请欣赏圆的周长教学设计(精选8篇),由笔构网整理,希望能够帮助到大家。
圆的周长教学设计 篇1
教学内容:
冀教版六年级上册第四单元
教学目标:
1.回顾并梳理圆的周长和面积公式,能运用公式解决简单的问题。并通过练习理解并掌握圆的周长和面积的计算方法。
2.在运用圆的周长和面积公式的过程中,培养分析问题和解决问题的能力,进一步发展空间观念。
3.能运用解决问题的有效方法并积极寻找其他方法,能表达解决问题的过程并尝试解释所得的结果。
4.感受数学与日常生活的密切联系,体验圆周长、圆面积问题;结合圆周率的发展史和祖冲之的故事,激发民族自豪感和探索精神。
教学重点:
在探索圆的周长和面积公式的过程中,进一步发展空间观念。认真审题,分辨求周长或求面积。
教学难点:
能探索解决问题的有效方法并积极寻找其他方法,能表达解决问题的过程并尝试解释所得的结果。提高分析问题和解决问题的能力。
教学流程:
一、炫我两分钟
大家好!今天的炫我两分钟由我来为大家主持。同学们,一提到圆,我们就会想到一个伟大的人物,他在数学上的伟大成就是关于圆周率的'计算。祖冲之在前人成就的基础之上,经过刻苦钻研,求出 在3.1415926与3.1415927之间。之后我们在计算中为了方便,一般只取它的近似值,即同学们,这节课我们共同来梳理第四单元圆的周长和面积。在我们合作梳理之前我要考考大家关于3.14的口算如何。
出示口算题目。
随机评价。
相信我们都是有智慧有思想的人,我要为你们点赞(动作)。
二、组内交流,完善梳理
教师组织学生小组合作学习,引导孩子梳理圆的周长的知识。而后学生尝试像老师这样梳理,在组内交流自己的梳理过程,然后小组内形成共识,确立发言任务,师深入其中一个小组进行指导。
【设计意图:通过小组合作学习,让每个学生都参与其中,都有所收获。通过组内交流,相互补充、相互完善,使知识呈现会更全面、更精练,知识梳理更有条理、更科学化。】
三、小组合作交流。
组内交流尝试小研究。
出示小组合作交流建议:
1、组长组织本组成员有序进行交流。
2、认真倾听其他组员的发言,如有不同意见,敢于发表自己的想法。
3、把自己梳理知识时遇到的疑问向大家请教,也可以考考大家自己积累的易错题。
4、再次确认发言顺序,准备全班交流。
【设计意图:给每一个孩子创造一个发言的机会,小组合作交流建议的给出使小组交流有序进行,让学生在思考、交流的过程中学会表达与合作、学会倾听与欣赏、激发了全体学生参与学习、探索知识的欲望。】
四、班级交流,提升梳理
1、小组汇报,按照本单元三个知识模块分别找三个小组进行汇报。汇报时既要汇报典型题的解法,又要重点说明本组梳理的每个知识点的易错题。在小组汇报成果后,其他学生质疑或作以评价。
2、师结合学生的汇报进行引导完善,帮助学生梳理单元知识点,同时,教师可以举出一些实例,强化学生对易错、易混知识的掌握。
【设计意图:分层次交流尝试小研究的内容,做到层层递进,有利于学生扎实掌握本单元知识。】
3、完善自己设计的知识树,说明自己是怎样想的,其他学生加以评价,教师予以学生肯定或激励。教师挑选好的思维导图进行展示,评价好在哪里。
师总结:无论哪种形式的思维导图,只要能清楚的、有条理的表示出本单元的知识网络就是一幅好的思维导图。
【设计意图:单元梳理课的重点在于“梳理”,本单元知识公式很多,学生既可以尝试小研究作业单作为知识梳理的结构图,也可以自己设计本单元知识网络图,形成个性知识树,目的只有一个即提升学生知识整理能力,形成知识网络。】
五、应用拓展
结合练习做相应题目,巩固易错易混知识。
(一)基础题
1、判断下面各题是否正确,对的打“√”,错的打“×”。
(1)计算直径为10毫米的圆的面积的列式是3.14×(10÷2)。 ( )
(2)半径为2厘米的圆的周长和面积相等。 ( )
(3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是28.26平方米。(栓绳处不计算在内) ( )
2、一个圆的周长是25、12米,它的面积是多少?
3、一个环形的铁片,外圆半径是7厘米,内圆半径是0、5分米,这个环形的面积是多少平方分米?
(二)拓展提高
1、一张长方形纸片,长60厘米,宽40厘米。用这张纸剪下一个尽可能大的圆。这个圆的面积是多少平方厘米?剩下的面积是多少平方厘米?
2、公园里有一圆形花坛的周长是50.24米,花坛周围是一条环形小路,小路宽2米,这条环形小路的占地面积是多少?
3. 一辆自行车的轮胎的外直径是1.12米,每分转50周,这辆自行车每小时行驶多少千米?
【设计意图:习题设计体现基础性、层次性,既面向全体学生,巩固当堂所学的知识,又激发了学生的内在潜能。】
六、个人整理
经过本课时的学习,你有哪些收获呢?
