请欣赏近似数教案(精选7篇),由笔构网整理,希望能够帮助到大家。
近似数教案 篇1
教材分析:
“近似数”是北师大版小学数学第七册第一单元“认识更大的数”中的第五课。这部分内容既丰富了对大数的认识,又是对后续学习除法“试商”的基础。另外,近似数在生活中有着广泛的应用,当很难得到或不需要得到精确数,或是用大数描述事物时,人们经常会选择近似数。因此,无论在生活中还是在知识的衔接上近似数都显得至关重要。
学生收到前面计算教学中估算的影响,以及学生自身的经验积累,很多学生在课前已经可以凭借数感找出万以内数的近似数,也有一部分学生了解甚至可以用“四舍五入”法来求大数的近似数。但是大部分学生对“四舍五入”法只是一个模糊的认识,对于“四舍五入”法具体是什么,它的道理是什么,什么情况下运用“四舍五入”法都不是十分清楚。
四年级的学生已经进入了小学中年级段,具有一定的学习经验和合作学习的能力。
教学目标:
1、通过阅读与分析,了解近似数和精确数的意义,感受近似数和精确数在现实生活中的应用。
2、借助数线,较直观地感知“四舍五入”法求近似数的道理,知道近似数的书写格式,培养学生的推理能力。
3、经历探索求近似数的过程,会用“四舍五入”法求一个数的近似数,培养数感。
教学重点:
经历探索求近似数的过程,会用“四舍五入”法求一个数的近似数。
教学难点:
经历探索求近似数的过程。
教学方法:
合作学习法分析归纳法
教学策略:
小组合作情境创设
教学过程:
一、情境创设,分类感受精确数和近似数。
1、观看一段国庆60周年阅兵视频,说一说有什么感受?
师:这么大的场面中一定蕴涵着许多数学问题,今天我们就一起研究这些数学问题。
2、课件出示整理的一段文字,让学生默读其中的数字两遍,初步感知数据。
3、仔细观察这些数,有没有什么共同特点,能不能把它们分一分类?
组织学生讨论,学生可能会按数据的大小来分,一些按单位分,如60,169,56,66都是以个为单位的,20万、2万是以万为单位的。或者学生将60、169、56分为一类,66、20万、2万分为一类。
师:为什么将60、169、56分为一类,66、20万、2万分为一类呢?它们有什么共同的特点呢?
学生用自己的语言说一说。可能会说是准确的数,估出来的数。
师:是的,在数学上,像60、169、56这样准确的数、不多不少正好的数,是精确数;而66、20万、2万是大概的,大约的,差不多的,与实际数接近的数,是近似数。
4、读一读以下的数据,哪些是精确数,哪些是近似数吗?
小明身高130,2cm,就说约130cm;小红从家里到学校走了395米,就说大约走了400米。
5、你能说说生活中哪些事物的数量一般用精确数来表示,哪些事物的数量一般用近似数来表示?了解近似数的作用。
师:有些情况下,我们没有必要用准确的数据来描述,只要知道一定的范围就足够了,这时用近似数来表示就比较方便。看来近似数在生活中的应用还是相当广泛的。
【设计意图:新课标指出,数学教学活动必须激发学生兴趣,调动学生积极性,引发学生思考。国庆60周年情境引入,出示一些感性材料,通过分类,帮助学生在比较和辨别中体会哪些是实际的、精确的,哪些数是模糊、大约的,从而认识精确数和近似数;又通过列举活动,深化理解,了解近似数在实际中生活中的广泛应用。】
二、合作学习,自主探究。
(一)借助数线,直观感受“四舍五入”法求近似数的道理。
1、师:巨幅国画《江山如此多娇》的实际面积是18000平方米,但报道中称“近2万平方米”,这里的“2万”是如何得到的?
