请欣赏分数乘法教案(精选7篇),由笔构网整理,希望能够帮助到大家。
分数乘法教案 篇1
一、单元分析
本单元教材是在学生掌握了整数乘法,分数的意义、性质,以及分数加、减法的计算等知识的基础上进行教学的。内容包括分数乘法、利用分数乘法解决问题、倒数的认识。这些内容都属于分数中的基本知识和技能。利用这些知识不仅可以解决有关的实际问题,而且也是后面学习分数除法,以及百分数知识的重要基础。
二、单元学习目标
1、建立分数乘法的原型,掌握分数乘法的计算方法,能够比较熟练地进行计算。
2、理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。
3、会利用分数乘法解决一些实际问题。
4、使学生理解倒数的.意义,掌握求倒数的方法。
三、单元课时总数:9课时
课题:分数乘整数1课时上课时间:20xx年xx月xx日
教材分析
这部分教材是在已学的整数乘法的意义和分数加法计算的基础上进行教学的。分数乘整数的意义和整数乘法的意义相同,只是这里变成了分数。因此,教材通过人跑一步相当于袋鼠跳一下的2/11。问人跑3步的距离是袋鼠跳一下的几分之几?这一情境来让学生理解什么样的问题可以用乘法来解决。在此基础上再进行分数乘整数的计算方法的学习。通过分数加法来进一步学习分数乘整数的计算方法。
学情分析
学生已学过整数乘法的意义,约分和分数加法计算。学生可以利用分数加法导出分数乘整数时只需把分子和整数相乘的积作分子,分母不变。在此基础上总结出分数乘整数的计算方法。学生在刚学习分数乘法时可能会有时想不到先约分。所以教师在教学时在这方面还要加以强调。
教学目标
1、使学生理解分数乘法的原型,掌握分数乘法的计算方法,能够正确地进行计算、
2、培养学生的计算能力。
3、激发学生学习兴趣,热爱学习数学。
教学过程备注
活动一:创设情境,初步理解分数乘法的原型
教师出示例1:人跑一步的距离相当于袋鼠跳一下的。人跑3步的距离是袋鼠跳一下的几分之几?
让学生审题后独立试做。
学生可能会出现以下两种做法:
(1)学生用连加法列式
(2)用乘法列式
借助于分数加法来理解理分数乘法的原型。
活动二:教学分数乘整数的计算方法
1、师:++和3都是求3步的距离是袋鼠跳一下的几分之几。你又都是怎样计算的呢?
全班交流,感觉分数乘整数的计算方法。
总结分数乘整数是怎样计算的:用分数的分子和整数相乘的积作分子,分母不变。
2、教学例2:6=
让学生试做,然后教师强调计算时能约分的可以先约分,再计算。教师板书。
活动三:反馈练习
1、完成9页中的做一做。
教师注意强调学生的书写格式以及能约分的要先约分。
注意体会在什么情况下用分数乘法来解决问题。
2、完成练习二中的1、2题。
活动四:质疑总结。
分数乘法教案 篇2
教学目标
抓住分数应用题的核心倍数关系和等量对应,通过一例多用、一题多变,把各类应用题构成一个整体,帮助学生从本质上理解分数应用题的数量关系,提高学生的分析能力和解题能力、
教学过程
一、引入
根据条件列出对应关系、
1、青砖的块数比红砖多
2、青砖的块数比红砖少
3、红砖的块数比青砖多
4、红砖的块数比青砖少
上面各题哪一个量是单位1的量,占几份?另一个量所对应的分率是什么,占几份?
二、展开
(一)将上列各条件补充一个共同的条件和问题,出示例1、
红砖2100块 有青砖多少块?
1、学生独立解答;
2、大组交流;
3、列表归纳、
(二)出示例2
电视机厂今年生产电视机3600台,____________________,去年生产多少台?
1、根据已知的一个条件和问题,对照下列含有分率的条件,找出相应的式子、
(1)相当于去年的25%
(2)比去年少25%
(3)比去年多25%
(4)去年生产的是今年的25%
(5)去年比今年少25%
(6)去年比今年多25%
2、将应选择的条件填入下列各式后的括号内、
( )
( )
( )
( )
( )
( )
3、师生共同分析
(1)按照补充的条件,找相应的式子,如(1)相当于去年的25%、
分析:去年的生产量是单位1的`量,占100份,今年的生产量相当于去年的25%,占25份,对应关系是:
去年的产量□100
今年的产量360025
设去年生产x台,得到的式子:
在第六个式子的括号里填(1)、
(2)按照式子找应补充的条件、
如:
分析:100份与3600台相对应,也就是今年的生产量3600台是单位1的量,占100份,去年的生产量是未知数,比今年多25份,即去年比今年多25%、括号里应填(6)、
三、巩固
(一)根据题意列式解答:
果园里有梨树168棵 苹果树有多少棵?