【设计意图:反思是成长的催化剂,本环节让学生自由畅谈收获,自我评价,互相评价,有利于提高学生回顾、反思所学知识的水平,不断完善自己的知识网络体系。】
圆的周长教学设计 篇2
教学目标:
1.使学生理解圆周率的意义,能推导出圆周长的计算公式,并能正确的计算圆的周长。
2.通过动手操作,培养学生的观察、比较、分析、综合和主动研究、探索解决问题方法的能力。
3.初步学会通过现象看本质的辨证思想方法。
4.结合圆周率的学习,对学生进行爱国主义教育。
教学重点:
正确计算圆的周长。
教学难点:
理解圆周率的意义,推导圆周长的计算公式。
教具准备:
多媒体课件三套、系绳的小球。
学具准备:
塑料圆片、正方形纸板、圆规、剪子、直尺、细绳。
教学过程:
一、以旧引新,导入新课
1.复习长方形、正方形的周长。
我们学过长方形、正方形的周长。回想一下,它们的周长各指的是什么?
2.揭示圆的周长。
(1)同学们都有一张正方形纸板,请你们用圆规在这张正方形纸板上画一个最大的圆。然后用钢笔或圆珠笔描出圆的周长,并且沿着圆的周长将圆剪下来。
(2)谁能指出这个圆的周长?谁能概括一下什么是圆的周长?
二、动手操作,引导探索
1.测量圆周长的方法。
(1)提问:你知道了什么是圆的周长,还想知道什么?
我们先研究怎样测量圆的周长,请同学们分组讨论一下。
把你们讨论的结果向大家汇报一下?学生边回答边演示。
(2)教师甩动绳子系的小球,形成一个圆。
提问:小球的运动形成一个圆。你能用刚才的方法测量出这个圆的周长吗?
2.认识圆周率。
(1)探讨圆的周长与直径的关系。
①用绳测和滚动的方法测量圆的周长,太麻烦,有时也做不到,这就需要我们找到一种既简便又准确计算圆周长的方法。研究圆的周长计算方法首先考虑圆周长跟什么有关系。
请同学们看屏幕,认真观察比较一下,想一想圆的周长跟什么有关系?
课件演示圆的周长跟直径有关系。(出示三个大小不同的圆,向前滚动一周,留下的线段长就是圆的周长。)
提问:你们是怎么看出来的圆周长跟直径有关系?
②学生测量圆周长,并计算周长和直径的比值。
圆的周长跟直径有关系,有什么关系呢?圆的周长跟直径是不是存在着固定的倍数关系呢?下面我们来做一个实验。用你喜欢的方法测量圆的周长,并计算周长和直径的比值,得数保留两位小数,将结果记录在表中。
生测量、计算、填表。在黑板上出示一组结果。
请同学们看黑板,从这些测量的计算的数据中你发现了什么?周长与直径的比值有什么特点?
③课件演示,证明圆的周长是直径的3倍多一些。(继续演示上面三个圆,直径与周长进行比较,圆的周长是直径的3倍多一些。)
这些圆的周长都是直径的3倍多一些,那么屏幕上这三个圆的周长是直径的多少倍呢?请同学们看大屏幕,仔细观察。(这三个圆的周长也是直径的3倍多一些。)
(2)揭示圆周率的概念。
通过以上的观察你发现了什么?
任何圆的周长总是直径的3倍多一些。
那也就是任何圆的周长和直径的比值是一个固定不变的数,我们称他为圆周率。谁能说一说什么叫圆周率?圆周率一般用π表示。(指导读写π。)
(3)了解让中国人引以为自豪的圆周率的历史。
关于圆周率还有一段历史呢。请同学们打开书看111页方框中的方字,想:通过看书你知道了什么?
很早以前,人们就开始研究圆周率到底等于多少。后来数学家们逐渐发现圆周率是一个无限不循环的小数。现在人们已经能用计算机算出它的`小数点后面上亿位。π=3.141592653……
3.推导圆周长的计算公式。
根据刚才的探索,你能总结出圆周长的计算公式吗?
学生推导圆周长计算公式:c=πd;c=2πr。
要求圆的周长,你必须知道什么?(直径或半径)
4.运用公式计算。
(1)求下面各圆的周长,只列式不计算。
课件演示:由第一个圆逐渐变大,分别出示第二个、第三个,提问:怎样求这个圆的周长?(生答需测量出这个圆的直径或半径,师给出直径0.8分米,学生计算它的周长。)
(2)出示例1。
①在学生读题后提问:求这张圆桌面的周长是多少米,实际上就是求什么?计算这道题应注意什么?
②学生尝试练习,反馈评价。
③提问:如果告诉你的不是这张圆桌面的直径而是半径,该怎样解答?不计算,谁知道结果是多少吗?
(3)完成第112页“做一做”。
(4)看书质疑。
三、运用新知,解决问题
1.下面的说法对吗?并说明理由。
(1)圆的周长是它直径的π倍。()
(2)大圆的圆周率大于小圆的圆周率。()
(3)π=3.14()
2.测量一圆形实物直径,计算它的周长。
3.有一奶牛场准备用粗铁丝围成一个半径是12米的圆形牛栏(如图),请同学们帮忙算一算,至少需要买多少铁丝才能把牛栏围3圈?(接头处忽略不计。)
四、总结全课,储存新知。
这节课你自己运用了哪些学习方法,学到了哪些知识?
五、思考题。
课件演示:大圆的周长和两个小圆的周长之和同样长吗?
