比的意义教案

笔构网

2026-02-08教案

请欣赏比的意义教案(精选7篇),由笔构网整理,希望能够帮助到大家。

比的意义教案 篇1

教材分析:

教材首先指出百分数在生产、工作和生活中有广泛的作用,接着通过两个实例引出百分数的概念。教材这里强调的是两个数量的比,并联系比的概念说明,百分数也可以看作是以100为后项的一种比,所以又叫做百分率或百分比。最后教学百分数的写法。

学情分析:

学生对于百分数并不陌生,他们有的可能已经认识百分数,并且能够正确读出百分数,但大多数学生对百分数的意义的认识和理解还不十分准确,因此,教学中引导学生理解了百分数表示的是一个数量是另一个数量的百分之几,也就是百分率的含义尤为重要。

教学目标:

1.使学生了解百分数的意义,会正确读写百分数。

2.指导学生在理解百分数也是表示两个量间的倍数关系的同时,认识事物间的相互联系及发展变化规律,培养学生分析、概括能力。

教学重点:百分数的意义及读、写

教学难点:分数与百分数的意义之间的联系和区别

教具准备 课前查阅百分数的资料

小黑板或投影

教学过程:

活动(一)复习准备

1.在日常生活中,同学们会经常看到或听到这样一些数:(出示投影或小黑板)(1)在12届亚运会中

各国金牌情况如下:中国占40.3%,韩国占18.5%,日本占17.4%,其它国家占

23.8%。

(2)五(三)班学生在期末考试中,85%的人获优秀成绩,15%的人成绩达标。

2、谁知道这些数是什么数?你对百分数已经有了哪些了解?你还想了解什么?

师:在生产、工作和生活中,进行调查统计、分析比较时,经常要用到百分数。这节课就来研究。

活动(二)探究新课

1某小学六年级的100名学生中有三好学生17人,五年级的200名学生中有三好学生30人。六年级三

生占全年级的几分之几?五年级三好生占全年级的几分之几?17/100、3/20分别表示两个量之间的什么关系?(倍数关系)

提问:根据所得的.数,你能一眼看出哪个年级三好生人数的比例高吗?你能直接比较它们的大小吗?为什么?(分子不同,分母也不同,不容易看出。)

讨论:怎样做才容易比较这两个分数的大小呢?(通分,化成分母相同的分数。)根据什么?(分数的基本性质。)

小结:像这样分母不同的分数进行比较时,一般要进行通分,使分母相同。尤其是在日常生活、生产、科研中,通常把分母化成是100的分数,这样便于比较。下面我们把这两个数变成分母是100的分数。

思考:17/100和15/100都表示什么?(表示三好学生和总人数之间的倍数关系)

2.练习。(出示投影或小)

一个工厂从一批产品中抽出500件,经过检验

板书:百分数的意义和写法。

根据学生的回答板书:六年级三好生占全年级的17/100 五年级三好生占全年级的3/20

板书17/100=17/100

3/20=15/100

490件合格。合格的比率是多少?思考并计算这批产品的合格率是多少?(490/500)改写成分母是100的分数是多少?(98/100)说说98/100表示什么?

3.概括百分数的意义。

师:通过以上的练习说一说17/100、15/100、98/100

都表示什么?(表示一个数是另一个数的百分之几)

提问:什么是百分数?百分数表示两个量之间什么关系?

小结:表示一个数是另一个数的百分之几的数叫做百分数,百分数也就叫做百分率或百分比。

提问:百分数表示两个数之间什么关系?(倍数关系。)应不应该有单位名称?

4.学习百分数的读法和写法。

提问:百分数和分数比,相同点和不同点是什么? 百分数应该用什么形式表示呢?

