分数的基本性质教学反思

笔构网

2026-01-23教案

请欣赏分数的基本性质教学反思(精选9篇),由笔构网整理,希望能够帮助到大家。

分数的基本性质教学反思 篇1

在本次磨课活动中,我选择了《分数的基本性质》为授课内容。《分数的基本性质》是人教版小学数学五年级下册的内容,它是在学生已经掌握了商不变的性质以及学习了分数与除法的关系之后,并在已有应用经验的基础上进行的。《分数的基本性质》在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的基本性质也有很大的帮助,所以,分数的基本性质是本单元的教学重点之一。我在设计这节课时,大胆利用“猜想和验证”方法,留给学生足够的探索时间和广阔的思维空间,让学生得到不仅是数学知识,更主要的是数学学习的方法,从而激励学生进一步地主动学习,产生我会学的成就感。对这部分内容我是这样设计教学的:

一、迁移引入,沟通新旧知识的联系。

学习分数的基本性质可以利用商不变的性质进行正迁移,所以我在开课伊始出示课件:120÷30的商是多少?被除数和除数都扩大3倍,商是多少?被除数和除数都缩小10倍呢?学生纷纷回答商是4,我故作神秘地说“这几个算式都不相同,为什么它们的商是一样的呢?大家回忆一下,这是我们以前学过的一个什么性质?”学生很快就答出“商不变的性质”。接着复习前几节课学习的“分数与除法的关系”帮助学生意识到商不变规律和分数与除法的关系与新知识的学习具有定的联系,为新知识的学习奠定基础。

二、经历由“猜测——动手操作验证——得出规律”的探究过程。

在本课的学习中,为充分体现学生的主体地位,使之经历学习探究的全过程。我创设了探索场景,让学生首先猜测分数是否也有与除法同样的性质。接着充分利用直观手段,设计了“猴王分饼”的操作活动,通过让学生动手操作来发现三个分数之间的相等关系,接着引导学生一起探索这三个分数之间存在的规律,从而把具体的知识条理化,使学生获得具体真切的感受,帮助学生在活动中感悟分数大小相等的算理。归纳得出分数的基本性质,让学生参与学习的全过程,在掌握所学知识的同时获得成功的体验。在教学中我还注意关注学生的多种思维方式,鼓励学生用自己的语言叙述解决问题的过程,体现了对学生观察能力、动手操作能力、逻辑思维能力和抽象概括能力的.培养。

三、运用知识,解决实际问题。

先进行基本练习,深化对分数的基本性质认识,通过应用拓展,使学生加深对分数的基本性质的理解,如游戏:你能帮助小羊和小熊找到与它相等的分数吗?并培养学生运用所学的知识解决实际问题的能力。拓展题一个分数,分母比分子大14,它与三分之一相等,这个分数是多少?

此题不仅能够帮助学生巩固基本知识,还能促使学生更加灵活地运用分数的基本性质。在教学中,学生不仅想到可以用方程的方法解决问题,还有部分学生提出更简洁的方法。思路如下:三分之一的分母比分子大2,而结果要让分母比分子大14,而原来相差的2乘以7就可以得到14了,因此只要分子分母扩大7倍就是所求的数。创新思维的火花在学生中闪现,体现出他们对知识的掌握更加灵活、对知识的理解更加深刻。

本节课出现的问题也很多,如当总结出规律后并未及时引导学生找出规律中的关键词“同时”、“相同的数”;在进行分数的基本性质与商不变的规律的沟通联系时,只是对照两句性质进行,没有举出具体的例子。如果能让学生多举一些例子,归纳方法从“特殊”到“一般”推进从而得出结论,就使得结论的得来更科学。

分数的基本性质教学反思 篇2

分数的基本性质这节课我借助了优教班班通中的微课资源帮助学生学习的,是在学习商不变规律以及前面所学知识的基础上进行教学的

成功之处:

虽然学生在家不能利用学具进行操作,但是微课视频中详细的用动画进行了操作,让学生同样能经历新知的探究过程。学生在观看操作的过程中就会发现1/2 2/4 4/8的涂色部分的大小相同,也就是这几个分数具有相等的关系,由此让学生进行更进一步的观察,在这个相等的分数中,分子和分母的变化规律,也就是从左往右看分子和分母同时乘2,分数的大小不变;从右往左看,分子和分母同时除以2,分数的大小不变。进而让学生举例进行加以验证,最后概括出分数的基本性质。在整个过程中,既渗透了不完全归纳的.思想,也培养了学生的合情推理能力。