圆的周长教学设计 篇3
一、教学目标
(一)知识与技能
理解圆周长和圆周率的意义,理解并掌握圆周长的计算方法,并能解决简单的实际问题。
(二)过程与方法
经历猜测、验证、操作等学习活动,探究圆周率的近似值,在这个过程中发展学生的数学思维水平及动手操作能力。
(三)情感态度和价值观
通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。
二、教学重难点
教学重点:理解和掌握圆的周长的计算方法。
教学难点:圆周率的探究。
三、教学准备
多媒体课件。
四、教学过程
(一)创设情境,引发思考
1.情境导入,揭示课题。
教师:老师家的菜板有点开裂,你有好办法吗?(课件出示情境图。)
学生:给它加一个箍。
教师:在它的边缘箍上一圈铁皮是个好办法,那么需要多长的铁皮呢?
教师:求铁皮的长度,就是求圆的什么?
学生:求铁皮的长度,也就是求圆的周长。
教师:谁能用自己的话说一说,什么是圆的周长?(板书课题。)
学生:圆一周的长度叫圆的周长。
教师:圆的周长与我们之前学习过的图形的周长有什么区别?
学生:以前我们研究的图形都是由直线围成的,而圆是由曲线围成的。
2.合理猜想,确定方向。
教师:圆的周长与圆的什么有关?
学生:直径、半径。
教师:圆的周长是直径的几倍?
学生:……
教师:怎么验证你的猜测呢?
学生:量一量,算一算。
【设计意图】呈现生活情境,引导学生直观感悟什么是圆的周长。因势利导展开猜测,确定研究方向。
(二)设计方案,展开探究
1.探讨设计方案。
(1)如何化曲为直?
教师:圆是曲线图形,尺子是直的,怎么办?
学生:滚一滚,绕一绕……
(2)如何减少误差?
教师:测量结果可能不准确,有什么办法尽量准确一点呢?
学生1:多量几次,选出现次数量多的'数据。
学生2:用计算器计算,提高正确率。
教师:除不尽怎么办?
学生1:用分数表示。
学生2:取近似数。
教师:一般保留两位小数,比较方便。
【设计意图】圆与学生以前学习的图形有本质的区别——它是曲线图形,如何化曲为直,学生根据生活经验或预习知道用滚或绕的方法可以解决度量的问题。但如何提高准确性,遇到除不尽怎么办,这些问题对老师而言可能不是问题,对于学生而言却是陌生的,教师对此必须有充分的预设。通过讨论统一认识,为下面的实验扫除障碍。
2.操作获取数据。
小组合作测量数据,计算圆的周长与直径的比值,结果保留两位小数。
物品名称
周长
直径
周长与直径的比值
(三)交流讨论,提升认识
1.交流质疑。
(1)小组汇报,教师直接将结果输入电脑。
【设计意图】在授课的多媒体课件中插入了控件,学生测量和计算的结果在播放状态就可以直接输入,既增加了数据的真实性,增强了授课的互动与趣味性,又便于开展讨论。
(2)质疑不同数据。
教师:为什么测量计算的结果不相同?
学生1:测量有误差,绳子绕的松紧程度不同。
学生2:尺子不够精确,不到一毫米只能估计。
教师:是不是尺子再精确一点,测量结果就准确无误?
教师:有没有其他的方法?
教师:有没有唯一的得数?
【设计意图】讨论是必须的,对于学生的困惑不能以书本、师道尊严压服,教师应让学生畅所欲言,只有理解测量的局限性,才更能理解圆周率的特殊性。
2.概括小结。
(1)圆周率的意义及读写。(课件出示内容。)
任意一个圆的周长与它的直径的比值是一个固定不变的数,我们把它叫做圆周率,用字母表示。它是一个无限不循环小数,≈3.1415926535……但在实际应用中常常只取它的近似值,例如≈3.14。
(2)概括周长计算公式。
如果用C表示圆的周长,就有C=d或C=2r。
(四)联系实际,解决问题
1.例题教学。
(1)出示教材第64页例1。
一辆自行车轮子的半径大约是33 cm,这辆自行车轮子转1圈,大约可以走多远?(结果保留整米数。)小明家离学校1 km,骑车从家到学校,轮子大约转了多少圈?
(2)学生尝试解答。
(3)规范书写。
C=2r
2×3.14×33=207.24(cm)≈2(m)
1000÷2=500(圈)
答:这辆自行车轮子转1圈,大约可以走2 m。小明骑车从家到学校,轮子大约转了500圈。
2.巩固练习。
(1)求下面各圆的周长。
①2×3.14×3=18.84(cm);
②3.14×6=18.84(cm);
③2×3.14×5=31.4(cm)。
(2)解决问题。
①一个圆形喷水池的半径是5 m,它的周长是多少米?
