请欣赏圆的认识教案(精选8篇),由笔构网整理,希望能够帮助到大家。
圆的认识教案 篇1
教学目标
1.使学生认识圆,知道圆的各部分名称.
2.使学生掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系.
3.初步学会用圆规画圆,培养学生的作图能力.
4.培养学生观察、分析、抽象、概括等思维能力.
教学重点
理解和掌握圆的特征,学会用圆规画圆的方法.
教学难点
理解圆上的概念,归纳圆的特征.
教学过程
一、复习旧知
(一)教师提问:我们已经学过哪些平面几何图形?
长方形、正方形、平行四边形、三角形和梯形
(二)谈话引入:今天我们继续学习一个新的几何图形.
二、教学新课
(一)圆的形成过程
1.教师叙述:体育课上,教师和明明做游戏,老师固定在操场中间不动,为了保持与老师之间的距离不变,明明拉紧一条绳子开始走动,形成这样一个图形,这是什么图形?
2.教师提问
(1)明明拉着绳子围着教师走动,他的位置发生了变化,但是有一点是没有变的,你知道吗?(明明和教师的距离没有变化)
(2)老师的位置在哪里?(引出圆心)
(二)联系实际
生活中的圆形物体处处可见,你能举一些例子吗?
(三)画圆
1.介绍圆规的历史.
2.教师介绍画圆步骤
(1)把圆规的两脚分开,定好两脚间的.距离;
(2)把有针尖的一只脚定在一点上;这个点就是圆心,用字母O来表示.
(3)把装有铅笔尖的一只脚旋转一周.
3.教师强调
(1)圆规两脚距离不能变;
(2)重心放在针尖一脚上;
(3)起点和终点要重合.
4.学生练习
(1)学生在教师的带领下画圆
(2)学生自己练习画圆
(3)学生按要求画圆(两脚间距离为3厘米)
(四)认识半径、直径和两者间的关系.
1.认识半径:教师在圆内画一条线段,线段的一个端点在圆心,另一个端点在圆上.
(1)教师说明:这样的线段叫圆的半径,用字母r表示
(2)比赛:我给同学们10秒钟时间,请你们在自己的圆中画半径,看谁画的多?同时还要说明半径的长度.
(3)学生反馈:你画了几条?长度呢?如果还有时间你还能画多少条?
(4)教师小结并板书:所有的半径都相等.
教师追问:你圆中的半径和老师黑板上画的圆的半径为什么不相等呢?
(5)补充板书:在同圆或等圆中,所有的半径都相等.
2.认识直径:教师示范画直径
(1)观察:什么叫直径?直径有多少条?长度呢?
(2)教师小结并板书:在同圆或等圆中,所有的直径都相等,直径用字母d表示.
3.用彩色笔标出下面各圆的半径和直径.(出示图片:练习)
4.半径与直径的关系
教师提问:在同圆或等圆中,半径和直径有什么关系?
圆的认识教案 篇2
【教学目标】
1.认识圆的特征,初步学会画圆,发展空间观念。
2.在认识圆的过程中,感受研究的一般方法,享受思维的乐趣。
【教学过程】
师生问好。
一、情景中创造“圆”
师:同学们请看题目:
“小明参加奥林匹克寻宝活动,得到 一张纸条,纸条上面写的是:宝物距离左脚三米。”宝物可能在哪呢? 生思考
师:有想法,你的桌子上有张白纸,上面有个红点,你们找到了吗?
生:找到了
师:那个红点代表的是小明的左脚,如果用纸上的1厘米代表实际距离的1米的话,能 把你的想法在纸上表示出来吗?想,开始。学生动手实践,师巡视。
师:真佩服,真佩服,我们西安的小朋友真棒!会动脑子。除了你表示的那个点,还有其他可能吗? 生思考。
师:好,很多同学都想好了,我们来看屏幕。红点代表小明的左脚,[课件演示:在红点右侧找出一距离红点3米的点]刚才我看到,很多同学都找到了这个点,找到的同学举手。生纷纷举手。
师:除了这一点,刚才我看到,还有的同学找到了这一点。[课件演示:在红点左侧找出一个距离红点3米的点]还有这一点,这一点[课件演示:分别在红点上下的距离为3米的点]我看有的同学还画了这些斜点,是吗?还有其他的可能吗?[课件演示:越来越密,最后连成了圆]
师:想到圆的举手。哇,真佩服,刚才我看有的同学都画出圆了,是吗?看屏幕,这是什么?认识吗?
生:认识,圆
二、追问中初识“圆”
师:那宝物可能在哪里呢?
生:在圆的范围内,在圆的这条线上。
师:你刚才的说法很有意思,先说“在圆的范围内”,后来改成“在圆的这条线上”。如果在范围内,距离不够3米,如果在圆上,距离够3米。那你们怎么告诉小明呢?如果宝物在圆上,怎么表达告诉小明呢?
生:可以这样对小明说:“以你的左脚为圆心,画一个半径为3米的圆。在这个圆的周厂上取任意一点,这个地方也许就是埋宝物的地方”。
师:同意吗?真厉害。刚才她说到两个词,一个是以左脚为“圆心”还有一个是半径多少?[板书:圆心,半径]
生:3米
师:就用上这两个词,就很准确地表达出了圆的位置,对吧。如果只说以左脚为圆心,不说半径3米,告诉小明,宝物啊就在 以你左脚为圆心的圆上。行不行?
生:不行
师:为什么不行?
生:如果只告诉左脚是圆心的话,那圆可以无限延伸。就没法掌握圆的周长是多少。
师:那个圆可以无限延伸。我理解他的意思了,你理解了吗?
生:理解了。
师:也就是说圆的半径没定,圆的大小没定。对不对。
生:对
师:这样的话,可以画多少个圆,可以无限延伸,对不对。那如果不说“以左脚为圆心”行不行?
生:不行,那样圆的位置就可以无限延伸。
师:除了说“以左脚为圆心,半径为3米的圆上”还可以怎么说?生活中听说过吗?
