《梯形的面积》教学反思

笔构网

2026-01-26教案

请欣赏《梯形的面积》教学反思(精选7篇),由笔构网整理,希望能够帮助到大家。

《梯形的面积》教学反思 篇1

本节教学内容是梯形的面积,是在学过的平行四边形和三角形的面积的基础上进行教学的。教学目标有两个:

一、在自主探究、合作交流中经历梯形面积的推导过程,掌握梯形面积的计算方法;

二、能利用梯形的面积公式解决实际问题问题。其中,目标一的达成度挺好的。目标一的'达成之所以很理想,是因为本节课中我努力做到了以下两点。

一、大胆尝试,自主探究,亲历知识的获取过程。“自主探索”是学生学习数学的主要方式之一,教师把自主探索的机会、时间和空间留给学生,让学生在探究过程中感受问题的存在,从而发现问题,提出问题,并创造性地解决问题。案例2的教学正注重了这一点教师给予了开阔的目标(同学们已经掌握了推导平行四边形、三角形的面积计算公式的方法,你能把梯形转化成已学过的图形,并推倒出梯形的面积计算公式吗?),给予了多元的方法提示(请你们利用准备好的学具,小组合作学习,议一议,剪一剪,拼一拼,可能有意想不到的发现!),学生的思维被激活,亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,从而让学生在探究中不仅获取了知识,而且学会了学习。

二、强化实践,为学生搭建创新的舞台。著名教育家皮亚杰说过:“孩子的智慧生长在手指尖上。”教师应重视学生的动手操作,增强学生的感性认识,主动探索和发现图形的内在联系,为学生搭建一个创新的舞台。案例2的教学中,教师让每一个学生动手操作,把梯形剪拼成已学过的各种平面图形,教会学生用“转化”的方法解决问题,逐步形成这种思考问题的习惯,学生亲历了梯形面积公式的推导过程,获取了多种多样的计算方法,培养了学生灵活的多向创新能力。这节课中,也存在一定的不足,如学生在与老师的配合上还有待改进,其中部分学生的讨论不够积极,有个别学生不会参与讨论,不愿意发表自己的见解,而且气氛也有待改提高,不过学生对动手操作、推导公式倒是很感兴趣。

《梯形的面积》教学反思 篇2

今天这节课是在学习了平行四边形和三角形面积的基础上进行教学的,课前让学生回顾了这两天学习这些图形的面积的计算的方法,了解是用了“转化”的思想得到的。重难点都在梯形面积的公式推导过程上。本节课为了让学生能够顺利的解决问题,在开始的时候先让学生回顾了梯形的各部分名称以及他们的特征。并且让学生再一次学习了画梯形的高,目的是想让学生在后面推导公式的过程中无阻碍。

首先,我提问学生,如果今天我们要来研究梯形的面积,你有没有什么好方法?动手画一画,把你的想法说给你的同桌听一听:此时学生开始畅所欲言,好多学生都想到了要把梯形分成一个平行四边形和一个三角形,然后把这两个图形的面积相加就得到了梯形的面积,此时如果我能赶紧及时的给学生一个高度评价的`话,孩子们会真的感受到自己的成功,如果我能看到此时会思考的孩子们的美,才是这节课最大的收获不是吗?而我却没有那样做,还是因为担心教学进度的问题,只是稍作提示后就给赶紧追问,还有没有别的方法。

之后,在学生一筹莫展的时候,我提示道:“想一想我们在探索三角形的面积的时候是怎么做的,有没有什么可以借鉴的地方?”聪明的学生立刻想到了要再拿一个完全一样的梯形,然后把他两拼起来就是一个大大的平行四边形,这样我们就把这个梯形的面积转化成了先求平行四边形的面积。由于引导到位,学生很快能将梯形的面积抽象出来,回答老师的问题也能够严谨且无懈可击。此时,如果我能够再一次给予学生真诚的欣赏,相信孩子们对数学的畏惧之感会消失殆尽。但吝啬的我依然是忙着赶进度,生怕因为一句表扬会耽误好多练习的时间。哎!

还有,本节课在课前我仍然是准备了两个完全相同的梯形,在学生想到方法之后让孩子们自己动手上来拼拼看,然后找出拼出的平行四边形与梯形的关系,进而有平行四边形的面积=2个梯形的面积,则1个梯形的面积=(上底+下底)×高÷2。看样子,让学生亲自动手实践或者是用直观演示法更能够让学生明白“公式”的来龙去脉,记忆和运用起来也必定是得心应手。根据平行四边形的面积公式,从而导出梯形的面积公式,给人一种水到渠成的感觉。归纳出公式后给学生三个梯形(有两个把梯形的各边都写上,另一个没有给高的条件。)进行公式运用练习,最后再让学生在实际生活动感觉梯形面积公式的作用,即计算梯形木堆的面积。

但由于我课前准备做的不充分,在课堂上出现的问题何止一二,还有:

1.在整个教学中又过于偏向推导过程和注重学生多种不同推导方法,时间占用了很多,导致后面的练习时间不够充足。

2.由于推导出公式以后,学生在练习的时间很少,应该画出几个梯形图形,让学生应用公式求它们的面积,以巩固本节课的重点。

3.以后的教学要在新授部分多下功夫、下大工夫,但是不能把一节课大部分的时间都放在了研究新知的过程中,尽量浓缩自己的教学语言,让我们的课堂更有效。

可喜的是,发现学生有所收获,看到学生有了进步,看到学生探究学生的成果,在今后的教学中我会继续运用“探究性学习法”设计和组织课堂教学。希望探究式课堂之路在我们今后的教学中能够越走路越宽。

《梯形的面积》教学反思 篇3

在梯形的面积计算一课中,我充分利用学生已掌握的平行四边形,三角形面积公式的推导方法,启发学生积极思考。

通过复习,让学生明白推导梯形面积公式的方法与推导三角形面积公式的方法相似,都是把不熟悉的平面图形转化为熟悉的平面图形来计算。让学生用两个完全一样的梯形,想办法把它们拼成一个平行四边形,引导学生观察,比较梯形的上底、下底和高与平行四边行的底和高有什么关系?梯形的面积与平行四边形的面积有什么关系?这环节我是让学生以小组讨论的'方式进行的,通过交流,学生很容易得出梯形上底和下底的和,同平行四边行的底相等,梯形的高与平行四边形的高相等,梯形的面积是拼成的平行四边性面积的一半。

最后是让学生尝试练习求出梯形的面积,并概括出梯形的面积公式。本节课主要是让学生自主去探索梯形的面积公式,这样有利于学生思维的发展。但也有一些不足,学生在探索中,对个别学生辅导不够,在今后的教学中,要注重让每一位学生都积极参加到探究的过程中,真正让学生在动中学。

《梯形的面积》教学反思 篇4

《梯形的面积》这一课的教学重点是面积公式的推导,利用梯形面积计算公式解决实际问题。

在设计这一课的教学时,我主要考虑体现以下这样几个方面:

新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,“猜想”、探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。

一、动手操作,培养探索能力

在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生猜想可以把梯形转化成已经学过的什么图形?再通过“拼、剪、割”的动手操作活动,看一看能转化成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。

二、发散验证培养解决问题的能力

在学生验证自己的.想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,老师应比较注重培养学生的推理、操作探究及自主学习的能力。让学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。

三、紧密联系生活。让数学源于生活,归于生活。

数学来源于生活,那么我就从生活中入手设计了一个情境,为了给防洪工作做好充分的准备,我们需要知道堤坝的横截面的面积。让学生产生疑问,如何去求横截面的面积呢?使学生产生兴趣,有好奇心去探索。

四、体现学生的主体性,让每个学生都能主动参与学习。

学生是学习活动的主体。这堂课在设计时,至始至终体现了让学生主动参与学习的基本理念。让学生学会以旧引新,掌握运用知识迁移,学法迁移进行学习的方法,培养学生的自学能力和探索精神。让学生通过动手操作、和直观演示进行观察、比较、推理等探索过程,得出梯形的面积计算公式,另外,在独立思考问题的基础上进行合作交流,从而提高学生自主发现问题,分析问题,解决问题的能力,以及培养学生团结合作的意识。

五、着重体现学生主动建构知识意义的过程。

本节课的内容重点注重梯形面积计算公式的推导过程,帮助学生理解和记忆梯形的面积计算公式。将新知转化为旧知,来解决问题。本课安排了几个环节。一提出问题:如何求堤坝的横截面面积?(求梯形的面积)。二复习:回忆平行四边形面积和三角形面积计算公式推导,并让学生操作。三尝试:试着将两个一样的的梯形拼一拼能拼成什么图形(平行四边形)尝试利用平行四边形推导梯形的面积计算公式。四探索:利用所学知识,通过拼移、割补、旋转等方法将梯形转化为已学图形,推导出梯形面积计算公式。五小结:梯形面积计算公式。六解决问题:利用梯形面积计算公式求出堤坝横截面面积。

在这节课中学生亲身经历了实践探究的过程,通过自主探索和同伴间的合作交流,充分运用割补,平移和旋转等的数学思想,掌握平面图形之间的内在联系,得出公式推导的多种方法,为学生个性的发挥提供了很大空间,从而使学生获得一种莫大的成就感,因此养成自觉观察、学习和思考的良好习惯,为他们的可持续发展创造了很好的条件。在整个教学过程中教师只是学生学习的组织者、引导者和合作者,全面参与和了解学生的学习过程,对学生进行积极的评价、关注他们的学习方法、学习水平和情感态度,因此学生是朝着预定的目标发展的。

《梯形的面积》教学反思 篇5

五年级上册数学第六单元是图形的面积,这一单元主要学习平行四边形面积、三角形面积、梯形面积,规则组合图形的面积和不规则图形的面积的求法。今天我讲的是《梯形的面积》一课,本课在探索活动中学生借助知识的迁移,主动提出了“把梯形转化成学过的图形,并比较转化前后图形的面积”思考问题,主动思考,把一个新的图形面积的计算,转化为已学过的图形面积的计算,从而使问题得到解决。同时将解决生活实际问题转化成求梯形面积的数学问题,呈现多种转化的方法,能够丰富学生对图形的认识,加深对几何基本概念的理解,发展学生的'空间观念,提高空间推理和解决问题的能力。