2×3.14×5=31.4(米)
答:它的周长是31.4米。
②小红量得一个古代建筑中的大红圆柱的周长是3.77 m。这个圆柱的直径是多少米?(得数保留一位小数。)
3.77÷3.14≈1.2(米)
答:这个圆柱的直径大约是1.2米。
【设计意图】在练习中直接加入已知周长求直径的问题,是为了培养学生的逆向思维能力。在练习时可以追问学生:已知周长怎样求半径?防止学生形成思维定势。
(五)课堂小结,拓展延伸
1.这节课你有什么收获?说一说圆的周长与直径的关系。
2.介绍中国古代对圆周率的研究及伟大成就。
【设计意图】对圆周率的研究体现了中国古代数学的高度成就,是对学生进行爱国主义教育的绝佳机会,同时也要让学生感受到现代科技的日新月异,从小树立勇攀科学高峰的科学精神。
圆的周长教学设计 篇4
【教学资料】
圆周长计算公式的推导,周长计算。(人教版《义务教育课程标准实验教科书·数学》六年级第62~64页的教学资料。)
【教学目标】
1.理解圆周率的好处,推导出圆周长的计算公式,并能正确的进行简单的计算。
2.培养学生的观察、比较、分析、综合及动手操作潜力。
3.领会事物之间是联系和发展的辩证唯物主义观念以及通过现象看本质的辨证思维方法。
4.结合圆周率的学习,对学生进行爱国主义教育。
【教学重点与难点】
重点:圆的周长计算公式的推导,能利用公式正确计算圆的周长。
难点:深入理解圆周率的好处。
【教材分析】
“圆的周长”概念的教学,是以长方形,正方形周长知识为认知基础的,是前面学习“圆的认识”的深化,“圆的周长”计算方法的.教学,是学生初步研究曲线图形的基本方法的开始,又是后面学习“圆的面积”以及今后学习圆柱、圆锥等知识的基础。因此它起着承前启后的作用,是小学几何初步知识教学中的一项重要资料。
【学情分析】
学生在学习圆的周长前已经理解了周长的好处,掌握了关于长方形,正方形周长的计算方法,也认识圆的各部分名称,明白半径,直径的关系并且会画圆,能测量出圆的直径。这节课是在这样的基础上进行教学的,前面的知识为这节课的学习活动做好了铺垫。同时学生对各项动手操作的实践活动十分感兴趣,并且本班大部分学生思维活跃,善于动脑思考,有必须的自主学习潜力,相互探讨学习的风气较浓,对新事物比较感兴趣,平时教学中,经常开展小组合作式的探究学习活动,学生有较强的合作意识。老师只要充分发挥、调动他们的积极性,他们是乐意做课堂的主人的!
【教学用具准备】
教师准备:PPT课件、细绳、直尺、绳子系的小球。
学生准备:圆形物品、圆形橡筋、直径为2、3、5厘米的圆形纸片、直尺、三角板、棉线、软皮尺、剪刀、实验报告单、计算器。
【设计理念】
我们的课堂是生活的课堂,生命的课堂。但是,在现实的课堂中“为讨论而讨论”、“为合作而合作”、“为活动而活动”等华而不实虚有其表的教学现象频频出现。细细反思,教学观念与教学行为之间的距离主要涉及到课堂教学的有效性问题。如我在本课设计上力求为学生创设“探究──发现”的空间,让学生在操作中感悟,在探究中发现,在交流中升华,从而使小组交流、师生交流、生生交流得以有效进行。我在教学中采取的策略如下:
1、利用现代教育技术,发挥强大的演示作用。
《圆的周长》从激趣引入、演示操作、指导探究、练习的出示都充分应用现代教育技术将文字、图形、动画、声音等多种信息加工组成在一起来呈现知识信息的特点,使学生在学习的过程中,充分调动他们的感官,激发他们的学习兴趣,调动他们学习的积极性,同时把知识的构成过程有效的呈现给学生。
2、在操作中感悟。
教学过程是教师引导学生把人类的知识成果转为个体认识的过程,是一处“再创造”的过程。在这个过程中,实践操作是最基本、最重要的手段和方法之一。让学生从各自不同的操作实践中感悟“化曲为直”的数学思考方法,感悟“圆的周长与它的直径的关系”。
3、在探究中发现与拓展。
儿童有一种与生俱来的以自我为中心的探索性学习方式。本设计从学生的实际出发,通过测量圆的周长、探讨圆的周长与直径的关系、推导圆的周长计算公式等活动,让学生在亲身经历数学知识的探究过程中发现知识、理解知识、应用知识。这样,学生获取的并非纯粹的知识本身,更主要的是态度、思想、方法,是一种探究的品质。
总之,课堂应是师生互动、心灵对话的舞台;课堂应是师生共同创造奇迹、唤醒各自沉睡的潜能的时空;课堂应是向在场的每一颗心灵都敞开温情双手的怀抱,平等、民主、安全、愉悦是她最显眼的标志。
【设计思路】
从本课教学资料整体看,我的设计思路是下面的图:
圆周长认识
圆周长获取
测量
圆周率
圆周长应用
公式
计算
圆的周长教学设计 篇5
教学内容:
冀教版《数学》六年级上册第六单元一课时
教学目标:
1、知识目标:使学生直观认识圆的周长,知道圆的周长的含义;理解圆周率的意义,掌握圆周率的近似值;理解和掌握圆的周长的计算公式,并能正确地计算圆的周长;能利用圆周长计算公式解决简单的实际问题,发展应用意识。
2、能力目标:通过对圆周长测量方法和圆周率的探索,圆的周长计算公式的推导等数学活动,培养学生的观察、比较、分析、综合和动手操作能力,发展学生的抽象概括和形象思维能力及团队合作精神。
3、情感目标:通过介绍我国古代数学家祖冲之在圆周率的伟大成就,对学生进行爱国主义教育。
教学重点:
能利用公式正确计算圆的周长。
教学难点:
理解圆周率的意义,圆的周长计算公式的推导。
教学准备:
课件,直径不同的圆,细绳,软皮尺,直尺,计算器。
教学过程:
一、导入
师:老师给同学们带来了两位老朋友了。(课件出示长方形和正方形)
师:相信大家对长方形和正方形都有很多的了解了,我不让大家介绍了,老师要问同学们两个问题。”
1、什么叫长方形和正方形的周长?