(1)写法:写百分数时,通常不写成分数形式,而采用(%)表示。写百分数时,去掉分数线和分母,在分子后面添上百分号。

(2)读法:读百分数时,只要把百分号看作分母是100,百分号前面的数看作分子,就可以和分数一样读了。 5.百分数与分数的联系和区别。

活动(三)巩固练习

1.第105页做一做, 2.第106页第1,2题, 3.(投影)判断:(1)分母是100的分数叫做百分数。

(2) 27/100千米可以写成27%千米。(3)百分数的分母一定是100。(4)五(2)班45人,体育全部达标,达标率100%。

4.填空:

(1)一本书看了40%,表示( )占( )的40%。

如果书是100页,看了( )页;书是 200页,看了( )页。

(2)一条公路,修了25%,还剩 ( )%没修。

(3)火车速度比汽车快25%,火车的速度是汽车的( )%。

5.一个工厂十月份的产值相当于九月份的百分之一百零八,写出这个百分数。十月份的产值比九月份的多了还是少了?

活动(四)课堂总结

这节课我们学习了哪些知识?(百分数的意义、读法和写法。)你知道人们在日常生产和生活中都在什么时候用百分数吗?(在计算优秀率、合格率、体育达标率等方面。)师:百分数的应用十分广泛,所以希望同学们学好百分数并学会在实际中应用。

比的意义教案 篇2

教学目标

1.使学生理解正、反比例的意义,能够初步判断两种相关联的量是否成比例,成什么比例.

2.通过观察、比较、归纳,提高学生综合概括推理的能力.

3.渗透辩证唯物主义的观点,进行运用变化观点的启蒙教育.

教学重难点

理解正反比例的`意义,掌握正反比例的变化的规律.

教学过程

一、导入新课

(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?

(二)教师提问

1.你为什么马上能想到还剩多少呢?

2.是不是因为吃了的和剩下的是两种相关联的量?

教师板书:两种相关联的量

(三)教师谈话

在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和

数量也是两种相关联的量.你还能举出一些例子吗?

二、新授教学

(一)成正比例的量

例1.一列火车行驶的时间和所行的路程如下表:

时间(时):路程(千米)

1 :90

2 :180

3 :270

4 :360

5 :450

6 :540

7 :630

8 :720

1.写出路程和时间的比并计算比值.

(1) 2表示什么?180呢?比值呢?

(2) 这个比值表示什么意义?

(3) 360比5可以吗?为什么?

2.思考

(1)180千米对应的时间是多少?4小时对应的路程又是多少?

(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?

教师板书:时间、路程、速度

(3)速度是怎样得到的?

教师板书:

(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?

(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.

3.小结:有什么规律?

比的意义教案 篇3

教学目标:

1、理解并掌握比的意义,掌握比的读、写,认识比各部分名称。

2、掌握求比值的方法,并能正确求出比的比值。

3、理解比和除法、分数的关系。

4、向学生渗透转化思想,培养学生抽象、概括能力。

教学重点:

理解比的意义,掌握求比值的方法。

教学难点:

理解比的意义,建立比的概念。

课前准备:

制作教学课件。

教学过程:

一、复习铺垫,导入新课。

1、口答:78= 135= =( )( ) =( )( )

指名说出分数与除法的关系。

2、师:在日常生产和生活中,常常需要把两个数量进行比较。比较的方法我们已经学过两种,即比较两个数量之间相差关系用减法;比较两个数量之间的倍数关系用除法。下面请大家看这个例子(出示P52的例如):一个镜框长5分米,宽3分米。谁能提出关于长和宽的倍数关系的问题?

根据学生提出的问题板书:

长是宽的几倍?53= 宽是长的几分之几?35=

师:刚才,我们用除法来表示两个数或数量之间的关系,也就是两个数相除(板书:两个数相除),有时我们也把这样两个数量的关系换一种说法。这也就是我们今天这堂课要研究的问题比的意义。

板书课题。

二、教学新知,初步感知。

1、揭示比的意义。

师:例如,长是宽的 倍我们可以这样说,长和宽的比是5比3。(板书:长和宽的比是5比3)(学生跟着老师练说)那么,按照这种说法,宽是长的 还可以怎样说?同坐试着说,再指名说。(板书:宽和长的比是3比5)

