圆的面积教案

笔构网

2026-02-12教案

请欣赏圆的面积教案(精选8篇),由笔构网整理,希望能够帮助到大家。

圆的面积教案 篇1

教学素材

根据人教版和北师大版课标教材六年级上册中圆的相关知识自行开发的教材。

教学目标:

1、进一步理解圆的周长和面积计算公式的推导过程,进一步掌握圆的周长和面积的计算公式。

2、能运用圆的知识熟练、正确解答有关圆的周长和面积的问题。

3、建立知识间的联系,使知识系统化、条理化,提高学生解决问题能力。

教学设计思想:

复习课是帮助学生复习、巩固已学过的知识,建立知识间的联系,使知识系统化、条理化,提高学生解决问题能力的一种课型。复习课不同于练习课,复习课虽然要继续训练解题的技能技巧,但其更重要的任务是把所学的知识进行归纳、整理,把原来分散学习的知识有机地联系起来,使它形成一个完整的知识系统。这样做的目的是使学生获得稳定、清晰的核心概念,形成良好的认知结构,便于对知识的理解和记忆,也为以后学习新概念打下良好的知识基础。

教学过程:

一、创设情境,揭示课题。

二、回顾整理,讨论交流。

1、怎样求圆的周长?求圆的面积有几种情况?

2、圆的周长和面积公式是怎样推导出来的?

3、精彩会放。(教师结合课件演示帮助学生回顾圆的周长和面积公式的推导过程)

4、圆的周长和面积公式的推导过程对我们学习的启示。(转化思想)

5、学生交流:在计算圆的周长和面积时怎样能够提高计算速度?

三、发现生活中的数学问题

教师结合图片演示,让学生提出有关圆的周长和面积的问题。

图片内容:农村的喷灌、碾子、拴在木桩上的`小羊。

四、走进美丽的图形世界

教师通过一些圆形和正方形等图形的变化,形成各种几何图形,让学生计算圆的周长和面积。

五、开心词典

以开心词典的形式,让学生做六道选择题。

六、走进生活,解决问题

1、小猴子骑独轮车走钢丝。求车轮要转多少周。

2、用绳子绕树干10周,求横截面的直径。

3、一个圆形餐桌的直径是2米,如果一个人需要0.5米宽的位置就餐,这张餐桌大约能坐多少人?

4、刘大爷用15.7米长的篱笆靠墙围一个半圆形的养鸡场.这个养鸡场的面积是多少平方米?

七、思考生活中的数学问题

1、在200米和400米比赛时,为什么运动员站在不同的起跑线上?

2、阅读关于400米标准跑道的小资料。

课后思考题:一块正方形草地,边长是20米,在两个相对的角上各有一棵树,树上各拴一只羊,拴羊的绳长与草地边长相等,两只羊都能吃到草的草地面积是多少平方米?(提示:先根据题意画出图再解答

圆的面积教案 篇2

一、教材内容分析

新人教版上册《圆的面积》这部分内容是平面几何的最后阶段,它既是前面所学直观地认识平面图形及有关计算的延续和发展,又为今后逐步由实验几何阶段转入论证几何阶段作了渗透和准备。因此,在教学时,主要是让学生用转化的思想进行操作、观察和比较,推导圆的面积计算公式。并让他们初步学会用确切、简明的数学语言表述概念的本质特征,引导学生初步接触归纳推导出公式并理解和掌握公式的应用,为以后进一步学习打下基础。

二、学习者特征分析

六年级的学生已掌握了长方形、平行四边形、三角形、梯形的面积公式的推导方法,具有一定的转化和类比推理能力,并具对圆和圆的周长知识已经有了初步的掌握,有强烈的好奇心。因此,易于在转化和类比推理方面进行启发和引导,让学生利用已有的知识和经验,实现《圆的面积》公式的推导,但由于圆是由一条曲线围成的图形,学生很难跟以往由几条线段围成的图形之间建立必然的联系。因此,在利用转化和类比推理基础上,结合操作演示,让学生在学习圆面积公式的推导过程中,提高学习兴趣,掌握学习方法,增加感性的认识,从而真正掌握圆的`面积公式的推导过程。并且能应用公式解决一些生活实际问题。

三、教学目标(知识,技能,情感态度、价值观)

1、利用学生已有的知识,引导学生通过观察、操作、分析和讨论,推导出圆的面积公式,并能运用公式解答一些简单的实际问题。

2、使学生经过“感知——动脑——观察——合作探究”等系列活动.逐渐培养学生的抽象思维能力。

3、通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。使学生感受到生活中数学的魅力,让学生体会图形转化的神奇和美。

