初中函数教学反思

笔构网

2026-01-15教案

请欣赏初中函数教学反思(精选7篇),由笔构网整理,希望能够帮助到大家。

初中函数教学反思 篇1

小组合作学习是一种有效的教学方式,在函数教学中,我组织学生进行小组合作探究。例如,在探究二次函数的.性质时,让小组成员分工合作,分别计算不同取值下的函数值,然后共同绘制函数图像,分析函数性质。

通过小组合作,学生们相互交流、相互启发,不仅提高了学习效率,还培养了团队合作精神。但在小组合作过程中,也出现了个别学生参与度不高的情况。为了解决这个问题,我会进一步明确小组分工,加强对小组活动的监督和指导,确保每个学生都能积极参与到合作学习中。

初中函数教学反思 篇2

学生的学习不仅仅依赖于学校教育,家庭教育同样重要。在函数教学过程中,我发现部分学生在家中缺乏有效的学习指导和监督,导致学习效果不理想。

为了改善这种情况,我加强了与家长的沟通。通过家长会、电话、微信等方式,及时向家长反馈学生的学习情况,让家长了解学生在函数学习中存在的问题。同时,向家长传授一些辅导学生学习的`方法和建议,鼓励家长积极参与到学生的学习过程中,形成家校教育合力。通过家校合作,学生的学习态度和学习成绩都有了一定的改善。今后,我会继续加强与家长的沟通,共同促进学生的成长和进步。

初中函数教学反思 篇3

在本次函数教学中,我深刻意识到概念引入环节的重要性。函数概念较为抽象,若直接讲解定义,学生理解起来会有困难。因此,我尝试通过生活实例引入,如汽车行驶路程与时间的关系,让学生直观感受到变量之间的对应关系。从课堂反馈来看,学生的兴趣被有效激发,参与度明显提高。

然而,在讲解过程中,我发现部分学生对于从具体实例抽象出函数概念的过程理解不够深入。这可能是由于我在引导时,给予学生自主思考和讨论的.时间不足。后续教学中,我会增加小组讨论环节,让学生在交流中深化对概念的理解,同时多提供不同类型的实例,帮助学生全面掌握函数概念。

初中函数教学反思 篇4

今天我给学生上了锐角三角函数这一章的第一节,现将这节课作简单反思。

本节课采用问题引入法,从教材探究性问题梯子的倾斜度入手,让学生主动参与学习活动。用特殊值探究锐角的三角函数时,学生们表现得非常积极,从作图,找边、角,计算各个方面进行探究,学生发现:特殊角的三角函数值可以用勾股定理求出,然后就问:三角函数与直角三角形的边、角有什么关系,三角函数与三角形的形状有关系吗?整节课都在紧张而愉快的气氛中进行。学生非常活跃,大部分人都能积极动脑积极参与。教学中,我一直比较关注学生的情感态度,对那些积极动脑,热情参与的同学,都给予了鼓励和表扬,促使学生的情感和兴趣始终保持最佳状态,从而保证施教活动的有效性。

在今后具体教学过程中,自己还要多注意以下两点:

(1)还要多下点工夫在如何调动课堂气氛,使语言和教态更加生动上。初中学生的.注意力还是比较容易分散的,兴趣也比较容易转移,因此,越是生动形象的语言,越是宽松活泼的气氛,越容易被他们接受。如何找到适合自己适合学生的教学风格?或严谨有序,或生动活泼,或诙谐幽默,或诗情画意,或春风细雨润物细无声,或激情飞扬,每一种都是教学魅力和人格魅力的展现。我将不断摸索,不断实践。

(2)我将尽我可能站在学生的角度上思考问题,设计好教学的每一个细节,上课前多揣摩。让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,舍得把课堂让给学生,让学生做课堂这个小小舞台的主角。而我将尽我最大可能在课堂上投入更多的情感因素,丰富课堂语言,使课堂更加鲜活,充满人性魅力,下课后多反思,做好反馈工作,不断总结得失,不断进步。只有这样,才能真正提高课堂教学效率。

初中函数教学反思 篇5

函数教学是初中数学中的重要部分,也是中考中的热点问题,更是学生感觉有难度的部分,因此,学好函数,关乎学生对数学的兴趣和爱好,我在教学中更加重视函数教学,我的做法如下:

