数学面积的教学设计

笔构网

2025-09-30教案

请欣赏数学面积的教学设计(精选11篇),由笔构网整理,希望能够帮助到大家。

数学面积的教学设计 篇1

教学内容

教材第89页:长方体和正方体的表面积

教学目标

1、使学生在具体的情境中,经历操作、讨论、交流、归纳的过程,理解长方体、正方体表面积的含义,探索并掌握长方体和正方体表面积的计算方法。

2、使学生会运用表面积的意义,解决生活中的一些简单实际问题;能根据实际情况计算长方体和正方体部分面的面积和,进一步培养学生的探索意识和空间观念,提高解决简单实际问题的能力。

3、运用多媒体辅助教学,发展学生的空间观念,培养探究立体图形的兴趣。

教学重难点

重点:理解表面积的意义;探索长方体和正方体表面积的计算方法。

难点:根据给出的长方体的长、宽、高,想象出每个面的长和宽各是多少。

教学准备

教师:多媒体课件,长方体纸盒。

学生:长方体纸盒

教学设计

一、复习铺垫

同学们,上节课我们认识了长方体和正方体,通过学习你知道了什么?

生答。(教师强调面的知识)

二、创设情境、引入问题

老师对长方体和正方体也非常感兴趣,做了一个长方体的纸盒,制作这个纸盒至少需要用多大面积的纸板呢?要解决这个问题就是求什么?

生:长方体纸盒的表面积。

师板书课题:长方体和正方体的表面积

师:看了课题同学们想问什么?

师生共议研究课题:

(1)什么叫长方体和正方体的表面积?

(2)怎样求长方体和正方体的表面积?

三、合作探究、学习新知

1、探索长方体表面积的计算方法。

什么叫长方体的表面积呢?请看大屏幕。

多媒体出示长方体展开图。

师:同学们看完后有什么想说的?

生:围成长方体的是6个长方形。

生:长方体的表面积就是展开后6个面的总面积。

师归纳后板书:长方体或正方体6个面的`总面积,叫做它的表面积。

师:我们知道了什么是表面积,那么制作这个纸盒至少需要多大面积的纸板这个问题该怎样解决呢?

多媒体出示长方体粘合图

师:同学们看完后,又想到了什么呢?

生:求出长方体6个面的面积,也就知道了做纸盒所需要的面积。

生:要知道做这个纸盒用多大面积的纸板就是求它的表面积。

〔着重引导学生体会:求做这个长方体纸盒需要多少硬纸板,就是求长方体6个面的总面积。〕

多媒体出示长方体图形

师:现在同学们能求出它的表面积吗?

生:不能。

师:为什么?

生:没有数据。

师课件出示数据,引导学生把数据放到长方体相应的位置。

2、探究每个面的长和宽与长方体的长、宽、高有什么关系?

师:我们知道了长方体的长、宽、高,长方体每个面的长和宽又分别是长方体的什么条件呢?

多媒体展示,引导学生讨论:

上、下每个面的长和宽分别是长方体的()和();

前、后每个面的长和宽分别是长方体的()和();左、右每个面的长和宽分别是长方体的()和()。

小组讨论交流(学生汇报)得出长方体的长、宽、高与每个面长和宽的关系:

上、下每个面的长和宽分别是长方体的(长)和(宽);

前、后每个面的长和宽分别是长方体的(长)和(高);左、右每个面的长和宽分别是长方体的(高)和(宽)。

3、尝试计算

问:现在你能求出做这纸盒至少需要多大面积的纸板吗?

