请欣赏初中数学的说课稿(精选7篇),由笔构网整理,希望能够帮助到大家。
初中数学的说课稿 篇1
一、教材分析:
《有理数的减法》是北师大版《数学》实验教科书七年级上册第二章第五节的内容。
“数的运算”是“数与代数”学习领域的重要内容,减法是其中的一种基本运算。本课的学习远接小学阶段关于整数、分数(包括小数)的减法运算,近承第四节有理数的加法运算。通过对有理数的减法运算的学习,学生将对减法运算有进一步的认识和理解,为后继诸如实数、复数的减法运算的学习奠定了坚实的基础。
鉴于以上对教学内容在教材体系中的位置及地位的认识和理解,确定本节课的教学目标如下:
1、知识目标:
经历探索有理数的减法法则的过程,理解有理数的减法法则,并能熟练运用法则进行有理数的.减法运算。
2、能力目标:
经历由特例归纳出一般规律的过程,培养学生的抽象概括能力及表达能力;通过减法到加法的转化,让学生初步体会转化、化归的数学思想。
3、情感目标:
在归纳有理数减法法则的过程中,通过讨论、交流等方式进行同伴间的合作学习。
为了实现以上教学目标,确定本节课的教学重点是:有理数的减法法则的理解和运用。教学难点是:在实际情境中体会减法运算的意义并利用有理数的减法法则解决实际问题。
二、学情分析:
我们面对的教学对象是已具备一定知识储备和一定认知能力的个性鲜明的学生,而不是一张“白纸”,因此关注学生的情况对教学是十分有必要的。
在生活中学生经常会进行同类量之间的比较,因此学生对减法运算并不陌生,但这种认识常常流于经验的层面;在小学阶段学生进一步学习了作为“数的运算”的减法运算,但这种减法运算的学习很大程度上的是一种技能性的强化训练,学生对此缺乏理性的认识,很多时候减法仅作为加法的逆运算而存在。因此在教学中一方面要利用这些既有的知识储备作为知识生长的“最近发展区”来促进新课的学习,另一方面要通过具体情境中减法运算的学习,让学生体会减法的意义。
此外,值得注意的是本年龄段的学生学习积极性高,探索欲望强烈,但数学活动的经验较少,探索效率较低,合作交流能力有待加强。因此在教学过程中要做好调控。
三、教法选择及学法指导:
《课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生情况,教学设计中采用“引导——发现法”组织教学。其基本程序设计为:创设情境——提出猜想——探索验证——总结归纳——反馈运用。
上述教学程序的实施很大程度上有赖于学生的学习,因此对学生学习方式的指导是十分重要的。本节课应鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生亲历从列举特例到归纳(不完全归纳)出一般的减法法则的全过程,体验知识产生和发展的全过程。
四、过程分析:
教学环节
教 学 活 动 设 计
设 计 说 明
创设情境
自然引入
1、首先与学生互动谈论合肥本地今日的气温,了解合肥今天的最高气温和最低气温。
初中数学的说课稿 篇2
一、设计思想:
数学来源于生活,数学教学应走进生活,生活也应走进数学,数学与生活的结合,会使问题变得具体、生动,学生就会产生亲近感、探究欲,从而诱发内在学习潜能,主动动手、动口、动脑。因此,在教学中,我们应自觉地把生活作为课堂,让数学回归生活,服务生活。培养学生的动手能力和创新能力,丰富和发展学生的数学活动经历,并使学生充分体会到数学之趣、数学之用、数学之美。
处理好教与学的关系。教师既要做到精讲精练,又要敢于放手引导学生参与尝试和讨论,展开思维活动。
根据新教材留给学生一定的思维空间的特点,教师要鼓励学生自己动脑参与探索,让学生有发表意见的机会,绝对不能包办代替,使学生不仅能学会,而且能会学。
充分发挥网络在课堂教学中的优势,力争促进学生学习方式的转变,由被动听讲式学习转变为积极主动的探索发现式学习。
数学问题生活化,主导主体相结合,发挥媒体技术优势,探究练习相结合,符合《课标》精神。
网络环境下代数课的教学模式:设置情境—提出问题、自主探究、合作交流、反思评价、巩固练习、总结提高
二、背景分析:
(一)学情分析:
内容是义务教育课程标准实验教科书(人民教育出版社)数学八年级下册第十六章:《分式》
学生是本校初二实验班的学生,参加北师大“基础教育跨越式发展”课题实验一年半,学生基础知识较扎实,具有一定探索解决问题的能力,电脑使用水平较熟练,对于网络环境下的学习模式已适应。
本节课实施网络环境下教学,采用自学导读式教学模式。学生喜欢上网络数学课,学习数学的'兴趣较浓。
(二)内容分析:
本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进行的,为后面学习可化为一元二次方程的分式方程打下基础。
通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意
识,渗透类比转化思想。
(三)教学方式:自学导读—同伴互助—精讲精练
(四)教学媒体:Midea———Class纯软多媒体教学网几何画板
三、教学目标:
知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生
增根的原因,掌握解分式方程验根的方法。
过程方法:通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式
方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的
能力,培养应用意识,渗透转化思想。