同桌交流,指名说说想法,学生可能会说18000接近2万,所以用2万来表示。
2、结合直观的数线图,分析“18000平方米”称为“近2万平方米”的原因。
师:18000介于整万数1万和2万之间,由于18000千位上是“8”,所以可以把千位上8直接去掉变成0后向万位进1,就得到了近似数“2万”。
介绍18000约等于2万,用“≈”表示,写作:18000≈2万全班读一读。
3、在数线上标出11000,120xx,13000,14000,15000,16000,17000,19000这几个数,请学生尝试分别说出它们的近似数及想法。
师:15000这个数约等于多少呢?
学生可能觉得1万可以,2万也可以,因外它刚好在中间。
师:15000离1万和离2万的距离是一样的,但为了方便记录,我们认为规定15000≈2万。
课件上将约等于1万和约等于2万的数进行对比,让学生观察,分析归纳。
师:请同学们对比两组数据,仔细观察,说说你有什么发现,能得到什么结论?请同桌互相讨论,教师巡视指导了解情况。
学生汇报交流,学生可能会发现以15000为分界线,11000,120xx,13000,14000接近1万,16000,17000,18000,19000接近2万。
教师引导学生观察千万上的数,当千位上的数是1、2、3、4时,近似数是1万,当千位上的数是5、6、7、8、9时,近似数是2万。
教师借机在黑板上板书:0、1、2、3、4舍;5、6、7、8、9入,介绍“四舍五入”法。
【设计意图:结合数线图,分析“18000平方米”称为“近2万平方米”的原因。数与形结合,将四舍五入的本质清晰地展现出来,培养学生的数感。】
(二)合作学习,探究“四舍五入”法求一个数的近似数。
1、参加国庆阅兵的精确人数是233482人,在下图中找到这个数的`大致位置,说一说“约20万人”,这个数是怎样得到的?
合作要求:1、同桌2人一起学习,共同完成学习任务。2、学习时,每人都要说一说自己的想法,并将讨论的结果填在学习卡上。3、组织简单、清晰的语言准备全班汇报。
教师巡视,了解小组讨论的情况,并对有困难的小组给予指导。
2、全班交流。生可能想法:在数线图上标出,发现233482接近20万,;或者233482比25000小,所以近似于20万;直接用四舍五入法,看万位上的数是3,小于5,所以直接把十万后面的尾数“33482”舍去变成5个0,得到近似数20万。
请多组的学生表达自己的想法,只要说得有道理,给予鼓励。
3、教师小结:四舍五入到十万位,关键看万位。
4、如果将233482四舍五人到万位、千位、百位、十位,近似数分别是多少,怎样得到的?小组内讨论,再全班交流,帮助直观感知求近似数的方法。
5、引导学生初步概括方法,用自己的语言说说:怎样用四舍五入法求近似数?
【设计意图:新课标指出,学生应当有足够的时间与空间经历探索的过程,引导学生独立思考、主动探索、合作交流,使学生掌握求近似数的方法,培养学生的合作能力,发展学生的思维。】
三、巩固练习
1、读一读下面的数据,哪些是精确数,哪些是近似数?(教材第11页练一练第一题)
鼓励学生通过自主阅读与分析,找出精确数和近似数,加深认识,并感受到近似数在现实生活中的广泛应用。
2、华山是我国的五岳之一,海拔约2155米,在下图上标一标,四舍五入到百位大约是多少米?