学生尝试计算,出示活动要求:

(1)小组讨论,想办法求出做这个纸盒需要多大面积的纸板。

(2)把自己的计算方法和小组内的同学交流。

教师参与学生的活动。

反馈:哪个小组先上来,把你们的研究过程和结果向大家汇报一下?在一个小组汇报时,其他小组的同学要仔细地听,认真地想,如果有什么问题,可以向他们提问

学生板演后说明想法:

生1:我先用30x10求出上面的面积,因为上下面的面积相同,所以再乘2就是上下面的面积;用30x15求出前面的面积,再乘2就得出了前后两个面的面积;用15x10求出右面的面积,再乘2,就是左右两个面对面积,然后把6个面的面积加起来。

生2:我先求出上面、前面、左面3个面的面积,因为长方体相对的面完全相同,所以再乘2就求出6个面个的面积。

教师注意引导学生语言叙述的完整性,准确性。

师多媒体展示学生的汇报结论。

指两生把板书上的数字换成对应的长、宽、高,引导学生总结出:长方体的表面积=(长x宽+长x高+宽x高)x2或者长方体的表面积=长x宽x2+长x高x2+宽x高x2。

多媒体出示:长方体的表面积=(长x宽+长x高+宽x高)x2或者长方体的表面积=长x宽x2+长x高x2+宽x高x2。

4、探究正方体的表面积计算方法。

多媒体出示:棱长为5厘米的正方体的表面积是多少?

学生尝试计算,指生汇报并说明想法,引导学生得出:正方体的表面积=棱长x棱长x6。

四、巩固新知、拓展运用

1、课件出示“我会选”,学生口答。同时在多媒体上出示答案。教师了解学生对新知识的掌握情况。

2、课件出示“说一说”,学生口答,同时在多媒体上出示答案。运用生活中的问题,让学生体会数学与生活的联系,提高学习兴趣。

3、课件出示“聪明的你”,引导学生注意:

(1)在处理长方体(正方体)实际应用时,要灵活运用表面积的计算方法,(不一定是6个面);

(2)计算时,关键是找准数据。

学生独立完成后,在班内汇报,鼓励学生运用多种方法解决问题。

4、课件出示“攀登高峰”,引导学生分析计算时应考虑几个面,问题课后讨论完成。

五、课堂小结

通过学习,你有哪些收获?还有那些不懂的问题?

数学面积的教学设计 篇2

教学目标:

1、通过学生操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2、在圆面积计算公式的推导过程中,通过让学生观察“曲”与“直”的转化,向学生渗透极限的思想。

3、通过小组会议交流,培养学生的合作精神和创新意识。

教学重点:推导出圆的面积公式及其应用。

教学难点:圆与转化后的图形的联系。

教具、学具:剪刀、图片,圆片4等份……64等份的拼图对比挂图。

教学过程:

1、以前我们学过哪些平面图形的面积?

2、长方形的面积怎样计算?

3、回忆一下平面四边形的面积公式是怎样推导的?(小黑板出示推导图形及公式)

4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。(板书:转化)

5、转化后的图形与原来的图形面积相等吗?(板书:等积)

6、(出示图形):这是什么图形?圆和我们以前学过的.平面图形有什么不同?(板书:曲)

7、那些圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容。

数学面积的教学设计 篇3

设计说明

本节课内容是在学生初步认识了圆,学习了圆的周长及多边形面积的基础上进行教学的。在教学设计上有以下特点:

1.注重联系生活实际,开展探究性的数学活动。

学生从认识直线图形发展到认识曲线图形是一次质的飞跃,他们已经能从形象思维发展到抽象思维,对事物已经具有了一定的立体思维空间,所以在教学中注重联系生活实际,利用学具开展探究性的数学活动,使学生从中获得成功的体验,感受到数学的价值,从而更加热爱学习数学,热爱生活。

2.在教学中渗透数学思想,完成新知构建。

在学习数学的过程中,数学知识虽然很重要,但更重要的还是以数学知识为载体所体现出来的数学思想方法。圆是一个由曲线围成的图形,圆的面积计算,对学生来说有一定的难度,所以在让学生猜测和运用小正方形来测量的基础上,利用学具动手操作,让学生自主发现圆的面积和拼成的长方形面积之间的关系,从而推导出圆的面积计算公式,降低了学习的难度,同时将化曲为直的数学思想融入到教学活动中,有效地完成了知识的构建。

课前准备

教师准备PPT课件圆的面积演示教具大小不同的两张圆形纸片

学生准备剪刀小正方形透明塑料片圆形学具

教学过程

⊙复习铺垫,导入新课

1.回忆圆的周长的计算方法。

(1)已知直径怎样求圆的周长?