生:也可以说直径是6米。
师:同意吗?
生:同意。
师:可以说:以左脚为圆心,直径为——”
生:6米
师:对。这个“直径:也能表达圆的大小。[板书:直径]
师:为什么 宝物可能所在的.位置会是一个圆呢?
生:因为在一个圆内,所有的 半径都相等。
师:哦,他说了这个。什么 宝物可能所在的位置会是一个圆呢?
生:因为以他的左脚为圆心,他可以随便走一圈,就变成圆了。
师:哦,可以随便走一圈。方向没有定,是吧。这也是另外一个角度看问题。刚才两个同学说的都很有道理,不过要很好的说明这个问题我们可以用”圆的特点“来说明。你觉得圆有特点呢?
生:我觉得圆有无数条半径,无数条直径。
生:圆心到圆上任意一点的距离都是相等的。
师:我们说图形的特点的时候一般要和以前学过的图形作比较。一句话,有比较才有结论。[课件:三角形,正方形等]以前我们学过三角形,正方形等。我们以前说图形的时候往往从“边”和“角”两个角度来说明,那你看,从 边和角的角度来看,圆有什么特点呢?
生:它既没有棱也没有角。
师:同意吗?同意的请点点头,她说圆没有棱也没有角,对吗?
生:对
师:没有棱是什么意思?
生:没有棱是说它没有边,它不象正方形有4条边。师追问:那它是没有边吗?
生:不是,有边。
师:有边,几条边?
生:1条。
师:那你们说圆的边和我们以前学过的图形有什么不同?
生:以前学过的图形的边是直线,而圆的边是曲线构成的。
师:同意?
生:同意。
师:看来我们从角来看,圆是没有角的。从边上来看,圆有没有边?
生:有!
师:有,几条边?
生:一条边。
师:这是圆很特别的地方。其他图形,最起码有3条边,而圆呢?只有一条边。并且它的边怎样?
生:是曲线的。
师:是曲线的。其他的是直线或者说是线段围成的。
师:圆,我们从边和角来看是这样的特点。我们的祖先墨子说:圆一中同长也[板书]知道这句话什么意思吗?一中指什么?
生:圆心
师:同长,什么同长?
生:半径
师:半径同长,有人说直径也同长。同意古人说的话吗?
生:同意。
师:“圆,一中同长也”。难道说正三角形,正四边形正五边行不是“一中同长”吗?
认为是的举手,认为不是的举手。为什么不是呢?
生:这些图形中心到角的距离比到边的距离要长一些。上前面指着说。
师:这些图形是不是一中同长?
生:不是。
师,不是的理由就是:从这个中心到边上的点跟到顶点的点的距离就不一样。那有没有一样的?正三角形里有几条一样的?
生:3条。
师:正方形呢?
生:4条。
师:正五边行呢?
生:5条。
师:正六边行?
生:6条。师指圆:
生:无数条。
师:无数条?[板书]为什么是无数条?
生:圆心到圆上的半径都相等。所以有无数条。
师:我们解决的是什么问题?
生:我们解决的问题是相等的半径有无数条。
师:为什么有无数条?
生:圆心到圆上的距离都相等。
师:圆周上有多少个点?
生:无数个。
师:这些点和圆心连起来当然就有无数条,是吧。圆周上有无数点,请问:从这到这有多少个点?[指圆弧线]
生:无数个。
师:这些图形一中同长的条数是有限的,而圆从圆心到圆上的距离都是一样的。古人说的“圆,一中同长”你认同吗?
生:认同。
师:经过我们讨论更认同了,不过刚才有同学说圆是没有角的。圆只有1条边,边是曲线。究竟哪个更重要呢?我们来看[课件出示椭圆]这个图形是不是没有角的。是不是只有1条边,边是曲线。它是圆吗?它一中同长吗?所以说一中同长是圆最重要的特征。墨子的这一发现比西方早了1000多年,谁能学古人的样子读一读?
生读。
师:圆有什么特点?
生:一中同长。
师:我们来看小明的宝藏在什么范围?我们第2个问题解决完了吗?
三、画圆中感受“圆” 1从不圆中,感悟圆的画法。
师:孩子们,想自己画一个圆吗? 画圆用什么?
生:用圆规。
师:古人说:没有规矩,不成方圆。大家看,规就是圆规、矩就是带着直角的尺。规是用来画圆的,矩是用来画方的。
师:既然大家都回会画?画一个半径为4厘米的圆
(生自己画圆)
师:画好了吗?
(展示学生的作品,学生此时的作品都不怎么标准)
师:从这些圆里,我们是否可以想象,它们是怎样创造出来的?
师:看来画圆并不是一件很容易的事,小组里交流一下,怎样画圆才能标准?(生小组交流)
师:大家交流完了,好了。那现在你们说一下是怎么画的?
生:用圆规
师:了解圆规的发展,现在圆规的优点在哪里?
师:用这样的圆规画圆,手必须拿着哪,圆规就不动了?
生:拿着圆规的头,不能捏着它的两条腿。
师:对,就是拿住圆规的头,而不能捏着它的两条腿。
(课件出示:再画:一个直径是4厘米的圆)
生画,师巡视
师:哎呀,老师在巡视时,我发现你们画的较规范的圆,大小不一样,为什么?
生:这里要我们画的是直径4厘米的圆。
师:你知道什么是直径吗?顾名思义,它和半径是什么关系?
生:直径是半径的2倍。
师:订好距离,就是圆的半径。
师:孩子们,谁愿意上来画一画。这个机会老师留着了。
师:展示画圆,故意出现破绽一:没有“圆”上?破绽二:没有画完?
生:两脚之间距离变化了;粗细不均匀;
师:你们真仔细,我把汗都画出来了。2标上半径、直径。
师:学生标直径和半径;你说在画半径时特别注意什么?
生:在画半径时特别注意对齐圆的圆心,画完后表上字母r;
师:半径有两个端点,一个端点在(圆)上,另一个端点呢?