四、教学策略选择与设计

1、注重情境创设,有意识地激发学生学习知识的兴趣

数学来源于生活,通过实际情境,既创设了生动的生活情境,激发了学生参与的兴趣,又为后继学习和深入探究埋下了伏笔。而且在直观的动画情境中很好地展示了圆的面积概念。使学生体会到实际生活中计算圆的面积的必要性,同时也激发了学生求知的欲望和学习兴趣。

2、 注重实践操作,有意识地培养学生获取知识的能力

学习是学生的内部活动,因此,在课堂教学中既要重视其学习结果,更要重视其学习过程,学生的创造潜能,存在于学习过程、探究过程之中,而不存在于数学结论中,只有实实在在的学习过程、思维过程、探究过程,才能有所创造,培养学生自己探索获取知识的能力。这节课的教学,紧紧抓住“圆面积公式的推导”这一教学重点,敢于放手让学生自己动手操作,归纳整理。通过学生的剪拼,转化,利用等积变形把圆面积转化成了其他的平面图形,进而归纳、概括出圆面积的计算方法。这种多角度的思考,既沟通了新、旧知识的联系,又激发了学生的求知欲,使学生不仅知其然,更知其所以然。

3、 注重学法指导,有意识地引导学生应用转化的方法

本节课中,在求圆面积公式时,不是教师灌输式地教会学生S =πr,而是由学生在原有知识经验的基础上,通过“观察——猜测——操作——分析——探究”, 并在老师的引导下,利用“转化”的思想,将圆变成已学的图形:长方形、三角形、梯形。通过学生自主动手剪拼,然后研究两者之间的联系,实现《圆的面积公式》的推导,从而推导出圆面积公式。整节课,始终围绕这个主题,从创设生活情境,到提出研究的方向与方法,最后引导学生推导出公式,教师只作为组织者、指导者和参与者,适当进行点拨,使学生不但“学会”,而且“会学”。从而培养了学生的空间想象力,又发展了学生的逻辑思维推理能力。

4、 注重媒体应用,有意识地突破学生学习知识的难点

利用计算机和动画课件,辅助课堂教学,有其直观、形象而又生动的特点,它能使静态的画面动态化,抽象的内容形象化,同时还不受时间和空间的限制。这节课恰当地运用了多媒体课件演示,充分调动了学生的学习兴趣,提高了课堂教学的效率,是其他教学手段无法比拟的。

五、教学环境及资源准备

用多媒体课件,圆形卡片辅助教学

六、教学过程

1、什么是圆的面积?

(1)涂出一个圆的面积

(2)用自己的话说什么是圆的面积?

2、回忆平行四边形、三角形、梯形的面积计算公式用什么方法推导的?

3、能不能用剪、拼的方法把圆转换成我们学过的图形?

4、学生拿附页1进行剪拼,看能转换成我们学过的什么图形?

5、学生汇报后,课件演示。

6、得出结论:分的等份数越多,拼出的图形越接近长方形,无限地分下去,最终拼出的图形就是长方形、

7、转化后的长方形的长和宽与原来的圆有什么关系?

小组合作学习,讨论以下两个问题:

1) 转化后长方形的长相当于什么?宽相当于什么?

2) 你能从计算长方形的面积推导出计算圆面积的公式吗?

8、汇报讨论结果。

9、运用新知识,解决问题。

1)r=5cm,求圆的面积

2)课始主体图中的问题

总结

小结本课知识,提出要求,希望大家能运用我们今天的所学所得解决我们生活中遇到的更多问题。

总之,这节课,我力图从学生已有的知识背景出发,采取观察操作、合作探究的学习方式,帮助学生再实践活动中理解概念,掌握知识形成技能,让课堂充满活力,让学生真正成为学习的主人。

圆的面积教案 篇3

1、教学目标

1.理解和掌握圆面积的计算公式,沟通圆与其它图形之间的联系,增强观察、操作、分析、概括的能力以及逻辑推理能力。

2.学会利用已有的知识,运用数学思想方法,推导出圆面积计算公式;感受极限、转化、以直代曲等数学思想方法。

3.认真观察、深入思考,面对困难勇于克服、弃而不舍。

2、学情分析

《圆的面积》一课是小学数学第十一册第五单元第四小节的起始课。本课的教学要求主要是帮助学生理解和掌握圆面积的计算公式,培养学生观察、操作、分析、概括等能力。以往主要教学方法是:教师先带领学生将圆沿半径剪开,将若干个小扇形拼成长方形,借助长方形面积公式来推导圆面积的公式。然后在教师的引导下部分学生再将圆转化成平行四边形,甚至梯形、三角形,借助已知图形的面积公式推导圆面积的公式。一节课至少展现三、四种转化方法,教学容量较大、内容较难。