(二)机床厂现在制造一台机器的成本是1200元,比原来的成本降低25%、原来制造一
台机器要多少元?
(三)工厂去年生产换气扇6220台,今年比去年增产20%,今年计划生产多少台?
(四)某印染厂原来印花需要60人,制造自动印花机后,印花人数减少了40%,现在印花需要多少人?
教案点评
这节课所出现的分数两步应用题的四种类型,在通常情况下是在几节课中出现,采用一例一类题的教学方法。这样的教法,学生学起来似乎轻松一些,但对数量关系的理解往往不够深刻。这节课摆脱了常规的教学方法抓住了分数应用题的核心倍数关系和量率对应,采用了一例多用,一题多变的教学方法,把四种题型构成一个整体,把分数所表示的两个量的倍数关系作为教材的基本结构,揭示数量的具体和抽象的矛盾,把分析具体的数量与抽象的数之间的关系作为基本的教学方法。这样,使学生能在较高的水平上来理解分数应用题的数量关系,既提高了教学质量,又减轻了负担。整节课的设计,体现了在简明的结构中包含较大的知识容量。简明的结构,主要指再生能力较强的基本结构。这节课把分数所表示的两个量的倍数关系作为基本结构。这样的结构,具有数量关系之间的联结和转换功能,具有认知结构的同化和调整功能,它必须包含较大的知识容量,能将所包含的内容统筹兼顾,有主有从。这种简便而大容量的知识结构,还为学生提供了多层次的训练材料,使不同认知水平的学生在原有基础上得到不同程度的提高。
分数乘法教案 篇3
教学目标:
1、知识与技能:结合具体情境,进一步探索并理解分数乘整数的意义,并能正确计算。
2、数学思考与问题就解决:借助类比迁移和数形结合的思想方法,进一步探索并掌握分数乘整数的计算方法。
3、情感态度:能解决简单的分数乘整数的实际问题,体会数字与生活的密切联系。
教学重点:
掌握求一个数的几分之几是多少的分数应用题的`特点和解题方法。
教学难点:
进一步探索并理解分数乘整数的意义。
一、创设情境,引出新知。
1、数字信息
奇思有6块饼,笑笑吃的饼个数是奇思的1/2,淘气吃的饼个数是奇思的2/3。
2、提出问题,并解决。
(1)笑笑有多少块饼
(采取四人小组合作交流,最后由小组长汇报讨论结果,奖励讨论结果最好的小组)
根据学生回答,
板书:6×1/2=3(块)
把6块饼看成一个整体,得到6块饼的1/2是3块饼。
(2)淘气有多少块饼板书:6×2/3=4(块)
求一个数的几分之几用乘法。
学生观察、读题、理解题意,根据题中信息,提高数字问题。
分数乘法教案 篇4
教学内容:人教版小学数学教材六年级上册第2~3页例1、例2及相关练习。
教学目标:
1、联系学生的生活实际创设情境,引导学生通过观察、讨论、比较、验证等环节探索并理解分数乘整数的意义;一个数乘分数的意义就是求“这个数的几分之几是多少”。
2、让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法,并能够正确地进行计算。
3、能利用所学知识解决生活中的简单问题,并进一步培养学生的分析和推理能力。
教学重点:掌握分数乘整数的计算方法。
教学难点:理解分数乘整数和一个数乘分数的意义。
教学准备:课件。
教学过程:
一、情境创设,探求新知
(一)探索分数乘整数的意义
1.教学例1(课件出示情景图) 师:仔细观察,从图中能得到哪些数学信息?这里的“个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)
师:想一想,你还能找出不一样的方法验证你的计算结果吗?
2.小组交流,汇报结果 预设:(1)(个);(2)(个);(3)(个);(4)3个就是6个就是,再约分得到(个)。(根据学生发言依次板书)
3.比较分析 师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的?
预设: 生1:每个人吃个,3个人就是3个相加。
生2:3个个相加也可以用乘法表示为。
提出质疑:3个相加的和可以用乘法计算吗?为什么?
预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。
引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)
师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?