情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用
知识解决问题的成功体验,树立学好数学的自信心。
教学重点:解分式方程的基本思路和解法。
教学难点:理解分式方程可能产生增根的原因。
设计说明:情感、态度、价值观目标不应该是一节课或一学期的教学目标,它应该贯穿于初中数学教学的每一堂课,它应该与具体的数学知识联系在一起,才能让教师好把握,学生好掌握,否则就是空中楼阁,雾里看花,水中望月。
四、板书设计:
a不是分式方程的解
(二)学习方法:类比与转化
教学思考:伴随教学过程的进行,不失时机的,恰到好处的书写板书,要比用多媒体呈现出来效果好,绝不能用媒体技术替代应有的板书,现代教育技术与传统教育技术完美的结合才是提高课堂教学效率的有效途径之一。
五、教学过程:
活动1:创设情境,列出方程
设计说明:教师不失时机的对学生进行思想教育,激励学生,寓德于教。体现了教学评价之美—激励启迪。
设计说明:通过经历实际问题→列分式方程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,激发学生的探究欲与学习热情,为探索分式方程的解法做准备。
活动2:总结定义,探究解法
使学生能从整体上把握数、式、方程及它们之间的联系与区别;通过合作探究分式方程的解法,培养学生的探究能力,增强利用类比转化思想解决实际问题的能力及合作的意识。
教学思考:再一次体现了对全章进行整体设计的好处,在学习16、1分式和16、2分式的运算时,几乎每一节课都运用类比的思想—分式与分数类比和进行算法多样化训练,所以才出现了这样好的效果。在利用媒体技术拓展学习内容时要遵循以下原则:
一、拓展内容要与所学内容有有机联系。
二、拓展内容要符合学生实际认知水平,不要任意拔高。
三、拓展内容要适量,不要信息过载。
活动3:讲练结合,分析增根
活动5:布置作业,深化巩固(略)
初中数学的说课稿 篇3
一。教材分析
1.教材的地位和作用
这节课是在同学们已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使同学们更为深刻的理解"数形结合"的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。
2.教学目标和要求
(1)知识与技能:使同学们理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。
(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高同学们解决问题的能力。
(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展同学们的数学思维,增强学好数学的愿望与信心。
3.教学重点:对二次函数概念的理解。
4.教学难点:由实际问题确定函数解析式和确定自变量的取值范围。
二。教法学法设计
1.从创设情境入手,通过知识再现,孕伏教学过程。
2.从同学们活动出发,通过以旧引新,顺势教学过程。
3.利用探索、研究手段,通过思维深入,领悟教学过程。
三。教学过程
(一)复习提问
1.什么叫函数?我们之前学过了那些函数?
(一次函数,正比例函数,反比例函数)
2.它们的形式是怎样的?
(y=kx+b,k≠0;y=kx ,k≠0;y=k/x , k≠0)
3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件? k值对函数性质有什么影响?
【设计意图】复习这些问题是为了帮助同学们弄清自变量、函数、常量等概念,加深对函数定义的理解。强调k≠0的条件,以备与二次函数中的a进行比较。
(二)引入新课
函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)
例1圆的半径是r(cm)时,面积s (cm?)与半径之间的关系是什么?
解:s=πr?(r>0)
例2设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?
解: y=100(1+x)?
=100(x?+2x+1)
= 100x?+200x+100(0
教师提问:以上两个例子所列出的函数与一次函数有何相同点与不同点?
【设计意图】通过具体事例,让同学们列出关系式,启发同学们观察,思考,归纳出二次函数与一次函数的联系: (1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。(2)自变量的最高次数是2(这与一次函数不同)。
(三)讲解新课
以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。
二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。
巩固对二次函数概念的理解:
1.强调"形如",即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。
2.在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)
3.为什么二次函数定义中要求a≠0 ?
(若a=0,ax2+bx+c就不是关于x的二次多项式了)
4.在例2中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.
5.b和c是否可以为零?