学生独立完成,有些学生在数线上找点时会遇到困难,教师适时指导,帮助学生通过数线进一步感受四舍五入到百位,要看十位上的数。
3、按要求填表。
提醒学生认真看要求,仔细数数位。特别对29957四舍五入到百位、千位、万位重点指导。
【设计意图:巩固练习是帮助学生掌握新知、形成技能、发展智力培养能力的重要手段。通过三道练习题,加深对近似数的认识,感受近似数在现实生活中的广泛应用,并能用所学的四舍五入法求近似数。】
四、课堂总结
这节课你学到了什么?请学生说说这节课的收获。
师:这节课我们经历了探索求近似数的过程,会用“四舍五入”法求一个数的近似数,同时知道近似数的书写格式。希望同学们能留意生活,去感受近似数在生活中的广泛应用。
板书设计:
近似数
0、1、2、3、4舍18000≈20000
四舍五入法
5、6、7、8、9入233482≈200000
近似数教案 篇2
教学内容:求一个小数的近似数--教材第105-106页例1,做一做题目及练习二十四1-3题。
教学目的:使学生初步学会根据要求用四舍五入法保留一定的小数位数,求出小数的近似数。培养学生综合运用知识的能力。
教学重、难点:求一个小数的近似数及把较大数改写成以万或亿作单位的小数是教学重点。把较大数改写成以万或亿作单位的小数,容易丢掉计数单位或单位名称,求近似数与改写求准确数容易混淆,这是学习的难点。
教学过程:
一、复习
先省略万后面的尾数,求出近似数,再省略千后面的尾数,求出近似数。
1295356089020114536697010
二、新课
教师:我们已经学过求一个整数的近似数(或近似值)。在实际使用小数的时候,有时也没有必要说出它的准确数,只要说出它的近似数就够了,例如,量得大新的身高是1.625米,平常不需要说得那么精确,只说大约1.6米或1.63米。
我们已经会求一个整数的近似数,求一个小数的近似数的方法,同求整数的近似数的方法相似,是根据需要用四舍五入法保留一定的小数位数。
教师用投影片(或小黑板)出示例1的第1小题:2.953保留两位小数,它的近似数是多少?
教师:2.953保留两位小数,就是要省略哪一位后面的尾数?(省略百分位后面的尾数。)
省略百分位后面的尾数,要看哪一位上的数?(要看千分位上的数。)
接下来用四舍五入法怎样做?(因为千分位上的数3不满5,把它舍去。)
教师板书:2.9532.95
教师:谁能连贯地把做这题的过程说一说。
指名让学生说一说,然后教师总结:
做这题时要想:要保留两位小数,就要省略百分位后面的尾数。千分位上不满5,直接舍去。
教师用投影片(或小黑板)出示例1的第2小题:2.953保留一位小数,它的近似数是多少?
教师:2.953保留一位小数,就是要省略哪一位后面的尾数?(省略十分位后面的尾数。)
省略十分位后面的尾数,要看哪一位上的数?(要看百分位上的数。)
用四舍五入法怎样做呢?(因为百分位上的数满5,省略百分位和千分位上的数后,要向十分位进1。)
2.9加上进上来的1就是3.0。所以2.9533.0。
教师板书:2.9533.0
教师强调:这题的要求是保留一位小数,所以小数末尾的0不能去掉。
教师:谁能连贯地把做这题的过程说一说。
指名让学生说一说,然后教师总结:
做这题时要想:要保留一位小数,就是省略十分位后面的尾数。百分位上满5,省略尾数后,向十分位进1,末尾的0不能去掉。
教师用投影片出示例1的第3小题:2.953保留整数,它的近似数是多少?
教师板书:2.953
教师:谁能做出这题并且说一说应该怎样做?