看到这样的教学过程我产生了一些困惑:

1.学生能想到这样的转化的方法吗?——这使我想到了学生学习平面图形的历程。学生第一次学习最基本的图形的面积:长、正方形。可以看出使用面积单位拼摆的方法得到的图形面积其实是最为直接的方式。学生学习的所有直线段图形,可以看出它们之间有着非常直观地联系,易于转化。作为第一个曲边图形“圆”,面对以上学习的转化发过程,学生怎么就能想到把圆等分成小扇形并拼出学过的图形呢?这无疑需要一个思维的飞跃,如果这个飞跃的过程是属于学生自己的,那样才是真正有价值的。

2.在老师的讲授下又有多少学生能理解多种转化方法呢?

我先在自己班进行了多种转化方法的试验,发现还真有孩子的思维水平让我刮目相看,可我也发现有80%的孩子这节课没有参与真正的实验研究,只是跟着别人看、听,下课时有一半的孩子还不认可圆面积转化的过程。

一节课是只为20%的孩子服务,还是应尽可能让每一个孩子都有不同层次的体验与收获呢?

3、重点难点

教学重点:运用转化思想探索圆面积的解决办法。

教学难点:如何将曲线图型转化成直线型图形以及对极限思想的渗透。

4、教学过程

活动1【导入】引入课题

同学们圆是我们在小学阶段接触的第一个曲边图形,它在生活中也有广泛的应用,我们来欣赏一下生活中的圆吧!(ppt到泳池)

今天我们一起要来研究的是圆的面积。(板书课题:圆的面积)

活动2【导入】交流困难

我看到有同学已经有了自己的想法,但是,面对“圆”这么特殊的图形也有了一些问题,我们先暂停手中试验,一起来分享一下!

(1)有同学在圆里画出了一个正方形,请这样的同学来介绍一下?教师操作

ppt提问:我们学过了这么多种平面图形,可你们怎么就想到在圆里画正方形了。

生1:因为他和圆最接近,

师:你能想一想,为什么说正方形和圆最接近吗?

生2:正方形正正方方的,四边都一样长,

生3:在圆中画正方形会让剩下的部分最少,而且剩下的部分都是一样的。

生4:正方形和圆最像了,正方形的对称轴最多,圆有无数条对称轴。

师:看看同学们多么善于思考呀,通过你们的发言让我感受到,和其他学过的图形相比正方形和圆真的非常接近,你们的数学直觉真敏锐,太了不起了。

(2)在圆里画出了很多的小方格,请这样的同学来介绍一下?。

提问:看看同学们的想法多有创意呀,但是你们是怎样想到用小方格来解决问题的呢?

生1:我们最开始学习长方形、正方形的面积时就是用面积单位拼摆的方法研究。

生2:我们以前学习的很多图形的面积,比如平行四边形、三角形、梯形其实都可以用方格来计算,可以数有多少1平方厘米的小方格,就可知道图形的面积了。

师:你们真是了不起,我们最初学习的面积单位,它是一个最基本的研究图形面积的方法,后来我们又学习了不同的研究图形面积的方法,比如像拼摆、割补等方法,运用面积单位寻找图形面积就不太常用了,今天同学们面对圆面积的时候又想到了它,你们的好方法让我想起了我的一位老师说过的话:退回到原始,不失其本质!

(3)还有一种想法也来和大家分享。

他发现原来学习的图形之间都是有关系的,可以相互转化。想到了我们在研究图形面积时最常用的方法“转化”,你们认为转化不精确是吗?

活动3【讲授】小结

同学们你们开动脑筋,用你们的.智慧已经能够解决圆面积中绝大部分的问题,同时也遇到了想要更精确地得到圆的面积,需要解决剩余面积的问题。对于这些不可知的地方,我们是否可以继续去研究它,让这些不可知的地方越来越小,是否就越来越接近圆的面积了呢?困难就摆在这里,但研究的智慧与方法在你们的头脑中。选择你感兴趣的研究方案,赶快动手试试吧!回到Iteach,可以继续研究,也可以删除重画。完成之后拍照提交到讨论二!学生操作

活动4【活动】全班交流

师:我想同学们一定像数学家一样非常投入地在研究圆的面积,老师从心里钦佩你们。有句话说:倾听是分享成功的最好方法,那么我们就一起来看看同学们是如何来解决圆面积的问题。教师操作

(1)刚才在圆中画正方形的同学先让我们看看他们后续的研究吧!

