请欣赏分数的基本性质教案(精选7篇),由笔构网整理,希望能够帮助到大家。
分数的基本性质教案 篇1
教学内容:
人教版数学五年级下册第57页例1、例2。
教学目标:
(1)经历探索分数的基本性质的过程,理解分数的基本性质。
(2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数
(3)培养学生的观察、比较、归纳、总结概括能力
(4)鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质
教学重点:探索、发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。
教学难点:自主探究、归纳概括分数的基本性质。
教学过程:
一、情境设置,引入新课:
唐僧师徒四人去西天取经,有一天路过女儿国,国王给了他们师徒四人一块饼。唐僧说:“咱们把这块饼平均分成四块,每人一块吧。”猪八戒听了,急忙说:“一块太少了,师傅我吃得多,就多分给我一块吧”。唐僧看了看贪吃的徒弟,不知道怎么办好。孙悟空说:“师傅,那就把这块饼平均分成八块给他两块吧。”唐僧笑了笑说,“你这个猴子,真狡猾。”
问1:从上面的故事中,你能用学过的知识,表示出他们每人吃了多少饼吗?
问2:猪八戒有没有多吃到饼了?
二、探究新知,解决问题
1、师:到底谁的猜想是正确的呢?
(1)让我们一起来看一个小视频(播放微课),并回答问题:谁吃得多?也就是谁大?为什么?
(2)学生汇报
(3)得出结论:1/4=2/8
2、初步概括分数基本性质
(1)师:这两个分数的分子、分母都不相同,为什么分数的大小却相等的?你们能找出它们的变化规律吗?
提示:从左到右观察,这两个分数的分子、分母怎样变化才能得到下一个分数,且分数的大小不变呢?
师板书:分数的`分子分母同时乘相同的数,
分数的大小不变。
(2)师:谁来举一个例子。师板书,并问:同时乘以了几?
(3)师:这样的例子我们可以举出很多很多,刚才我们是从左往右观察的,如果把这个式子从右往左观察,你们又会发现什么呢?
生:分数的分子分母同时除以相同的数,分数的大小不变。
师板书:或者除以
3、理解运用分数基本性质
(1)师:根据分数的这一变化规律,你认为这个式子对吗?为什么?(课件出示下列式子)
学生回答,并说明理由。
(2)师:分数的分子、分母都乘以或除以相同的数,分数的大小不变。这里“相同的数”是不是任何的数都可以呢?我们一起来看这样一个分数。
(课件出示式子:)这个式子成立吗?
生:因为在分数当中分母乘就等于0,分母不能为0。
师:我再说一个式子,我不乘以0了,我除以0,这个式子成立吗?
生:不成立,因为除数不能为0
(3)小结:对,因为分数的分子、分母都乘0,则分数成为,在分数里分母不能为0,所以分数的分子、分母不能同时乘0,又因为在除法里0不能作除数,所以分数的分子、分母也不能同时除以0。所以这两个式子都是不成立的?我们刚才总结的分数的分子分母同时乘或者除以相同的数,要0除外。(师板书0除外)
师:到现在为止这个规律我们就总结完了,那在这个规律里你觉得什么地方需要我们注意一下呢?
生:同时和相同的数。
师:“同时”和“相同的数”(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。(师板书课题:分数的基本性质)
师:如果猪八戒学会了分数的基本性质,那傻乎乎的被大师兄捉弄了,那咱们同学们千万不要犯它那样的错误了。下面让我们一起把分数的基本性质边读边记。
师:这个分数的基本性质特别有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数。我们一起来看例2.
三、知识运用
1、例2:把2/3和10/24化成分母是12而大小不变的分数。
(1)问:分子分母应怎样变化?变化的依据是什么?
(2)让生独立完成,完成后汇报你是怎样想的?
2.完成课件练习
3、拓展延伸:
你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?
有位老爷爷把一块地分给三个儿子.老大分到了这块地的1/3,老二分到了这块地的2/6.老三分到了这块的3/9.老大、老二觉得自己很吃亏,于是三人就大吵起来.刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵.
四、课堂小结
1、看到同学们也笑起来了,老师就知道今天大家的收获不少,谁来说说这节课你都收获了哪些东西?