指名让学生做这题,并且说一说是怎样做的。
根据学生的发言,教师板书:2.9533,并且总结:做这题时要想;要保留整数,就要省略整数后面的尾数。十分位上满5,省略尾数后向个位进1,所以2.9533。
教师:观察上面三道题,是同一个小数保留两位小数,保留一位小数和保留整数。每一次求出的近似数的精确度是不同的。保留整数,表示精确到个位;那么保留一位小数,表示精确到什么位?(十分位。)保留两位小数呢?(表示精确到百分位。)
指名学生回答上述问题。条件较好的班,教师可以接着讲一讲关于精确度的问题。讲法可以如下:
教师:那么,上面的'三个近似数哪一个更精确一些呢?我们现在证明一下。如果2.953表示的是测量一段绳子的长度得到的结果:2.953米。
教师用投影片(或小黑板)出示图如下:
教师:2.953保留两位小数时,是2.95米,表示精确到百分位。保留一位小数是3.0米,表示精确到十分位,也就是说绳子的准确长度不小于2.95米,也不能等于或大于3.05米。因为如果是2.94米,保留一位小数就是2.9米了;如果是3.05米或3.06米,保留一位小数就是3.1米了。再看当保留整数位3时,表示精确到整数个位,也就是说准确长度不能小于2.5米,不能等于或大于3.5米。所以前一个近似数都比后一个近似数精确程度要高一些,即2.95米的精确度高于3.0米的精确度,3.0米的精确度又高于3米的精确度。
教师用投影片或小黑板出示第106页上半页做一做中的第1题,并且加一题:4.795(保留两位小数)。指名让学生做,集体订正。
教师:我们学会了怎样求一个小数的近似数。想一想,求一个小数的近似数应该注意什么?同桌讨论一下。
指名让学生发言,在学生发言的基础上教师总结:
1.要根据题目的要求取近似值,即:保留整数,就看十分位是几,要保留一位小数,就看百分位是几,......然后按四舍五入法决定是舍还是入。
2.取近似值时,在保留的小数位里,小数末一位或几位是0的,应当保留,不能去掉。
三、课堂练习
1.做第106页上半页做一做的第1、2题,学生独立做,做完以后,集体订正。
2.做练习二十四的第3题。
教师先提问:精确到十分位是什么意思?(保留一位小数。)
精确到百分位是什么意思?(保留二位小数。)
然后,让学生独立做,教师巡视,个别辅导,强调要注意的两点。做完后,集体订正。
四、课堂作业
练习二十四的第1-2题。
近似数教案 篇3
教学内容
课本73页例1
教学目标
1、使学生掌握求一个小数的近似数的方法,能正确地安需要用“四舍五入法”保留一定小数的位数,理解保留小数位数越多精确程度越高。
2、通过旧知迁移新知的方法,让学生掌握知识。
3、培养学生的类推能力,增进学生对数学的理解和应用数学的信心。
教学重难点
求一个小数的近似数的方法
理解保留小数位数越多,精确的程度越高。
教学过程
一、复习
1、把下面各数省略万位后面的尾数求出它们的近似数。
734562 38460 50074 10274
让一位学生说出求近似数的方法。
2、下面的空格里可以填哪些数字。
32()546≈ 47()03≈
师:这是我们学过的求一个整数的近似数,那么求一个小数的近似数不知道同学们有没有信心掌握好呢?今天我们就来学习求一个小数的近似数。板书课题:求一个小数的近似数
二、导入新课
1、课件显示例1图。
他们是怎样得出豆豆身高的近似数的?
(1)保留两位小数
师板书:0.984≈0.98 保留两位小数
用什么方法?(四舍五入法)根据学生回答师板书:四舍五入
引导学生说出:如果保留两位小数就要把第三位数省略,因为第三位小数小于5,所以舍去。
(2)保留一位小数
师板书:0.984≈
让学生独立完成,指名几位不同做法的学生上黑板写:0.984≈0.9,0.984≈1,0.984≈1.0.学生通过观察比较发现:在表示近似数时,小数末尾的0不能去掉。
接着让做对的同学谈自己的想法:保留一位小数,就看第二位小数,第二位小数上的数字8大于5,向前一位进一,末尾的0不能去掉。
(3)保留整数。
师板书:0.984≈
学生独立完成,集体订正,说出想法。
小结:求近似数时,保留整数,表示精确到个位;保留一位小数,表示精确到十分位;保留两位小数,表示精确到百分位......
三、巩固练习
1、课本74页做一做。
2、课件显示填空题。
3、课本练习十二第一题。
4、课件显示判断题。
四、总结
这节课你有什么收获?