生1:我在空余部分补了补了三角形。

还有同学发现空余的部分还可以继续在上面补三角形会更接近圆。

师:看来他真的有了属于自己的研究成果。对于这位同学的研究过程,同学们有什么疑问或是感想吗?

生1:总是这样补三角形真的可以越来越接近圆的面积,就是有点麻烦。

生2:如果只看图形最外面一圈,我发现是一个正多边形。

师:同学们仔细观察一下,最外面一圈是一个什么样的图形?这个图形有什么特点吗?你还有其他的发现吗?

生:的确是正多边形,如果正多边形的边数更多一些,几乎就是一个圆了。

师:这位同学用了“几乎”,你们能想象到了吗?请看投影,看到这样的变化过程能谈谈谈你们有什么感受吗?

同学们一定发现了多边形边数越多越接近圆。

ppt有这样一句名言:割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣。这句话是什么意思呢?这里“割”就是分割的意思;“失”指误差。这就是说,圆内接正多边形的边数无限增加的时候,它的周长会越来越接近直到等于圆周长,它的面积也会越来越接近直到等于圆面积。这句话出自我国魏晋时期的数学家刘徽,曾用圆内接正多边形计算出π的近似值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形。短暂的时间你们都和大数学家有了相同的发现,多了不起呀!(贴)

(2)我们再来看看刚才画小方格的同学们后面的研究吧!

生:可以把剩下的地方画更小的方格就可以算出准确的面积了。

师:这位同学也有了自己的研究成果,可以非常准确的解决圆面积的问题了。对于这位同学的研究过程,你有什么疑问或是感想吗?

生:有同学会问:这样就真准确了吗?是不是永远都会有曲边存在呢?

小结:同学们想一想,既然可以画更小的格,曲边小了方格可以画的更小,是不是可以这样无限的画下去呢?

生:这样画下去倒是可以,但是算起来太麻烦了。

师:的确会让我们感觉计算起来比较麻烦,但其实只是我们缺少一些更好的计算方法而已,等你们以后学了更多的知识,计算就不再是问题了。同学们用了最为普遍的方法,虽然看似简单,却能解决这个很难的曲边图形的面积,如果以后再遇到更特殊的图形面积,你们有没有信心解决呢?我想一定是没问题的。

(3)我们再来看看第三位同学又有了什么新的发现吧!

生1:将圆等分成16分,拼成一个近似的平行四边形,平行四边形的底边长度其实就是圆周长的一半,而平行四边形的高就是圆的半径,所以,平行四边形的面积是底乘高,那么圆的面积就可以用圆周长的一半乘半径得到。

师:对于他们的方法你有什么疑问或是受到什么启发吗?

生:圆看似很特殊,其实和其他图形也是有联系的,

生:这是真正的平行四边形吗?他的上下两条底边都是弯弯曲曲的。教师操作

的确现在看来还是有点曲边的,但要是细分下去,16份,32份、64份,你觉得会怎样?

Ppt:那样就会越来越行四边形,曲边越来越直。但是无论分多少份其实道理是一样的,平行四边形的底是圆周长的一半,平行四边形的高是圆的半径。

师:让我们再来看一看圆面积的转化过程,将圆沿半径剪开,拼成平行四边形,圆的面积等于平行四边形的面积。平行四边形的底是圆周长的一半,平行四边形的高是圆的半径,圆周长的一半可以表示为c/2=2

活动5【讲授】总结

看看你们是多么的了不起呀,对于圆这么特殊的图形,同样能够找到它与学过图形之间的联系,从而寻找到圆面积的计算公式,可以帮助我们方便快捷的得到圆的面积。面对这样的方法对你有什么启发吗?你还有其他的想法吗?

前几节课我们已经认识了圆并学习圆的周长,那么对于圆你能说说你的感受吗?