五、板书设计
分数的基本性质
1/4 =2/8
分数的分子分母同时乘相同的数(0除外),
除以
分数的大小不变。
分数的基本性质教案 篇2
教学目的
1.使学生理解和掌握分数的基本性质,能应用“性质”解决一些简单问题.
2.培养学生观察、分析、思考和抽象、概括的能力.
3.渗透“形式与实质”的辩证唯物主义观点,使学生受到思想教育.
教学过程
一、谈话.
我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、
整数的互化方法.今天我们继续学习分数的有关知识.
二、导入新课.
(一)教学例1.
出示例1:用分数表示下面各图中的阴影部分,并比较它们的大小.
1.分别出示每一个圆,让学生说出表示阴影部分的分数.
(1)把这个圆看做单位1,阴影部分占圆的几分之几?
(2)同样大的圆,阴影部分占圆的几分之几?
(3)同样大的圆,阴影部分用分数表示是多少?
2.观察比较阴影部分的大小:
(1)从4 幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等.)
(2)阴影部分的大小相等,可以用等号连接起来.(把图上阴影部分画上等号)
3.分析、推导出表示阴影部分的分数的大小也相等:
(1)4幅图中阴影部分的大小相等.那么,表示这4 幅图的4个分数的大小怎么样呢?
(这4个分数的大小也相等)
(2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来).
4.观察、分析相等的分数之间有什么关系?
(1)观察 转化成 , 的分子、分母发生了什么变化?
( 的分子、分母都乘上了2或 的分子、分母都扩大了 2倍.)
(2)观察
(二)教学例2.
出示例2:比较 的大小.
1.出示图:我们在三条同样的数轴上分别表示这三个分数.
2.观察数轴上三个点的位置,比较三个分数的大小:
从数轴上可以看出:
3.观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律.
(1)这三个分数从形式上看不同,但是它们实质上又都相等.
(教师板书: )
(2)你们分析一下, 、 各用什么样的方法就都可以转化成 了呢?
三、抽象概括出分数的基本性质.
1.观察前面两道例题,你们从中发现了什么变化规律?
“分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变.”(板书)
2.为什么要“零除外”?
3.教师小结:这就是今天这节课我们学习的内容:“分数的基本性质”
(板书:“基本性质”)
4.谁再说一遍什么叫分数的基本性质?
教师板书字母公式:
四、应用分数基本性质解决实际问题.
1.请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似?
(和除法中商不变的性质相类似.)
(1)商不变的性质是什么?
(除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变.)
(2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算.
2.分数基本性质的应用:
我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解
决一些有关分数的问题.
3.教学例3.
例3 把 和 化成分母是12而大小不变的分数.
板书:
教师提问:
(1) ?为什么?依据什么道理?
( ,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以, )
(2)这个“6”是怎么想出来的?
(这样想:2×?=12,2ד6”=12,也可以看12是2的`几倍:12÷2=6,那么分子1也扩大6倍)
(3) ?为什么?依据的什么道理?
( ,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以, )
(4)这个“2”是怎么想出来的?
(这样想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是10÷2=5)
五、课堂练习.
1.把下面各分数化成分母是60,而大小不变的分数.
2.把下面的分数化成分子是1,而大小不变的分数.
3.在( )里填上适当的数.
4. 的分子增加2,要使分数的大小不变,分母应该增加几?你是怎样想的?
5.请同学们想出与 相等的分数.
规律:这个分数的值是 ,然后只要按自然数的顺序说出分子是1、2、3、4、……分母是分子的4倍为:4、8、12、16……无数个.
六、课堂总结.
今天这节课我们学习了什么知识?懂得了一个什么道理?分数的基本性质是什么?这是学习分数四则运算的基础,一定要掌握好.
七、课后作业.
1.指出下面每组中的两个分数是相等的还是不相等的.
2.在下面的括号里填上适当的数.