五、作业
课本练习十二第2、5、6题。
课后反思:
在上本节课之前,已经观看了几次本班学生的学习过程,对学生们大概有所了解,发现个别学生的纪律稍有点散漫。为了使全班同学们能够进入一个好的积极的学习状态,我并不急于先上课,而是把那些慢悠悠的,表现不佳的同学的积极性做了调动,同学们的上课精神开始集中了,但是已经占用了上课的.三分钟时间。
求一个小数的近似数是在学生掌握了求整数的近似数的基础上进行的,其方法基本相同。因此我设计了求整数的近似数的复习题并让学生说出自己的想法,为学习新知做好铺垫。在探求新知部分同学们掌握较好,但是因为时间关系,原先设计的练习题未能全部完成,有些遗憾。
纵观整堂课,发现仍然存在一些有待改进的地方。
1、授课语言不够生动灵活,过于单调生硬,未能更好地激发学生的学习兴趣,学生的学习热情还不够高。
2、时间安排不够合理,造成提供学生自我展现的机会较少,未能达到充分锻炼学生表达能力的效果,造成有个别学生对求一个小数的近似数的方法理解得不够深刻。
3、课前准备不够十分充足,造成对时间分配地把握不够准确,而且练习量相对少了一些,未能更好的巩固本节课的教学知识。
上好一节不容易,不但需要教师有深厚的理论功底,而且还得掌握有效的教学方法与技巧。
近似数教案 篇4
近似数教案20篇
作为一无名无私奉献的教育工作者,通常需要用到教案来辅助教学,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么写教案需要注意哪些问题呢?下面是小编精心整理的近似数教案,欢迎阅读与收藏。
近似数教案 篇5
教学目标:
通过准确数与近似数的比较,理解近似数的含义。
初步知道准确数与近似数的区别,会正确辨别准确数与近似数,并会恰当选用近似数。
通过学生的数据收集与交流,能对近似数和准确数互相转化。
体会近似数在生活中的作用,体验数学与生活的密切联系。
教学重点:
理解近似数的含义。
教学难点:
合理地取近似数。
教具准备:铅笔
教学过程:
情境引入
师:今天老师带来了一把铅笔,请同学们猜一猜老师手中的铅笔有几支?
让学生充分地、大胆地猜。师根据学生的回答适时地提示“多得多、少得多、多一些、少一些”,并根据学生的回答在黑板上面板书。
现在老师想请你们猜一猜手中的铅笔是几十支?
根据学生的回答,板书后出示准确的数据。(18支)
现在让你们猜手中的铅笔是几十支,你会怎样说?(学生回答:大约20支)
像这样大概的数就是近似数,今天这节课我们就一起来研究近似数。
交流共享
1. 汇报课前调查各个年级的学生数。
师:老师要求你们课前调查各个年级的学生数,你们做到了吗?来看大屏幕:二年级(1)班有学生50人,那么二年级三个班大约有多少人呢?请你们猜一猜。
学生猜,老师板书后出示准确数,留下接近的数。
师:如果让你们用两句话来说这两个数字,你会怎样说呢?师引导说:二年级有学生154人,大约150人。
师:二年级有154人,那么全校有6个年级大约有多少人呢?
学生猜,老师板书,出示正确的数后留下最接近的数字。
提问:现在我们来观察一下,前面一排的数字和后面一排的数字有什么特点?(前面一排是准确的数,后面一排是大概的数)。
像这样大概的数我们就把它叫做近似数,板书。
教学例9
创设情境:小明是龙岗小学的学生,小华是东山小学的学生,一天他们俩相遇了,都说自己学校的人最多,看大屏幕。
显示:小明:“我是龙岗小学的,我们学校大约有700人”。
小华:“我是东山小学的,我们学校大约也有700人”。
同学们你们知道这两个学校到底哪个学校的`人数多吗?在小组里面说一说。
学生在充分讨论后老师指名回答,只要有道理都要给予肯定。
师:现在我来告诉你们答案吧!教师出示龙岗小学695人,东山小学703人,并引导得出:695人比700人少一些,接近700人,所以说大约有700人;703人比700人多一些,也接近700,所以也可以说大约有700人。我们可以这样用数学的方法表示:
板书:695≈700 703≈700
师边板书边引导学生说:695约等于700,703约等于700.