2、长方形和正方形的周长和什么有关?
学生思考后回答:围成长方形四条边长的总和叫长方形的周长,围成正
方形四条边长总和叫正方形周长。长方形的周长和它的长和宽有关,正方形周长和边长有关。
(课件出示圆形)
师:“你对圆形有哪些了解?”
学生能说出圆的各部分名称,直径是半径的2倍,圆有无数条对称轴,对称轴就是圆的直径。
师:那什么是圆的周长呢?
生:围成圆一圈弧线的长度总和叫圆的周长。
师:那你还想知道哪些圆的知识呢?
生:我想知道圆的周长和面积。
师:这节课我能满足你们的一个愿望,我们一起来研究的是圆的周长。
(板书课题)
二、探索新知
1、周长的测量(自主发现、动手操作)
师:利用准备的学具,测量一枚一元硬币的周长,看哪位同学的`方法最准确?
学生说出三种方法:绳测法、滚动法、软皮尺测,学生边说边进行演示。
2、圆周与直径的探究
师:在刚才的操作中,我们用绳测、滚动的方法都能测量出圆的周长,但是绳测、滚动的方法测量圆的周长太麻烦,有时也做不到。这就需要我们找到一种既简单又能准确计算圆的周长的方法。大家想一想圆的周
长与什么有关系。生“直径。”
师:你们是怎么看出圆的周长和直径有关系?圆的周长跟直径是否存在关系呢?我们一起来研究一下。
3、小组合作探究圆周长与直径、半径的关系。
师:同学们,课前我们分好了四人小组,现在要小组合作了,老师希望每个小组成员都要先听清楚要求再动手去做。
小组合作要求:
1、利用手中的学具测量物品中圆的周长和它的直径。
2、把测量的数据填入记录单中,用计算器算出圆的周长是它直径的几倍。(得数保留两位小数)
3、观察得到的数据,你发现了什么?
师:哪个小组先汇报?先说说你们采用的方法,再说结果。生:绕线法。生:滚动法。
学生汇报几组数据,教师板书。
师:通过刚才的动手操作,你们发现了什么?哪个组说说?生:圆的周长÷直径=3倍多一些。
师:打开数学书,我们自学83页知识来了解。
学生自学了解了圆的周长总是直径的三倍多一些,这个倍数是一个固定不变的数,叫做圆周率,用字母π表示。圆周率是一个无限不循环小数,我们在计算的时候只取它的近似值。
(板书:圆周率π)课件出示补充祖冲之小知识窗
早在1500多前,我国古代的数学家祖冲之就精密地计算出圆周率的值在3.—3.之间。这是当时计算出的最精确的圆周率的值,比国外科学家的发现要早1000多年。师:看完这个小知识,你有什么想法?生:祖冲之真伟大,我们的祖先非常的有智慧。师:我们的祖先很聪明,我们更应该发扬光大。师:圆的周长怎么求呀?生:圆的周长=直径×师:板书C=πd谁来说说你是怎么理解的?生:C表示圆的周长,d表示直径,π表示圆周率,
C=πd师:如果知道半径,应该怎样写?生:C=2πr师:你是怎么想的?
生:在同一个圆里,直径是半径的两倍。
三、实践与应用
1、一面圆镜的镜面直径是40厘米,在它的边缘镶嵌着一根金属条。这根金属条的长至少是多少厘米?
2、求圆的周长
(1)r=6
(2) r=10
(3) d=5
3、校园里有一颗大柳树,我想知道柳树的直径,你们有什么办法吗?同学们课下求一求。
四、教师小结
圆的周长教学设计 篇6
【教学资料】
课本第5--7页例1、例2。完成相应的“做一做”题目和部分练习
【教学目标】
1、使学生理解圆周率的好处,理解和掌握圆的周长计算公式,并能解决简单的实际问题
2、培养学生操作、计算潜力,在学生操作、计算的过程中发现规律,培养学生抽象概括潜力。
3、培养学生创新思维潜力。
4、通过“圆的直径、周长的变化,圆周率不变”的探索,对学生渗透辩证唯物主义的启蒙教育。结合我古代数学家祖冲之的故事,对学生进行爱祖国、爱中华民族的教育。
【教学重点】
探索圆的周长公式
【教学难点】
对圆周率π的理解
【学具准备】
每四个学生一组
1、直径1厘米、2厘米、3厘米、4厘米的圆片各一个
2、直尺一把
3、细绳一条、两根长31.4厘米的细铁丝
4、实验表格
5、计算器
【教具准备】
实物投影议、电脑
【教学过程】
一、设疑导入、培养创新意识
1、电脑演示:有甲、乙两学生争论。
甲说:“我脑袋大。”
乙说:“我脑袋比你在大。”
师:“如果你是裁判员应如何评判,两人才能都服气?”
2、学生四人小组讨论
请学生说一说自己的方法
甲生:“看谁的脑袋大。”
师:“如果看不出来怎样办?”
