《乘法分配律》教学反思

笔构网

2026-02-02教案

请欣赏《乘法分配律》教学反思(精选9篇),由笔构网整理,希望能够帮助到大家。

《乘法分配律》教学反思 篇1

乘法分配律是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律也是所有运算定律中变化最多的,因此它是学生最难理解与运用的定律。因此我在教学中让学生在不断的感悟、体验中理解乘法分配律,从而概括出乘法分配律。

一、在对本课的教学目标上,我定位在:

(1)从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。

(2)渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。

二、在本课教学过程的设计上

我尽量想体现新课标的一些理念,注重从实际出发,把数学知识和实际生活紧密联系起来,让学生在体验中学到知识。顺延之前学习乘法交换律和乘法结合律的情境举例:利用植树活动情境“一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇水”。提出问题:“一共有多少名同学参加了这次植树活动”。让学生尝试通过不同的方法得出:

(4 + 2)×254×25 + 2×25

= 6×25 = 100 + 50

= 150(元)= 150(元)

此时,让学生观察通过计算方法得到了相同的结果,这两个算式可用“=”连接。使之让学生从中感受了乘法分配律的模型。从而引出乘法分配律的概念:“两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。”用字母形式表示:

(a + b)× c = a × c + b × c

三、在本节课的练习设计上,我力求有针对性、有坡度的知识延伸。

1、在完成课本36页做一做时,对应这3道判断题,

(1)、判断56×(19+28)=56×19+28,让学生感知到乘法分配律要分给括号里的`每一个数,强调乘法分配律的“公平性”。

(2)、判断32×(7×3)=32×7+32×3,让学生注意到乘法结合律和乘法分配律的区别:通过对运算定律意义的描述,和算式的特点,提炼出最简洁的区分方法:乘法结合律是连乘情况下的,乘法分配律除了乘法还有加法(后继教学还会出现减法),容易使我们混淆的原因是,它们都是乘法的运算定律都有乘法出现,更关键是它们都出现了小括号。

(3)、判断64×64+36×64,借助64个64和36个64,一共是64+36=100个64,让学生理解乘法分配律逆向使用,在一些情况下,计算会变得十分简便。

2、在完成较简单的课本36页做一做后,进行一些扩展型的练习:

通过(250—25)×4,让学生感受到,乘法分配律除也可以两个数的差与一个数相乘。对于分配之后,再把两个积相减。同时复习强调我们熟悉的5道重要算式:5×2、25×4、125×8、125×4、25×8

由于本节课的知识运用的难度较大,学生对乘法分配律可以基本掌握,但是对于其万般变化,还是有点力不从心,而该运算定律对学生后继学习,尤其是小数和分数计算时有一定影响,所以还需要学生在本节课后进行深入的学习,教师也需要针对乘法分配律的每一种题型,结合学生的掌握情况进行更系统深入的讲解。

《乘法分配律》教学反思 篇2

首先结合学生熟悉的问题情境,帮助学生体会运算定律的现实背景。接着设计“悬念”,抛出四组题目,把学生引到“两算式的结果相等”的情况中来。先请学生猜想,而后验证,再请学生编题,让每一个学生都不由自主地参与到研究中来。在编题过程中,很多学生都交出了正确的“答卷”,增强了他们学习的自信心和继续研究的欲望。接着,请同学在生活中寻找验证的方法,以四人小组为研究单位,学生的思维活动一下子活跃起来,纷纷探究其中的奥秘。小组讨论的`方式,更促使学生之间进行思维交流,激发学生希望获得成功的动机。通过实践、讨论,揭示了乘法分配律。再通过用自己喜欢的方式来表述乘法分配律加以内化。这样做,学生学得积极、学得主动、学得快乐,自己动手编题、自己动脑探索,从数量关系变化的多次类比中悟出规律,“扶”得少,学生创造得多,学生学会的不仅仅是一条规律,更重要的是,学生学会了自主自动,学会了进行合作,学会了独立思考,学生学得轻松,学得主动。

通过这节课的教学我感受到:认真钻研教材,深入挖掘教材中的宝贵资源,会使教材的内涵更有广度和深度,也为培养和发展学生思维的灵活性,提供了更广阔的空间。

《乘法分配律》教学反思 篇3

本节课主要让学生充分感知并归纳乘法分配律,理解其意义。教学中,我从解决实际问题(买衣服)引入,通过交流两种解法,把两个算式写成一个等式,并找出它们的联系。让学生初步感知乘法分配律的基础上再让学生举出几组类似的算式,通过计算得出等式。

在充分感知的基础上引导学生比较这几组等式,发现有什么规律?