生:圆心;
师:再画一条直径;刚才他画的时候你注意到了吗?应该特别注意什么?那位戴眼镜的小伙子。
生:一定得通过圆心。
师:直径用字母d表示,数学上就是这么规定的。d和r是什么关系?
生:2倍,d=2r。
师:画圆是怎样画的?
师:先确定一条半径,也就是两脚之间的距离,然后确定一个圆心,再旋转一圈。为什么随手就能画出一个圆呢?
生:圆规画长是半径
师:为什么这么做呢?先确定圆心,半径长度。
生:圆心到圆上的距离就不相等了
师:圆的特点:圆一中同长。知道圆的特点太重要了。
四、球场上解释“圆”
1.出示篮球场。
师:是什么?中间是什么?中间为什么是个圆?不知道篮球比赛是怎么开始的,不能回答这个问题,我们一起来看。
2.播放篮球开赛录像。
师:为什么中间要是个圆呢?
生:刚开始比赛要往对方场地传球,这样中间画圆比较公平。
师:队员在圆上,球在中心。圆一周同长,比较公平。
3.探讨大圆的画法。
师:这个圆怎么画?
生:先找到圆心,两点间距离固定好,再画
师:大圆,再大,超大呢?没有圆规可以画?
生:用大拇指当圆心,用食指画
师:画大圆?
生:确定圆心半径再画。
师:这个大圆,没有圆规怎么画?
生自由交流
4.追问大圆的画法。
师:不是没有规矩不成方圆吗?怎么没有圆规也能画圆?
生:规矩不一定单独指圆规,指的应该是画图的工具。我们可以用不同的工具来画。
师:我们这句话还是对的。
五、回归情景突破“圆”
1.出示爱因斯坦的名言:“我没有什么特别的才能,不过喜欢寻根刨底地追究问题罢了。”
2.追问中提升认识。
师:一定这样吗?宝物一定是在以左脚为圆心,半径是3米的圆上吗?[课件:西瓜]宝物可能在哪里?
生:地下。
师:拿西瓜说事。我们就想到球了,球也是一中同长。圆和球有什么不同?
生:圆是平面图形,球是立体图形。
圆的认识教案 篇3
教学目标:
1、认识圆的特征,知道什么是圆心、半径和直径。能正确判断一个图形是不是圆,并说明理由。
2、运用不同的思想方法认识:在同一个圆(或等圆)里,半径的长度都相等;直径的长度都相等并且等于半径的两倍;知道圆是轴对称图形,有无数条对称轴,能画出加圆的对称轴。
3、能用圆规画圆,知道半径(直径)决定圆的大小,圆心决定圆的位置。
4、了解圆在生产、生活和科学技术的应用,并能用圆的特征解释。
教学重难点:
掌握圆的特征,会画圆。
教学方法:
讲授法,探究法。学生学法:自学法、观察法,探究法。
教学具:
圆片,三角板,PPT课件,圆规,尺子,白纸,剪刀,细线等。
教学过程:
一、再现场景,导入新课。
对于圆,同学们一定不会感到陌生吧?生活中,你们在哪儿见到过圆形?(学生说)今天,老师也给大家带来一些。见过平静的水面吗,如果我们从上面往下丢进一颗小石子(课件),你发现了什么?其实这样的现象在大自然中随处可见,让我们一起来看看。(课件展示生活中的圆形图片。)我们生活中常见的物体中都有圆。你能从这些物体中找到圆了吗?
圆和我们以前学过的平面图形有什么不同?
意大利诗人但丁、古希腊著名数学家毕达哥拉斯认为一切平面图形中最美的是圆。今天这节课,就让我们一起走进圆的世界,去探寻其中的奥秘,好吗?板书课题
二、师生合作学习新知
(一)试一试
1、同学们能用手中的材料试着画一个圆吗?
2、交流反馈。
3、既然同学们能用这么多方法能画出圆,把自己的方法与别人的比较一下,能发现那种方法适用性更广一些?从而引导出用圆规画圆。介绍圆规的组成部件。
(二)说一说
1、请用圆规画圆的同学谁能把你的方法给老师和同学们说一下。
2、生说,教师在黑板上板画。适时规范学生的语言。(先将针尖和笔尖张开一定距离;然后将针尖固定在一个点上;最后使笔尖落在纸上,将圆规旋转一周,毛尖就画出了一个圆。)
3、其它学生用刚才那个同学的方法在纸上自由画一个圆。
(三)学一学
1、请同学们打开课本第17页例2下面这部分内容自学一遍。把你新学到的知识勾画出来,并重点理解一下。最后在你刚才画的一个圆里标出圆心、半径和直径。
2、学生自学,教师巡视,适时收集信息为下面反馈做好准备。
3、学生交流,边说边在自己画的圆中指出相应位置。教师适时追问,刚才针尖的位置是什么,它有什么作用?针尖与笔尖的距离是什么?它决定圆的什么?教师根据学生的回答用一个绳子系上一支粉笔头甩出不同大小的圆,加深学生理解。当学生说出圆心、半径和直径的概念不够规范时要用书上的规范用语,并通过重点词语理解概念。教师在追问及学生回答时适时板书。
三、独立探究,获取新知
1、请同学们拿出准备好的圆片独立探究。出示探究目标(课件出示):
1将自己手中的圆用不同的方式找到圆心、半径和直径并做好标识。(学生找圆心时若有困惑可适时引导:我发现有个同学真聪明,他将手中的圆对折几次后就很快地找到了圆心,学生们试试看。)
2在同一个圆中,有多少条半径?这些半径的长度之间有什么关系?你是怎样得到的?
3在同一个圆里,有多少条直径?这些直径的长度之间有什么关系?每一条直径的长度与半径有什么关系?这些关系你是怎么得到的?