乙生:“把头放入水中,看谁的水面上升得高谁的头就大。”
师:“十分好!很有创意。”
丙生:“用绳绕头一周,测量绳的长度。”
师:“你的办法很有新意,我们的头近似球体,横切面近似于圆,你用绳子测的长度(线测方法),就是脑袋的横切面的周长,谁的周长大谁的头就大。这天我们共同学习“圆的周长”。师板书圆的周长的定义。
二、动手尝试操作,探求新知
1、动手尝试操作
(1)组织学生四人小组用绳测量直径是1厘米和2厘米的小圆的周长,并把测量的结果填入实验表格。
圆的周长c(厘米)
直径d(厘米)
周长÷直径(c÷d)
1
2
3
4
(2)组织学生讨论,除了用绳作测量工具外,还有什么办法能测出圆的周长。
讨论后得出:也能够把圆放在尺上滚动一周,来直接量出它的周长(滚动方法测量),把圆对折进行测量(折叠法)。
(3)用滚动的方法测出直径是3厘米、4厘米的圆的周长,并填好实验表格。
2、探索规律
(1)师将填好的实验表格在实物投影议上出示。
学生观察、分析、讨论得出:圆的周长和直径变化,比值不变,都是3倍多一点。
(2)思想教育
师:“任何圆的周长和直径的比值都是3倍多一点,是一个固定不变的数。我们把圆的周长和直径的比值叫做圆周率,圆周率用字母π(读pai)来表示。其实,约2000年前,中国的古代数学著作《周髀算经》中就有:“周三径一”的说法,意思是说圆的周长是直径的3倍。约1500年前,我国有一位伟大的数学家、天文学家祖冲之,他计算出圆周率应在3.1415926和3.1415927之间,成为世界上第一个把圆周率的值计算精确到6位小数的人。他的这一项伟大成就比国外数学家得出这样的精确数值的时间至少早一千年。π是个无限不循环小数,在计算过程中通常取3.14。
教师用绳的一端系一粉笔头,手拿另一端,绕动绳粉笔头在空中“画出一圈”。
师:“像这个圆你能用线测和滚动的方法量出它的周长吗?”
生:“不能”。
师:“这说明用线测和滚动的方法测量圆的周长是有局限的。那么,我们能不能找出圆周长的计算方法呢?”
(3)推导圆周长公式
师:“从公式看出,明白什么条件能够求出圆周长?”
生:“直径、半径。”
师:“如果圆的周长已知,怎样才能求出圆的`半径或直径?”
三、圆周长公式的应用(尝试练习)
1、出示例1
学生尝试练习,找学生板演,师生共同讲评。
2、完成例1下面的“做一做”。
3、出示例2
学生尝试练习,找学生板演,师生共同讲评。
4、完成例2下面的“做一做”题目。
5、第8页练习二的1、2、3题。
四、再次尝试操作、第二次创新
1、求出人脑袋的横切面的半径
(1)利用桌面上现有的测量工具,通过计算,怎样求出你脑袋的半径?
(2)四人一组互相合作,动手测量,计算时可利用计算器。
(3)将运算的结果对全班公布,并说明理由。
2周长相等的正方形、圆,谁的面积大
(1)组织学生将长为31.4厘米的铁丝折成正方形和圆形,比一比谁的面积大?
师将折好的正方形和圆形在实物投影仪上显示。得出结论“圆的面积较大。”
(2)四人小组讨论:为什么饭店的桌面一般都设计成圆形的,而课桌设计成长方形的桌面。把讨论的结果讲给同学们听。
五、全课小结
1、这天我们学习了什么资料?
2、经过这节课的学习,你有什么收获?
3、师:“这天我们通过测量学习了圆的周长的求法,而且我们还明白了周长相等的正方形和圆,圆的面积较大。下节课我们将学习如何求圆的面积”。
六、作业
第9页练习二中的第9、10、11题。
板书设计
圆的周长
围成圆的曲线的长叫圆的周长
c=πdc=2πr
例1、一张圆桌面的直径是0.95米。这张圆桌面的周长是多少米?(得数保留两位小数)
(生板演)3.14×0.95
=2.983
=2.98(米)
答:这张圆桌面的周长约是2.98米。
例2、一个圆形水池,周长是37.68米。它的直径是多少米?
(生板演)解:设水池的直径是X米。
3.14×X=37.68
X=12
或:37.68÷3.14=12(米)
答:水池的直径是12米。
圆的周长教学设计 篇7
教学内容:
小学数学实验教材十一册第107~108页“圆的周长”
教学目标:
1、使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;
2、培养学生的观察、比较、分析、综合及动手操作能力;
3、领会事物之间是联系和发展的辨证唯物主义观念以及通过现象看本质的辨证思维方法;
4、结合圆周率的学习,对学生进行爱国主义教育。
教学重点:
推导并总结出圆周长的计算公式。
教学难点:
深入理解圆周率的意义。
教学准备:
电脑课件,一元硬币、茶叶筒、易拉罐、圆形纸片等实物,以及直尺、绸带,测量结果记录表,计算器,投影资料等
教学过程:
一、创设情境,引起猜想:
(一)激发兴趣
播放课件:小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?
(二)认识圆的周长
1、回忆正方形周长:
小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?
2、认识圆的周长:
那小灰狗所跑的路程呢?圆的周长又指的是什么意思?