师问:“≈”这个符号怎么读的?(约等于。)这个符号就叫约等号。
教学“试一试”。
出示:实验小学有学生20xx人,大约是几千人?
让学生充分地猜以后,优化得出20xx大约是2千人,所以写成:20xx≈20xx
反馈检测
1.完成“想想做做”第1题。
先让学生说一说数轴上面的数有什么规律,再让学生独立完成。
完成后师问:我们一共填了哪些数,这些数中哪些接近500,哪些接近600?
2.完成“想想做做”第2题。
引导学生读题后强调题目要求:大约是几百或几千元,独立完成后集体评价。
3.完成“想想做做”第3题。
独立完成后集体评价。
总结:我们在说近似数的时候通常都是约等于几百或几千。
4.完成“想想做做”第4题。
师引导依次讨论三个子问题。
5.完成“想想做做”第5题。
怎样摆接近20xx的数?先摆一摆,再读一读。你知道怎么摆接近9000、5000、1000的四位数吗?
学生独立完成,集体评价。
反思总结
提问:这节课我们学习了什么?你有什么收获和体会?
归纳:这节课我们学习了近似数,近似数是一个大概的数。
近似数教案 篇6
教学目标:
知识与技能:1、通过复习,巩固所学的计数单位和相邻两个单位之间的进率,掌握数位顺序表,能正确地读写大数,掌握改写和省略的方法。2、进一步培养学生的数感。
过程与方法:使学生参与复习的全过程,通过合作交流等活动,使学生形成知识网络。
情感、态度和价值观:培养学生的反思意识和合作精神。
重点:数的概念、读写数的方法、改写和省略的方法
难点:数中间和末尾有0的读写法、用四舍五入法求近似数
教具:题卡
教学过程:
一、复习整理:
1、本节课对多位数的认识这部分知识进行整理和复习。板书课题:复习多位数的认识。
2、打开数学书看第一单元的内容,看看本单元都学习了哪些内容?
哪个小组愿意汇报你们组的交流情况?
老师指导并归纳,总结在黑板上。
问:你认为本单元哪些内容比较难?你最容易出错?
二、复习知识点
1、复习数位顺序表
1)什么叫数位、计数单位、数级?
2)每相邻两个计数单位之间有什么关系?
10个一万是十万
10个十万是一百万
10个一百万是一千万
10个一千万是一亿
3)每相邻的两个计数单位之间的进率都是十,这种计数方法叫十进制计数法。
4)自然数的认识
表示物体个数的1、2、3、4、5、6、7、8、9、10、11都是自然数,一个物体也没有,用0表示,0也是自然数。
问:最小的自然数是几?有没有最大的自然数?自然数的`个数是无限的还是有限的?
2、多位数的读写法的方法是什么?
3、改写和省略的方法是什么?
4、如何比较数的大小?
三、练习内容
1、读出下面各数。4231579、30050082、3960400000、7000700070、700300009、26740020000、315400000、50708000000。
2、写出下面各数
三千零三万三百零三、一千零五十万四千零二十、二十亿零七百六十八、三百一十亿七千零八万三千零四十。
3、改写成以万做单位的数。80000、9000000、47000000、200320000。
4、改写成以亿做单位的数。325600000000、48000000000
5、求近似数
1)16483520、9528641、799000、380800、8396000(省略万后面的尾数)
2)2709546312、983536478、89970804758(省略亿后面的尾数)
6、比较大小
1650010○16500100;350020○530020;2509200○2509000;6309607○670630。
7、用6、3、8、9和5个0按要求写出九位数。
1)最大的数;2)最小的数;3)一个0都不读的数;4)只读出一个0的数;5)要读出2个0的数;6)约等于3亿的数;7)约等于10亿的数。
四、这节课复习了什么?还有什么问题?
