《循环小数》教案

笔构网

2026-01-19教案

请欣赏《循环小数》教案(精选7篇),由笔构网整理,希望能够帮助到大家。

《循环小数》教案 篇1

《循环小数》教案

《循环小数》教案 篇2

教学目标

1.理解和掌握循环小数的概念.

2.掌握循环小数的计算方法.

教学重点

理解和掌握循环小数等概念.

教学难点

理解和掌握循环小数等概念.

教学过程

一、铺垫孕伏

(一)口算

0.8/0.5=4/0.25=1.6+0.38=

0.15/0.5=1-0.75=0.48+0.03=

(二)计算

21/3=15/3=12/3=10/3=

教师提问:通过计算,你发现了什么?

二、探究新知

(一)教学例7

例710/3

1.列竖式计算

教师提问:你发现了什么?为什么?(教师用两种颜色的笔分别将商3和余数1描一遍)

使学生明确:因为余数重复出现1,所以商就重复出现3,总也除不尽.

所以10/3=3.33……

(二)教学例8

例8计算58.6/11

1.学生独立计算

2.因为余数重复出现数字3和8,所以商就重复出现数字2和7,

所以58.6/11=5.32727……

3.观察比较10/3=3.33……58.6/11=5.32727……

教师提问:你有什么发现?

(小数部分有的数字重复出现;有一个数字、有两个数字重复出现;)

4.一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数.

教师板书:循环小数.像3.33……和5.32727……是循环小数.

5.简便写法

3.33……可以写作;

5.32727……可以写作

6.练习

把下面各数中的循环小数用括起来

1.5353……0.19292……8.4666……

(三)教学例9

例9一辆汽车的油箱里原来有130千克汽油,行驶一段路程以后用去了.大约用去了多少千克汽油?(保留两位小数)

1.学生独立列式计算

130/6=21.666……

asymp;21.67(十克)

答:小汽车大约装21.67千克汽油.

2.集体订正

重点强调:保留两位小数,只要除到小数点后第三位即可.

3.练习

计算下面各题,除不尽的先用循环小数表示所得的商,再保留两位小数写出它的近似值.

28/182.29/1.1153/7.2

(四)讨论:两个数相除,如果不能得到整数商,会有几种情况出现?

1.除到小数部分的某一位时,不再有余数,商里小数部分的位数是有限的.也就是被除数能够被除数除尽.如3/2=1.5.小数部分的位数是有限的小数,叫做有限小数.

2.除到小数部分后,余数重复出现,商也不断重复出现,商里小数部分的位数是无限的.如10/3=3.33……,小数部分的位数是无限的'小数,叫做无限小数,循环小数是无限小数.

三、课堂练习

(一)计算下面各题,哪些商是循环小数?

5.7/914.2/115/810/7

(二)下面的循环小数,各保留三位小数写出它们的近似值.

1.29090……0.0183838……

0.4444……7.275275……

四、布置作业

(一)计算下面各题,除不尽的用循环小数表示商,再保留两位小数写出它们的近似值.

(二)一列火车从南京到上海运行305千米,用了3.5小时,平均每小时行多少千米?(保留两位小数)

《循环小数》教案 篇3

教学内容:P27、28例8、例9、课文,P30练习五第1、2题。

教学目的:

1、通过求商,使学生感受到循环小数的特点,从而理解循环小数的概念,了解循环小数的简便记法。能用“四舍五入”法求循环小数的近似值,能用循环小数表示除法的商。

2、理解有限小数,无限小数的意义,扩展数的范围。

3、培养学生抽象概括能力,及敢于质疑和独立思考的'习惯。

教学重点掌握循环小数、无限小数、有限小数的意义。

教学难点:掌握循环小数的简便记法。

教学过程:

一、自主探索,获取新知

1、师谈活引入新课:

今天这节课老师给你们讲个故事:从前有座山,山里有个庙,庙里有个老和尚,正在给小和尚讲故事说:从前有座山,山里有个庙,庙里有个老和尚,正在给小和尚讲故事说:……这个故事讲得完吗?为什么讲不完呢?(板书:重复出现)

今天我们要学习的知识和这个故事有相同的地方,首先我们一起到运动场上去看一看吧。从图中你知道了什么?