1、培养学生数形结合思想,提高学生作图能力。

无论是一次函数,还是反比例函数及二次函数的教学,都离不开画函数图象和理解图象,因此一定要养成让学生观察图象分析问题的能力,只有让学生不断地利用图象,才能更好的培养学生的数形结合思想,从而让学生体会到借助图象的简洁性,并降低函数的难度。

2、养成良好的审题习惯,培养学生严密的思维能力。

在教学中,要不断地要求学生用标记法认真审题,学会注意题中的关键字词,例如函数自变量的要求、字母的取值范围等,学会作标记,在解题中不断提醒自己,防止漏解丢解,从而培养学生严密的思维能力。

3、带领学生总结解题技巧,培养学生函数思想。

对学生来说,函数是有难度的,就是因为函数这一部分的解题技巧灵活多样,作为一名教师,应带领学生学会分析问题解决问题,不同的题有不同的.方法,在函数部分中,常见的数学方法有直接推理法、画图法、排除法、分类讨论法、字母系数吻合法、最值法、特殊值法、特殊点法等等,这些方法要在不断地解决问题中潜移默化的交给学生,并让学生灵活应用。

4、培养学生规范解题步骤的能力。

良好的解题步骤可以理清学生的思维,降低学生的难度,从而更好的解决函数问题。

5、加强变式练习,培养学生的综合能力。

函数部分的综合性、灵活性较强,只有不断地加强变式练习,才能使学生正确的分析问题解决问题,从而提高学生的综合能力。

以上是我的个人见解,数学教学任重而道远,函数教学更是重中之重,我将不断地探索总结教学技能,从而更好的提高自己的业务能力。

初中函数教学反思 篇6

在沈阳抚顺的研讨会上,本人承担了《变量与函数》的教学任务。之前,我分别在本校与广州开发区中学分别上了一堂课。三节课,是一个实践、反思、改进、再实践的过程。经过课题组的点评与讨论,本人对概念课的教学设计与教学实践有了更深入的了解。

本设计呈现的课堂结构为:

(1)揭示学习目标;

(2)引入数学原型;

(3)抽象出数学现实,逐步达致数学形式化的概念;

(4)巩固概念练习(概念辨析);

(5)小结(质疑)。

1、如何揭示学习目标

概念课的引入要考虑学生关心的如下问题:这节课学什么概念?为什么要学这样的概念?

数学源于生活而高于生活,数学概念的引入可从生活的需要、数学的需要等方面引入。初中涉及的函数概念的核心是“量与量之间的特殊对应关系”。本课中,本人在导言中提出两个问题:“引例1,《名侦探柯南》中有这样一个情景:柯南根据案发现场的脚印,锁定疑犯的身高。你知道其中的道理吗?”、“引例2。我们班中同学A与职业相扑运动员,谁的饭量大?你能说明理由吗?”学生对上述问题既熟悉又感到意外。问题1涉及两个量的关系,脚印确定,对应的身高有多个取值;问题2涉及多个量的关系。上述问题,不仅仅是引起学生的注意,更重要的是让学生了解客观世界中量与量之间联系的多样性、复杂性,而函数研究的正是量与量之间的各种关系中的“特殊关系”。数学研究有时从最简单、特殊的情况入手,化繁为简。让学生明确,这一节课我们只研究两个量之间的特殊对应关系。“特殊在什么地方?”学生需带着这样的问题开始这一课的学习。

函数概念的引入应具有“整体观”,不仅要提供符合函数原型的单值对应的实例,还应提供其他的量与量之间关系的实例(如多个量的对应关系、两个量间的“一对多”关系等),使学生在更广泛的背景中经历筛选、提炼出新的数学知识的过程,逐步领悟“化繁为简”的数学研究方法。当然,这里的问题是作为研究“背景”呈现,教学时应作“虚化”处理,以突出主要内容。

2、如何选取合适的数学原型

从数学的“学术形态”看,数学原型所蕴藏的数学素材应与数学概念的内涵相一致;从数学的“教育形态”看,数学原型应真实、简洁、简单。真实指的是基于学生的生活现实、数学现实,它可以是生活中的实例,也可以是学生熟悉的动漫故事、童话故事等。简洁、简单指的是问题的.表述应简洁,问题情境的设置要尽可能简单,全体学生对情境中的问题不应存在太大的理解困难,设计的问题情境要能突出将要学习的新知识的本质。