每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体中找出一个圆形来,互相指一指这些圆的周长。
[评析]播放的课件既创设了生动的教学情境,激发了学生参与的兴趣,又为后继学习和深入探究埋下了伏笔。把两只小狗进行赛跑比赛的生活问题转化为比较圆的周长和正方形周长的数学问题,可谓一举多得;而且,动画的演示过程,很好的展示了圆周长的概念,并通过结合实物动手指和利用正方形周长概念进行迁移,使学生较为牢固地掌握了圆周长的概念,为后继学习奠定了基穿
(三)讨论正方形周长与其边长的关系
1、我们要想对这两个路程的长度进行比较,实际上需要知道什么?
2、怎样才能知道这个正方形的周长?说说你是怎么想的?
3、那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总是边长的几倍?
[评析]正方形周长的复习,进一步强化了正方形周长与其边长的关系,为学生发挥自身主动性研究圆周长作好了学习方法上的准备。
(四)讨论圆周长的测量方法
1、讨论方法:刚才我们已经解决了正方形周长的问题,而圆的周长呢?
如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?
2、反馈:(基本情况)
(1)“滚动”——把实物圆沿直尺滚动一周;
(2)“缠绕”——用绸带缠绕实物圆一周并打开;
(3)“折叠”——把圆形纸片对折几次,再进行测量和计算;
(4)初步明确运用各种方法进行测量时应该注意的问题。
3、小结各种测量方法:(板书)转化
曲直
4、创设冲突,体会测量的局限性
刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?那怎么办呢?
5、明确课题:
今天这堂课我们就一起来研究圆周长的计算方法。(板书课题)
[评析]教师引导学生结合具体实物想到采用不同的方法进行测量,由不能用直尺直接测量到用“滚动法”、“缠绕法”,以及用“折叠”的方法测量圆形纸片,最后到大屏幕上的圆不能进行实际测量,既留给学生自主发挥的空间又不断设置认知冲突,在遵循学生的认知规律的.前提下,有效地培养了学生思维的创造性。
(五)合理猜想,强化主体:
1、请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并反扩
2、正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?
向大家说一说你是怎么想的。
3、正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)
4、小结并继续设疑:
通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢你还能想出办法来找到这个准确的倍数吗
[评析]在学生已有的知识经验基础上,教师充分引导学生进行合理的猜想和讨论,改变了以往教学中学生依赖教师指导进行操作的被动局面,学生对后续的实际探究过程有了明确的目的性,从而充分体现了学生在课堂学习过程当中的主体地位。
二、实际动手,发现规律:
(一)分组合作测算
1、明确要求:
圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,填入表格里。
提一个小小的建议,为了更好的利用时间,提高效率,请你们在动手测算之前考虑好怎样合理的分配任务。
测量对象圆的周长(厘米)圆的直径(厘米)周长与直径的关系。
(二)发现规律,初步认识圆周率
1、看了几组同学的测算结果,你有什么发现?
2、虽然倍数不大一样,但周长大多是直径的几倍?
3、刚才同学们已经对大小不同的圆进行了比较准确的测算,如果我们任选一个圆再进行测算,结果还会怎样?(课件进行验证)
板书:圆的周长总是直径的三倍多一些。
(三)介绍祖冲之,认识圆周率
1、这个倍数通常被人们叫做圆周率,用希腊字母π表示。
2、早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他叫什么吗?
3、这个倍数究竟是多少呢?我们来看一段资料。
(投影出示:祖冲之是我国南北朝时期,河北省涞源县人.祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间,精确到小数点后第七位.不但在当时是最精密的圆周率,而且保持世界记录九百多年……)
4、理解误差
看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?
5、解答开始的问题
现在你能准确的判断出小黄狗和小灰狗谁跑的路程长了吗
(四)总结圆周长的计算公式
1、如果知道圆的直径,你能计算圆的周长吗?
板书:圆的周长=直径×圆周率
C=πd
2、如果知道圆的半径,又该怎样计算圆的周长呢
板书:C=2πr
追问:那也就是说,圆的周长总是半径的多少倍
[评析]本环节选取一元硬币、茶叶筒、易拉罐等学生身边常见的物品,融小组合作、实验操作以及观察、归纳和概括为一体,引导学生的多种感官参与学习过程;在理解圆周率意义的过程当中,循序渐进,利用课件进行验证,渗透了由特殊到一般的分析方法,还出示了较为详尽的资料,从而在深入理解新知的前提下,对学生进行了生动的爱国主义教育。而且,利用圆周率的意义准确解答开始的问题,前后呼应,使结构更加严谨,计算公式的总结水到渠成。
三、引导质疑,深入领会(略)
四、巩固练习,形成能力
1、判断并说明理由:π=3.14()
2、选择正确的答案:
大圆的直径是1米,小圆的直径是1厘米。那么,下列说法正确是:()
a、大圆的圆周率大于小圆的圆周率;
b、大圆的圆周率小于小圆的圆周率;
c、大圆的圆周率等于小圆的圆周率。
3、实际问题:老师家里有一块圆形的桌布,直径为1米。为了美观,准备在桌布边缘镶上一圈花边。请问,老师至少需要准备多长的花边?
五、课内小结,扎实掌握
通过今天的学习,你有什么收获?