全班齐笔算王鹏平均每秒跑了多少米?(指名一生板演)。

2、初步感受循环小数的特点。

有些同学算着算着就停下了,发现了什么问题吗?(组织学生小组内交流)

可能发现:1、余数总是“25”。2、继续除下去,永远也除不完。3、商的小数部分总是重复出现“3”。

师:你们怎么能肯定会永远除不完,商的小数部分总是重复出现“3”?让学生充分发表意见,明确余数一旦重复出现,商也就重复出现。

师:那么商如何表示呢?你为什么使用省略号?省略号在这里表示什么意思?(师板书)

3、总结概括循环小数的意义

其他除法算式会不会出现这种情况呢?请同学们算一算:28÷18 78.6÷11

先计算,再说一说这些商的特点。如果继续除下去,商会怎样样?能除尽吗?(请生板演计算结果)

观察例8、例9的三道题,你们发现他们的异同吗?(不同点:一个是小数“3”的循环,另一个是小数“4”和“5”的循环。相同点:

学生讨论后,指名汇报,教师抓住学生回答板书:

(1)小数部分,位数无限(或者除不尽)。

(2)有的是一个数字不断重复出现,有的是两个……。教师小结循环数的意义,(板书课题)。

4、巩固练习:下列哪些是循环小数?并说一说理由。

0.999… 52.52525… 4.1677… 3.212121… 3.1415926…

学生评议。

5、介绍简便记法

除了用省略号来表示循环小数外,还可以用简便记法来表示。如5.333…还可以写作5.3,7.14545还可以写作7.145,请学生把前面判断题中的循环小数用简便记法写一写。(请学生板演),同座互相检查,大家交流订正,在这个过程中,鼓励学生质疑。

(52.52525…可能出现问题52.5252.52552.52,师生共同辨析)

6、看书P27-28第一自然段,及了解“你知道吗?”

7、理解有限小数和无限小数的意义。

师:想一想,两个数如果不能得到整数商,所得的商会有哪些情况?请举例说明?

学生小组讨论,汇报。

师两个数相除,如果不能得到整数商会有两种情况:1、商的小数部分位数是有限的,叫做有限小数;2、商的小数部分倍数是无限的,叫作无限小数。判断前面练习题中的小数哪些是有限小数?哪些是无限小数。

循环小数是有限小数,还是无限小数?为什么?

学生有可能会质疑,结果会不会是无限不循环小数,教师可根据课堂或本班学生实际和学生共同分析。

二、小结:这节课我们学习了哪些知识?能用自己的话说说你是怎样理解这些概念的吗?

三、巩固练习

用计算器算出商后,说出商是什么小数,依据是什么?是循环小数的要求用简便方法写出来。

19÷111.08÷3.313.25÷10.6

四、作业:P30第1、2题。

课后小记:

学生在预习后提出如下一些需要思考的问题:

1、这道题能除尽吗?

2、为什么它除不尽?为

3、计算结果该如何表示?

4、什么是循环小数?

带着这些疑问,本课的教学顺利地推进。这些问题也均在教学中得到了解决。

但在练习中出现了以下几种常见错误:

1、在竖式中在第一个循环节上也打了循环节的圆点。

2、在横式上照抄竖式结果时,虽然在第一个循环节上打了圆点,可却写了两个循环节。

3、在计算竖式时几个数字还未重复两次出现时,学生就经过推理判断出它是循环小数而不再继续往下除了。如:2。01212……学生除到2。0121时就发现小数位数第四位与第二位的数字相同,余数也相同而不再继续往下除了。

针对上述前两个错误,以后再教板书时我应强调格式与写法。特别是P28页下方的‘你知道吗”其中有关循环节的介绍及“写循环小数时,可以只写第一个循环节,并在这个循环节的首位和末位上面各记一个圆点”应让所有学生掌握。

《循环小数》教案 篇4

【教学内容】

九年制义务教学六年级小学数学教科书(苏教版)第九册第48~49页。

【教材简析】

循环小数是学生教难准确地理解和表述的一个概念,特别是在表述其意义的一些抽象说法,学生难以理解。教材通过除法的实例,引导学生观察比较,使学生掌握循环小数的特征,理解循环小数的意义,在此基础上,认识循环节、纯循环小数和混循环小数,并学习循环小数的简便写法。

【教学过程】

一、做好铺垫

1、拍节奏游戏

师:(板书:︱×××︱这个节拍你们能拍出来吗?

(学生一起齐拍掌,中断后提问)

师:你们的节奏为什么这么整齐呢?

生:我们全班同学都是按照先拍一下,后拍两下,这样相同的节奏拍的。

师:如果老师让你们按照这样的节奏,不断重复地一直拍下去,不叫停止,

想一想,你们要拍多少次?

生:要拍很多很多次。

生:要拍无数次。

师:象这样拍的次数是“有限的”还是“无限的”?

生:是无限的。

师:你们刚才拍的次数呢?