师:我们再来看一个例子(出示P52的又如,一辆汽车2小时行驶90千米)路程和时间的关系可以用速度(也就是每小时行多少千米)来表示。怎样列式?(学生回答,教师板书:902=45)谁能用比来表示路程和时间的关系?(板书:路程和时间的比是90比2)

引导学生观察板书、归纳比的意义。提问:什么叫做比?(学生可通过或讨论、或看书得出比的意义,教师接着两个数相除后面板书:又叫做两个数的比。)

练一练。

(1)、有5个红球和8个白球,红球和白球个数的比是 比 ,白球和红球个数的比是 比 。

(2)、 一个美术兴趣小组有男生15人, 女生8人, 男生和女生人数的比是 比 。男生和美术兴趣小组总人数的比是 比 。

2、通过自学,掌握比各部分的名称和求比值的方法。

(1)出示自学提纲:

①用数学方法如何写比,如何读呢?

②比的各部分的名称分别叫什么?

③比和除法、分数的关系各是什么?填入表中。

④比的后项为什么不能为零?

(2)学生自学课本或分组讨论。

(3)集体讨论第①个问题并板书:5:3 3:5 90:2

师:比还有一种写法,你知道是怎样写的吗?(教学比的分数形式)

在学生讨论的基础上教师叙述:两个数的`比还可以写成分数形式,例如:5:3也可以写成 ,仍读作5比3。请大家把3:5、90:2改写成分数形式。

(4)集体讨论第②个问题并板书:

(5)根据上面式子,指名说说比和除法、分数的关系及求比值的方法。

在学生讨论的基础上出示下面关系表:

名称 联系 区别

比 前项 :比号 后项 比值 一种关系

除法 被除数 除号 除数 商 一种运算

分数 分子 分数线 分母 分数值 一种数

指名说说,比的后项为什么不能是零?

辨析:在亚洲女足锦标赛中, 中国女足健儿努力拚博,夺得了金牌,为祖国争得了荣誉,其中,中国队以1:0战胜了日本队,那么为什么这个比的后项可以是0呢?

师说明:因为各类比赛中的比不是我们这节课学习的比,它只是一种计分形式,不是相除的关系。

问:怎样求比值呢?

学生回答后小结:求比值用比的前项除以后项。比值通常用分数表示,也可以用小数表示,有时也可能是整数。

练习:求比值:4:5 0.8:0.4 :

三、巩固练习,深化认识。

1、完成P53练一练。

2、完成练习十二第1题。

3、完成练习十二第2题。

四、综合练习,提高技能。

1、口答:白兔的只数是黑兔的4倍,

白兔只数与黑兔只数的比是( )

黑兔只数与白兔只数的比是( )

黑兔只数与总只数的比是()

总只数只数与黑兔的比是()

白兔只数与总只数的比是()

总只数与白兔只数的比是()

2、动脑筋根据题目中提供的信息,寻找合适的量,自己提出各种问题,并说说这些量之间的比

小龙今年12岁,是六(1)班学生,该班共有45个学生,小龙爸爸今年39岁,在保险公司上班,每月工资1800元;小明妈妈每月工资1400元,她所在单位有职工28人。

五、全课总结,释疑解惑。

这节课,你学会了那些知识?还有哪些问题需要探讨的吗?

六、作业:完成练习十二第3-5题。

比的意义教案 篇4

教学目标

1、情感态度与价值观:增强学生民族自豪感和培养学生学习的积极性。

2、知识与技能:使学生通过观察、测量了解小数是如何产生的。使学生理解小数的意义,掌握小数的计数单位及相邻两个单位之间的进率。

3、过程与方法:培养学生观察、抽象、概括及自主合作探究的能力。

教学重点理解小数的意义

教学难点掌握小数与分数的关系,深刻理解小数的意义。

教法自主探索、合作学习

教学准备多媒体课件、卡片、米尺

教学课时1课时

一、旧知复习

二、生活中的小数

1、小数的产生

2、请同学们利用学具盒中的米尺分组测量课桌、书本、黑板的长与宽。

小结:从日常生活和测量中,往往得不到整数的结果,除了可以用分数的形式表示以外,还可以用另外一种形式小数来表示。分数与小数之间有什么联系呢?带着这个问题我们共同来研究小数的意义。

三、探究新知

探索一:一位小数的意义

把1米平均分成10份,每一份在尺子上是多少?写成分数是多少米?写成小数呢?