引导说出:这两个式子都可以表示“求3个相加是多少”。
师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。
4.归纳小结
通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。(二)分数乘整数的计算方法
1.不同方法呈现和比较 师:刚才的第(4)种方法用语言描述得出计算结果的过程,结合自己的解题方法回顾一下,的计算过程用式子该如何表示?
预设: 生1:按照加法计算=(个)。 生2:(个)。
师:比较一下,这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2×3都是在求什么?预设:有多少个。
2.归纳算法 师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢? 引导说出:用分子与整数相乘的积作分子,分母不变。(板书)
3.先约分再计算的教学
师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?
预设:一种算法是先计算再约分,另一种是先约分再计算。
师:比较一下,你认为哪一种方法更简单?为什么? 小结:“先约分再计算”的方法,使参与计算的数字比原来小,便于计算。但是要注意格式,约得的数与原数上下对齐。
二、巩固练习,强化新知
1.例1“做一做”第1题 师:说出你的思考过程。
2.例1“做一做”第2题 师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。
三、探索一个数乘分数的意义
教学例2(课件出示情景图)
(1)师:根据提供的信息你能提出什么问题?该怎样计算?说说你的想法。
预设1:求3桶共有多少升?就是求3个12 L的和是多少。 预设2:还可以说成求12 L的3倍是多少。
预设3:单位量×数量=总量,所以12×3=36(L)。 (2)师:我们再来看这个问题,你能列出算式吗?(学生思考,自主列式。) 交流:是根据什么列式的?引导说出思考的过程并板书:“求12 L的一半,就是求12 L的.是多少。” (3)出示第2小题学生自练。引导说出:“12×表示求12 L的是多少。”在这里都是把12 L看作单位“1”。
(4)师:依据单位量×数量=总量,你还能提出类似的问题并解决吗?(学生练习,交流。) 归纳小结:在这里,我们依据单位量×数量=总量的关系式可以得出:一个数乘几分之几表示的是求这个数的几分之几是多少。
四、课堂练习,深化理解
1.出示例2“做一做”。一袋面粉重3千克。已经吃了它的,吃了多少千克? 师:你能说说这个算式表示的意义吗?“求3千克的是多少。”
2.比较两种意义 出示:一袋面包重千克,3袋重多少千克?
师:列出算式,并与前一个式子进行比较。这两个式子有什么不同?
预设1:一个是分数乘整数,另一个是整数乘分数。
预设2:它们表示的意义相同但有所区别。 引导说出:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算(或者就是求一个数的几倍是多少)。而一个数乘分数的意义表示的是求这个数的几分之几是多少。 师:那么,它们有什么是相同的呢?(计算方法和结果)
五、联系实际,灵活运用 1.算式可以列成 × ,表示 ;或者表示 ;
也可以列成 × ,表示 。
师:选择一个算式进行计算,想一想,计算时要注意什么?
2.比较练习
(1)一堆煤有5吨,用去了,用去了多少吨?
(2)一堆煤有吨,5堆这样的煤有多少吨?
3.拓展练习
1只树袋熊一天大约吃 kg桉树叶。10只树袋熊一星期吃多少千克桉树叶?
六、课堂小结,拓展延伸
1.这节课你有什么收获?明白了什么?说一说分数乘整数的计算方法?
分数乘法教案 篇5
教学内容:
教材第7-9页“分数乘法”(三)
教学目标:
1.通过学生的动手操作,借助图形语言,理解分数乘法的意义和分数乘以分数的算理,掌握计算方法,并能熟练地进行计算;
2.让学生经历猜想、验证等过程,体验数学研究的方法;
3.培养逻辑推理能力,渗透一定的数学思维方法。
教学重难点:
学生能够熟练的计算出分数乘以分数的`结果。
教学过程:
一、创设情境激趣揭题
1.出示我国古代哲学著作的情景。
2.出示复习题
3×2/5 4/5×2
3.顺势导入新课:分数乘法(三)
二、扶放结合探究新知
1.画图引导学生理解1/2*1/2的算例。
2.出示3/4*1/4引导学生验证上面的计算方法,岩石推理过程。
3.出示2/3*1/5, 5/6*2/3写出计算过程,小结计算方法:
分子乘分子,分母乘分母。
三、反馈矫正落实双基
1.出示教材第8页试一试1-3题。
2.引导学生发现规律。
四、小结评价布置预习
1.引导学生进行课堂小结。
2.布置预习:教材10-11页练习一。
板书设计:
分数乘法(三)
意义:求一个数的几分之几是多少?