4圆是不是轴对称图形?若是,它有多少条对称轴?能画出其中的一条吗?目标出示后,学生一定要认真读,明确要求,然后可以选择自己喜欢的一个或几个问题进行探究。教师巡视,适时指导调控时间。
2、学生交流反馈。教师适时板书。
四、介绍圆的历史
其实,早在二千多年前,我国古代就有了关于圆的精确记载。墨子在他的著作中这样描述道:圆,一中同长也。所谓一中,就是指一个――同长就是指----
其实,我国古代关于圆的研究和记载还远不止这些。老师这儿还搜集到一份资料,《周髀算经》中有这样一个记载,说圆出于方,方出于矩,所谓圆出于方,就是说最初的圆形并不是用现在的这种圆规画出来的,而是由正方形不断地切割而来的.(动画演示:圆向方的渐变过程)。现在,如果告诉你正方形的边长是6厘米,你能获得关于圆的哪些信息?
说起中国古代的圆,下面的这幅图案还真得介绍给大家(出示图),认识吗?
想知道这幅图是怎么构成的吗?
原来它是用一个大圆和两个同样大的小圆组合而成的(出示图)。现在,如果告诉你小圆的半径是3厘米,你又能知道什么呢?(学生说)
师:看来,只要我们善于观察,善于联系,我们还能获得更多有用的信息。
五、解释与应用
1、基本练习(制成课件)
2、解释现象。
现在让我们重新回到现实生活中来。平静的水面丢进石子,荡起的波纹为什么是一个个圆形?现在,你能从数学的角度简单解释这一现象了吗?
车轮是绕着轴承转动,轴承的位置在什么地方?为什么?
简单的自然现象中,有时也蕴含着丰富的数学规律呢。至于其他一些现象中又为何会出现圆,当中的原因,就留待同学们课后进一步去调查、去研究了。
其实,又何止是大自然对圆情有独钟呢,在我们人类生活的每一个角落,圆都扮演着重要的角色,并成为美的使者和化身。让我们一起来欣赏――(课件展示)
六、总结与反思
1、请同学们将本节课所学知识整理一下,用一两句话说说你这节课最大的收获是什么?
2、教师总结:西方数学、哲学史上历来有这么种说法,上帝是按照数学原则创造这个世界的。对此,我一直无从理解。而现在想来,石子入水后浑然天成的圆形波纹,阳光下肆意绽放的向日葵,天体运行时近似圆形的轨迹,甚至于遥远天际悬挂的那轮明月、朝阳而所有这一切,给予我们的不正是一种微妙的启示吗?至于古老的东方,圆在我们身上遗留下的印痕又何尝不是深刻而广远的呢。有的说,中国人特别重视中秋、除夕佳节;有人说,中国古典文学喜欢以大团圆作结局;有人说,中国人在表达美好祝愿时最喜欢用上的词汇常常有圆满美满而所有这些,难道就和我们今天认识的圆没有任何关联吗?那就让我们从现在起,从今天起,真正走进历史、走进文化、走进民俗、走进圆的美妙世界吧!
圆的认识教案 篇4
教学内容:
九年义务教育人教版小学数学第十一册第四单元《圆的认识》
教学目标:
1、知识目标:认识圆,知道圆的各部分名称,掌握圆的特征,理解同圆和等圆中半径和直径的关系,会用圆规画圆。
2、能力目标:通过操作和观察,培养学生抽象概括能力,使学生初步学会运用所学的数学知识来解决简单的实际问题。
3、情感目标:培养学生的合作意识,培养学生的探索精神和创新意识。教学重点:理解并掌握圆的特征。教学难点:掌握圆的正确画法。
教学准备:
1、圆形学具,直尺,圆规,纸片,剪刀,图片等。
2、多媒体课件。
教学过程:
一、开门见山,直入课题
1、展示对数学圆的应用例子,激发探究欲望。
通过举行“抢小红旗”游戏的赛场设计,让学生评判其公平性,通过观察初步感知圆中心到圆上任意一点的距离相等。
2、同学们,通过预习你们对圆已经有了哪些认识?你能用预习圆的知识来说说理由吗?对圆的认识你还有哪些疑惑?学生质疑板书课题
师:这只是我们的观察,要想真正说明它的公平我们必须得验证一下。板书:贴钥匙图:①为什么?
二、探索圆的特征,激发学生探究欲望
1、拿出准备好的圆形纸片,谁说说你怎么得到的圆?
出示实验报告单,学生量一量、折一折、画一画的方法,汇报交流画圆的方法。
2、探究找圆心的方法,揭示圆心、半径、直径。
师:好,现在我们得到圆了,为了公平小旗应该插在哪里?
通过找插小旗的位置,找到圆的圆心,并揭示圆心的概念。好,现在找到插小旗的位置了,接下来我们可以怎么做了?“怎么做?”通过引导学生找到要测量的线段揭示半径、直径的概念。
好,在你的圆里分别画出半径、直径,并标好字母。(练习巩固半径、直径)
3、你可以折一折、量一量去研究一下,看这样的赛场是否公平了。开始吧。(自主探究发现半径都相等):
实验报告单
提示:
1、在同一圆内的半径有多少条?每条半径之间有什么关系?
2、直径有多少条?每条直径之间有什么关系?
3、半径和直径之间有什么关系?
我们的发现:
“为何这样做?”
4、反馈练习数学史的了解
师:刚才我们学到好多关于圆的知识,可别小看我们的发现,
早在两千多年前,我国著名的思想家墨子,在他的著作中就有了这样的记载:圆,一中同长也。那这一中指什么?谁同长?正是圆的这种特征才让我们感觉到这个平面图形这么的光滑、这么的饱满、这么的匀称。
三、用圆规画圆,深入体验圆的特征
1、尝试画圆,出现问题,学生汇报出现问题,掌握正确方法。
2、再次画圆半径4厘米的圆,体验圆规画圆的好处。师:怎样才能既准确又方便的画出一个圆呢?
①画圆的步骤。(定长、定点、旋转)
②画圆时要注意什么?(定点不能移动,定长不能改变)
(1)引导画圆的方法。
(2)引导学生感悟圆的大小与半径有关。
(3)用所学的知识表述圆的大小。
3、画一个直径4厘米的圆你能告诉我你的圆多大吗?