由例1可知,b和c均可为零。
若b=0,则y=ax2+c;
若c=0,则y=ax2+bx;
若b=c=0,则y=ax2.
注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式。
【设计意图】这里强调对二次函数概念的理解,有助于同学们更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。
判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.
(1)y=3(x-1)?+1
(2)s=3-2t?
(3)y=(x+3)?- x?
(4) s=10πr?
(5) y=2?+2x
(6)y=x4+2x2+1(可指出y是关于x2的二次函数)
【设计意图】理论学习完二次函数的概念后,让同学们在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。
(四)巩固练习
1.已知一个直角三角形的两条直角边长的和是10cm.
(1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;
(2)设这个直角三角形的面积为Scm2,其中一条直角边为xcm,求S关于x的函数关系式。
【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让同学们经历由具体到抽象的过程,从而降低同学们学习的难度。
2.已知正方体的棱长为xcm,它的`表面积为Scm2,体积为Vcm3.
(1)分别写出S与x,V与x之间的函数关系式子;
(2)这两个函数中,那个是x的二次函数?
【设计意图】简单的实际问题,同学们会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让同学们体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。
3.设圆柱的高为h(cm)是常量,底面半径为rcm,底面周长为Ccm,圆柱的体积为Vcm3
(1)分别写出C关于r;V关于r的函数关系式;
(2)两个函数中,都是二次函数吗?
【设计意图】此题要求同学们熟记圆柱体积和底面周长公式,在这儿相当于做了一次复习,并与今天所学知识联系起来。
4. 篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的取值范围。
【设计意图】此题较前面几题稍微复杂些,旨在让同学们能够开动脑筋,积极思考,让同学们能够"跳一跳,够得到".
(五)拓展延伸
1. 已知二次函数y=ax2+bx+c,当 x=0时,y=0;x=1时,y=2;x= -1时,y=1.求a、b、c,并写出函数解析式。
【设计意图】在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。
2.确定下列函数中k的值
(1)如果函数y= xk^2-3k+2 +kx+1是二次函数,则k的值一定是______
(2)如果函数y=(k-3)xk^2-3k+2+kx+1是二次函数,则k的值一定是______
【设计意图】此题着重复习二次函数的特征:自变量的最高次数为2次,且二次项系数不为0.
(六) 小结思考
本节课你有哪些收获?还有什么不清楚的地方?
【设计意图】让同学们来谈本节课的收获,培养同学们自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到同学们还有哪些不清楚的地方,以便在今后的教学中补充。
(七) 作业布置
必做题:
1. 正方形的边长为4,如果边长增加x,则面积增加y,求y关于x 的函数关系式。这个函数是二次函数吗?
2. 在长20cm,宽15cm的矩形木板的四角上各锯掉一个边长为xcm的正方形,写出余下木板的面积y(cm2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围。
选做题:
1.已知函数 是二次函数,求m的值。
2.试在平面直角坐标系画出二次函数y=x2和y=-x2图象
【设计意图】作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。另外补充第4题,旨在激发同学们继续学习二次函数图象的兴趣。
四。教学设计思考
以实现教学目标为前提
以现代教育理论为依据
以现代信息技术为手段
贯穿一个原则——以同学们为主体的原则
突出一个特色——充分鼓励表扬的特色
渗透一个意识——应用数学的意识
初中数学的说课稿 篇4
今天我说课的内容是新教材浙教版八年级上册《平行线的判定》的第二课时。下面,我将从“教学内容”、“教学目标”、“教学方法及手段”和“教学过程”这四个部分来汇报对本节课的设计。
一、 教学内容
“平行线”是我们在日常生活中都经常接触到的。它是学生学习几何的重要基础之一,也是学习其他学科知识的重要基础。在七(上)的第七章,学生已经学习了平行线的概念,知道平行线的表示方法,以及过直线外一点画一条直线与已知直线平行的画法。在前一节课,学生接触了“三线八角”,了解同位角、内错角、同旁内角等概念,掌握“同位角相等,两直线平行”的判定方法。经过直线外一点画一条直线与已知直线平行——这种画法的依据其实就是我们刚学过的平行线的判定方法:“同位角相等,两直线平行” 。
因此,这一节课将在学生这样的知识基础上继续学习判定两直线平行的另两种方法:“内错角相等,两直线平行”和“同旁内角互补,两直线平行”。在老教材中,平行线的判定是作为公理出现的,在新教材中却至始至终没有出现“公理”二字,只是作为一种方法出现。它是学生在已学知识的基础上通过合作、探究得到的判定两直线平行的方法,这里更注重学生的观察、分析、概括能力的培养。
在七年级的学习中,学生已经初步接触了简单的说理过程。因此本节学习时,将在直观认识的基础上,继续加强培养学生这方面的能力。
二、 教学目标
基于上述内容、学情的分析,在新课程的理念下,数学教学应以学生的发展为本,以学生的能力培养为重。由此确定本节课的教学目标为:
1、 让学生通过直观认识,掌握平行线的判定方法;
2、 会根据判定方法进行简单的推理并能写出简单的说理过程;
3、 运用“转化”的数学思想,培养学生“观察——分析”和“归纳——概括”的能力。
同时确定本节课的'重难点:
重点:在观察实验的基础上进行判定方法的概括与推导.