生::是有限的。

【用游戏的方法导入新课,一是直观,二是引人入胜,使学生一下子便进入学习的境地。另外,已使学生初步感知“循环”、“无限”等概念】

2、找规律,猜图形。

运用抽拉教具,一次出现两个圆和一个三角形的图形。

⑴ 当逐个出现至第七个图形,即第三组的第一个圆圈后,提问:

师:谁能猜到下面一个是什么图形吗?

生:下面一个图形是“○”。

师:你是怎样想出来的的呢?

生:因为这幅图形的排列顺序是有规律的,每组都有三个图形,前面两个是圆,后面一个是三角,而且是按照这样的规律重复地出项的,所以这个图形应该是第三组的第二个图形,当然是“圆形”。

师:×××同学回答得非常好。

(教师接着演示,让学生猜出图形)

⑵ 出示完第12个图形,当学生猜出下面一个是“圆”时,出现了“……”。

师:这个省略号表示什么意思?

生:表示后面有很多组前面两个圆,后面一个三角,这样的图形。

师:对的。也就是说,这幅图形是依次不断地重复出现这样的图形。请同学们想一想,这幅图形中有多少组这样的图象呢?

生:很多组,无数组。

(板书:依次不断地重复出现、无限)

【采用从直观到半抽象的方法去认识新的概念,遵循了儿童的认知规律。这一环节的设计,有利于培养学生推理性逻辑思维能力。】

二、进行新课

㈠ 循环小数

1、组织学生用竖式计算一道题(出示32÷6),并引导学生注意观察商有什么

特点?

生:我发现这道除法题除不尽,商总是重复出现“3”。

师:为什么会重复出现“3”呢?

生:因为余数重复出现“2”了,所以……。

师:这么说,32÷6的商里有多少个“3”呢?

生:有无数个“3”。

师:既然是有无数个,可以怎样表示呢?

生:我认为可以用省略号表示无数个“3”。

(板书:32÷3=5.33 ……)

2、出示2.7÷11,让学生除到商是五位小数时停笔。

师:想一想,如果继续除下去,商会怎样?

生:商里会依次不断地重复出现“4”和“5”。

师:你是怎么想出来的呢?

生:因为余数重复出现“5”和“6”,所以商就会重复出现“4”和“5”。

师:是不是这样的情况呢?继续除除看。

师:谁能说出这道题的商。

生:2.7÷11等于0.24545等等。

师:“等等”用什么符号表示?能不能不写省略号?为什么?

生:不能不写省略号。因为只有写上省略号,才能表示商后面还有很多45。

师:(出示下面一组题)能说出省略号表示的意思吗?

2÷9=0.222 ……

5÷12=0.4166 ……

9÷55=0.16363 ……

【让学生在尝试练习中认识循环小数,引导学生发现当两个数相除出现循环小数时商和余数的规律。这就重视了让学生掌握知识形成的过程,有利于学生今后的再学习。】

3、概括。

师:象这些小数,就是我们今天要学习的“循环小数”(板书课题)。谁能说一说什么叫“循环小数”?

生:一个小数,几个数字重复出现。

生:一个小数,几个数字依次不断地重复出现。

生:一个小数,从某一位起,一个数字或几个数字依次不断地重复出现。

【注:画横线部分,是教师逐步板书内容】

师:你们认为哪些同学说的最好?最请同学们看看书上写的与×××同学刚才说的还有什么不同?

生:书上多了“小数部分”这几个字。

师:书上为什么要强调从“小数部分”的某一位起呢?

生:这就是说循环小数是从“小数部分”而不是从整数部分的.某一位起,一个数字或者几个数字依次不段地重复出现。

4、判断。

师:请同学们判断下面哪几个数是循环小数?为什么?(小黑板出示)

0.999 ……

5.02727 ……

6.416416 ……

3.21212121

3.1415926 ……

0.547745 ……

学生判断后,教师组织讨论。

⑴ 师:3.21212121师循环小数吗?

生:不是。

师:小数部分的“21”这两个数字不是依次重复出现三次吗?为什么不是循环小数呢?

生:虽然“21”重复地出现了三次,但没有“不断地”重复出现,所以它不是循环小数,它是有限小数。

⑵ 师:3.1415926 ……是无限小数吗?

生:是。

师:是循环小数吗?为什么?

生:因为小数部分没有出现一个或几个相同的数字,所以……。

⑶ 师:在0.547745 ……这个小数中,“5”、“4”、“7”这三个数字已重复出现两次,它是不是循环小数呢?为什么?