分数的基本性质教案 篇3
教学目标
1、理解和掌握分数的基本性质,知道分数的基本性质与整数除法中商不变的性质之间的联系。
2、能运用分数的基本性质把一个分数化成分母不同而大小相等的分数。
3、培养学生观察、比较、抽象概括的逻辑思维能力,渗透“事物之间是相互联系的”辩证唯物主义观点。
教学重难点
理解分数基本性质的含义,掌握分数基本性质的推导过程。运用分数的基本性质解决实际问题。
教学工具
课件
教学过程
一、复习旧知,沟通联系。
1、口答下面各题。
12÷3 =(12×10)÷(3×□)
18 ÷6 =(18÷□)÷(6÷ 3)
你是根据什么填的?还记得商不变的规律是怎样叙述的吗?
4 ÷5=()÷3
你是根据什么填的?分数与除法之间有什么关系?
2、猜想。
同学们,在除法里,有商不变的规律,而分数与除法是有联系的,那么,请同学们猜测一下,在分数里会不会也有类似的性质存在呢?
在分数里究竟有没有类似的性质存在,如果有,它又是怎样的呢?今天我们一起来研究这个问题。
二、探究新知,揭示规律。
1、感知规律
(1)动手操作
①小组合作分别把三张一样大的圆形纸片平均分成两份、四份、八份。
②涂色:把平均分成两份的将其中的一份涂上颜色,把平均分成四份的将其中的两份涂上颜色,把平均分成八份的将其中的四份涂上颜色。
③把涂色部分用分数表示出来。
④比一比:这3个分数之间有什么关系?
生通过动手操作,发现这三个分数之间是相等的关系。
学生汇报后,教师用电脑演示。
生观察分子分母变化规律发现:分数的分子和分母同时乘相同的数,分数大小不变。
(2)继续发现
师课件出示三个大小形状完全相同的长方形,请学生用分数表示涂色部分,并观察涂色部分,看有什么发现。
生发现涂色部分是相同的。
观察分子分母的变化规律发现:分数的'分子和分母同时除以相同的数,分数大小不变。
也不能同时除以0。
2、抽象概括,总结规律。
引导学生观察、比较,回忆知识的形成过程,总结概括出分数的基本性质。不完善的互相补充。(讨论为什么0除外)
想一想:根据分数与除法的关系,以及整数除法中商不变的性质,你能说明分数的基本性质吗?
3、运用规律,自学例题。
(1)分组讨论。
把和分别化成分母是12而大小不变的分数。分子应怎样变化?变化的依据是什么?
(2)汇报讨论情况。
(3)小结:我们可以应用分数的基本性质把一个分数化成分母不同而大小相等的分数。
三、多层练习,巩固深化
1、基本练习。
根据分数的基本性质,把下列等式补充完整。
学生口答后,要求说出是怎样想的。
2、判断。(手势表示,并说明理由。)
(1)分数的分子、分母都乘以或除以相同的数,分数的大小不变。()
(2)把15/20的分子缩小5倍,分母也同时缩小5倍,分数的大小不变。()
(3)的分子乘以3,分母除以3,分数的大小不变。()
3、把2/3和4/24化成分母是12而大小不变的分数。
四、今天你有哪些收获。
分数的基本性质教案 篇4
教学目标:
1、理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。
2、理解和掌握分数的基本性质。
3、较好的实现知识教育与思想教育的有效结合。
教学重点:
理解和掌握分数的基本性质。
教学难点:
能熟练、灵活地运用分数的基本性质。
教学过程:
一、创设情景
师:同学们,为了让你们了解到更多的科技知识,在科技周活动中,学校做了三块科普展板(投影出示教材中的三块展板)。同学们认真观察,你们能提出什么问题?
师:猜想对解决问题很重要,它们到底相不相等?下面以小组为单位,想办法来验证一下。
二、新授
师:同学们想了很多好的方法,哪个小组愿意汇报一下?
生1:我们组是用画图的方法来验证的。我们先画了三个大小一样的正方形表示三块展板,把它们分别平均分成2份、4份和8份,再分别去其中的1份、2份和4份涂上颜色(展示学生画的图)。通过比较我们发现,涂色部分的大小是相等的,所以
生2:我们组是用折纸的方法来验证的.。我们先取了三根同样长的纸条,通过对折把它们分别平均分成2份、4份和8份,分别涂色表示(展示学生的折纸情况)。通过折纸我们组也发现(学生在小组中讨论、验证)
师:我们发现的这个规律,就是分数的基本性质。
同学们现在小组内总结一下,什么是分数的基本性质?