难点:方法的归纳、提炼;
例2教学中的辅助线的添加。
三、教学方法及手段
布鲁纳说过:“发现包括用自己的头脑来获得知识的一切形成。”所以根据本节课的教学内容特点,同时基于八年级学生的形象思维,遵循 “教为主导,学为主体,练为主线”的教育思想,从实例出发,让学生亲历观察、发现、探究、归纳等一系列过程,再现了知识的发生、发现及发展的过程。在新知识学习和例题的教学中,教师始终以引导者的形象出现并在适当的时候对学生适当的启发。所以在本节课中我采取的教学方法是启发式引导发现法.让学生合作、探究,主动发现.
教学手段上,一开始借用道具“纸带”引出问题,从而围绕着这一问题进行探索,教师边启发引导,边巡视,随时收集与评定学生的学习情况,进行反馈调节。同时使用多媒体辅助教学,可以形象生动地直观展示教学内容,不但提高了学习效率和质量,而且容易加法学生的学习兴趣和积极性。
四、教学过程
1、 复习旧知,承前启后
如图,直线L1与直线L2、L3相交,指出图中所有的同位角、内错角、同旁内角;
在学生回答完问题后继续提问:如果∠1=∠5,直线L1与L3又有何位置关系?
此问题旨在复习原来的知识,从而为新知识作好铺垫。
2、 创设情境、合作探究
问题是数学的心脏,而一个好的问题的提出,将会使学生产生求知欲,引发教学高潮。因此在复习好旧的知识后马上提出新问题。
问题:如何判断一条纸带的边沿是否平行?
要求:
1、小组合作(每组4人,确定组长、纪录员、汇报员等进行明确分工);
2、对工具使用不做限制。
对于要求一进行明确的分工是希望可以照顾各个层面的学生,希望每个学生都能得到参与,而在最后当汇报员进行总结的时候,可以由组内其他成员进行补充。而在要求二中明确了对工具不做任何限制,这样可以激发学生的创造性和积极性,从而会使我们的方法多样。
最后可以对学生的方法进行罗列,问其根据,由学生自己进行讲解。总结学生的各种方法,可能会有以下几种情况:一推二画三折。
⑴.推平行线法。经过下边沿的一点作上边沿的平行线,若所画平行线与下边沿重合,则可判断上下两边沿平行;
其实我们知道这种画法的依据就是利用同位角相等,两直线平行。而除这样的推法外学生也会想到用画同位角的方法来说明。就比如第2种情况中。
⑵将纸带画在练习本上,作一条直线相交于两边,如图所示,用量角器量出∠1,∠2,利用同位角相等,来判定纸带上下边缘平行;
而有些学生可能想到直接在纸带上画,直接在纸带上作一条相交于两边缘的直线,因为纸带局限了作图,因而可以利用的只有∠2、∠3、∠4。用量角器度量学生会发现∠3=∠2,∠4+∠2=1800。
⑶折的方法。
经过这样一系列的演示和归纳,学生就对平行线的新的两种判定方法有了自己直观的认识。这时候可以请学生模仿平行线判定方法一的形式请学生给出总结。应该说这时候学生的情绪会很高,通过自己的动手发现了平行线判定的其他方法,此时教师可结合多媒体利用动态再来演示这两种判定方法。同时在黑板上给出板书。在多媒体课件里可以是一句完整的表达,而在板书时,为更易于学生理解和掌握,只简单地记为:
内错角相等,两条直线平行。
同旁内角互补,两直线平行。
其实在教材中对这两种判定方法的编排里,它是先从“内错角相等,两直线平行”进行教学,然后再经过例题教学让学生对这种方法巩固加深,然后再从开始的引题里让学生寻找同旁内角的关系,从而引出“同旁内角互补,两直线平行”这种判定方法。而我在对这节课的处理上则是直接利用“纸带问题”引导学生先得到这两种方法,而后再是对这两种方法进行巩固、应用。
3、 初步应用,熟悉新知
“学数学而不练,犹如入宝山而空返。“适当的巩固性、应用性练习是学习新知识、巩固新知识所必不可少的。为了促进学生对新知识的理解和掌握,给出以下两个小练习,意在对平行线的两种判定方法的理解。
找一找,说一说:
1.课本练习:如图,直线a,b被直线l所截,
⑴若∠1=750,∠2=750 ,则a与b平行吗?根据什么?