我们曾经感受到了圆的圆润和完美,在今天这个探究的过程中,我们不仅再一次体会到圆的完美和神奇,而且还发现了圆和正方形、正多边形,以及学过的很多图形之间有着千丝万缕的联系。其实在圆中还有许多的美妙与神奇,有待我们今后继续探索。

圆的面积教案 篇4

教学目标:

1、使学生经历操作、观察、验证和讨论归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

2、使学生进一步体会“转化”方法的价值,培养运用已学知识解决新问题的能力,发展空间观念和初步的推理能力。

3、体会数学来自于生活实际的需要,感受数学与生活的联系,进一步产生对数学的好奇心和兴趣。

教学重点:

探索并掌握圆的面积公式,能正确计算圆的面积。

教学难点:

理解圆的面积公式的推导过程。

教学准备:

圆的面积公式的推导图。

一、回顾旧知,引入新知

1、师:四年级时,我们学习了求长方形和正方形的面积的方法,谁来说一说它们的面积的计算方法。

学生回答,教师予以肯定。

2、提问:圆的周长怎么计算?已知圆的周长,如何计算它的直径或半径?

3、引入:我们已经研究了圆的周长和直径、半径的计算方法,今天这节课我们来研究圆的面积是如何计算的。

(板书:圆的面积)

设计意图通过复习,促进学生对周长和已知周长求直径或半径的理解,唤起学生求长方形和正方形面积的经验,为新课的学习做好准备。

二、合作交流,探究新知

1、教学例7。

(l)初步猜想:圆的面积可能与什么有关?说说你猜想的依据。

(2)圆的面积和半径或直径究竟有着怎样的关系呢?我们可以做一个实验。

(3)出示例7第一幅图。思考:图中正方形的边长与圆的半径有什么关系?图中正方形的面积和圆的半径有什么关系?

(4)学生独立完成填空。

(5)猜测:圆的面积大约是正方形面积的几倍?

学生回笞后,明确:圆的面积小于正方形面积的4倍,有可能是3倍多一些。

(6)出示例7后两幅图,按照同样的方法进行计算并填表。

正方形的面积/

圆的半径/

圆的面积/

圆面积大约是正方形面积的几倍

(精确到十分位)

2、交流归纳:观察上面的表格,你有什么发现?

通过交流,明确

(1)圆的面积是它的半径平方的3倍多一些。

(2)圆的面积可能是半径平方的兀倍。

3、教学例8。

(l)谈话:经过刚才的学习,我们已经知道圆的面积大约是它半径平方的3倍多一些,那么圆的面积究竟应该怎样来计算呢?

(2)操作体验:教师演示把圆平均分成16份,并拼成一个近似的平行四边形。

(3)提问:拼成的图形像什么图形?追问:为什么说它像一个平行四边形?

初步想象:如果把圆平均分成32份,也用类似的方法拼一拼,想一想,拼成的.图形与前面的图形相比有怎样的变化?

(4)进一步想象:如果将圆平均分成64份、128份,也用类似的方法拼一拼。闭上眼睛想一想,随着份数的增加,拼成的图形会越来越接近一个什么图形?

(5)交流后,教师出示推导图。拼成的长方形与原来的圆有什么联系?在小组中讨论交流。

(6)在集体交流中借助图示小结:长方形的面积与圆的面积相等;长方形的宽是圆的半径;长方形的长是圆周长的一半。

(7)追问:如果圆的半径是r,长方形的长和宽应该怎样表示?根据长方形面积的计算方法,怎样来计算圆的面积?

(8)根据学生的回答,教师板书

长方形的面积一长×宽

圆的面积=

(9)追问:有了这样一个公式,知道圆的什么条件,就可以计算圆的面积了?

4、教学例9。

(1)出示例9,提问:有没有在生活中见过自动旋转X器?

(2)想象一下自动X器旋转一周后喷灌的地方是什么图形,X的最远的距离是什么意思。

(3)学生独立完成计算。

(4)集体交流。

5、教学例10.

(1)请同学读题,解读题意。

(2)找出题中的已知条件。

(3)分析解题过程。

(4)明确各个量之间的转化关系。

三、巩固练习,加深理解

1、完成“练一练”。

(1)学生独立解答。

(2)集体交流。

2、完成练习十五第1题。

(l)学生独立解答。

(2)集体交流。

3、完成练习十五第3题。

(1)学生列式后用计算器计算。

(2)集体交流。

4、完成练习十五第4题。

(1)学生独立解答。

(2)集体交流,指出:已知周长求面积,先要根据周长求出半径。

5、作业:练习十五第2、5题。

四、课堂小结

师:通过今天的学习,你有什么收获?