五、作业:练习二十一1、2、3
近似数教案 篇7
教学内容:
义务教育课程标准实验教科书青岛版第71页《求小数的近似数》。
教学目标:
1.借助已有经验,使学生掌握求一个小数近似数的方法,能够正确地求一个小数的近似数。
2.在解决问题的过程中,培养学生自主学习的能力,初步学习用猜想、比较、归纳等数学方法学习数学知识。
3.通过独立思考,培养学生认真审题、解题的良好学习习惯。
教学过程:
一、创设情景
1.谈话:同学们,本单元前面几个信息窗我们学习了形形色色的鸟蛋和龟蛋带给我们的数学知识。本节课我们继续来学习本单元最后一个信息窗绿毛龟蛋带给我们的数学知识。
出示情境图,仔细观察画面,你知道了什么?你又能提出哪些数学问题?
学生合作交流。
2.谈话:这节课重点解决他们说的结果为什么不一样和绿毛龟蛋的宽径约是多少这两个问题。其他问题放在问题口袋里以后解决,可以吗?
[设计意图]激发学生的学习愿望和参与动机是引导学生主动学习的前提,通过清晰生动的情境图中出现的两位同学不同的测量结果让学生观察讨论,学生意见不一,于是需要寻找正确的判断方法,由此激起学生探寻新知的强烈愿望。
二、探究新知
1.学生独立思考他们说的结果为什么不一样?这一问题。
谈话:观察两位同学说的结果,你能发现什么?
让学生观察,引导学生发现:小华读出的结果是一个一位小数,小明读出的结果是一个整数。
谈话:对,求3.94的近似数,根据不同的要求,既可以保留一位小数,也可以保留整数。请同学们选择一种情况,根据我们求整数的近似数的方法,研究一下怎样求一个小数的近似数。
学生独立研究后,再在小组内交流。
谈话:哪位同学愿意说说你是怎样求3.94的近似数的?把你的方法向大家介绍一下。
谈话:你的方法很正确,还有哪位同学与他求得的近似数不同?
谈话:你的方法也很正确。因此,我们在求一个小数的近似数时,依然运用了四舍五入法,关键是看精确到哪一位。
2.学生独立思考绿毛龟蛋的宽径约是多少?这一问题
学生独立思考后,引导学生讨论什么时候小数的近似数的2,什么时候小数的近似数的2.0。
讨论得出:求一个小数的近似数时,保留小数的数位不同,精确程度也不同。
[设计意图]这一环节教学时让学生自己去观察,在观察中探究新知,在交流中归纳新知,把学习的主动权交给学生,在观察讨论过程中教谈话为学生创设自由选择的空间,让学生体会自由选择的轻松和快乐。
三、巩固应用
1.黄河的流域面积是75.14万平方千米。(保留一位小数)
2.把1.463保留整数、把1.463保留一位小数和把1.463保留两位小数这三种说法的`结果是否是一样的?
3.小华的体重保留整数是45千克,他的体重可能是多少千克?
[设计意图]练习中让学生交流不同的思考方法,鼓励学生思维的创新,方法的简洁,但也照顾学生不同的认知水平,尊重学生的学习成果。
四、感悟收获
谈话:今天大家学得愉快吗?你们最大的收获是什么?
(学生自由说说说本课的收获及体验)
课后反思:
教师是教学的组织者和引导者,而不仅仅是解题的指导者。本节的教学我通过几个问题,几句话做适当的引导,而留给学生大量的时间让他们去观察,去思考,去交流,在观察中探究新知,在交流中归纳新知,把学习的主动权交给学生。在学习讨论的过程中,教师为学生创设自由选择的空间,引导学生敞开思维,多角度探索,实现高效率学习。