⑵若∠2=750,∠3=1050 ,则a与b平行吗?根据什么?
2.根据下列条件,找出图中的平行线,并说明理由:
图(1)∠1=1210,∠2=1200,∠3=1200;
图(2)∠1=1200,∠2=600,∠3=620。
对这2个练习可直接由学生抢答,并说明理由,因为题目简单又由这样抢答的方式,学生感到意犹未尽,此时马上推出范例教学。
例2、如图∠C+∠A=∠AEC,判断AB和CD是否平行?并说明理由。
确定例题是难点,基于以下两点考虑:
1、 根据已有的条件与图形,无法解决问题时,要添加辅助线。
2、 将推理过程由口述转化为书面表达形式,这也会让学生感到一定困难。
因此在本例题的教学中要充分体现教师引导者的地位,启发学生思考当遇到要我们说明两直线平行的时候,应该要从已知和图形中寻找什么?这时学生会总结学过的三种判定方法,然后再要求学生在本题中是否存在满足这三种判定方法的条件?当找不到解决问题的方法时,引导学生是否可以在没有防碍题目的前提下对图形做适当的改变,然后自然而然的引出作辅助线。
4.练习反馈,巩固新知。
说一说,写一写:
1. 如图,∠1=∠2=∠3。填空:
⑴ ∵ ∠1=∠2( )
∴ ∥ ( )
⑵ ∵∠2=∠3( )
∴ ∥ ( )
2.如图,已知直线L1、L2被直线L3所截,∠1+∠2=1800。请说明L1与L2平行的理由。
练习的安排遵循了由浅入深的原则,让学生在观察后再动手。
说明:练习1由学生个别回答,其他学生更正,教师作注意点补充;练习2由3名学生板演,其余学生同练,对于个别基础差的学生在巡视时可做提示,最后集体批阅。
因为我所面向的是乡镇中学的学生,学生总体的素养相比较市直属学校的学生来说是有一定的距离的,所以我在对练习的选取上都是按照教材上的课内练习,我想教材之所以为教材总是有他一定的科学性和可取性。当然对于好的学校或者是学有余力的学生,可以给学生做适当的提高,数学原本就是来源于生活,而又高于生活,反过来它又可以帮我们解决很多的实际问题。因此在编排题目的时候我也特意找了关于这方面的题目,让学生在一种实际的背景中去应用所学的知识。那么对这两道题我们可以根据自己授课的情况随机来定,课内有时间,可以让同桌进行讨论,共同完成;假使时间不够的话可以留给学生在课后思索,但是不作强制要求。
附加题:
⑴小明和小刚分别在河两岸,每人手中各有两根表杠和一个侧角仪,他们应该怎样判断两岸是否平行(设河岸是两条直线)?你能帮他们想想办法吗?