(2)已知半径怎样求半圆的周长?

2.建立圆的面积的概念。

(1)感知圆的面积的大小。

师拿出准备好的大小不同的两张圆形纸片,问:大家看这两张圆形纸片,它们的面积一样大吗?

师明确:圆的面积有大有小。

师:谁能说一说什么叫做圆的面积呢?

师指出:圆所占平面的大小叫做圆的面积。

(2)区别圆的面积和周长。

指导学生拿出准备好的圆形学具,同桌之间用手摸一摸,指一指:哪儿是圆的周长?哪儿是圆的面积?

学生操作后,师生共同明确:圆的周长是指围成圆一周的.封闭曲线的长;圆的面积是指圆所占平面的大小。

设计意图:在实际的教学中学生很容易混淆圆的周长和面积,因此,设计了摸一摸、指一指这个活动,让学生在初步感知圆的面积和周长的区别的同时,充分感知面积的意义。着重对容易出错的地方进行对比和强化,尽可能地让学生减少差错。

⊙动手操作,探究新知

1.通过度量,猜想圆的面积的大小。

用边长等于半径的小正方形透明塑料片,直接度量圆的面积,(课件演示度量过程)观察后得出圆的面积比4个小正方形小,又比3个小正方形大。初步猜想:圆的面积相当于半径平方的3倍多一些。

师:由此看出,要求圆的精确面积是无法通过度量得出的。

2.回忆多边形面积公式的推导过程。

想一想,我们是用什么方法推导出平行四边形、三角形和梯形的面积公式的?

(课件演示平行四边形的面积推导过程)

过渡:我们在学习推导几何图形的面积公式时,总是把新的图形通过分割、拼合等办法,将它们转化成我们熟悉的图形。今天我们能不能也用这样的方法推导出圆的面积计算公式呢?

3.动手操作。

(1)组织学生分别把圆平均分成16份、32份,然后剪开,拼成两个近似的长方形。

课件演示剪拼的过程:

(2)讨论:

①拼成的图形是长方形吗?(是近似的长方形,因为它的上下两条边不是线段)

②圆和近似的长方形有什么关系?(形状变了,但面积相等)

③把圆平均分成16份和32份后,拼成的图形有什么区别?(把圆平均分成32份后拼成的图形更接近于长方形)

④如果把一个圆平均分成64份、128份……拼成的图形会怎样呢?

(课件演示,得出结论:圆平均分成的份数越多,拼成的图形越接近于长方形)

(3)观察、汇报拼成的长方形与圆的关系。

①拼成的长方形的长和宽与圆的周长和半径有什么关系?(结合学生汇报,课件演示)

圆的半径=长方形的宽

圆的周长的一半=长方形的长

②拼成的长方形的面积与圆的面积有什么关系?

(引导学生理解:形状不同,面积相等)

(4)推导圆的面积计算公式。(引导学生结合图形理解)

因为拼成的长方形的面积相当于原来圆的面积,拼成的长方形的长相当于原来圆的周长的一半,宽相当于原来圆的半径,且长方形的面积=长×宽,所以圆的面积=圆的周长的一半×圆的半径,即S圆=×r。

因为C=2πr,所以S圆=πr×r,S圆=πr2。

数学面积的教学设计

作为一无名无私奉献的教育工作者,有必要进行细致的教学设计准备工作,借助教学设计可以更好地组织教学活动。写教学设计需要注意哪些格式呢?下面是小编为大家收集的数学面积的教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。