这里我化了一些时间,我发现学生在用语言文字叙述方面有些困难,新教材上也没有要求,因此,只要学生意思说到即可,后来,我提了这样一个问题,你能用自己喜欢的方式来表示你发现的规律吗?学生立即活跃起来,纷纷用自己喜欢的方式来阐明自己发现的规律:有用字母的,有用符号的,大部分学生会说,没问题。对于应用这一乘法分配律进行后面的练习还可以。

如:书上第55页的`第5题,学生都想到用简便方法去列式计算。整节课,学生还是学的比较轻松的。

《乘法分配律》教学反思 篇4

今天静下心来观看了省赛课中葛老师执教的《乘法分配律》一课。她巧妙引领。葛老师非常自然的借助孩子们喜爱的农场游戏,引入问题“谁能帮老师算算一共有多少菜?你能列出综合算式吗?先求什么,后求什么?”一方面教师问题的指向性简练明确可以引导学生列出综合算式,另一方面借助情景能有效的帮助学生理解算式的道理,明确意义。更为巧妙的是此情景内容丰富可以列出不同的算式:

2×3+3×4和(2+4)×32×5+8×5和(2+8)×5(10+15)×4和10×4+15×4为后面的.“观察、分类和探究”做好铺垫。

大胆放手。在第一个“求菜”的情境中,是在教师的引导下学生顺利完成了学习的过程,然而后面的“求花”和“求果树”就是放手让学生自己探究了,很自然的激发了学生的探究欲望,分别列出了两组算式:(2+8)×5和2×5+8×5以及(10+15)×4和10×4+15×4。

这样在学生喜爱的农场情景中,巧妙的引发出六道算式,为进一步的观察和探究埋下了伏笔。

得出6个算式后,葛老师再次抛出问题:“这六个算式让你分分类,你打算分几类?理由是什么?”然后葛老师又引导学生同桌先讨论,然后集体汇报,于无形中让学生经历了各个层面的探究活动。让学生观察——猜想——举例验证——,和从“特例”进行验证等一系列的活动,最后归纳出一普遍性的规律。

当结论得出后,葛老师并不是将字母表示进行简单的灌输,而是巧妙的借助点子图将用字母表示乘法分配律的过程变为因需而设,从而呼之欲出。最后教师还通过乘法的意义加深学生对乘法分配律的理解,并且教师还通过两组以前学过的两位数乘一位数和两位数乘两位数来打通乘法分配律与以前知识的联系。

总之,本节课在学习方式上自主学习与合作探究并存,在思维发展上,教师引导与放手相结合,整个学习过程,因需而设,充满了探究。

《乘法分配律》教学反思 篇5

《乘法分配律》是本章的难点,它不是单一的乘法运算,还涉及到加法运算。教材对于这部分内容的处理方法与前面讲乘法结合律的方法类似。通过观察几组数目不同的算式,引导学生发现规律,然后归纳、总结,用语言表述出来。在教学时,我也是按照教学参考书的.建议安排教学过程的。先复习乘法的交换律和结合律,接着导入新课。通过

(18+7)×6○18×6+7×6、20×(15+90)○20×15+20×3

让学生观察、分析、思考、归纳,最后在教师的引导下总结出乘法分配律并加以运用。

教学过程中,导课比较快,在归纳乘法分配律的内容时,主观上是时间紧张,可课后想想,实际上是引导不到位。课堂上学生气氛不活跃,思维不积极,难以完整地总结出乘法分配律。结果,学生对乘法分配律不太理解,运用时问题较多。如当天在作业时出现的问题就比较多:45×103有三分之一的学生直接乘,不会简便;尤其是计算59×21+21时,学生发现不了它的特点,不会运用乘法分配律,可以说,本节课上得不是很成功。

