请欣赏《三角形的面积》教学反思(精选7篇),由笔构网整理,希望能够帮助到大家。
《三角形的面积》教学反思 篇1
昨天,布置学生预习“三角形的面积”一课,并让他们完成书上试一试两道求三角形面积的题目。
今天,尝试了预习后的数学课的上法。
“你们都预习了三角形的面积,谁来说一说三角形面积怎么算?”一上课,我就开门见山地问了。
知道的学生不多。可能出现的原因有:一是学生没有把预习当成作业;二是学生不知道怎么预习,没完成;三是学生预习时记住了,隔了一夜忘了……原因不同,该如何了解真正的情况,再进行完善?
我抽了上等生来进行回答,目的是想在课始就给学生一个正迁移。
板书三角形的面积计算公式之后,我让孩子们读了一遍,追问:“怎么得到这个公式的?”
孩子们愣了一下,马上有几个学生举手。
我没有马上抽学生回答,而是引导学生同桌之间先互相说一说。如果直接抽学生回答,那些已经忘得差不多或根本没预习过的同学可能会更听不明白,或者他们的学习准备还没到位。经过同桌互说,他们已经有的经验能产生“共鸣”。
“用两个一样的三角形拼成一个平行四边形,一个三角形面积就是平行四边形的面积除以2”。
“谁听明白了?”我又追问。
我相信很多学生还是没听明白,拿出自制的两个一样大的三角形演示了一遍。边演示边明白如下几个问题:
一.拼成的平行四边形与原来的三角形面积有什么关系?
二.平行四边形的底与高与三角形的底与高有何关系?(这两个问题好像有点乱,怎样组织一个问题来引领?就提“拼成的平行四边形与原来的.三角形有什么关系”吗?学生能一点一点的说出来吗?我觉得这里需要明白这几层意思,拼成的平行四边形面积是原来三角形面积的两倍,拼成的平行四边形的底就是原来三角形的底,拼成的平行四边形的高是原来三角形的高,一个三角形的面积就用拼成的平行四边形面积除以2。自己说说都感觉有些糊涂,学生能清楚吗?)
有两位学生纠结于是不是所有三角形都可以,我用一个大三角尺与学具一比较,好在对比强烈,学生能看明白。
“老师,不拼可以吗?”
“可以,把三角形割补成平行四边形”。前者应该是没预习或没有把书上的推导图看明白的学生。后者一定是看明白了。
我利用画在黑板上的三角形,先介绍找出高,边的中点,连接这两个中点把三角形分成两部分。再拿出课前折的上半个三角形,一旋转,就成一个平行四边形了。很直观形象,比课件好用多了。这里的问题是如何让学生明白其中的一些“潜规则”,比如,怎么把那两个中点一连,高也就是一半了?旋转之后,怎样让学生感觉到这就是一个平行四边形。(虽然不用证明,但数学应该是严格的吧。)
练习的设计,大致按照书上的一二三进行。第一题是给出底和高,求面积的表格练习。做的时候再次强调了怎么填表格,什么时候要写单位,什么时候不写。第二题是计算发现题。引导学生得出“等底等高的三角形面积相等”。对于高标在外面的方式有些学生不理解。在学习高的那一课应该强化一下钝角三角形的高。这一题还进行了改编,让学生再画一个面积相等的三角形。第三题是量底和高,算面积。
明天学习“梯形的面积”了,如果还是按照这个方式引导学生学习,我可以在哪些方面深入一点?(今天上课的感觉很好,为什么写出来这么没意思?)