小结:分母是10的'分数,可以写成一位小数

板书:一位小数表示十分之几

探索二:二位小数的意义

还记得1米等于多少厘米吗?根据这个知识,结合刚才一位小数的学习,再利用米尺图,以小组为单位对下面的三道小题进行探究学

小结:分母是100的分数,可以写成两位小数。

板书:二位小数表示百分之几

探索三:三位小数的意义

如果把1米的尺子平均分成1000份,其中的一份或几份的数怎么用分数表示?又怎么用小数表示?你能举例说明你的表示方法吗?

小结:分母是1000的分数,可以写成三位小数

板书:三位小数表示千分之几

总结:

①分母是10、100、1000 …的分数,可以用小数表示。这就是小数的意义。

②把1米看成一个整体,把一个整体平均分成10份、100份、1000份…这样的一份或几份可以用分母是10、100、1000…的分数来表示,也就可以用小数来表示。

探索四:小数的计数单位及进率

小数的计数单位是十分之一、百分之一、千分之一。用小数写作0.1、0.01、0.001

那么相邻两个单位间的进率是多少?

板书:每相邻两个计数单位之间的进率是10

四、练习达标

1、把下面各图中涂色的部分用分数和小数表示分数和小数表示出来。(课本P33页“做一做”)

2、判断题

(1)0.1、0.01、0.001…是小数的计数单位。

(2)十分之一、百分之一、千分之一…是小数的计数单位

(3)仿照整数的写法,写在整数个位的后面,用圆点隔开,用来表示十分之一、百分之一、千分之一…的数,叫做小数。

3。填空

0.8里面有个0.1;0.008里面有8个;

0.32里面有32个;6个是0.6;

0.5表示把整体;平均分成份,取其中的份。

0.24表示把整体;平均分成份,取其中的份。

板书设计

《小数的意义》

一位小数表示十分之几

二位小数表示百分之几

三位小数表示千分之几

每相邻两个计数单位之间的进率是10

课后反思

比的意义教案 篇5

教学目标

1.归纳整理四则运算的意义.

2.归纳整理整数小数和分数计算法则的异同点,进一步总结计算时应遵循的一般规律.

3.总结四则运算中的一些特殊情况.

4.总结验算方法.

教学重点

整理四则运算的意义及法则.

教学难点

对四则运算算理本质规律的认识和理解.

教学步骤

一、复习旧知识,归纳知识结构.

(一)四则运算的意义.【演示课件“四则运算的意义和法则”】

1.举例说明四则运算的意义.

根据下面算式,说一说它们表示的四则运算的意义.

2+3 0.6-0.4 2×3 6÷2

100-15 2×0.3 0.6÷0.2

0.2+0.3 2×1.3

2.观察图片.

教师提问:看一看,整数、小数、分数的哪些意义相同?哪些意义有扩展?

(加法、减法和除法意义相同,乘法意义在小数和分数中有所扩展.)

3.你能用图示的形式表示出四则运算的意义之间的关系吗?

(二)四则运算的法则.【继续演示课件“四则运算的意义和法则”】

1.加法和减法的法则.

(1)出示三道题,请分析错误原因并改正.

错误分别是:数位没有对齐,小数点没有对齐,没有通分.

(2)三条法则分别是怎样要求的?

整数:相同数位对齐

小数:小数点对齐

分数:分母相同时才能直接相加减

思考:三条法则的要求反映了一条什么样的共同的规律?

(相同计数单位上的数才能相加或相减)

2.乘法和除法的法则.

(1)出示两道题:

口述整数乘法和除法的计算法则.

改编成小数乘除法计算:1.42×2.3 4.182÷1.23

(要求:学生在整数计算的结果上确定小数点的位置)

(2)教师提问.

通过上面的计算,你发现小数乘法和除法与整数乘法和除法有什么相似的.地方?