今后的工作中,要多向以下几个方面努力:

1、多听课,多学习。尤其是青年教师的课,学习他们的新思想、新方法,改善课堂教学,提高课堂教学艺术和课堂效率。

2、加强同同课教师之间的沟通和交流,相互学习,取长补短,共同进步。

3、认真钻研教材,把握好教材的重点、难点、关键点、易混点,上课时才能做到心中有数,游刃有余。

《乘法分配律》教学反思 篇6

《乘法分配律》是人教版四年级第三单元的内容,学生已经学过了加法交换律和结合律、乘法交换律和结合律,因此总以为学生对这一部分的知识并不陌生,就简单地设计了复习,回顾学过的运算律,再让学生发现运算律在简便计算中的运用,接着就出示了新课的例题,让学生从例题中寻找乘法分配律的规律,再通过举例,比较发现乘法分配律并用字母表示出来,基本完成本节课的新授,最后通过巩固练习让学生认识乘法分配律并在计算和实际生活问题中的运用。但上完课,发现课堂出现了很多的问题,学生对乘法分配律和乘法结合律的混淆。那么在教学中应该注意什么呢?

1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。

教学时我们往往注重等式两边的外形特点,即a×(b+c)=a×b+a×c。这时教师可提出为什么两个算式是相等的?这里不仅从解题的角度理解,如(2+7)×3=2×3+7×3是相等的,还有从乘法的意义的角度理解,即左边表示出3个9,右边也表示出3个9,所以(2+7)×3=2×3+7×3

2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。

乘法结合律的特征是几个数连乘,而乘法分配律特征是两个数的和乘以一个数或两个积的和。在练习题中(40+4)×25与(40×4)×25这种题学生特别容易出错。为了更好地掌握,可多进行一些对比练习,如进行题组对比25×(8+4)和25×8×4;25×125×25×4和25×125+25×8;每组算式有什么特征和区别?符合什么运算定律?应用什么运算定律可以使计算简便?为什么要这样算?

3、让学生进行一题多解的练习,加深对乘法结合律和乘法分配律的理解

如:125×88;101×89你能有几种方法?125×88①竖式计算;②125×8×11;③125×(80+8);④(100+25)×88等等。101×89①竖式计算;②(100+1)×89;③101×(100-1);④101×(80+9);⑤101×(90-1)等.对于不同解法,引导学生进行对比分析,什么时候用乘法结合律简便?什么时候用乘法分配律简便?力争达到“用简便计算法进行计算”成为学生一种自主行为,并能根据题目的特色灵活选择适当的'算法的目的

4、多练

针对题目多次练习。练习时注意练习量和时间的安排。刚开始可以天天练习,过段时间以后可以一两天练习一次,再到一周练习一次,典型题型课选择(40+4)x25;(40x4)x25;63x25+63x75;65x103-65x3;56x99+66;125x8;48x102;48x99等。

对于比较特殊的题目可以间断性练习,对优生提出掌握的要求,如:36x98+72;68x25+68+68x74;32x125x25等。

这样一来,让学生亲历观察、归纳、猜测验证推理等探究发现的全过程,使学生不仅发现了乘法分配律的知识的内含,而且学习了科学的探究的方法,数学思维能力也得到了发展。

《乘法分配律》教学反思 篇7

教材提供了这样一个主体图:春季里,同学们开展植树活动,一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树。需要解决的问题是:一共有多少人参加植树活动?学生会用两种不同的方法分别列出算式,接着通过计算发现,两个算式可以用=连接,即25(4+2)=254+252,从而通过比较等号两边两个算式的不同与相同,概括出乘法分配律。当我在一个班按照此教学设计教学后,我发现效果并不理想,表现有两点:

①有些学生只是机械的记忆了乘法分配律的公式,例如看到3544不能想到3540+354;

②由于没有真正理解乘法分配律的内涵,所以完全不能理解其逆应用以及当两个数的差乘一个数时应用乘法分配律。如:他们认为6464+3664(64+36)64;265(105-5)=265105-2655。