⑵一个合格的弯行管道,当 ∠C=600,∠B= 时,才能在经历两次拐弯后保持平行(AB∥CD)。请写出理由。
5.知识整理,归纳小结
用问题的形式引发学生思索本节课的收获
提醒学生在这两方面思考:
⑴在实验、合作、探究的过程中我们的收获……
⑵如果要判定两直线平行时,我们可以联想到……
6.布置作业 :
结合教材上的课外练习与浙教版作业本,选择适当的作业题,避免重复。
初中数学的说课稿 篇5
初中数学的说课稿(集锦20篇)
作为一位无私奉献的人民教师,往往需要进行说课稿编写工作,说课稿是进行说课准备的文稿,有着至关重要的作用。怎样写说课稿才更能起到其作用呢?下面是小编帮大家整理的初中数学的说课稿,仅供参考,欢迎大家阅读。
初中数学的说课稿 篇6
一、教材分析:
(一) 教材的地位与作用
从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;
勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。
根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。
(二)重点与难点
为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。
限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点。 我将引导学生动手实验突出重点,合作交流突破难点。
二、学情分析
初二学生已具备一定的 分析,归纳的能力和运用数学的思想意识对于勾股定理的得出,需要学生通过动手操作,在观察的基础上,大胆猜想数学结论。但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。
三、教学与学法分析
教学方法
叶圣陶说过"教师之为教,不在全盘授予,而在相机诱导。"因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。
学法指导
为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。
四、教学过程
首先,情境导入 激问设疑
给出生活中的实际问题,调动学生兴趣,启迪学生思维,激发学生创新热情和和情感体验。是学生带着好奇心开始本节课的学习。
其次,自主探究,获取新知
勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。
1. 追溯历史 解密真相
让学生欣赏传说故事:相传2500年前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。通过故事使学生明白:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。
这样,一方面激发学生的求知欲望,另一方面,也对学生进行了学习方法指导和解决问题能力的培养。
2.动手操作----探求新知
通过对地板图形中的等腰直角三角形到一般直角三角形中三边关系的探究,让同学们体验由特殊到一般的探究过程,学习这种研究方法。
在这一过程中,学生充分利用学具去尝试解决,力求让学生自己探索,先在小组内交流,然后在全班交流,尽量学习更多的方法。
这里首先引导学生观察图1、图2、图3,让学生计算每个图中的三个正方形的面积,(注意:学生可能有不同的方法,只要正确合理,各种方法都应给予肯定)。然后通过探究S1、S2、S3之间的关系,进而猜想、发现得出勾股定理,并用自己的语言表达,这样做不仅有利于学生主动参与探索,感受学习的过程,培养学生的语言表达能力,体会数形结合的思想;也有利于突破难点,让学生体会到观察、猜想、归纳的'思路,让学生的分析问题、解决问题的能力在无形中得到提高,这对以后的学习有帮助。
从上面低起点的问题入手,有利于学生参与探索。学生很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。学生会想到用"数格子"的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具有局限性。因此我引导学生利用"割"和"补"的方法求正方形C的面积,为下一步探索复杂图形的面积做铺垫。
3、自己动手,拼出弦图
让同学们拿出了提前准备好的四个全等的边长为a、b、c的直角三角形进行拼图,小组活动,拼出自己喜爱的图形,但有一个前提是所拼出的图形必须能够用等积法证明勾股定理。此时已经是把课堂全部还给了学生,让他们在数学的海洋中驰骋,提供这种学习方式就是为了让孩子们更加开阔,更加自主,更方便于他们到广阔的海洋中去寻找宝藏,学生们拼得很好,并且都给出了正确的证明,在黑板上尽情地展示了一番。
突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了"从特殊到一般"的认知规律。在求正方形C的面积时,学生将展示"割"的方法, "补"的方法,有的学生可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定学生的研究成果,培养学生的类比、迁移以及探索问题的能力。