4、判断对错,并说出理由
(1)半径是条射线,直径是条直线。
(2)两端都在圆上的线段叫做直径。
(3)所有半径都相等,所有直径都相等。
(4)同圆里,圆心到圆上各点的距离都相等。
(5)在同一个圆内只可以画100条直径。
四、实际应用
1、自行车为什么是圆形的.?
师:我们感觉得到生活中好多物品都是圆形的,比如自行车轮为什么要做成圆形呢,你能用学到的知识解释吗?
师补充:自行车应用了圆的一中,同长的特征当车轮在平地上滚动时,轮轴始终处于同一高度的平面上,乘坐的人就不会有上下颠簸的感觉,很平稳,很舒服。
2、在操场画一个半径20米的大圆圈做游戏。古人说“没有规矩,不成方圆”一定是这样吗?
师:在操场上,怎样画出这个圆?没有圆规,能不能画圆?
3、说说你这节课的收获?(老师把这几个问题制成金钥匙送给你们,因为问号是开启智慧的钥匙。红字部分提示学生学习方法)
五、欣赏感悟
播放生活中圆的图片
师:其实在我们生活的每一个角落,这样对圆的特征的应用举不胜举。在这个赛场上,应用了圆使得比赛更加的公平。还有这些转动中的圆,这与它结构的一中同长是有着密切联系的。
至于在古老的东方,圆在我们身上遗留下的印痕更是深刻而广远的。石子入水后浑然天成的圆形波纹,阳光下肆意绽放的向日葵,天体运行时近似圆形的轨迹,甚至于遥远天际悬挂的那轮明月、朝阳。而所有这一切,给予我们的不正是一种微妙的启示吗?这也让我想起古希腊数学家毕达哥拉斯的一句话:“在一切平面图形中圆最美”就让我们从现在起,从今天起,真正走进历史、走进文化、走进民俗、走进圆的美妙世界吧!
圆的认识教案 篇5
教学目标
1.引导学生通过大量的生活实例认识圆,掌握圆的特征,理解直径与半径的相互关系,会用圆规画圆。
2.培养学生观察、分析、抽象概括等思维能力和初步的空间想象力。
教学重点和难点
由于学生第一次接触圆规,所以用圆规画圆是难点,掌握圆的特征是重点。
教学过程设计
(一)复习准备
在日常生活中,你见过哪些物体是圆形的呢?(指名回答)在日常生活中有很多很多的圆形,如有的钟面是圆形的,当然钟面也可以做成方的;现在的硬币有多边形的,也有圆形的。唯独车轮子,不管是中国的还是外国的,不管是大车还是小车的车轮子,为什么都要做成圆的呢?
(产生疑问,引起争议,激发起学生的学习兴趣。)
这节课我们就来学习圆的认识。通过这节课的学习,我们就可以圆满地解决这个问题。(板书课题:圆的认识)
(二)学习新课
1.认识圆心、半径、直径。
同学们在操场上做游戏,想画一个比较标准的大圆,可以怎么画?(指名回答)
(老师在黑板上演示用绳子画圆)先取一段绳子,把绳子的一端固定在一点上,另一端套在石头和棍棒上,然后拉紧绳子,绕着这个固定的点转一周就画出了一个圆。
老师刚才画圆时,中间的点怎么样?(中间的点不动。)
我们把这个不动的.点叫定点。(板书:定点)
粉笔画出的线为什么能首尾相接呢?
应该说圆上任意一点到定点的距离都是相等的,我们把这段相等的距离叫定长。(板书:定长)
如果我们在本上画圆,用我们刚才画圆的方法方便吗?(不方便)那可以怎么画?
(出示圆规)这是我们画圆的工具圆规。圆规有两个脚,一脚带尖,另一脚带笔。认真看老师怎样用圆规画圆。画圆时,先定好一点,然后把圆规的两脚分开,定好两脚的距离,把有针尖的一脚固定在这点上,把带有铅笔的一脚旋转一周就画出了一个圆。(老师用圆规在黑板上画一个圆。)
你们会用圆规画圆吗?
请你在本上画一个任意大小的圆,边画边想,画圆时要注意什么?(指名回答)
画圆时,要先定点,再定长,刚才我们用圆规画圆时哪是定点?哪是定长?
(先让学生动手画圆,边画边体会出哪是定点,哪是定长。先感性认识,再上升到理性认识。)
定点,用数学语言说叫圆心。(板书:圆心)
什么叫圆心?(指名回答)
哪儿是定长?老师在圆上画出这段定长,观察这条线段两端在什么地方?这条线段叫半径。(板书:半径)
谁说说什么叫半径?(指名回答)
(老师再在圆上画出直径。)老师边画你们边观察,这条线段通过哪儿?两端在哪儿?
像这样,通过圆心,两端都在圆上的线段叫直径。(板书:直径)
谁再说说什么叫直径?(指名回答)
我们通过观察,认识了圆心、半径、直径。书上对这些概念做了准确的叙述,同学们打开书,看看我们刚才概括的跟书上完全一样吗?有没有补充?
(学生补充:圆心用字母O表示,半径用字母r表示,直径用字母d表示。)
(老师让学生通过观察,自己总结出什么是圆心、半径、直径,这是由形象思维向抽象思维过渡,再通过看书,使总结出的结论更准确,更完善。)
老师想看看同学们是不是真正掌握了这些概念。
练一练
(1)判断这几条线段中哪一条是半径?
(2)判断哪条线段画的是直径?
(3)这四条线段中哪一条是半径?哪一条是直径?(学生举数字卡片判断)
同学们对于半径、直径的概念掌握得很好,我们继续研究圆还有什么特征?
2.研究圆的特征。
用我们准备好的学具转动A面,你发现半径有什么特征?转动B面,你发现直径有什么特征?
(学生分小组讨论。)
(老师再在幻灯上演示一遍,提问讨论结果。)
(板书) 无数条 相等
刚才同学们自己发现了直径、半径有这些特征。在下面两个圆中:(出示)
圆的半径和乙圆半径相等吗?