生:虽然“5”、“4”、“7”这三个数字重复地出现,但没有依次地重复出现,所以它也不是循环小数。

【结合实例,帮助学生理解循环小数的意义,加深学生认识循环小数。这种抽象的文字概念,学生并不能靠读几遍就理解的,要联系实际,逐字逐句地讨论它的意义。】

㈡ 循环节

师:(指板)“5.333 ……”中不断重复出现的数字是哪一个?(3)

在“0.24545 ……”中依次不断出现的数字是哪几个?”(4、5)在循环小数中依次不断重复出现的数字有个名字:我们把它叫做循环节。

师:想一想,什么叫做循环节呢?请你找出以上判断题中循环小数的循环节。(教师指数,学生回答)

(当教师指第⑷小题时)

生:这个数的循环节是“21”。

师:对吗?

生:不对,因为这个数不是循环小数,所以它没有循环节。

师:对的,循环节只有在循环小数里才出现,如果不是循环小数也就没有循环节。

㈢ 循环小数的简便记法

1、讲解。

师:循环小数一般的写法是把循环节写出两边或者三遍,然后写上省略号。

不过这样写比较麻烦,简便写法是只写出一个循环节,然后在循环节的首位和末位数字上各记一个小圆点,这个点叫做循环点。例如:0.245。读作:零点二四五,四五循环。

2、练习。

⑴ 写出 5.33 ……的简便写法。

⑵ 写出判断题中循环小数的简便写法

㈣ 纯循环小数和混循环小数

1、引导

师:比较一下:“3.67”和“3.267”这两个循环小数的循环节的位置有什么不

同?

生:“3.67”的循环节是从小数部分的第一位就开始的;而“3.267”的循环节不是从小数部分第一位开始的。

师:这是两种不同的循环小数,我们给它们分别起上名字,请看课本。

《循环小数》教案 篇5

教学内容:课本28-29页

教学目的:使学生掌握循环节、理解循环小数的概念,会区分有限小数和无限小数,会区分纯循环小数和混循环小数。

教学过程:

一、复习。

1、口算。

2.8?0.7=45.6?0.08=703.4+1.7=5.1

2.8+0.45=3.250.9?08=0.723.1?1.7=1.4

0.06?0.7=0.040.05?0.8=0.40.75?0.5=1.5

6.3?0.07=9064?0.08=8008.1?0.03=270

2、计算下面各题,哪些商是循环小数?

7.108?4=1.7778?11=0.72......

6.06?50=0.121214?15=0.93......

二、新授。

1、教授循环节。

指着刚才计算出的:0.72......、0.93......告诉学生:一个循环小数的小数部分,依次不断地重复出现的数字,叫做这个循环小数的循环节。

0.72......的循环节是72,0.93......的循环节是93。写小数的时候,为了简便,小数的循环部分只写出第一个循环节,并在这个循环节的首位和末位数字上各记上一个圆点。例如:

3.3......:3.3

5.32727......:5.327

6.416416......:6.416

巩固练习:

课本28页中间的`做一做

2、教授纯循环小数和混循环小数。

比较:①3.3......与②5.32727......有什么不同?

得出:①的循环节是从小数部分第一位开始,②的循环节不是从小数部分第一位开始。

告诉学生:循环节从小数第一位开始的循环小数叫纯循环小数。如3.3......。循环节不是从小数第一位开始的循环小数叫混循环小数。如5.32727......

巩固练习:

1)课本P28。做一做。

2)做练习七的第4题。

让学生按要求取近似值。做完后,集体订正。

3)做练习七的第5题中第一行的2道小题。

让学生按照要求做题,巡视时,教师要注意学生怎样将循环小数表示成保留两位小数的近似值,是否忘了用“?”号。做完后,集体订正。

4)做练习七第6题。

先让学生审题后,按照题目要求计算。做完后,集体订正。

三、作业。

练习七第5题中第2行的2道小题。

课后:

《循环小数》教案 篇6

教学内容:P30练习五第3—6题。

教学目的:

1、使学生进一步理解并循环小数、有限小数、无限小数的概念,掌握它们之间的联系和区别,并能正确区分。

2、培养学生总结规律的能力,使学生既长知识,又长智慧。

3、培养学生学习数学的积极情感。

教学重点:进一步掌握相关概念并建立联系。

教学难点:对循环小数的实际应用。

教学过程:

一、主动回顾,知识再现:上节课我们学习了什么知识?

二、单项训练,夯实基础:

1、进一步理解循环小数的概念。

下面哪些数是循环小数,如何判断的?