《三角形的面积》教学反思 篇2
五(5)班学生总体来说思维活跃、个性较强,我针对这一实际,对教学进行了这样的安排:在揭示课题后,我让学生自己推导出三角形的面积公式,让学生以小组为单位进行了两次操作:第一次,把三角形拼成以前学过的会计算面积的图形,并从拼摆中使学生明白只有两个完全一样的三角形才能拼成平行四边形;第二次,是让学生通过观察拼好的图形,自己推导出三角形和所拼的图形有什么关系,从而得出三角形的面积公式。最后让学生把得出的三角形面积公式应用到练习中。
本节课中,我觉得比较成功的地方有以下几点:
一、渗透“转化”的思想“转化”是数学学习和研究的重要思想方法之一。在课的开始,学生把一个长方形的花坛平均分成了两个直角三角形,借助长方形的面积算出一个直角三角形的面积。学生初步感到直角三角形和长方形有一定的联系。课中,通过两次的实践操作,学生更加明白了其实三角形可以转化成已学过的图形。在课的结尾,我再适时进行了总结:当我们遇到一个新问题时就可以动脑筋把它转化成我们以前学过的就知识。这样,“转化”思想贯穿于课的始终。
二、注重学生间的合作与交流学生学会合作与交流有利于形成良好的人际关系,促进其人格的健全发展。在这节课中,我注重学生间的合作与交流:以小组为单位让学生对三角形进行拼摆,再让他们上台展示自己的作品,并让其他小组的同学对黑板上的图形做及时的补充;在小组合作推导三角形的面积公式时,我也尽量让学生对其他各组的推导过程进行补充或提出异议,让学生在交流中学到了知识,在交流中看到了可以用许多方法解决同一个问题,但许多问题在有限的时间内不可能靠一个人的力量完成,必须靠大家的力量,培养了彼此间的合作与协作精神,同时深切地感受到集体合作的重要性。
三、重视数学的应用性学以致用是数学教学的一个基本原则。课的开始,我让学生在欣赏美丽的西湖的同时,解决园林工人遇到的问题:把一块长方形花坛平均分成两半,你认为应该怎样分开呢?如果平均分成了两个直角三角形,那每个三角形的面积又是多少呢?课中,我又让学生求红领巾的面积、算出标志牌的大小。这些都让学生认识到了数学在生活中是无处不在的,体会到了数学的应用性。
当然,本节课也存在一些不足,如:
一、推导三角形面积的方式太过单一在推导三角形的'面积时,我只让学生进行了拼摆,其实对于部分学生来说,他完全有可能想出如割补、折叠的方法。我考虑到课堂时间的有限,自己驾驭课堂的能力也不强,就没有设计了这样的环节
二、课堂设计不够开放整节课下来,学生的回答、操作都在我的预想中进行。仔细想想,这节课其实是有很多地方能够让学生冒出思维的火花,让学生有创造性的发现的,而我却把学生框在了自己设计的教案中。因此,这节课完全可以设计得更开放些,让学生课前先寻找需要实验的素材,自行确定其研究方案,真正实现根据学生的需求进行教学。
三、 对于课件的使用还没做到恰到好处。
《三角形的面积》教学反思 篇3
三角形面积的计算这节知识是在学生已经掌握平行四边形面积的计算以及平移等知识与能力之后学习的。为了能充分地调动学生的学习积极性,使他们由厌学、苦学变为喜学、乐学,因此在设计这节课的时候,我是这样构思的:
一、运用跃进式提问引入情境教学。
情境教学,是指教师运用直观形象的具体材料,创设问题情境,设障布疑,激发学生思维的积极性和求知需要的一种教学方法。首先在复习这一部分我出示两个一大一小的三角形让学生比较,两个三角形的面积谁大谁小,这是一目了然的,每个学生都能回答。然后进行跳跃性提问:“大多少”?这种简捷的跃进式提问,强烈地激发了学生的探究心理,很快便产生期待学习的最佳心理状态,去引导学生探究新课。此时,所面临的问题的实质,就是求两个三角形的面积各是多少?由此引出了这节课的课题:三角形面积的计算。
二、以动激趣,揭示三角形面积的计算方法。
动手操作,一方面可以为学生架起由感性认识到理性认识的桥梁,帮助理解和掌握新知识;另一方面,丰富的情感体验可把客观上的“要我学”内化为主观上的“我要学”,改变学生消极被动的学习局面。学生在学习三角形面积计算之前已有了平行四边形面积计算的知识基础,直接将平行四边形剪成两个全等三角形来进行三角形面积计算的思路,比用两个全等三角形拼成一个平行四边形的思路来得简捷、明快,更易于被学生接受。因此,我改变了教材用两个完全一样的三角形拼成平行四边形的方法,而是先在复习部分利用手中已有的一个平行四边形的图形,问:平行四边形的面积怎么求?使学生回顾起平行四边形的面积。然后教师边说边画对角线进行演示,将这个平行四边形沿着对角线把它剪成两个三角形,并将其重叠在一起,说明得到的.一个三角形面积是原来平行四边形面积的一半,即三角形面积应该等于底乘高除以2。这样,用不到几分钟的时间,就揭示了三角形的面积算法。动手操作,创设情境,具体形象且具有直观的特点,使知觉和思维变得更直接、更迅速、更深刻,从而获得成功的乐趣。