学生发言,教师点评。

圆的面积

长方形的面积=长×宽

圆的面积

圆的面积教案 篇5

教学内容:

苏教国标版五年级下册103-105页及练一练和练习十九1-3题。

教材分析:

本课时内容是在学生已掌握了圆的基本特征和圆的周长公式的基础上,引导学生探索并掌握圆的面积公式。通过3个例题教学,采用两种不同的的策略,推导出圆的面积,让学生充分感受到圆的面积公式推导过程的合理性。

教学时,一要重点引导学生用数方格的方法计算圆面积及对相关数据进行分析和比较的过程中,发现圆的面积和以它的半径为边长的正方形面积之间的近似关系;二要把握两个关键环节:一是圆可以转化成过去所学过的什么图形;二是转化成的这个图形与原来的圆有什么联系。最后通过应用实践让学生运用知识解决实际问题的成功体验,增强学生学习数学的信心。

学情分析:

1、学生已有知识基础

在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形的面积时,已经学会了用割、补、移等方式,把未知的问题转化成已知的问题。因此教学本课时,可以引导学生用转化的方法推导出圆的面积公式。

2、对后继学习的作用

圆面积的计算是今后学习圆柱、圆锥等内容的重要基础。

教学目标:

1、知识与技能:

(1)理解圆的面积的含义。

(2)经历圆的面积公式的推导过程,理解和掌握圆的面积公式。

(3)培养学生分析、综合、抽象、概括的能力和解决简单实际问题的能力。

2、过程与方法:

经历圆的面积公式的推导过程,体验实验操作、逻辑推理的学习方法。

3、情感与态度:

感悟数学知识内在联系的逻辑之美,体验发现新知识的快乐,增强学生的.合作交流意识,培养学生学习数学的兴趣。

教学重点:

正确掌握圆面积的计算公式。

教学难点:

圆面积计算公式的推导过程。

教学准备:

1.CAI课件;

2.把圆16等分、32等分和64等分的硬纸板若干个;

教学设计:

一、创设情境,提出问题。

投影出示草坪喷水插图

师:请大家观察这幅插图,说说从图中你能发现数学知识吗?

学生观察、讨论并交流:

生1:我能发现喷水头转动一周所走过的地方刚好是一个圆形。

生2:这个圆形的半径就是喷头喷水的距离,也就是5米;周长就是喷水所走过的路线;

生3:这个圆形的中心就是喷头所在的地方。

师:请大家说说这个圆形的面积指的是哪部分呢?

生4:被喷到水的草坪大小就是这个圆形的面积。

师:今天这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。(板书:圆的面积)

二、自主探究,合作交流:

1、课件先出示一个正方形,再以正方形的一个顶点为圆心,边长为半径画一个圆,请学生观察:正方形的边长与圆的什么有关系?如果半径是r,正方形的面积是多少?

板书:正方形的边长=圆的半径r

正方形的面积=r2

2、猜想:圆的面积是正方形面积的多少倍?你是怎样想的?

3、教学例7

⑴谈话:刚才我们猜想圆的面积是正方形面积的3倍多,下面我们用数方格的方法来研究。

⑵课件出示例7第一幅图表,请同学们按照图表的要求数一数,算一算,把表格填完整,再在小组里交流。

⑶小组汇报(实物投影展示学生填写的表格)

⑷刚才我们通过一个圆验证了我们的猜想圆的面积大约是正方形面积的3倍多一些,而一个圆还不足以说明问题,我们再找两个圆用同样的方法验证。课件出示例7的第二幅图表,小组合作完成表格。

⑸小组汇报交流

⑹谈话:通过猜想、验证,我们都认为圆的面积是正方形面积的3倍多一些,我们知道正方形的边长等于圆的半径r,正方形的面积等于r2,那么圆的面积与它的半径有什么关系呢?

板书:S=r2×3倍多

[设计意图]

让学生仔细观察正方形和圆的关系后大胆猜想圆的面积是正方形的多少倍,接着从学生熟悉的“数方格”初步验证猜想,为进一步探索圆的面积公式作准备,获得的结论与例8推导出来的公式互相印证,能使学生充分感受圆面积公式推导过程的合理性,加深对有关圆形转化方法的体会。

三、动手操作,探索新知

1.回忆平行四边形、三角形、梯形面积计算公式推导过程。

(1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?

(2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?

(3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?

2.推导圆面积的计算公式。

(1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?

(2)学生小组讨论。

看拼成的长方形与圆有什么联系?

学生汇报讨论结果。

(3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)

(4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?