以上三个环节层层深入步步引导,学生归纳得到命题,从而培养学生的合情推理能力以及语言表达能力。
感性认识未必是正确的,推理验证证实我们的猜想。
合作交流,讲述论证
教材中直接给出"赵爽弦图"的证法对学生的思维是一种禁锢,我创新使用教材,利用拼图活动解放学生的大脑,让学生发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,给学生充分的自主探索的时间与空间,让学生的思维在相互讨论中碰撞、在相互学习中完善。同时我深入到学生中间,观察学生探究方法接受学生的质疑,对于不同的拼图方案给予肯定。从而体现出"学生是学习的主体,教师是组织者、引导者与合作者"这一教学理念。学生会发现两种证明方案。
方案1为赵爽弦图,学生讲解论证过程,再现古代数学家的探索方法。
方案2为学生自己探索的结果,论证之巧较方案1有异曲同工之妙。整个探索过程,让学生经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。对比"古"、"今"两种证法,让学生体会"吹尽黄沙始到金"的喜悦,感受到"青出于蓝而胜于蓝"的自豪感。教师对"勾、股、弦"的含义以及古今中外对勾股定理的研究做一个介绍,使学生感受数学文化,培养民族自豪感和爱国主义精神。增强了学生学习数学的兴趣和信心。
我按照"理解—掌握—运用"的梯度设计了如下四组习题。
(1) 体会新知,初步运用(2)对应难点,巩固所学;(3)考查重点,深化新知;(4)解决问题,感受应用
最后、温故反思 任务后延
在课堂接近尾声时,我鼓励学生从"四基"的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。
然后布置作业,分层作业体现了教育面向全体学生的理念。
五、板书设计
板书勾股定理,进而给出字母表示,培养学生的符号意识。
六、学习评价
本课意在创设和谐的乐学气氛,始终面向全体学生,"以学生的发展为本"的教育理念,课堂教学充分体现学生的主体性,给学生留下最大化的思维空间注重数学思想方法的渗透,从一般到特殊从特殊回归到一般的数学思想方法。重视数学式教育,激发学生的爱国情操,用数学知识解决生活中的实际问题,在这个过程中,很多时候需要老师帮助学生去理解和转化,而更多时候需要学生自己去探索,尝试,得出正确结论。
初中数学的说课稿 篇7
一、说教材
1、学情及教学内容简析:
平移和旋转是两种基本的图形变换,从二年级上册辨认从不同的位置,观察物体的静态形状,发展到动态感知平移和旋转现象,符合儿童的空间发展水平。教材注意结合学生的生活经验,提供大量感性、直观的生活实例,引导学生观察、比较、体会,初步认识平移和旋转现象,并通过画一画、说一说等活动,让学生体会平移的特点。认识平移和旋转对发展空间观念有重要的作用。
平移和旋转教材没有下定义,也没有用语言描述,只要求学生有初步的认识,在教学安排时,我充分考虑了小学生的年龄特点和认知发展水平,是有层次地逐渐递进的教学。
2、教学目标:
(1)通过观察实例,使学生初步认识物体或图形的平移和旋转,并能在方格纸上画出平移后的图形。
(2)通过联系生活经验,使学生体会平移和旋转的特点,培养空间观念。
3、教学重点:理解图形的平移和旋转现象。
教学难点:能在方格纸上判断平移,能将图形进行平移。
二、说教法、学法:
为了让学生对《平移和旋转》有感性认识,启发他们的操作能力,针对这样的教学目标、教学重难点,在教法上,我个人认为,在教学中应当突出学生的主体地位。通过启发、引导、设疑等教学手段及方法进行教学。
有效教学的核心是学生参与,学习活动不单是纯粹地掌握书本知识,更重要的是培养学生,自主获取知识和运用知识的能力。因此在学习过程中,我主要体现了通过学生观察比较、合作交流、实践操作等方法,让数学走进学生的生活。
三、说设计思路:
本课教学,我分为五个部分:第一、创设情境,从生活中导入。以生活中物体的运动来初步感受运动特点。第二、观察比较,初步感知。以教材中提供的物体运动为基点,初步感知平移和旋转,能判断物体的运动。第三、揭示特征、数平移的距离。按判断方向、找对应点、数格子三个步骤来体会平移的图形的特征,并能根据平移的图形进行判断。第四、根据特征,画平移的图形。在感受了平移图形的特征基础上,按平移的特征对一些简单图形进行平移,进一步加深学生对平移距离的理解。第五、实际运用,全课小结。学生在有趣的平移活动中综合运用所学知识,感受数学的趣味性和生活性。
四、说设计过程:
(一)创设情境,从生活中导入
情境互动:今天,王老师是坐公交车来学校的,那同学们,你是怎么来学校的啊?
揭示:像人在行走,自行车、摩托车、电动车、汽车在行驶,我们都可以说成它们在运动。
小结:生活中很多东西都在运动。今天,我们就一起来研究物体的运动。
(设计意图:通过创设这一情景互动,拉近了师生的距离,同时,激发了学生学习的兴趣,初步感受到运动是日常生活中不可缺少的。)