三、多方验证,创设探索性问题的情景。
情景教学的一个长处是设障布疑,鼓励学生去探索,在此基础上引导学生训练思维的灵活性和深刻性,以培养学生的能力。为此,我接着引导学生深入验证活动。用沿着平行四边形对角线剪出两个完全一样的三角形,得到了三角形面积计算方法,这一方法对用“底×高÷2”计算三角形面积是否可*?我顺势引导,进行深入质疑。三角形有锐角三角形、直角三角形、钝角三角形,用“底×高÷2”这个方法是否适用于所有三角形面积的计算呢?从而将学生的思维活动推向一个新的高潮。这时,又让学生运用已有的各种学具进行摆弄、操作,这样学生学到的不只是公式本身,而是动手操作的能力,极大地调动了学生的参与意识,产生了强烈的情绪感染,学习气氛非常浓厚。
综观整节课的课堂教学,注重了培养学生的动手操作能力与分析推理的能力;同时激发了学生应用所学知识解决实际问题的能力,发展学生的空间观念。学生真正的成为了学习的主人,真正的掌握了学习的主动权。但是,通过本节课也看到了教师需要努力的方向。譬如由于比较紧张而导致教态不自然或教学中间环节有遗漏等现象。虽然今后的教育道路还很长,但我现在就会努力,每一节课都会与我的学生共同成长。
《三角形的面积》教学反思 篇4
《三角形的面积计算》这节课的内容是在学生掌握平行四边形面积计算的基础上进行教学的,教学重点是引导学生通过三角形面积公式的推导去理解和掌握三角形面积计算方法,并能运用三角形的面积公式,计算相关图形的面积,解决实际问题。因此我认为教学重点应该是引导学生学会学习(比如渗透转化的思想和方法)。因此,在教学中我注重引导学生自己动手操作,从操作中掌握方法,发现问题,解决问题。
为了达到这个目标,我设计了三个学生的学习活动。
一、动手操作 尝试转化。
在教学中,我让学生动手操作,但是并没有直接让孩子用两个完全一样的三角形去拼,而是给了它们一个装有不同的三角形的学具袋,让其选择材料尝试转化,目的是看学生能否想到不同的转化方法,去体验和感知三角形面积公式的推导过程,调动学生思维活动,让学生真正成为学习的主体。同时在操作中向学生渗透旋转、平移的方法。
二、引导学生发现问题、思考问题,汇报关系。
转化成学过的会求面积的图形,这只是学习的第一步,发现转化后的图形与原三角形的关系,才能使三角形面积公式的出现水到渠成自然而然。所以,在这个环节,我给了他们充足的独立思考时间和小组交流的时间。
三、得出结论,总结公式。
如果学生能在第二个学习活动中把功课做足的话,自己总结写出三角形面积公式是不成问题的,但是不是有没有理解透的,所以我又追问三个问题:“为什么除以2”“除以2之前算的'是什么?”“对于这个公式还有疑问吗?”包括让孩子回头想并口述整个推导过程,都是为了让学生加深理解。
教学反思:
反思整个环节,我感觉虽然学生动手操作了,但多多少少还是有点牵着学生鼻子走的意思,没有更多的猜想和创造。对于“为什么会想用两个完全一样的三角形来拼?还有其他推导方法吗?”没有思考。缺失了学生主动寻找材料的过程,影响了学生解决问题策略意识的培养和对知识的建构。
基于以上思考,我想再教学这一内容时,能不能引导学生自己寻找方法推导三角形的面积计算公式。看看能否有多种新颖的、学生自己发现的方法出现。如果是学生自己想办法探索发现的三角形的面积计算方法,他们对三角形面积的计算方法的理解将会非常深刻。这种不依靠教师暗示、授意的探究,是真正意义上的探究。在这种真正意义的探究中,学生经历了主动建构的过程,这才是有价值的探究。
《三角形的面积》教学反思 篇5
《三角形面积的计算》这一节,是以上一节课所学的“平行四边形面积计算公式”的推导方法为基础,应用“转化”思想让学生动手操作,归纳推理,从而得出三角形面积的计算公式。从课本中的推导过程看:把两个完全一样的三角形与拼成一个已学过的图形(平行四边形),再找出其中一个三角形与拼成的图形之间的内在关系,得出了三角形面积的计算公式,这无疑是一种好方法,便于学生理解和掌握。我按照课本的思路,在探究三角形面积计算时,让学生用书后面剪下的几对完全一样的三角形进行探究,再进行班级交流。学生用两个完全一样的三角形拼出了平行四边形,用平行四边形的面积公式轻松地推导出三角形的面积公式:S=ah÷2。从表面上看,学生动手操作了,实际上学生只是被老师牵着鼻子走。学生没有主动地思考,没有猜想和创造。对于“为什么会想用两个完全一样的.三角形来拼?还有其他推导方法吗?”没有思考。课后我认为这样的操作是肤浅的,没有起到促进学生建构知识的作用,不利于展现知识的生成过程,缺失了学生主动寻找材料的过程,影响学生解决问题策略意识的培养。