不足之处:

学生在练习中在数轴上表示相同的分数时,个别学生会出现没有应用分数的基本性质来进行思考并解决问题,导致出现错误。

改进措施:

要注重引导学生应用所学新知识解决新问题的能力,体会数学学习的思想方法。

分数的基本性质教学反思 篇3

印象中分数基本性质就是通过相等的式子比较得出规律,加强练习得到巩固,加深学生印象,想不出怎样引出课题更好。今天两位老师都通过学生办板报的页面大小比较,使学生产生争议,激起学生的好奇来引入正题,在通过学生动手操作直观得出几个数相同,在这个过程中两个老师操作的不尽相同,尤其是李素蕊老师在展示学生制作的图时,展示了不同的制图效果,老师并能在展示的过程中很自信的选出自己想要的一系列图贴在黑板上,课下给老师交流时知道李老师是在课堂巡视时对学生的操作做到了心中有数,说明老师在反馈时,选择是有目的的,找到所需的来进行展示,而不是无目的的.点将,这也提醒了我,今后教学设计要更有计划性,不同的还有李素蕊老师还采用了课本上第二个做一做,两组等式学生同时分析是有些复杂,明显学生的思路不太清晰了,元博老师提得好,第一个可以作为推导,第二个作为验证,这样会更好,两个情境能得到很好的应用。

问题:

1、学生总结性质时说到分子分母同时扩大或缩小相同的倍数时,老师总是可以向乘或除以引导,有必要过分区分吗?

2、说扩大或缩小时,0除外是否可以不说?

分数的基本性质教学反思 篇4

分数的基本性质一课是本册教材第四单元的一个资料。这部资料是学生在学习了分数的好处、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。而约分、通分又是分数四则计算重要基础,所以,理解分数大小不变规律我觉得十分的重要。

本节课,我认为探索分数大小不变的规律是难点,运用这个规律来解决一些实际的问题是重点。那么在课堂中如何来体现这两方面,我想用故事来贯穿整个教学过程。

(一)情境的创设。

课的开始,我讲了一个猴妈妈分大饼的故事,(同学们,你们听故事吗,那教师给大家讲一个故事。猴山上的猴子最爱吃猴妈妈做的大饼了。有一天,猴妈妈做了3只大小一样的饼,他把第一只饼平均切成了4块,拿了一块给第一只猴子。第二只猴子看见了说:妈妈,我要2块,我要2块。于是,猴妈妈把第2只饼平均切成8块,拿了2块给第二只猴子。第三只猴子更贪,说:妈妈,我要4块,我要4块。于是,猴妈妈把第3只饼平均切成16块,拿了4块给第二只猴子。同学们,你们明白哪知猴子分得多吗?)透过分大饼这一故事目的是想创设了一种和谐愉悦的气氛,能激发学生的学习兴趣,更能激起学生探索新知的欲望。在课堂实施中,我发现学生还是爱听故事的,从这个故事中学生也能说出分到的饼的大小是一样的。并能十分流利地说出了每个猴子分到每个饼的14,28,416。之后我提出疑问,既然你们刚才说到三只猴子分到的饼一样多,那就意味着这三个分数的大小是相等的,那我们还没有学过分子和分母不一样的分数的大小比较,你怎样明白这3个分数大小相等呢?就引出了规律的探索的第一步。

(二)、规律的探索。

在故事中学生得出这3个分数大小相同后,为了给学生创设个性化的学习空间,我对学生说你能够根据教师发给你的材料来验证这三个分数的大小,如果你觉得不需要这些材料,那也能够不用。这样的设计我的目的是能够给予学生必须的探究空间,同时也增添活动的趣味性和挑战性。在学生实际操作中我发现,有的学生用3个大小一样的圆、有的用3张大小一样的长方形纸,也有的学生用了分数和除法的关系,运用这个关系的时候还用到了我们以前学过的商不变性质,解决了这3个分数的`大小是相等的。因为在这个环节中有学生利用商不变性质来解决了这3个分数的大小,所以在揭示分数的基本性质后也没有再提出和商不变性质的关系。本来当学生透过实践的操作后发现这三个分数的大小是相等后,我追问:猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你能说出一组相等的分数吗?这个追问我的目的是等一下让学生观察规律时,仅有一组分数觉得太少了,所以那里让学生再说出一组分数,带给更多的学习材料,以便学生更好的观察。在试教的时候,发现学生观察的时候不是一组一组观察,而是上下观察,所以本节课我就把这个环节做了调整。然后在教师的引导下,学生的独立思考,同桌的合作交流以及全班学生的交流,并