圆直径是乙圆直径的2倍吗?
那么圆在什么情况下才存在这些特征?(板书:同一圆里)
练一练(正确画,错误画。)
(1)在同一圆里,所有的半径都相等,所有的直径都相等。 ( )
(3)在同一圆里,半径是4厘米,直径一定是2厘米。 ( )
(4)圆心在圆上。 ( )
同学们判断得都很正确。老师想让同学们用直径、半径的倍数关系来计算下面几道题:
同学们对于半径、直径的倍数关系掌握得很好,如果老师给出半径和直径的数据,你们会画圆吗?小组讨论一下,半径2厘米的圆怎么画?直径6厘米的圆怎么画?(小组讨论)
请同学们把半径2厘米的圆画在本上,要求标圆心、半径。边画边想,什么决定圆的位置?什么决定圆的大小?直径6厘米的圆请同学们回家画在本上。
刚才同学们画了半径是2厘米的圆,圆的位置由什么决定的?圆的大小呢?
(板书) 位置 大小
圆心决定圆的位置,画圆时要先点圆心。
(老师举起一个圆)有一个同学是个小马虎,他在画完这个圆后,忘了点圆心了,你能帮助他找到圆心吗?
如果这个圆画在黑板上或本子上忘了点圆心,怎么找到它的圆心呢?
(指导学生说出用直尺在圆面上从下往上推,推到最长的一段,就是直径。)
(三)课堂总结
今天你学会了哪些知识?
你能用我们刚学的圆的知识来解答刚上课时提出的问题为什么世界上的车轮子都是圆的吗?(指名回答,前后呼应,用刚学的圆的知识来回答刚才上课时提出的问题,解决实际问题。)
圆的认识教案 篇6
教学目标:
1、通过观察、操作等活动认识圆,理解圆心、半径、直径的意义,掌握圆的特征,理解同一个圆里(或等圆)半径与直径的关系。
2、让学生了解、掌握画圆的多种方法,初步学会用圆规画圆;转变学生学习的方式,培养学生观察、分析、概括等思维能力和初步的空间观念。
3、通过观察、操作、想象等活动,培养学生自主探究的意识,进一步发展学生的空间观念。
教学重点:
在探索中发现圆的特征。
教学难点:
理解同一个圆里(或等圆)半径与直径的关系,能利用圆的特征解决生活实际问题。
教学准备:
圆规、直尺、3张作业练习纸,大小不同的圆片。
教学过程:
一、比较平面图形的不同,导入新课
今天老师给大家带来了一些平面图形,请看大屏幕。快点看一看,都认识吗?(课件展示长方形、正方形、三角形、圆、平行四边形、梯形等6种平面图形。)
你能从中找出一个与众不同的吗?为什么?(学生自由回答)
师小结:长方形、正方形、平行四边形、三角形、梯形都是在平面上由直直的线段围成的图形,而圆则是由曲线围成的图形,称做“曲线图形”(板书:曲线图形)今天这节课我们就一起来研究这个曲线图形——圆。(板书:圆)
设计意图:直接揭题,让学生通过观察和与已学平面图形的比较揭示圆的概念,这样设计能够直观而快捷地向学生明确圆是平面上的一种曲线图形。同时,将要学的新知识建立在学生已有经验和认知的基础上,使学生不觉得陌生。
二、画圆,初步感知圆的特征
1、初次画圆,了解画圆方法“定点,定长”,认识圆心、半径、直径
(1)学生初次画圆
你觉得怎样能画出一个圆?(学生自由回答,如借助圆形物体画圆等。在学生回答的基础上,引出用圆规画任意大小的圆。)
学生拿出教师准备好的圆规,师生一起了解圆规各部分的作用。
试着用圆规在1号作业纸上画出一个任意大小的圆,边画边思考“怎样能把这个圆画的很圆呢”?
(学生初次用圆规画圆,教师巡视了解学生画圆的情况。)
请画圆画的很标准的学生介绍用圆规画圆的方法。(指名拿作品上台展示并介绍方法。)
教师根据学生回答总结出:用圆规画圆一要注意圆规针尖固定好不能乱动,即“定点”,二要注意圆规两脚之间的距离不能改变,即“定长”。(板书:定点、定长)
设计意图:数学教学,主要是组织好数学活动。从学生自主画圆画的不是很规范,到互相介绍画法和注意的问题,是一个很实在的数学活动。由于学生十分投入,所以对圆心和半径的直接感受是非常深刻的,这就为深入研究圆心、半径、直径积累了充分的感性认识。并且学生通过尝试、表述、概括等步骤,循序渐进地掌握用圆规画圆的方法,培养学生自学的能力、用数学语言表述的能力,从而发展数学思维。
(2)教师板画圆,认识圆心、半径、直径
教师根据学生交流的方法板画圆。引导学生观察:画圆时的这个“定点”就是圆的“圆心(板书:圆心),也就是圆的中心,一般用字母O表示。(板书:O)而圆规两脚之间不变的距离就是圆的半径(板书:半径),为了能让大家清楚的看出来,老师把半径画下来(师板画半径)。
(教师引导学生观察并总结半径的特点。)
师小结:“连接圆心到圆上任意一点的线段就叫做半径”,一般用字母r表示。(板书:r)
在圆中还有一条特殊的线段,老师也把它画下来(板画直径)
(教师引导学生观察并总结直径的特点。)
师小结:“通过圆心并且两端都在圆上的线段就是圆的直径”,一般用字母d表示(板书:直径,d)
设计意图:《新课标》指出,数学应该是从学生的生活经验和以有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。通过教师板画圆学生自己探索发现,说说什么是圆心、半径、直径,这样的设计使他们对数学产生浓厚的兴趣和亲切感,同时能引发学生的学习动机。
2、第二次画圆,了解圆心、半径的作用
拿出2号作业纸,再用圆规画一个圆,并标出圆心、半径、直径用字母表示出来即可,这次我们来比比谁画的又快又好。(师巡视并收集好的作品展示)
请大家仔细观察,这几位同学画的有没有什么不同的地方?