我想时间如果能回到上节课,我将会引导学生自己寻找方法推导三角形的面积计算公式。看看能否有多种新颖的、学生自己发现的方法出现。如果是学生自己想办法探索发现的三角形的面积计算方法,他们对三角形面积的计算方法的理解将会非常深刻。这种不依靠教师暗示、授意的探究,是真正意义上的探究。在这种真正意义的探究中,学生经历了主动建构的过程,这才是有价值的探究。
《三角形的面积》教学反思 篇6
三角形的面积计算,是在学生掌握了平行四边形面积计算的基础上教学的.。学生已掌握了一定的学习方法,形成了一定的推理能力。因此,本节课教学中,充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他成为知识的发现者、创造者,培养学生自我探究和实践能力。
在推导三角形面积计算公式时,通过小组合作,让学生用两个完全一样的三角形拼一拼,看一看能拼成什么图形,然后引导学生思考讨论:三角形与你拼成的平行四边形有什么联系?引导学生发现每个三角形的面积是平行四边形的一半。通过实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,知其所以然”, 在活动中发展,学得主动、扎实,思维能力、空间感受能力、动手操作能力都得到锻炼和提高。
在本课教学中,也存在一些不足之处,个别学生没有准备学具,不能动手操作,个别学困生手中拿着三角形无从下手,不知如何进行转化,在推导验证过程中也只是被动地接受。
《三角形的面积》教学反思 篇7
三角形面积的计算是学生在充分认识了三角形的特征以及掌握了长方形、正方形、平行四边形面积的计算基础上进行学习的,同时它又是学生以后学习梯形、组合图形的面积计算的基础,三角形面积计算的教学着重要求学生通过动手操作、合作探究出三角形面积计算公式,
从而加深三角形与已学图形之间的联系。重点在于理解三角形公式的推导过程,会根据公式进行计算,还要强调学生不能忽略三角形面积公式中除以2。
上课前我带领学生一起复习我们所学过的图形的面积公式,长方形面积=长宽,S=ab,正方形面积=边长边长,S=a2 ,平行四边形面积=底高,S=ah。然后引导学生回忆平行四边形是如何推导出来的,沿着平行四边形的任意一条高剪开,通过平移后得到长方形,长方形的面积和原平行四边形的面积相等,长方形的长等于原平行四边形的底,长方形的宽等于原平行四边形的高,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。帮助学生回忆转化的教学思想,并直接引出课题,开门见山。
让学生拿出提前准备好的各种三角形,六人一组,动手拼一拼,想一想,怎么把三角形转化成我们所学过的图形。这一活动安排主要是为学生提供一个开放的空间,让学生亲身经历自主探索的`过程。当同学们都拼好之后,我找个别小组介绍他们是怎么拼的,第一小组汇报,学生告诉我,他们是用两个锐角三角形拼成的一个平行四边形。我随即拿了两个不一样大小的锐角三角形拼在一起,问学生,为什么我拼不成?学生立马就能指出因为它们形状不一样大。然后引导学生指出是两个完全相同的三角形,加深学生对完全相同的理解。第二组是用两个完全相同的钝角三角形拼出的平行四边形,第三组是两个完全相同的直角三角形拼出了长方形。让学生继续讨论,这几种拼法有
什么共同点,在交流比较中概括出结论,即用两个形状完全相同的三角形拼出一个平行四边形,当学生指出所拼出的都是平行四边形时,我设下问题,直角三角形拼出的不是长方形吗?学生一起告诉我长方形是特殊的平行四边形,加深学生对长方形和平行四边形的关系的理解。当学生把三角形和平行四边形联系起来时,引导学生去共同发现三角形和所拼成的平行四边形之间的关系,它们等底等高,每个三角形的面积是所拼成的平行四边形面积的一半,让学生自己去体验,加深学生对三角形计算公式的深刻理解。并且强调为什么要除以2。根据平行四边形公式让学生自己总结三角形面积公式=底高2,S=ah2。