计算法则:分子乘分子作分子,分母乘分母作分母。
分数乘法教案 篇6
《分数乘法》
教学目标和要求
1、结合具体情境,在操作的基础上探索并理解分数乘分数的意义;
2、探索并掌握分数乘分数的计算方法,并能正确计算;
3、能解决简单的分数与分数相乘的实际问题,体会数学与生活的密切联系,分数乘法
(三)教案。教学重点
1、在具体情境中探索并理解分数乘分数的意义;
2、探索并掌握分数乘分数的计算方法,并能正确计算;教学难点本课的难点让学生通过折纸来解决,这一动手活动让学生充分理解了分数乘法的算理,帮助学生推导分数乘分数的计算法则。
教学准备
1、每人准备一条约10厘米长的纸条;
2、每人准备2张长方形的纸。
教学过程一、探索分数乘分数的意义和计算方法。
1、直接引入庄子这个故事,先让学生读一读教科书第7页的一段话。PPT出示。让学生紧接着思考这个问题“一尺之捶,日取其半,万世不竭”到底是什么意思。在学生理解了这句话的意思之后,提问:“庄子老人家这句话到底对不对呢?”“我们能不能来验证一下呢?”。
⑴拿出一张纸条当作一尺之捶,同学们先把纸条对折了一次。师:“现在的一半我们可以用多少来表示啊?”生:“ ”师:剪去一半,还剩下多少?这时“ ”表示什么意思呢?剩下的占这张纸的“ ”用算式表示:1*1/2师:请同学们再把剩下的“ ”对折一下,再剪去一半(得到四分之一)谁能说说这又表示什么意思呢?”生“就是再取一半的意思”“是在原来一半的基础上再取一半”“就是的师重复:这部分表示的是二分之一的二分之一。师:“根据前面所学过的内容,你能用一个算式表示出剩下部分占这张纸的几分之几吗?”学生很快就写出了1/2×1/2。再引导学生认识这个乘法算式所表示的意义。师问:为什么用乘法计算?这个算式表示什么意思?得数是多少?学生列出算式后,引导学生理解,求剩下的部分占这张纸条的几分之几就是求1/2的1/2是多少,与上节课学习的求一个数的几分之几的意义相同,所以用乘法计算。师再问:“如果我们按照庄子的说法那接下去该怎么求呢?”学生答“再乘1/2”得到1/4×1/2=1/8,如果再往后求还剩下多少,那就再乘1/2 ,“一直乘下去,永远也乘不尽”现在你们知道万世不竭的意思了吧。
2、折一折,涂一涂让学生拿出课前准备好的一张长方形纸,按照教科书的'要求(PPT出示)折一折,涂一涂。讨论:
(1)请你说一说,红色部分占斜线部分的几分之几?占整张纸的几分之几?你能用算式表示出这幅图的意思吗?3/4×1/4=3/16,就是求3/4的1/4是多少?
(2)你能按照上面的方法先涂出1/4,再涂出1/4的3/4吗?
学生独立完成,并列式汇报
3、做一做:根据图示,想一想,列出算式,算出结果。
1/2×1/4=1/2×3/4=
二、讨论小结分数乘分数的计算方法观察上面的例子,你发现积的分子、分母与两个因数的分子、分母各有什么关系?在小组内交流。说一说:你能总结分数与分数相乘的计算方法吗?小结:分数与分数相乘,分子与分子相乘的积作分子,分母与分母相乘的积作分母。想一想:此法与分数与整数相乘的方法有矛盾吗?
三、巩固练习:
1、P7做一做
2、P8试一试:强调,能约分的要先约分。
3、提高练习:
(2)教科书第9页数学故事“唐僧分瓜”。通过这节课的学习,你有什么收获?通过这节课的学习,我们知道了分数乘法的意义就是求这个数的几分之几是多少;计算分数乘法时,要把分子相乘的积作分子,分母相乘的积作分母。板书设计分数乘法
(三)1 *1/2=1/21的1/2是多少?
3/4*1/4=3*1/4*4=3/161/2*1/2=1/41/2的1/2是多少?
1/4*3/4=……… =3/161/4*1/2=1/81/2*1/4=………=1/8………1/2*3/4=………=3/83*3/4=3/1*3/4=9/4
分数乘法教案 篇7
分数乘法教案(通用20篇)
作为一位杰出的老师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。那么你有了解过教案吗?以下是小编为大家收集的分数乘法教案,仅供参考,希望能够帮助到大家。