数学面积的教学设计 篇4

设计说明

本课学习的内容是比较图形的面积,

一是让学生进一步体会面积的含义;

二是掌握比较图形面积大小的基本方法。基于上述学习内容,教学设计突出以下两点:

1、采取自主探究、小组合作交流的学习方式,把方格纸作为载体,呈现各种形状的平面图形,并提出明确的要求。

这样就为学生提供了思考的空间,让学生根据自己的经验,选择不同的图形进行面积大小的比较,掌握比较图形面积大小的方法并在交流中体验方法的多样性。

2、安排人物的提示性对话,向学生渗透比较图形面积大小可以使用的几种方法,以此激发学生自主探索比较图形面积大小方法的欲望。

同时,通过学生间的相互交流,让学生了解比较图形面积大小的各种方法。这样开放式的编排可以发散学生的思维,使学生积极主动地思考,锻炼思维的敏锐性。

课前准备

教师准备PPT课件各种硬纸板做的平面图形

学生准备附页2中的图形方格纸七巧板

教学过程

⊙直奔主题,揭示新课

出示两个用硬纸板做的平面图形。

(1)说一说这两个图形哪个面积大,哪个面积小。

(2)提问:如果两个平面图形的形状不同,大小很难区分时,你有什么办法?

(3)揭示课题:比较图形的面积。

设计意图:课程的开始教师就抛出一个和教学重点有关的问题,并且直接进入主题:比较图形的面积,更好地将学生的思维带入到新课的学习中,激发学生的求知欲望。

⊙自主探究,学习新知

1、课件出示教材49页方格纸中的.图形。

师:这些图形的面积大小有什么关系?请同学们剪下教材附页2中的图形仔细观察、比较,看谁的发现最多!

(学生利用已经剪好的附页2中的图形拼一拼)

2、组织交流,让学生说说自己的发现,教师做好记录。

3、解决问题一

找出两个面积相等的图形,与同伴说一说你是怎样找到的。

师:哪几个图形的面积是相等的,理由是什么?

预设生1:图①和图③的面积相等,我是通过数方格得到的。

生2:图①和图③的面积相等,我是通过平移得到的。

生3:图②和图⑥的面积相等,我是用重叠的方法得到的。

生4:图②和图⑤的面积相等,把这两个图形重叠在一起,能够完全重合。

生5:图⑧和图⑨的形状不同,但面积相等,我是用数方格的方法得到的。

生6:图⑨和图⑩的形状也不同,但面积相等,我也是用数方格的方法得到的。

……

师:我们在比较两个图形的面积是否相等时,都用到了哪些方法?

引导学生归纳总结。(数方格、重叠)

4、解决问题二笑笑的发现你同意吗?

师:笑笑发现了什么?请你们也照样子拼一拼,验证一下笑笑的发现是否正确。

预设生:图⑤和图⑥合起来与图⑧的面积相等。

与同桌合作动手拼一拼,得到答案:图⑤和图⑥合在一起与图⑧的面积相等,笑笑的发现是正确的。

师:你还有其他的发现吗?

预设生:图①和图③合起来与图⑦的面积相等。

数学面积的教学设计 篇5

教学目标:

(1)、知识目标:结合具体实例和活动,理解面积的含义,会比较两个图形面积的大小。

(2)、能力目标:经历观察、比较、讨论等活动,培养提出问题和解决问题的能力。

(3)、情感目标:通过合作探究,体验成功的快乐,激发学生学习数学的兴趣,感受数学与现实生活的紧密联系。

教学重点:认识面积的含义。

教学难点:学会比较物体表面和平面图形的大小。

教学准备:剪好的长方形和正方形,透明格子片,硬币,剪刀等

教学过程

(一)情境引入,揭示课题

1、比赛活动:教师出示一个小正方形和一个大正方形,挑选男女生各一名,进行涂色比赛。

2、学生比赛。

3师问:你们觉得比赛公平吗?