透过教师的板书,很清楚的观察到分子和分母是怎样变化的。因为这个规律只是在这1组分数中得出的,还不能代表这个规律是正确的,所以我提出疑问,是不是所有的分数只要分子和分母同时乘或除以相同的数,分数大小就不变呢?意思是让学生再举出一些例子来验证自我刚才发现的规律是确。听课的教师问我这个环节设计在那里是什么意思,有没有必要,他们感觉那里浪费了很多的时间,以前也听过这一课,当时这位教师是没有让学生去验证自我的发现是不是正确的,之后听课的教师说到就凭一组材料来发现这个规律是不是太少了,是不是就应带给更多的材料让学生去发现。让学生去验证自我的发现。所以这个环节我就抱着试一试的态度去上的,结果发现效果也不是很好,看来这个环节到底怎样上还得研究。最终自我发现的规律和书上的规律进行比较,得出相同的数零要除外的,从而完善规律。最终让学生说说这个规律中哪些字十分的重要,并仔细严读,更加牢固地掌握这条规律。当学生已经理解并掌握这个规律后,尝试让学生去解决生活中一些问题,所以在教学例2前,我出示了我们有25的学生参加学校的书法小组,有410的学生参加舞蹈小组,哪组参加的人数多?这样设计主要是为例2做铺垫,并让学生感受到化成分母相同并且大小

不变的分数是为以后分数大小的比较做好准备。做例2之前,我更关注的是如何让学生来理解这个题目的意思,让学生明白在做题目之前要先理解题目的意思,在课堂的实施中,发现学生理解的相当透彻。当请一位学生上来做的时候,这位学生直接在23的后面乘以4,之后我让学生擦掉,直接写答案,听课的教师说,为什么擦,我也说不出什么理由,但仔细一想,如果学生的这个错误好好的利用,那是十分值得的,因为那里一能够帮忙后进生理解利用分数的基本性质去怎样做,二注意书写的格式。由于比较紧张,也没有多大思考,所以就错过了一次很好的展示机会。最终由于时间比较紧,也没有用这个故事串联起来,本来那里还想问学生一个问题,说说猴妈妈是运用什么规律来满足三只猴子的要求,并且是分的这么公平的呢?如果小猴子要分4块,那候王怎分才公平呢?如果要5块呢?这个其实是思维的拓展,没有好好的利用,十分可惜。所以对后面的练习带来了麻烦。

(三)练习的设计

为了有效地防止学生在课堂教学后期产生注意力分散,较好的调动学生的学习积极性。在练习设计方面,尽量给枯燥的练习赋予丰富多彩的形式,一方面能够集中学生的注意力,另一方面也能够放松学生的情绪,让他们在简单愉快的氛围里学习知识,本课中设计了:①填空。35=3×()5×()=9()

4()=4860

749=3()=()7=

②决定。

①525=5÷5=25÷5=5×12=25×12

②1220=12+2=20+2=1424

③25=2×25=45

④58=5÷58×8=164

③游戏。教师写一个分数,你能写出和教师相等的分数?你能写几个?写的完吗?在写的时候,你是怎样想的?

④1a=7b(a和b是不为0的自然数),当a=1、2、3、4的时候,b分别=?a和b为什么有怎样的关系?为什么有这样的关系呢?

由于时间紧张,所以练习的设计与原先的有所区别,只让学生填了4个很简单的填空,第二个练习是我写了一个分数13,比一比在最短的时间里,看哪个同学写的分数多,并且大小相等。在巡视的时候,我看到大部分学生是后一个分数的分子和分母是前一个分数的分子和分母2倍,然后就叫了一个学生回答,也没有肯定这位学生是回答的正确还是错误的,就急着把自我的想法写在黑板上,13=26=39=412,让学生说说看,教师写的对吗?因为课堂上的例子都是后一个分数与前一个分数都是2倍,3倍的关系,所以他们都说错了?原因是第3个分数的分子和分母不是第2个分数分子和分母2倍关系。时间紧迫,也没有好好的去利用这题。总之,一节课下来,问题多多,值得反思。