(二)观察比较,初步感知。
1、出示6个物体的运动现象,火车、电梯、缆车、风扇、螺旋桨和钟摆。观察运动特点,能用手进行模仿运动。
2、根据它们不同的运动现象进行分类。
学生先小组讨论,怎么分以及为什么这么分,初步呈现分类的标准。
3、交流:以直线运动和转动进行分类。其中,钟摆的运动会产生争议。
4、讨论钟摆的运动。
示范钟摆运动,感受钟摆是围绕顶端的一个点转动,运动有幅度,因此是和风扇、螺旋桨是一类。
5、小结:像火车、电梯、缆车这样的运动叫平移,物体可以上下平移、左右平移、前后平移。像风扇、螺旋桨、钟摆的运动,叫旋转。同时揭示课题:平移和旋转。
6、及时巩固应用,出示想想做做第一题:判断下面哪些是平移,哪些是旋转。要求学生能关注每幅图中物体运动的特点,并能清楚表达。平移用直箭头表示,旋转用弯箭头表示。
7、寻找生活中的平移和旋转现象。
8、回顾平移和宣战的运动,尝试用手势来表示。
(设计意图:数学源于生活,生活中处处有数学。从生活中常见的运动现象出发,让学生从中找出两种不同的运动,一方面能够引起他们的兴趣,同时,能让他们感受到原来数学就在我们的周围。并通过小组交流分类,给学生提供了一个探索的空间。接着让学生展开思维的翅膀,寻找发现自己身边各种平移和旋转现象,又进一步突出了数学与生活的密切联系。设计让学生用动作来表示运动的特点,动作的准确性弥补了语言表达的不足,帮助学生建立平移和旋转的概念。这些学习活动,不仅强化了平移和旋转的知识,加深了学生的感悟,也加深了他们对数学来源于生活,数学应用于生活,数学与我们的生活息息相关的体会。同时,他们也会在自己亲自发现的过程中,体验到成功的快乐,感受到数学是那么的有趣。)
(三)揭示特征、数平移的距离。
在初步感知了平移和旋转两种不同的运动现象后,着重感受平移中的位置变化。
1、首先,出示运动的小房图,判断小房图在做什么运动。并及时讲解,用虚线表示原来的图形,用实线表示平移后的图形。
2、提问:小房图怎么平移的?平移了几格?你是怎么看出来的?从而明白通过箭头可以知道运动方向。并通过小组讨论,确定平移的距离。
3、确定平移的距离
(1)出示几个特别的点,找到平移后的对应点。
(2)一起数一数房顶的点,向右平移了几格。
(3)请一个学生模仿的数左边屋檐的点移动的距离。
(4)学生在教材上寻找一个或者几个特别的点数一数。
(5)交流发现:每个点都向右平移了6格。
4、小结:小房图上每个点都向右平移了6格,我们就说小房图向右平移了6格。同时观察发现,平移后小房图的形状和大小都没变。
5、出示金鱼图
让学生根据刚才的操作过程判断金鱼图向哪个方向平移了几个。在交流中表述清判断的方法,并以金鱼图上不同的'点来进行验证。
在交流中让学生发现,一般选择一个好数的点来数就可以了,如金鱼的嘴巴。
6、独立完成火箭图,判断火箭图平移的方向和距离。
7、及时应用,挑战想想做做第4题。
让学生用自己喜欢的方法先独立完成,巡视帮助有困难的学生。交流时突出怎么看方向,怎么数平移的距离的。
8、小结:数平移距离时,找怎么样的点比较方便。
(设计意图:巧妙的设计学生喜欢的小房图、金鱼图、火箭图的平移,很自然地把学生引向对平移距离的探索。在引导学生数平移距离时,从一个点出发,逐渐发现每个点都平移同样的距离,从而总结出整个图形都平移了这样的距离。整个教学过程,从教师扶,到半扶半放到放手让学生思考,对于平移距离的研究就更加的深刻了,学生也能逐渐的掌握方法并能应用方法。通过简单的练习到挑战性的练习,让学生细化了操作方法,并能把方法内化,使学生对方法掌握得更加扎实到位。最后从学生的操作中提升,找怎样的点更方便)
(四)根据特征,画平移的图形。
在学生已经对平移的方向和距离有了一定的理解基础上,当个设计师,进行动手操作实践。
1、引着学生进行平移操作。
出示试一试的三角形图,先理解题意,找出题目中重要的要求,既向右,平移6格。
提问:我们该怎么移?有什么好办法吗?从而呈现出找到点,把几个点都找到对应的点,再连起来接着画。
在操作前,要让学生同桌互相提醒注意点:箭头的方向和距离。
然后进行操作,指导有问题的地方。
在平移好后,同桌说是或自己先画了什么,再画了什么,最后怎么做的。按先……再……最后……进行交流,肯定学生的多种画法。
2、放手让学生去平移平行四边形,依旧按刚才的步骤进行操作。想清楚先画什么,再画什么然后动手。
(设计意图:通过学生自己讨论的方法进行画图操作练习,在操作中强调注意点,以学生的汇报展开具体的操作方法,从而进一步加深学生对平移距离的理解。)
(五)实际运用,全课小结。
给每个学生提供一张练习纸,上面是四个需要平移的简单图形和要求,最后通过学生的动手操作,组合成一艘小船。
以学生用自己的智慧画出的“一帆风顺”的小船作为本课的结束,鼓励学生应用平移和旋转创造出更多的惊喜,收获更多的数学知识。
(设计意图:本环节把课堂的学习推向的高潮,学生利用本课学习的知识把原本不相关的图形通过平移变成一艘美丽的小船,从而更加感受到了数学课堂的趣味性,感受到了平移的魅力)
这就是我对三年级下册《平移和旋转》第一课时的说课内容,谢谢大家!