0.666… 3.27676… 301415926… 40.03666… 100.7878

0.06262… 3.203203… 0.2142857142857… 70.2641

2、上面这些小数可以分为几类?哪几类?这几类小数有怎样的关系?

有限小数

小数 循环小数

无限小数

无限不循环小数

三、综合练习,运用提高:

1、求循环小数的近似值:P30第3题

先请学生说说取近似值的方法,再让学生独立完成。

2、P30第6题

先观察这些小数的特点,再试一试.

请学生说出判断大小的过程,教师适时评价。

方法:把这些简便记法的循环小数还原。

师小结:先观察需要还原的小数位数,再比较,比较方法与以前比较小数的大小方法相同。

四、独立练习 :P30第4、5题。

课后小记:

在今天的'课上,我向学生说明了为什么所有除法算式的商不可能为无限不循环小数。因为余数必须要比除数小,所以任何除法算式余数的可能性是有限的。当除的次数比余数可能性的个数多时,必定出现与前面余数相同的现象。我用1除以7来举例说明,学生领悟得很快,绝大多数学生明白了其中的奥妙。

其次,我还向学生介绍了无限不循环小数即是初中所要学到的“无理数”。有学生(张子钊)问“我们学不学无理数呢?”,我简单介绍了六年级即将认识的小学阶段唯一一个无理数派。孩子们对无理数十分感兴趣,我又利用课余时间为他们补充介绍了无理数产生的数学史。

《循环小数》教案 篇7

首先出个问题,假设给你一个小数(无限循环小数),你能说出小数点后第10000位的数字是几吗?10000位?是在开玩笑吗?数都要数好久。其实用心点的同学们就已经知道了,这个数字肯定是有一定的规律可寻的,不然,真的就是死记硬背的数学了。

每天10分钟头脑大风暴,开发智力,培养探索能力,让你成为学习小天才。

教案分析:

阿尔法趣味数学课程教案是通过对小学数学课本上的知识点分析和趣味故事相结合,让同学们感知到数学其实还挺有趣的。培养孩子学习数学的兴趣、逻辑思维能力和独立解决问题的'能力。

教案要求及解读:

老师通过趣味小故事的形式引导同学们在游戏中学习。

教学目的:

了解和认识无限循环小数的意思及其特点,规律,学会在什么场景下使用循环小数;

了解除法中商的小数部分的特点。

适合年级:小学五年级

教学重点:认识循环小数。教学难点:循环小数的循环节和循环点。循环小数的意思:

一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。像:5.333…和7.14545…都是循环小数。一个循环小数的小数部分,依次不断重复出现的数字,就是这个循环小数的循环节、例如:

5.333…的循环节是3。

7.14545…的循环节是45。

6.9258258…的循环节是258。

写循环小数时,可以只写第一个循环节,并在这个循环节的首位和末位数字上面各记一个圆点。例如:

教学过程:

老师:同学们,最近你的数学学习进步很大呀,我来考你们一道题吧。5÷7等于多少?

学生:这么简单呀,约等于0.71

老师:说准确点!小数点后第1000位的数字是几?

学生:啊!这个可难住我们了,到底是多少呀,老师给我们讲讲吧。

老师:这道题的得数是个无限循环小数:5÷7=0.714285714285......

循环小数是有循环节的,循环节首尾相接循环出现。仔细看"714285"这6个数字在不断循环。那循环节就是它们6个了!这样就好算第1000位是多少了。1000÷6=166……4,循环节在到第1000位的时候循环了166次,并余下4个数字,那么从循环节开始往后数第4位就是2。

学生:哦,也就是小数点后第1000位的数字应该是2.

老师:那我再问你们,前1000个数字的和是多少?

学生:是4496,哈哈,你考不倒我。这个得数是经过166次循环再加上余下的4位数字得到的。那么这个小数的循环节的和是7+144+2+8+5-27,那么166 × 27=4482;剩下的4个数字之和是7+1+4+2=14,所以前1000个数字之和就是4482+14=4496。

思维挑战:

你学会这种方法了吗?来试试吧:计算5÷13的商的小数点后面第1000位的数字是多少?

提示:解答这道题要注意:一是5÷13的商要算准确,否则就无法求出第1000位的数字;二是要找准商的循环节,看清循环节有几个数。

教案总结:

无限循环小数是由小数除法的商产生的,学习无限循环小数的前提是要掌握好除法,商和余数。

课后思考:

计算5÷13的商的小数点后面第10000位的数字是多少?

无限小数一定比有限小数大。

无限小数都是循环小数。

循环小数都是无限小数。

0.66666是循环小数。

一个小数不是有限小数,就是无限小数。

大家都在看