在这堂课的教学中,我依然采用了学生动手拼一拼的活动,让学生自己动手,通过拼图,在头脑中呈现出空间形象。这既能加深学生对面积公式推到的过程,记住面积公式,又能锻炼学生的空间思维,让几何图形在学生的头脑里能够动来动去,为今后的教学打基础。

然而,学生的动不是乱动,我先出示学习目标,再出示学习方法,学生根据学习目标明确这节课需要解决的问题,所要掌握的知识点,然后通过学习方法进行自学。在自学过程中如果遇到难题,可以组内解决,组内解决不了,我们统一由组长提出,同学们共同交流讨论,最后得到总结。

其实,这节课跟学习三角形面积公式那节课所采用的方法是一样的,只不过孩子在拼的过程中产生了不一样的梯形拼出的图形是不一样的情况。这是教师事先没有安排到位导致的,他们有的梯形形状和大小都不一样,在拼的过程中产生了脱节现象。但多数同学做的都很好,用不同种类的梯形拼出的平行四边形,进而推导出梯形的面积公式。

这节课完成情况还算理想,多数同学都能够举一反三,理解梯形面积公式的推导。

《梯形的面积》教学反思 篇6

《梯形的面积》是在学生学习了长方形、平行四边形及三角形的面积计算后安排的教学内容。学生已通过操作、实验、探索等积累了探讨平面图形面积计算公式的基本方法与策略(即剪、移、转、拼等),并初步领悟了“新旧转化”的数学思想方法,教材如此安排的目的是希望学生在探索活动中不仅巩固这种思考问题的方法,而且能初步形成这种思考问题的习惯,因此,本节课的重点,仍放在帮助学生形成思考问题的习惯上。

一、复习旧知,引入新知

本节课首先让学生回顾上几节课的内容:长方形的面积公式,平行四边形的面积公式和三角形的面积公式。在复习过程中让学生容易将转化的方法迁移到这节课来。

二、推导梯形的面积公式

梯形的面积公式的推导有多种方法,比如两个相同的梯形拼接成一个平形四边形,从一个梯形的对角线剪开,成两个三角形,还有从梯形的中位线剪开后拼成平行四边形等到。我鼓励学生在自主探索的基础上进行汇报和交流,让学生在交流中明确是利用转化的思想把梯形转化成已知的图形来推导的思想,并培养学生观察、操作、比较、推理等逻辑思维能力与初步的假设、实验、验证等科学探究能力。

三、在练习中巩固提高

本节课的练习既有直接运用公式计算的.简单运用,又有等积变形的思考,还有计算垒成梯形的圆木的根数。对于计算圆木的根数,有些学生是层层计算解决,有些学生把这堆圆木的横截面转化成一个梯形,运用梯形面积公式来解决,在交流中让学生认识运用梯形面积来计算的方便性。

《梯形的面积》教学反思 篇7

1、还给学生主动权,教师需做导航灯。

数学教学要努力创造有利于学生主动探索的数学学习环境,关注学生的自主探索和合作学习,给学生一个广阔的活动空间,当好学生学习的引导者、组织者与合作者。纵观两个案例,我们不难发现,案例1的教学仍是传统教学,教师设定了浅显直白的问题,学生无需经历“头脑风暴”,表面上都在积极参与,其实是被老师“牵着鼻子走”,没有创造性地学习。在这样的学习活动里,学生难以同步形成探究能力,更别说开阔发散思维了。案例2中的老师从讲台上走下来,真正把学习的主动权还给学生,真正做了学生学习的导航灯,充分调动学生学习的积极性,在思维方法、学习方式等学习要素上引领学生。

2、大胆尝试,自主探究,亲历知识的获取过程。

“自主探索”是学生学习数学的主要方式之一,教师把自主探索的机会、时间和空间留给学生,让学生在探究过程中感受问题的存在,从而发现问题,提出问题,并创造性地解决问题。案例2的教学正注重了这一点。教师给予了开阔的目标(同学们已经掌握了推导平行四边形、三角形的面积计算公式的方法,你能把梯形转化成已学过的图形,并推倒出梯形的面积计算公式吗?),给予了多元的方法提示(请你们利用准备好的学具,小组合作学习,议一议,剪一剪,拼一拼,可能有意想不到的发现!),学生的思维被激活,亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,从而让学生在探究中不仅获取了知识,而且学会了学习。

3、强化实践,为学生搭建创新的舞台。

著名教育家皮亚杰说过:“孩子的智慧生长在手指尖上。”教师应重视学生的动手操作,增强学生的感性认识,主动探索和发现图形的内在联系,为学生搭建一个创新的'舞台。案例2的教学中,教师让每一个学生动手操作,把梯形剪拼成已学过的各种平面图形,教会学生用“转化”的方法解决问题,逐步形成这种思考问题的习惯,学生亲历了梯形面积公式的推导过程,获取了多种多样的计算方法,培养了学生灵活的多向创新能力。

大家都在看