白铁皮(边长是1.8m)分别按下面三种方式剪出不同规格的圆片。(课件出示问题情境)

(1)每种规格中的一个圆片周长分别是多少?(引导学生观察每种规格的圆的周长之间的关系,及总周长之间的关系。)

(2)剪完圆后,哪张白铁皮剩下的废料多些?

教师:猜想一下剪完圆后哪一张白铁皮剩下的废料多些?你能用自己的方法来证明吗?(引导学生用数据说理,通过计算,引导学生探究其中的一般性原理,假设第一个圆的半径是,某种剪法中剪掉的小圆的半径一定是,此时要剪掉个小圆,剪掉小圆的总面积为,即和第一个圆的面积相等。)

(3)根据以上的计算,你发现了什么?

【设计意图】通过三种剪圆的方式判断剩下的废料是否相等的验证过程,一方面提高学生的推理能力;另一方面,提高学生发现和提出问题、分析问题和解决问题的能力。

四、回顾总结,交流收获

教师:说说这节课我们学习了什么?你有什么收获或问题?

【设计意图】通过回顾,理顺各个知识点,让学生明确学习了什么内容,反思自己对知识的掌握情况。

六年级圆的周长教学设计 篇7

【教学目标】

1、让学生明白什么是圆的周长。

2、理解并掌握圆周率的好处和近似值。

3、初步理解和掌握圆的周长计算公式,能正确计算圆的周长。

4、培养和发展学生的空间观念,培养学生抽象概括潜力和解决简单的实际问题潜力。

5、通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。

6、培养学生的观察、比较、分析、综合及动手操作潜力。

【教学重点】

理解和掌握圆的周长的计算公式。

【教学难点】

对圆周率的认识。

【教学准备】

1、学生准备直径为5厘米、6厘米、7厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。

2、教师准备图片。

【教学过程】

一、激情导入

1、动物王国正在举行动物运动会可热闹了,想不想去看一看?

2、一只小山羊和一只梅花鹿分别在圆形和正方形跑道上赛跑,大家猜一猜最后谁跑的路程远?

二、探究新知

(一)复习正方形的周长,猜想圆的周长可能和什么有关系。

1、由比较两种跑道的长短,引出它们的周长你会算吗?(如果学生谈到角或线的形状,就顺势导:正方形是由4条这样的线段围成的,圆是由一条圆滑的曲线围成的。)

2、(生答正方形的周长)追问:你是怎样算的?(生答正方形的周长=边长×4师板书c=4a)那你们说说正方形的周长和它的边长有什么关系?(4倍,1/4)(师,正方形的周长总是它边长的4倍,这是一个固定不变的数。)

3、圆的周长能算吗?如果明白了计算的公式能不能算?看来很有必要研究研究圆的周长的计算方法,下面我们就一齐研究圆的周长。(板书课题:圆的周长)

4、猜想:你觉得圆的周长可能和什么有关系?

(二)测量验证

1、教师提问:你能不能想出一个好办法来测量它的周长呢?

①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。师生合作演示量教具的周长。

②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。

2、①学生动手测量,验证猜想。学生分组实验,并记下它们的周长、直径,填入书中的表格里。

②观察数据,比较发现。

提问:观察一下,你发现了什么呢?(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)

3、比较数据,揭示关系

正方形的周长是边长的4倍,那么,圆的.周长秘直径之间是不是也存在着固定的倍数关系呢?猜猜看,圆的周长可能是直径的几倍?

学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。

提问:这些周长与直径存在几倍的关系,(3倍多一些),最后师生共同总结概括出,圆的周长总是直径的3倍多一些,板书:3倍多一些。到底是三倍多多少呢?引导学生看书。

(三)介绍圆周率

1、师:任意一个圆的周长都是它直径的三倍多一些,这是一个固定不变的数,我们把它叫做圆周率,用字母∏来表示,用手指写一写。

2、圆周率是怎样发现的,请同学们看课本小资料,讲述并对学生进行德育教育。

3、小结:早在1500年前,祖冲之把圆周率算到了3.1415926和3.1415927之间,比外国人早了整整一千年,这是中华民族对世界数学史的巨大贡献,这天,同学们自己动手也发现了这一规律,老师相信同学们当中将来也会有成为像祖冲之一样伟大的科学家,根据需要,我们一般保留两位小数。

圆的周长总是它直径的3倍多一点。刚才我们是怎样计算的?两个数相除又可说成是两数的比,所以这个结果就是圆周长与它直径的比值。我们把圆的周长和直径的比值叫做圆周率,用字母“∏”表示。这个比值是固定的,而我们此刻得到的结果有差异主要是测量工具及测量方法有误差造成的。那圆周率的数值到底是多少呢?说说你明白了什么?(强调∏≈3.14,在说的时候要注意是近似值,写和算的时候要按准确值计算,用等号。)

(四)推导公式

1、到此刻,你会计算圆的周长吗?怎样算?

2、如果用c表示圆的周长,表示d直径,字母公式怎样写?(板书:c=∏d)就告诉你直径,你能求圆的周长吗?圆的周长是它直径的∏倍,是一个固定不变的数。

3、明白半径,能求圆的周长吗?周长是它半径的多少倍?

三、运用公式解决问题

1、一张圆桌面的直径是0.95米,求它的周长是多少米?(得数保留两位小数)

2、花瓶最大处的半径是15厘米,求这一周的长度是多少厘米?花瓶瓶口的直径是16厘米,求花瓶瓶口的周长是多少厘米?花瓶瓶底的直径是20厘米,求花瓶瓶底的周长是多少厘米?

3、钟面直径40厘米,钟面的周长是多少厘米?

4、钟面分针长10厘米,它旋转一周针尖走过多少厘米?

5、喷水池的直径是10米,要在喷水池周围围上不锈钢栏杆2圈,求两圈不锈钢总长多少米?

四、课堂小结

通过这节课的学习你想和大家说点什么?

这节课,同学们大胆猜想圆的周长可能和什么关系、有怎样的关系,然后进行科学的验证,发现了圆的周长的计算方法,你们正在走一条科学的研究之路,期望你们能坚持不懈的走下去。

大家都在看