生边答师边演示课件。

生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

因为长方形的面积=长×宽

所以圆的面积=周长的一半×半径

S=πr×r

S=πr2师小结公式S=πr2,让学生小组内说说圆的面积是怎样推导出来的?

(5)读公式并理解记忆。

(6)要求圆的面积必须知道什么?(半径)

四、联系实际,解决问题:

1教学例9

(1)课件出示例9;

(2)说出已知条件和问题;

(3)学生自己试做;

(4)讲评,注意公式、单位使用是否正确。

2师:“老师的家中新买了一张圆桌,你们想看吗?(教师用电脑显示图片)为了保护好桌面,我想为桌面配一块和桌面一样大的玻璃,但不知该画一块多大的玻璃?(电脑中标示出桌面直径)。

五、全课总结,课后延伸:

1、今天这节课你学到了什么?

2、圆面积的计算方法,我们是怎样探索出来的?

3、小结:这节课我们通过猜想、动手操作把圆转化成近似的长方形来验证猜想,这是一种重要的数学思想方法,希望大家在今后的学习中大胆猜想,勇于探索,解决生活中的数学问题。

六、布置作业

1.第107页的第1-3题。

2.找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

测量物直径(厘米)半径(厘米)面积(平方厘米)

七、板书设计:

圆的面积

S=r2×3倍多

长方形的面积=长×宽

圆的面积=周长的一半×半径

S=πr×r

S=πr2

教学反思

本课时从生活中喷水头浇灌农田这一生活场景引入,使学生理解了推导圆面积公式的必要性,激发了学生的求知欲望,调动了学生的积极性,使全体学生积极参与到数学学习活动中来。在强烈的求知欲望驱使下,学生凭借已有的生活经验和知识经验,发挥自己的想象,从估计到公式的推导;从数方格到剪拼成学过的平面图形。在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时遵循学生的认识规律,从学生的生活经验和已有的知识出发,重视学生获取知识的思维过程,。重点引导学生将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,发展学生的空间观念,从而正确掌握圆面积的计算公式。

圆的面积教案 篇6

教学内容:

六年制小学数学教科书第十一册第一单元《圆的面积》中的第一节课,数学 - 圆的面积(一)。

教学目的:

1.通过教学使学生建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

2.能正确地应用圆面积计算公式进行圆面积的计算,并能解答有关圆的实际问题。

教学重点:

理解和掌握圆面积的计算公式的推导过程

教学难点:

圆面积计算公式的推导

教学过程:

一 、创设情境,提出问题

( 课件演示)用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题)

生:1羊走一圈有多长?2羊最多能吃到多少草?3羊能吃到草的最大面积是多少?

二、引导探究,构建模型

A:启发猜想

师:羊吃到草的'最大面积最大是圆形:

1、这个圆的面积有多大猜猜看;

2、试想圆的面积和哪些条件有关?

3、怎样推导圆的面积公式?(生试说)

B:分组实验,发现模型

学生分小组将平均分成16等分、32等分的圆放在桌上自由拼摆,拼成以前学过的平面图形摆好后想一想:

1、你摆的是什么图形?

2、你摆的图形与圆的面积有什么关系?

3、图形各部分相当于圆的什么?

4、你如何推导出圆的面积?

请小组长汇报拼摆的情况,鼓励学生拼摆成不同的平面图形(师课件展示动画效果)可以拼摆成长方形、梯形、三角形、平行四边形四种情况。

三、 应用知识,拓展思维

1师:要求圆的面积必须知道什么?

2 运用公式计算面积

A完成羊吃草的面积

B完成课后“做一做”

C一个圆的直径是10厘米,它的面积是多少平方厘米?

D找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

测量物直径(厘米)半径(厘米)面积(平方厘米)

3应用知识解决身边的实际问题(知识应用)

下面是一个体育场的平面图,请你算一算跑道的周长是多少米?长方形体育场的占地面积是多少平方米?学校要请师傅给体育场铺草皮,已知每平方米的草皮是2.4元,学校一共要付多少钱才能完成?

四 归纳总结,完善认知

今天学了什么,这些知识我们是用什么方法学来的,你懂得了什么?

圆的面积教案 篇7

教学目标

1、通过操作、观察,引导学生推导出圆面积的计算公式,并能解决一些简单的实际问题。

2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念,并渗透极限、转化的数学思想。

3、在圆面积计算公式的推导过程中,运用转化的思考方法,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想,使学生受到辩证唯物主义观点的启蒙教育。

教学重点

圆面积的计算公式推导和运用。

课前准备

一个大圆、剪刀、小正方形。

课时安排:1课时

授课人

授课时间

教学过程

一、复习引入,导入新课。

教师引导交流:(出示一个圆)我们已经认识了圆,说说你对圆的了解。

学生说出自己的见解。

教师引导交流:如果圆的半径用r表示,周长怎样表示?周长的一半怎样表示?