[评析]练习设计目的明确,层次清楚,有效的对新知加以巩固;判断题和选择题很好的抓住新授内容的重、难点,有利于学生对新知准确而清晰的把握;实际问题紧密联系学生的生活经验,体现了“学数学,用数学”的教学观念。通过引导学生从知识和能力两方面谈收获,不仅明确的再现了教学的重点内容,而且再次体现了学生的主体性。
六、课外引申,拓展思维
如果小黄狗沿着大圆跑,小灰狗沿着两个小圆绕8字跑,谁跑的路程近
[总评]
纵观本课,教师紧密联系学生的已有知识和经验,准确把握知识间的内在联系,不断设置合理的认知冲突,促使学生进行有效的猜想、验证,初步体现了“创设情境——大胆猜想——合作探索——反思归纳”的探索性教学模式,从而充分的体现了在课堂教学中学生的主体作用和教师的主导作用。
圆的周长教学设计 篇8
教学目的
1、理解圆周率的意义。
2、理解周长的概念,并掌握圆周长的计算公式和推导过程。
3、能运用公式求圆的周长或直径、半径。
重点
圆的周长计算公式的推导,能利用公式正确的计算。
难点
深入理解圆周率的意义及圆周长计算公式的推导。
教具:
两个大小不同的圆、直尺一把、绳子一根、计算器和表格
一、复习导入(4分钟)
(一)出示菜板和圆桌图
师:
1、这两个都是什么平面图形
2、他们有什么不同?(圆的中心位置不同,圆心的位置也不同)
3、还有什么不同?(圆的大小不同,圆的半径不同)
4、也可以说是圆的直径不同。
(二)出示图与对话框
师:
1、这个叔叔说了什么?你来帮他读一读。(请一生读一读)
2、问:铁皮的长度实际上就是圆的什么?
预设:
1、圆一周额长度(这个长度就是圆的周长)或
2、圆的周长。
二、新课教授
(一)活动一:摸圆的周长(3分钟)
师:
1、你知道圆的周长指的是哪吗?谁愿意到前面来指一指。
2、从哪里开始到哪里结束?
预设:
1、从这个地方开始,也在这里结束。
2、小结:起点和终点是同一点。
3、谁来说一说什么是圆的周长。(周长是几周?圆的周长是什么线?加手势)
4、围成圆的一周的曲线的'长是圆的周长。
(二)活动二:周长的测量(4分钟)
师:
1、曲线图形的周长你会测量吗?(不会)
2、同方谈论一下,你想要怎样测量。
3、1生说绕绳法。他的方法听懂的举手。
预设:
1、听懂人多,师演示一下。
2、听懂的人少,找两个听懂的同学说一说,再询问,老师再演示一下。
师:
1、听懂测量方法的同学举手。现在我们一起来测量圆的周长,首先请个同学来读要求。(要求:动手测量圆的周长、直径,并将他们标注在你的圆上)拿出教具,按要求测量,开始。
2、教师观察指导。
(三)汇报演示(4分钟)
师:
1、拿出教具进行正确示范,并讲解注意事项。如:首先做好标记、然后紧贴圆绕等。
2、这个办法有什么缺点?(不精确会产生误差)
3、除了这个方法还有没有其他办法?
预设:
1、生能主动说出。
2、生不能主动说出。师可借用前页习题第3题找直径的第二种方法引导。(直尺的作用、三角板的作用?不需要三角板固定,测量曲线长度)
3、直尺能弯曲吗?前面绕绳法用绳子将就圆,这里用圆将就直尺就可以了,这就是滚动法。
师:
1、生自己操作
2、滚动法:先做一个记号,对准直尺零刻度线。紧贴着直尺滚动,记号再次指的刻度与零刻度的差就是圆的周长。
3、测量中英注意什么?有误差吗?听懂的同学举手。
4、师黑板上正确的演示,并引出“化曲为直”(板书:化曲为直)
(四)动图播放绕绳法和滚动法
1、找几位学生说出他测量出的圆的周长和圆的直径,教师板书作好记录。
2、至少要找7组数据,教师课前也要准备几组数据,共10组数据。
3、举起一大一小圆,问:这两个圆周长一样吗?(不一样)
4、为什么?(圆的大小或圆的半径、直径不一样)
三、猜想并探索(15分钟)
(一)猜想(4分钟)
1、直径不一样周长就不一样,那周长和直径有什么关系呢?
2、你想把周长和直径怎样比?(周长除以直径、周长减直径)
3、可以研究周长和直径吗?(不可以,每依据)
4、大数加大数,和还是大数,和小数没法比。周长乘直径呢?(同上)
5、用你想用的方法研究一下周长与直径的关系。
6、生在黑板上记录“周长÷直径”、或“周长减直径”。
(二)探索(8分钟)
1、通过表格你发现了什么?(周长÷直径的值都在三左右,基本上不会小于2或者大于4)特别有几组都是3.1多一点。
2、同学们能的到这个发现已经很不错了,千百年来我们伟大的科学家通过就算很多数据才得出周长÷直径是一个固定的数,等于3.1415926......它是一个无限不循环小数。
3、它叫圆周率,读作π,通常计算式取3.14。
(三)公式推导(3分钟)
1、由科学家们的发现我们就可以得到这样一个等式我们可以得出就是:圆的周长÷直径=圆周率(C÷d=π)
2、π是一个固定的数,现在你们能用计算的方法算圆的周长了吗?
3、C=πd或C=π×2r=2πr(只要知道半径或直径就可以计算圆的周长了)
四、巩固练习(10分钟)
(一)基础题一道
(二)能力提升两道
(三)拓展题一道
五、课后作业布置