(学生认真讨论)
师:同学们汇报一下你们的讨论结果。
三、自主练习、巩固提高
课本第80页1、2、3、题。
其中,第1题引导学生通过涂色和比较,加深对分数基本性质的直观感受。
第2题二生爬黑板板演,第3、4题学生自做。师巡视指导。
课堂小结:
一生小结,他生补充,教师评判。
分数的基本性质教案 篇5
内容:P15、16例1、2 ,练习四第1-3题。
目标:
1.知识与技能:经历探索分数基本性质的过程、理解分数的基本性质。
2.过程与方法:能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。
3.情感、态度与价值观:经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
重点:正确理解与分析运用分数的基本性质。
过程:
一、创设情境,导入新课。
“大圣”分桃:
话说大圣从王母娘娘处偷来的蟠桃分给众猴。猴儿们好生欢喜。几日之后,所剩不多了,只见大圣那儿留着一个特大的蟠 桃准备独自享用。不料,它最宠爱的一只小猴还馋着要分享。大圣说:好吧,咱俩平分各一半。小猴小嘴一厥,不好不好,太少了!大圣把桃切大小一样的四块:“给,2块!”“不好不好还是太小了”,小猴还是不满意。“真难缠,还嫌少啊?”于是大圣把桃切成了大小一样的8块,扔给小猴4块:“再嫌少,本大王就不给了”小猴一看,4块,比1块多了3块!好极了!嘻嘻,谢大王!小猴欢天喜地地走了。同学们你们说,小猴真的比第一次多拿了吗?
二、师生共研、发现规律。
师生共同揭秘“分桃”内幕。
人分桃的全过程,我们可将“齐天大圣”的分桃秘招公著如下:
1÷2=1/2=2/4=4/8
从上面这三个分数的相等关系,你发现了什么?
从左往右看:
1/2 = 1×2 / 2×2 = 2/4
从右往左看:
2/4 = 2÷2 / 4÷2 = 1/2
1/2的分子、分母同乘2,分数大小不变;2/4的分子、分母同除以2,分数大小不变。
观察分子、分母的变化,同时归纳小结。
学生试,验证自己提出的观点是否正确。
小结:
分数的分子和分母同时乘上或者除以相同的.数(零除外)分数的大小不变。
三、数学小报,再次验证。
1.指导阅读,并参照课本进行折纸(按小组活动)注意4张报纸要大小相同。
2.将折得的小报中数学趣题版用阴影显示出来。
3.将四张的折叠结果重叠,得出数学趣题版面大小。
4.针对式子进行口头表述。
四、理解性质、简单运用。
例2的教学
(1)出示例2:把3/4、15/24化成分母都是8而大小不变的分数。
请同学们理清题意,然后进行转化。
(2)反馈。
(3)质疑
让学生通过讨论,深化对分数大小不变的要求的理解。
(4)议一议
由于分数与除法的密切关系,所以分数的基本性质与除法的商不变性质是一致的。在实际应用中可以通用。
五、练习巩固、拓展提高。
1.课堂活动
2.提取第一题的结果,进行深入思考:
当我们应用分数的基本性质,把一个分数的分子和分母都乘或都除以一个非零的桢数时,大小是不是变了,分数单位呢?
结论:大小不变,分数单位要变。
六、全课总结:
这节课,我人们又发现了分数的什么奥秘?用自己的话说给同桌听听,还有什么要和老师及同学们说的?有问题吗?
七、作业:
练习四第1-3题。
分数的基本性质教案 篇6
教学目的:
1.理解分数的基本性质,并了解它与除法中商不变的规律之间的联系。
2.理解和掌握分数的基本性质。
3.较好实现知识教育与思想教育的有效结合。
教学难点:
理解和掌握分数的基本性质,并运用分数的基本性质解决问题,进一步加深分数与除法之间的`关系。
教学准备:
板书有关习题的幻灯片。
教学过程:
一、复习
1.出示
在括号里填上适当的数:
指名说一说结果,并说一说你是根据什么填的?