分数的基本性质教学反思 篇5

学习《分数的基本性质》这一课程,学生已经掌握了分数的概念、分数与除法的关系、商的变化规律等基础知识。在这节课中,学生将进一步学习约分、通分的重要性,而这两个概念又是进行分数四则运算的关键。因此,理解分数大小不变的规律变得至关重要。

本节课的。教学重点是理解和掌握分数的基本性质,难点是应用分数的`基本性质解决问题。

1、情境引入,明晰目标。

唐僧拿出一个大西瓜想给猪八戒和沙僧分。猪八戒说:“我要一半!”沙僧说:“我要四分之二!”这时他们开始争吵起来,唐僧无奈地看着他们。突然,孙悟空哈哈大笑起来。他笑着说:“这很简单啊,一半就是四分之二啊!”猪八戒和沙僧同时恍然大悟,停止了争吵。

2、动手操作,理解规律。

简单的情境,在学生的分享和讨论中,大部分同学都能够理解两人的西瓜是一样多的道理。为了帮助学生更好地理解这个道理,我设计了一个活动。首先,让学生们用手中的正方形纸片自己尝试将一张纸分成两半、四分之一、八分之一,然后比较它们的大小。通过这个活动,他们发现了1/2=2/4=4/8这样的关系。接着,让他们举两个具体的例子,再与同桌分享自己的发现。在交流中,他们意识到“分子分母同时乘或除以相同的数(0除外),分数的大小不变”的基本性质。这样,他们更深入地理解了分数的运算规律。

3、想法共享,共同领悟。

教材中有个想一想:根据分数与除法的关系,你能说明分数的基本性质吗?这个问题对于学生而言有一定难度,它需要前后知识的联系。所以我将这个难点交由个别学生发言,由一个点的“启发”带动全班学生这个面的“领悟”。

分数的基本性质教学反思 篇6

分数的基本性质这节课是在学习商不变规律以及前面所学知识的基础上进行教学的,为后面学习约分和通分奠定基础。

成功之处:

1.重视知识的衔接,找准知识的生长点。在新知教学之前,我通过出示两道除法商不变规律的问题,让学生发现在整数除法中,被除数和除数同时扩大或缩小相同的倍数,商不变,由此引入分数的基本性质的教学。这样设计学生在探究分数的基本性质时,就会利用已有知识进行迁移,从而发现分数的基本性质,即分数的分子和分母同时乘或除以一个相同的数(0除外),分数的大小不变。这样通过类比,由于分数与除法的关系,使得分数的基本性质、商不变规律在语言叙述上具有很多的相似性,这样也就能更好的理解分数的基本性质。

2.加强直观操作,经历新知的探究过程。在例1的教学中,通过折纸、涂色等操作活动,帮助学生获得具体、真切的感知,学生在动手操作的过程中就会发现1/22/44/8的涂色部分的大小相同,也就是这几个分数具有相等的关系,由此让学生进行更进一步的观察,在这个相等的分数中,分子和分母的变化规律,也就是从左往右看分子和分母同时乘2,分数的大小不变;从右往左看,分子和分母同时除以2,分数的'大小不变。进而让学生举例进行加以验证,最后概括出分数的基本性质。在整个过程中,既渗透了不完全归纳的思想,也培养了学生的合情推理能力。

不足之处:

学生在练习中在数轴上表示相同的分数时,个别学生会出现没有应用分数的基本性质来进行思考并解决问题,导致出现错误。

改进措施:

要注重引导学生应用所学新知识解决新问题的能力,体会数学学习的思想方法。

分数的基本性质教学反思 篇7

学习《分数的基本性质》这节课,学生已经学习有了分数的意义、分数与除法的关系、商的变化规律等知识来做基础。同时,这节课的学习是进一步学习约分、通分的基础,而约分和通分又是分数四则运算的重要基础。因此,理解分数大小不变规律就显得尤为重要。

本节课的教学重点是理解和掌握分数的基本性质,难点是应用分数的基本性质解决问题。

1、情境引入,明晰目标。

我首先创设了一个唐僧给猪八戒和沙僧分西瓜的`情境,(猪八戒分得它的1/2,沙僧分得它的2/4,结果猪八戒不同意吵了起来,这时,聪明的孙悟空听到了哈哈大笑,而且对他们说了一句话就让他们停止了争吵。你知道孙悟空为什么会笑?他又对他们俩说了什么呢?)通过分西瓜这个故事,激发了学生的学习兴趣,创设了一种强烈的探究氛围,同时也引入新课的学习。