(学生观察然后回答“大小不同”,教师引导学生发现“半径决定圆的大小”。)
我们再来继续观察,这几个圆除了大小不同外,还有什么不同?
(学生观察并回答“位置不同”,教师引导学生发现“圆心决定圆的位置”。)
设计意图:学生通过再次画圆并在观察比较的基础上得出半径及圆心的作用,实践得出的真知会让学生有强大的成就感,而且这一个环节是每个同学乐于尝试也很容易成功的。
三、进一步研究圆的特征
1、介绍研究方法
通过刚才的学习我们对圆已经有了一个初步的认识,要想深入的研究圆,还要进一步的研究圆的特征。从哪些方面来研究呢?(学生自由回答)
我们一起来回想一下,以前研究平面图形的特征时都是从哪些方面来研究的?以长方形为例,我们都研究了长方形的什么?
(学生回忆然后回答:如周长、面积、有几条边几个角、边的长度角的大小等等。)
师小结:研究平面图形的特征主要是从边和角的数量,边的长度及它们之间的关系这几方面来入手的。圆也是一个平面图形,虽然它没有直直的边,没有角,但是它有什么?(学生回答:圆心,半径,直径)
那我们就从圆心、半径、直径的数量及长度这几方面来研究圆的特征,好吗?
设计意图:通过引导学生回顾平面图形的特征,教给学生如何对所学知识进行回顾整理,并且帮助学生明确研究方向,即从圆心、半径、直径的数量、长度及之间的.关系来进一步研究圆的特征。
2、小组活动,研究交流圆的特征
请大家听好活动要求(课件展示,并指名读一读)小组现在开始研究吧!
(小组活动,教师巡视了解各组活动情况)
每个小组都讨论的非常热烈,有收获吗?我们一起来交流交流?在交流前老师先给大家提点要求:每组派2名代表上来,要把研究的方法、过程和结果都交流出来。如果有说的不完整的,小组其他同学可以补充。其他组同学要认真听,有疑问的可以提出来。听清楚了吗?
(指名上台交流,注意多让几个组展示不同的研究方法,如用折一折、画一画、量一量的方法。)
教师根据学生回答进行总结并板书:在同一个圆里有1个圆心,无数条半径和直径;在同一个圆里半径或直径的长度都相等;直径的长度是半径的2倍,用字母表示为d=2r,r=d÷2。
设计意图:自主探究,合作交流是新课改所倡导的重要学习方式,从学生丰富的生活体验和知识积累中逐渐形成了一个运用数学解决问题的策略。因此,要给学生创设一个宽松的学习氛围,让他们自主去探究。这样的设计更突出了对学的过程的重视,留给学生自主学习的空间。通过小组合作,让学生自己动手折一折、画一画、量一量,相互交流、讨论、补充、启发,得到圆的特征,不仅使学生的认识从具体上升到抽象,而且使学生感悟了研究数学问题的基本方法。学生在动手操作中去发现、总结圆的特征,使学生感到自己是发现者、研究者、探寻者,感受到成功的喜悦。
3、看书
刚才研究的过程大家都表现的不错。下面打开课本第2页,仔细读读第2页和第3页的内容,通过看书你会有新的收获的。注意啊,看书可不能光看字,还要看看研究的过程和方法。(学生看书,师巡视指点)
谁来说说你的新收获?(指名回答)
设计意图:运用课本并不是死读课本,而是要把教材内容吃透、用活。学生经过操作,对圆的知识有了一定的感性认识的基础上,让学生自学课本,再通过互相交流,使学生逐步建立了完整的正确的概念。
五、巩固练习
1、以O点为圆心,以6厘米为半径画一个圆。
拿出桌上的3号作业纸听好要求:以O点为圆心,6厘米为半径画一个圆。(学生画圆,师巡视检查)
请大家仔细观察,这个圆和这个长方形有什么关系?(学生通过观察得出“圆的直径是长方形的宽”。)
教师引导学生观察总结出,刚才画的这个圆就是这个长方形内的最大的圆。
如果要在一个边长10厘米的正方形里画一个最大的圆,你认为圆的半径是多长?(学生思考并回答)
设计意图:“儿童的智慧就在他的手指尖上。”动手操作的过程,不仅能使学生学得生动活泼,而且对所学知识能理解得更深刻,记忆得更牢固。看似简单的画圆问题,实则是让学生通过操作、观察等活动,体验出平面图形之间的关系,为后续教学奠定好基础。
2、画一个直径60米的圆。
老师这儿还有个画圆的问题,大家还能解决吗?(课件展示:怎样画一个直径60米的圆。)
同桌互相讨论思考方法。
说说你的想法。(指名回答,教师根据学生回答引导学生比较几种方法的优点与不足。)
教师根据学生回答提炼出一个更好的方法:拿一根长绳子,一端固定好,另一端绑上笔,旋转一周即可得到一个圆。
然后引导学生观察得出:固定的点就是圆的圆心,绳子的长就是圆的半径,需要30米,旋转一周,就转出了无数条半径,也就形成了一个圆。
设计意图:学习数学的最终目的在于应用数学解决实际问题。通过试画花坛较直观地向学生渗透圆心是定点、半径是定长的特性,使学生对刚刚形成的知识做到活学活用,帮助学生对知识的深层理解,从而培养了学生综合运用知识探索解决实际问题的能力;同时练习又注重与生活的联系,这样的练习学生乐于参与,也有实效。
3、拓展
早在两千多年前我国古代就有了关于圆的精确记载,墨子在他的著作中这样描述到“圆,一中同长也”。通过刚才所学,你知道“一中”指的是什么吗?(学生回答:一个圆心)“同长”呢?(指名回答:半径相等,直径也相等)这与我们刚才的发现怎么样?(一样)更何况我们古人的这个发现比欧洲西方国家要早一千多年呢!我们的老祖宗不简单吧!