(小数乘除法都先按整数乘除法法则计算)

有什么不同?

(小数乘、除法还要在计算结果上确定小数点的位置.)

(3)根据 ,说一说分数乘法和除法的法则.

分数乘法和除法比较又有什么相似和不同?

相似:分数除法要转化成分数乘法计算.

不同:分数除法转化后乘的是除数的倒数.

(三)练习.【继续演示课件“四则运算的意义和法则”】

计算后说一说各题计算时需要注意什么?

73.06-3.96 (差的百分位是0,可以不写)

37.5×1.03 (积是三位小数)

8.7÷0.03 (商是整数)

3.13÷15 (得数保留三位小数)

(要除到小数点后第四位)

(要先通分)

(四)法则中的特殊情况.【继续演示课件“四则运算的意义和法则”】

请同学们根据a与0,a与1和a与a的运算分类.(a作除数时不等于0)

分类如下:

第一组:a+0=a a-0=a a×0=00÷a=0

第二组:a×1=a a÷1=a

第三组:a-a=0 a÷a=1

(五)验算.【继续演示课件“四则运算的意义和法则”】

1.根据四则运算的关系,完成下面等式.

2.思考:怎样应用这些关系对加、减法或乘、除法的计算进行验算?

(加法可用减法验算;减法可以用加法或减法验算;乘法可以用除法验算;除法可以用乘法或除法验算.)

3.练习:先说出下面各算式的意义,再计算,并进行验算.

4325+379 47.5-7.65 18.4×75

84× 587.1÷0.57 ÷

二、全课小结.

这节课我们对四则运算的意义和法则进行了整理和复习,总结了在四则运算中的一些特殊情况及注意的问题,希望同学们在计算时一定要细心、认真,养成自觉验算的好习惯.

三、随堂练习.

1.根据43×78=3354,直接写出下面各题的得数.(复习积的变化规律和商不变的性质)

43×0.78= 0.43×7.8=

33.54÷0.78= 3354÷0.43=

2.在○里填上“>”“<”或“=”.

○ 12× ○12÷3×2

÷ ○ 12÷ ○12÷2×3

3.思考:7.6÷0.25的商与7.6×4的积相等吗?为什么?

四、布置作业.

计算下面各题,并且验算.

1624÷56 -

× 4.5×5.02

五、板书设计

四则运算的意义和法则

数学教案-四则运算的意义和法则

比的意义教案 篇6

教材位置

人教版九义教材六年制小学第八册教科书第111——112页的例1及相应“做一做”和练习二十六第1题。

教学目的

1、使学生理解小数加法的意义,初步掌握计算法则,能够较熟练地笔算小数加法。

2、培养学生的迁移、类推能力。

3、渗透数学“来源于生活,又运用于生活”。

教具准备

多媒体课件。

学具准备

草稿纸若干

教学重点

相同数位对齐

教学难点

小数点对齐

教学方法

探究式学习法

学情分析

学生已对多位数笔算方法有较深的认识及熟练准确的计算,对小数的数位也在上一章节有明确的认识,只是在“怎样才能尽快地使小数的相同数位对齐”这一观念上需要摸索、比较,得到明确的认识,形成计算小数加法的能力。

学生在整数加法的计算法则中已有相当的了解,并对其重要性已有较深的认识。

整数加法笔算时是先将个位对齐以达到相同数位对齐的`目的,小数则应抓住小数的特征,将小数点对齐来达到相同数位对齐的要求。

学生在整数加法的基础上,通过类比推理,将知识迁移,很容易理解。

教学过程

一、复习。

1、谁的竖式最漂亮,计算更准确。

4235+5478 3251+438

7621+37543 4320+317

小组内完成后,讨论下列问题。

1列竖式时要注意什么?怎样列竖式更快捷?

2计算时要注意什么?

2、整数加法的意义是什么?它的计算法则是什么?

二、激趣导入。

1、提问:夏天到了,你最喜欢吃什么水果?