2、动手操作,理解规律。

简单的情境,在个别学生的讲述下,大部分学生能够想象两人的西瓜同样多。为了让学生明白其中的道理,在第二环节,我首先让学生借助手中的正方形纸片先独立的分一分、涂一涂、比一比,发现1/2=2/4=4/8,再与对子交流自己的发现。紧接着我又让学生自己举两个例子,然后再次对子之间交流想法,是否和自己的发现吻合。最后发现“分子分母同时乘或除以相同的数(0除外),分数的大小不变。”即分数的基本性质。

3、想法共享,共同领悟。

教材中有个想一想:根据分数与除法的关系,你能说明分数的基本性质吗?这个问题对于学生而言有一定难度,它需要前后知识的联系。所以我将这个难点交由个别学生发言,由一个点的“启发”带动全班学生这个面的“领悟”。

分数的基本性质教学反思 篇8

这节课主要是学习分数的基本性质,通过学习商不变规律以及之前所掌握的知识,为后续学习约分和通分打下基础。

成功之处:

1.在引入分数的基本性质之前,我先通过展示两个整数除法的例子,让学生发现被除数和除数同时放大或缩小相同倍数时,商是不变的规律。这样,我们引入了分数的基本性质教学。学生在探索分数的基本性质时,会利用已有的知识进行迁移,从而发现分数的基本性质:分子和分母同时乘或除以一个相同的数(除数不能为0)时,分数的大小不变。通过类比,因为分数与除法有关,使得分数的基本性质与商不变规律在语言表达上具有很多相似之处,这样也有助于更好地理解分数的基本性质。

在教学中,可以通过折纸、涂色等操作活动,帮助学生直观感知1/2、1/4、1/8这几个分数的大小关系。学生在动手操作的过程中会发现这几个分数的涂色部分大小是相同的,从而引导他们观察分子和分母的变化规律。通过操作和观察,学生可以发现在这几个相等的'分数中,分子和分母同时乘2时,分数的大小不变;分子和分母同时除以2时,分数的大小也不变。通过举例验证,最终可以总结出分数的基本性质。这样的教学方法既培养了学生的实践能力,又培养了他们的归纳推理能力。

不足之处:

学生在练习中在数轴上表示相同的分数时,有些学生可能会忘记利用分数的基本性质来帮助他们正确思考和解决问题,从而可能出现错误。

改进措施:

要注重引导学生应用所学新知识解决新问题的能力,体会数学学习的思想方法。

分数的基本性质教学反思 篇9

这节课的成功可以用“设计巧,效率高,气氛活”九个字来概括。

先说巧和活,教材中讲分数的基本性质是从比较的大小引入,教师巧妙地改为“猴王分饼”,分给猴1一块,猴2要两块,猴3要三块;并结合上课学生数的实际,求第一、二组学生的总人数占全班学生人数的几分之几,使一道例题变为三道例题。在教师的引导启发下,学生通过观察、分析、比较找规律,逐步抽象概括出分数的基本性质,既不多占时间,又比只举一例就归纳更有说服力。又如,下课的动脑筋出会场,既巩固了知识,又检查了效果,还进行了纠正错误和个别指导,一举多得,灵活巧妙。

再说效率高,高就高在教师在教学设计中努力体现“趣”、“实”、“活”三个字。课上得有趣、有吸引力,课堂气氛活跃,学生学习的积极性强,学习效率必然高;课上扎实,重点突出,讲求实效,更是教学效率高的关键和核心问题。例如,教师引导学生比较归纳,揭示规律,从,它们是按照什么规律变化的?到。“都”字用得好,怎么改?把第二个“都”字换成“或者”为什么好?再到,重点突出,步步深入。又如,沟通分数基本性质与商不变性质的联系,练习有层次、有坡度,从乘以或除以具体的数到用字母表示的数,从唯一答案到有多个答案,逐步深化。既巩固和加深了对知识的理解,学会了运用,同时也发展了学生的思维,使学生学起来有味道。听课的教师听起来更有味道,上课结束时,上千名教师自发地热烈鼓掌,就是大家时这节课的评价。

美中不足的,一是把聪明的猴王“骗”贪吃的`小猴子,改成本文中“既满足小猴子的要求,又分得公平”更符合思想品德教育的目的;二是练习的内容多了,晚下课多用5分钟。

大家都在看