设计意图:扩展学生的知识面,让学生感受到数学的文化历史,体会到数学的文化魅力,并帮助学生进一步巩固了圆的特征。
圆在我们的生活中扮演着重要的角色,并成为了美的使者和化身。请你说说生活中哪些地方有圆啊?(学生交流生活中的圆)
老师也为大家带来了一些生活中的圆,我们一起来欣赏。(课件展示)
看了之后有什么感觉?(指名回答)这么美的圆啊,怪不得古希腊的数学家这样说道“圆是一切平面图形中最完美的图形”,也正因为有了圆才让我们的生活变得多姿多彩。
设计意图:让学生寻找和欣赏生活中的圆,使学生感受到生活中处处有数学,同时也让学生感受到圆的美及无处不在,体现数学来源于生活。
六、总结全课
好了,这节课的时间也差不多了。通过这节课的学习,你都有哪些收获呢?(学生谈收获)
设计意图:帮助学生梳理知识,反思自己的学习过程,有利于学生认知结构的完善和学习能力的养成,同时让学生体验到成功的欢乐。
同学们的收获都不少,关于圆的秘密还远远不止这些呢。我们东方人更把圆看成了“圆满、美满”的象征。课后你可以自己查阅一下相关资料,进一步的来研究圆、了解圆。
评析:
根据儿童的认知规律,科学地、创造性设计教学程序。教学过程中,巧妙地创设情境,激发学生的学习兴趣和强烈的求知欲望,在引导学生积极思维,主动获取知识,注重有机地采取多种教学方法,多种练习形式进行教学,使学生在愉悦的气氛中学会数学知识,会学和乐学数学。
1、重视引导学生用多种感官参与知识的形成过程。
心理学实验证明:思维往往是从动作开始的。切断活动与思维的联系,思维就不能得到发展。要解决数学知识的抽象性与学生思维形象性之间的矛盾,关键是依靠动手操作。在引导学生学习圆的画法,认识圆的各部分名称及研究圆的特征时,有目的、有意识地安排了让学生画一画、折一折、比一比、量一量等动手实践活动,启发学生用眼观察,动脑思考,动口参加讨论,用耳去辨析同学们的答案,教育家乌申斯基说:“接受知识的感官越多,知识就掌握得越牢固,越全面。”
2、以生为本,自主探究。
本节课在认识圆的各部分名称,理解圆的特征时,并没有强加给学生圆的科学概念,而是将学生进一步置身于探索者、发现者的角色,让学生折一折、画一画、比一比、量一量,引导学生观察、思考、讨论。而且,各个教学环节始终将学生自主探究的理念贯穿其中。如通过问题情景让学生自主探索,让学生小组合作对圆的特征进行自主探究等,力求使学生崭露出他们的个性和潜在的创新意识。
3、师生、生生的互动,使生成的内容更加丰富,教师创设激起学生探究的问题情境,发挥好“启发者,组织者”的作用,多让学生说消除他们畏惧心理,用激发激励的语言评价学生,小组内交流,组与组交流,师生、生生之间的互动,让信息不断交流,思维不断碰撞,学生在探究未知领域的同时,实现了智力的发展。从各种有用信息中,不断体验到成功的喜悦,增强了学生的参与意识,形成了学习的内驱力。
圆的认识教案 篇7
教学内容:
教科书P89-90练习十三第4-10题
教学目标:
1、学生进一步感受圆的特征,能熟练地用圆规画指定大小的圆,了解圆心、半径与圆的位置、大小之间的联系,会运用圆的知识解释一些日常生活现象或解决一些简单的实际问题。
2、使学生通过观察、操作和比较等活动,加深对圆的认识,提高操作实践的能力,培养比较、抽象及概括等思维能力,进一步发展空间观念。
3、使学生主动参与操作、实践等活动,体验圆在生活中的应用,体验数学知识的.价值和作用。
教学重点:
认识圆的相关属性
教学难点:
理解、归纳圆的相关属性
教学过程:
一、揭示课题
这节课进行圆的有关练习
二、练习指导
1.判断。
(1)圆的直径是半径的2倍。( )
(2)圆有无数条对称轴。 ( )
(3)画圆时,圆心决定圆的位置。( )
(4)要画直径是4厘米的圆,圆规两脚之间的距离是4厘( )
(5)半径是2厘米的圆比直径是3厘米的圆大。( )
2.完成练习十三第4题。
生口算,校对得数
3.完成练习十三第5题。
(1)学生先独立在书上画圆,再和同桌比一比,看谁画的圆大?
(2)小组讨论:在正方形内画一个最大的圆,圆的半径是多少?怎么确定最大圆的半径?
(3) 学生试画最大的圆。
(4)全班交流
① 展示学生画的正方形内最大的圆。
② 指名说一说怎么确定正方形内最大圆的半径?圆的半径和正方形的边长有什么关系?
③ 圆的大小与什么有关?
4.完成练习十三第6题。
(1)学生先独立思考,再和同桌交流。
(2)全班交流:比较圆的大小,其实就是比圆的半径或直径的大小。
5.完成练习十三第7题。
生填空,交流填法
问:圆的位置与什么有关?
三、拓展练习
1.完成练习十三第8题。
生思考,说说自己的发现
交流:为什么这样测量圆的直径?
2.完成练习十三第9题。
生思考,小组讨论
指出:因为同一个圆的所有半径都相等,所以车轴装在圆心位置上,无论车论怎样滚动,车轴到地面的距离都保持不变。这样就可以使行驶的车辆始终保持平稳状态。
3.完成练习十三第10题。
先说出对称轴的条数,再画一画
四、总结延伸
本节课,你有什么收获?还有什么疑问?
圆的认识教案 篇8
圆的认识教案(通用23篇)
作为一位不辞辛劳的人民教师,总不可避免地需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么大家知道正规的教案是怎么写的吗?下面是小编收集整理的圆的认识教案,欢迎阅读与收藏。