本设计采用了三个数学原型的问题:问题1,“票房收入与售出票数问题”(可用解析式表示);问题2,成绩登记表中的一次数学测试的“成绩与学号问题”(表格表示);问题3,“气温变化与时间问题”(图象表示)。这三个问题从不同层面、不同角度体现函数的“单值对应关系”,也都是学生生活中的真实问题,问题简单易懂,学生容易基于上述生活实例抽象出新的数学概念。

由于不少学生在理解“弹簧问题”时面临列函数关系式的困难,可能冲淡对函数概念的学习,故本节课没有采用该引例。

对于繁难的概念,我们更应注重为学生构建学生所熟悉的、简单的数学现实,化繁为简、化抽象为形象。过难、过繁的背景会成为学生学习抽象新概念的拦路虎。

3、如何引领学生经历数学化、形式化的过程

“数学教学是数学活动的教学”,面对抽象的数学内容,老师会想方设法创设易于学生理解的数学情境。但如何从具体的实例中提炼出数学的素材、形式化为数学知识是教学的关键环节。从具体情境到数学知识的形式化,需要教师为学生搭建合适的“脚手架”,提出能引发学生思考、过渡到数学形式化的问题。本人在学生完成问题情境的几个问题后,提出系列问题“上述几个问题中,分别涉及哪些量的关系?哪些量的变化会引会另一个量的变化?通过哪一个量可以确定另一个量?”

在与学生的交流过程中把重点内容板书,板书注重揭示两个量间的关系,引领学生经历数学概念的形成过程,引导学生认识为什么要引进变量、常量。由问题1~3的共性“单值对应关系”与“脚印与身高”问题中反映的“一对多关系”进行对比抽象出函数的概念,逐步了解如何给数学概念下定义,并理解概念的本质特征。

4、如何引用反例

学生对概念的理解需要经历一个从模糊到清晰的过程,通过正例与反例的对照,才能准确理解概念的内涵。反例引用的时机、反例的量要恰到好处。过早、过多的反例会干扰学生对概念的准确理解。

概念生成的前期提供的各种量的关系中的实例提供的是一个更为广泛的背景,让学生经历从各种关系中抽象出“特殊的单值对应关系”,从而体会产生函数概念的背景。这样的引入有利于避免概念教学中“一个定义,三点注意”的倾向。

在本校上课时,从“气温问题”中的函数图象引导学生发现时间t取定一个值时,所得T的对应值只有一个,学生习惯性地提出问题“温度T取定一个值时,时间t 是否唯一确定?”全体同学从正反两个方面认识“唯一确定”的含义,在这样的基础上再归纳出函数的定义,学生较好地掌握函数中的单值对应关系。

在广州开发区中学上课时,在概念的形成前期,忙中出漏,没有抓住“气温问题”中的函数图象讲解“唯一确定”,特别是没有从反面(温度T=8,时间t=12~14)帮助学生理解“唯一性”,也没有强化“脚印与身高”反映的“一对多关系”,只在涉及“单值对应关系”的实例基础上引出概念,也跳过后面提到的三个反例,学生在后面的概念辨析练习中错漏较多,为纠正学生的理解花了九牛二虎之力。

在抚顺上课时,在完成例1、例2的教学后,还用到如下反例:问题2变式“在这次数学测试中,成绩是学号的函数吗?”、问题3变式“北京春季某一天的时间t是气温T的函数吗?”、练习2(3)变式“汽车以60千米/秒的速度匀速行驶,t是s的函数吗?”,学生借助这三个逆向变式,根据生活经验理解“两个量间的对应关系”是否为“单值对应关系”,有利于学生明确“由哪一个量能唯一确定另一个量”,从而更好地理解自变量与函数的关系,更重要的是让学生养成逆向思维的习惯。

初中函数教学反思 篇7

课堂互动是活跃课堂氛围、提高学生学习积极性的重要手段。在函数教学中,我通过提问、讨论、抢答等方式,增加与学生的.互动。从课堂表现来看,大部分学生能够积极参与互动,主动回答问题。

然而,互动过程中也存在一些问题,如部分问题难度设置不合理,导致一些学生回答不上来,影响了他们的积极性。在今后的教学中,我会更加精心地设计问题,根据学生的实际情况,合理控制问题的难度,让每个学生都能在互动中有所收获,提高他们的参与热情。

大家都在看