2、听故事,做数学。

明明和妈妈到自选商场买西瓜。妈妈选了一个小一点的瓜,在电子称上一称,是3735克。明明选了一个大一点,有4075克。你能算出他们一共买了多少西瓜吗?

3、抽一生列式板演,全班齐练。

4、继续听,继续算。

后来,他们到收银台,可收银台阿姨的称量数据却发生了变化,上面全是以“千克”为单位的,你能说出他们西瓜的重量吗?

你还会求出他们一共重多少千克吗?

5、揭示课题:

小数加法的意义和计算法则

三、新授。

1、小数加法的意义。

同整数加法一样,都是把两个数合并成一个数的运算。

2、小数加法的计算法则。

刚才有的同学说会,现在各小组一齐完成竖式计算并讨论以下问题:

(1)小数与整数比较,有什么特征?

复习整数加法的计算,让学生进一步巩固相同数位对齐的认识。

为小数加法的意义和法则的类推作理论铺垫。

设问起疑,引起学生的兴趣,提高学生的注意力。

体现数学来源于生活,生活中到处存在数学问题。

进一步复习巩固单位换算的知识,为引出课题作准备。

类比推理的运用,训练学生知识迁移能力。

(2)列竖式时注意:整数先将个位对齐,小数应先将什么对齐,以达到相同数位对齐的

目的?

(3)小数计算后,结果末尾是“0”应怎么办?它的理论依据是什么?

3、指导看书P111。

4、试练。

完成P111做一做并回答问题。

四、延伸拓展。

1、你会用两种方法计算吗?

1元8角7分+3角2分

7角6分+3元4角4分

2、听故事,列算式:

小玲到商场买来3米2分米绳子,付了1元9角2分钱,后来发现不够,小丽又去买了2.8米,付了1元6角8分。一共买了多少绳子?付了多少钱?

五、巩固训练。

4235+5748 37251+438

4.235+5.748 3.7251+4.38

42.35+5.748 37.251+4.38

4.235+57.48 372.51+4.38

六、板书设计。

小数加法的意义和计算法则

3 7 3 5克 3. 7 3 5千克

+ 4 0 7 5克 + 4. 0 7 5千克

7 8 1 07. 8 1 0千克

7810克=7.81千克 3.735+4.075=7.81(千克)

在完成小数的意义的推理以后,让学生思考小数加法法则向整数加法法则的类推。

初步学会对加法法则的运用。

加深学生对整数加法和小数加法法则的理解及综合运用知识的能力。

训练学生分类整理知识的能力,体现出运用知识解决生活中实际问题的观念。

加深对计算法则的理解,能运用法则准确计算。

比的意义教案 篇7

学习目标:

1、体会小数所表示的意思,理解小数的意义。

2、理解和掌握小数意义。

教学重点:通过练习,体会小数的意义,知道小数所表示的.含义。

教学难点通过练习,体会小数的意义,知道小数所表示的含义。

教学准备:学生、老师准备计数器、小黑板

教法:小组合作交流法

学法:小组合作学习

教学课时:2课时

学习过程:

一、情景导入,呈现目标

1、你的身高是多少?你会用小数来描述吗?

2、你都在哪里见过小数?说一说,并写出几个你见过的小数来。

二、探究新知(自学后完成下面问题)

1、把1元平均分成十份,其中一份用分数表示是()元,用小数表示是()元。十分之三表示其中()份,用小数()表示。

2、把1元平均分成100份,其中的一份用分数表示是()元,其中的37份用分数()表示,用小数()表示。

3、1、11表示()元()角()分。

三、合作探究,当堂训练

1、用数表示下面各图中得涂色部分?(课本第2页第2题)

2、想一想填一填?(学生独立完成)

3、自己画一方格纸,并画出0、1、0、5、0、6?

4、找一找生活中的小数,小组交流,选代表汇报。

四、精讲点拨(根据学生出现的问题进行精讲。)

五、学习收获,自我总结:

1、小组评价:你认为第几小组表现最棒,为什么?

2、自我总结:通过今天的学习,我学会了,以后我会在______________方面更加努力的。

课后反思:(略)

大家都在看