二、课堂练习:
1.自主练习第4题。
学生先独立做,教师巡视,并个别指导,集体订正。
教师板书题目中的线段,指名让学生板演。
在直线那些分数用同一个点表示是什么意思?(就是问哪几个分数相等。)
怎样找出相等的分数?
让学生自己找。集体订正是要求学生说一说你是根据什么找出相等的分数的?
然后要求学生在书上把这几个相应的点找出来。指名板演。
2.自主练习第5题。
先让学生独立做,教师巡视。个别指导。
指名说一说你的结果,并说一说你是根据什么填的。重点要求学生说清楚利用分数的基本性质来进行填空。
教师根据学生的回答选择几个题目进行板书。
3.自主练习第6题。
先让学生独立做。教师巡视并个别指导。注意差生中出现的问题。
集体订正。指名说一说自己的计算过程和结果。
教师根据学生的回答选择几个题目进行板书。
4.自主练习第7题。
学生独立做。教师要求有困难的学生分组讨论,教师个别指导。
集体订正。指名说一说自己的计算过程。教师注意要求学生说清楚计算的根据和理由。
5.自主练习第8题。
学生先独立做。
集体订正时,教师先要求学生说一说可以用哪些方法来比较这些分数的大小?哪种方法最好?
分数的基本性质教案 篇7
教学内容:分数的基本性质。(95页例1、96页例2练一练等)
教学要求:
1、组织学生探究、发现、归纳分数的基本性质,并理解它与商不变的性质之间的联系。
2、使学生能初步应用分数的基本性质,把一个分数化成分母不同而大小不变的分数。
教学重点:组织学生探究、发现、归纳分数的基本性质
教学难点:应用分数的.基本性质,把一个分数化成分母不同而大小不变的分数。
教学过程:
一、复习铺垫,猜想导入
1、仔细观察,不计算,很快得出每个算式的商。
80÷20=4(80×5)÷(20×5)=()(80÷4)÷(20÷4)=()(80×a)÷(20×a)=()(80÷m)÷(20÷m)=()你的依据是什么?(商不变的性质)
2、还记得3÷是怎样简便运算的吗?试试看。
3÷=(3×4)÷(×4)=12÷1=12
3、小结(商不变的性质)
被除数和除数同时乘或除以相同的数(0除外),商不变.
4、启发学生大胆猜想:
除法和分数是有关系的,除法有商不变的性质,分数是不是也有什么性质呢?听说过或是看到过吗?
二、观察、探究、发现、归纳
1、小明和小华小玲分吃一块月饼(出示图)
小明吃这块月饼的1/3小华吃这块月饼的2/6小玲吃这块月饼的3/9
(1)从图上看他们三人分得同样多。
(2)板书:1/3 = 2/6 = 3/9
(3)观察:从左往右1/3 = 2/6(子、母同时乘2)1/3 = 3/9(子、母同时乘3)
从右往左2/6 = 1/3(子、母同时除以2)
3/9 = 1/3(子、母同时除以3)
(4)从刚才的分析中你发现了什么规律?
(5)归纳:
分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。
(6)板书课题:分数的基本性质
2、想一想:
商不变的性质和分数的基本性质有什么联系?
3、应用分数的基本性质,可以把一个分数化成分母不同而大小不变的分数。例: 3/4和15/24都可以化成分母是8而大小不变的分数3/4=3×2/4×2=6/8 15/24=15÷3/24÷3=5/8
4、想试试吗?
(1)、把2/3和10/24化成分母都是12而大小不变的分数。
(2)、在()里填上合适的数1/5=()/15 9/18=()/6 1/4=3/()15/20=3/()
三、巩固练习看谁学得好
1、口答:
把2/7的分母乘4,要使分数的大小不变,分子应当怎样变化?把10/15的分子除以5,要使分数的大小不变,分母应当怎样变化?
2、下列每组中的两个分数相等吗?为什么?
1/3和3/9(等)15/33和5/11(等)4/16和1/8(不等)2/4和9/12(不等)
3、这一点可以表示那些分数?
4、思考、讨论
6/8 = 9/12你能解释它们为什么相等吗?