针对此情况,我重新设计了教案。增加了一个问题:负责挖坑、种树的.同学比负责抬水、浇水的同学多多少人?这样学生又列出另外两个算式,通过计算后用等号连接: 25(4-2)=254-252,接下来,我引导学生观察、对比两组算式,充分地去发现相同点与不同点。这样一来,促使了学生去寻找事物之间的联系,抓住本质,寻找共同点,促进交流,顺利地实现了自我构建和知识创造。学生的发现自然也就更丰富、更有深度了:无论是两个数的和还是两个数的差去乘一位数,都可以先把他们与这个数分别相乘,再相加或者再相减。此外,我还引导学生从右到左的观察等式,尝试用乘法的意义去理解乘法分配律,即:4个25加2个25就等于(4+2)个25,4个25减2个25就等于(4-2)个25,这样帮助学生突破乘法分配律逆应用这个教学难点。

我通过对两个班不同的教学设计,感受到:认真钻研教材,多动心思,深入挖掘教材中的宝贵资源,会使教材的内涵更有广度和深度,也为培养和发展学生思维的灵活性,提供了更广阔的空间。

《乘法分配律》教学反思 篇8

乘法分配律是一节概念课,是在学生已经掌握了加法运算定律以及乘法交换律、乘法结合律的基础上进行教学的。在本单元运算定律中,是最难理解的,学生最不容易掌握的。本节课的重点是理解乘法分配律的意义,难点是利用乘法分配律灵活地进行简便计算。

在课堂上,创设了植树活动的情境,求一共有多少名同学参加了植树活动。在课堂中,鼓励学生独立思考,能用两种方法解答出来,然后让学生对比两种算法初步让学生感知乘法分配律的意义,即(4+2)×25=428×25+2×25。

在学生理解了乘法分配律后,运用变式练习加深对乘法分配律意义的理解,让学生不仅知道两个数的和与一个数相乘可以写成两个积相加的形式,还要知道两个积相加的形式可以写成两个数的和的形式。也就是乘法分配律也可以反着用。最后通过多种形式的练习让学生深入理解乘法分配律的'意义。

通过学习,一些学生已掌握,但也有一些学生的语言叙述不熟练,虽然会背用字母表示的式子,但是不会灵活应用。还有一些学生容易把乘法分配律和乘法结合律弄混淆。

所以在复习巩固时,要加强乘法结合律与乘法分配律的对比,让学生对这两个运算定律的结构更清晰。还要加强对乘法分配律意义的理解,通过不同形式的试题的演练,灵活掌握应用运算定律进行简便计算。

《乘法分配律》教学反思 篇9

乘法分配律是一节概念课,是在学生已经掌握了加法运算定律以及乘法交换律、乘法结合律的基础上进行教学的。在本单元运算定律中,是最难理解的,学生最不容易掌握的。本节课的重点是理解乘法分配律的意义,难点是利用乘法分配律灵活地进行简便计算。

在课堂上,创设了植树活动的情境,求一共有多少名同学参加了植树活动。在课堂中,鼓励学生独立思考,能用两种方法解答出来,然后让学生对比两种算法初步让学生感知乘法分配律的意义,即(4+2)×25=428×25+2×25。

在学生理解了乘法分配律后,运用变式练习加深对乘法分配律意义的'理解,让学生不仅知道两个数的和与一个数相乘可以写成两个积相加的形式,还要知道两个积相加的形式可以写成两个数的和的形式。也就是乘法分配律也可以反着用。最后通过多种形式的练习让学生深入理解乘法分配律的意义。

通过学习,一些学生已掌握,但也有一些学生的语言叙述不熟练,虽然会背用字母表示的式子,但是不会灵活应用。还有一些学生容易把乘法分配律和乘法结合律弄混淆。

所以在复习巩固时,要加强乘法结合律与乘法分配律的对比,让学生对这两个运算定律的结构更清晰。还要加强对乘法分配律意义的理解,通过不同形式的试题的演练,灵活掌握应用运算定律进行简便计算。

大家都在看