学生做出回答。

教师引导交流:圆的周长和直径、半径有关。大家猜想一下,圆的面积与谁有关?

二、探索尝试,解释交流。

教师引导交流:同学们的'猜想对不对呢?下面我们就一起来验证一下。

大家可利用昨晚把圆剪开后,拼成的图形展示一下,看看发现了什么?

全班汇报交流:谁想先来展示一下?(学生回答)

教师引导交流:你能让平行四边形的底再直一点吗?

学生领悟:分成4份其中的一份是扇形,拼成一个近似的平行四边形。

学生领悟:多分几份,平行四边形的底就会直一些。

教师引导交流:对,如果把圆平均分成8份、16份、32份会怎么样?

教师引导交流:请大家闭上眼睛想象一下,分成128份呢?如果把这个圆平均分的份数越来越多呢?

教师引导交流:对,把圆分的份数越多,拼成的就越近似于平行四边形。

教师引导交流:若把其中的一个小扇形平均分成2份,取一份放在另一边,平行四边形就变成了什么图形?

师:这样就把求圆转化成了求长方形。

教师引导交流:你认为转化成的长方形与圆有什么关系?

生:他们的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

教师引导交流:你能根据它们的关系,推出圆的面积公式吗?

长方形的面积=长×宽

圆的面积=c÷2×r=πr×r=πr2

教师引导交流:如果用s表示圆的面积,那么圆的面积公式可以写成:

s=πr2

教师引导交流:黑板上的这个圆半径是10厘米,它的面积是多少。

三、巩固练习

1、请同学们利用公式,求出“神舟五号”飞船预先设定的降落范围是多大。

建议:可以先画模拟图,然后想办法得出比预定范围小了多少平方米。

2、自主练习第1题。

3、 自主练习第2题。

给出圆的直径求圆的面积,必须先求出圆的半径,再求圆的面积。

4、 自主练习第3题。

总结:通过这节课的学习,你有什么收获?

圆的面积教案 篇8

教学目标:

1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积。

2、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,能解决一些有关实际生活的问题。

教学重点,难点:

掌握圆柱侧面积和表面积的计算方法。

运用所学的知识解决简单的实际问题。

教学过程:

一、引入新课:

前一节课我们已经认识了一个新朋友——圆柱,谁能说说这位新朋友长什么样子以及有什么特征吗?

1.圆柱是由平面和曲面围成的立体图形。

2.圆柱各部分的名称(两个底面,侧面,高)。

3.把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。

同学们对圆柱已经知道得这么多了,还想对它作进一步的了解吗?今天我们就一起来研究怎样求圆柱的表面积。

二、探究新知:

以前我们学过正方体、长方体的表面积,观察一个长方体,我们是怎么求这个长方体的表面积的呢?(六个面的面积和就是它的表面积)

同学们想一想我们要求圆柱的表面积,那么圆柱的表面积指的是什么?

教师引导,学生讨论结果:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。

板书:(圆柱的表面积=圆柱的侧面积+两个底面的面积)

1.圆柱的侧面积

(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?

(学生观察很容易看到这个长方形的面积等于圆柱的侧面积)

(3)那么,圆柱的'侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)

2.侧面积练习:练习二第5题

学生审题,回答下面的问题:

这两道题分别已知什么,求什么?

小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

3.理解圆柱表面积的含义.

(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

公式:圆柱的表面积=圆柱的侧面积+底面积×2

4.尝试练习。

(1)求下面各圆柱的侧面积。

①底面周长2.5分米,高0.6分米。

②底面直径8厘米,高12厘米。

(2)求下面各圆柱的表面积。

①底面积是40平方厘米,侧面积是25平方厘米。

②底面半径是2分米,高是5分米。

5.小结:

在计算圆柱形的表面积时,要根据给定的数据计算各部分的面积。(如:有时候给出的是底面半径,有时是底面直径。)

三、巩固练习。

1.做第14页“做一做”。(求表面积包括哪些部分?)

2.练习二第6,7题。

四、课后思考。

同学们想一想是不是所有的圆柱在计算表面积时都可以用

公式:圆柱的表面积=圆柱的侧面积+底面积×2来计算呢?

大家都在看