生:不公平,图形一大一小,大图形花的时间要多。

师:那么图形的大小指的是图形的什么呢?(生:面、面积)

4、引出课题

师:对,今天我们就来学习物体的面积。(板书课题:面积)

(由学生感兴趣的比赛活动情景引入,既能激发学生的学习热情,又很自然地引入新知)

(二)观察体验,理解概念

1 、认识物体表面的面积。

1)、说一说:你们生活中都见过哪些面呢? 生:黑板的面、桌子的面、冰箱的面、

2)、摸一摸:铅笔盒的面、数学书封面、桌子的面

3)、比一比:

①教师的手掌和学生的手掌。

让一个学生上台展示自己的手掌,教师同时也展示自己的手掌,让全班其他同学比一比两个手掌表面的大小。

② 1元硬币和5角硬币。

③数学课本的面和数学练习本的面。

师:我们在比它们的什么?(生:面的大小)

小结:通过观察、操作与比较我们知道了物体表面怎样?

生:面有大有小。

4)结合具体实例说说面积的含义。

物体的表面有大有小。我们把物体表面的大小就叫做这个物体的面积(板书:表面的大小 面积)

黑板表面的大小是黑板面的'(面积),谁能把这句话完整地说说。

课本封面的大小呢?(多指名几个人说)

回忆一下,你刚才摸的是物体哪个面的面积?能照样子说说看吗?(让学生知道同一个物体不同的面,面积的大小也是不同的)

2 、认识封闭图形的面积。

师:刚才同学们说得不错,已经认识了什么是物体的面积。

师:(出示长方体盒子。)大家看这个长方体有几个面。这几面有什么特点啊?

生:6个面。

生:红色的面比绿色的面大。

生:绿色的面比黄色的面大。

生:老师,我发现相对的面大小相同。

师:大家看这个面是什么形啊?(长方形。)老师把它画到黑板上。它是由几条线段围成的?(4条线段。)

师:(出示正方体盒子。)这个正方体的6个面有什么特点啊?

生:6个面的面积是相同的。

师:那它的每个面都是什么形?(正方形。)老师把其中的一个面也画到黑板上。(师画。)它也是由几条线段围成的?(4条。)大家看像正方形、长方形,这样由几条线段围成的图形,我们把它叫做封闭图形。(板书。)

师:我们还认识哪些这样的封闭图形?

生:三角形、平行四边形。

生:圆、平行四边形。

师:(出示几个不是封闭图形的图片。)这几个图形是封闭图形吗?为什么?

数学面积的教学设计 篇6

一、学习目标:

1、学习圆柱的侧面积和表面积的含义,并掌握圆柱侧面积和表面积的计算方法。

2、会正确计算圆柱的表面积和侧面积,能解决一些有关实际生活的问题。

二、学习重点:

掌握圆柱侧面积和表面积的计算方法。

三、学习难点:

运用所学的知识解决简单的实际问题。

四、学习过程:

(一)、旧知复习

1、圆柱有几个面?分别是xx、xx和xx。

2、底面是xx形,它的面积=xx 。

3、侧面是一个曲面,沿着它的高剪开,展开后得到一个 xx形。它的长等于圆柱的xx,宽等于圆柱的xx。

4、一个圆形水池,直径是5米,沿着水池走一圈是多少米?

(二)列式为

1、圆柱的侧面积

(1)圆柱的侧面积指的是什么?

(2)圆柱的侧面积的计算方法:

圆柱的侧面展开后是一个长方形,这个长方形的面积就等于圆柱的侧面积。因为长方形的面积= xx,所以圆柱的侧面积= 。

(3)侧面积的练习

求下面各圆柱的侧面积。

①底面周长是1.6m,高0.7m。 ②底面半径是3.2dm,高5dm。

小结:要计算圆柱的侧面积,必须知道圆柱的 xx和xx这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

2、圆柱的表面积

(1)圆柱的表面是由和组成。

(2)圆柱的表面积的计算方法:

圆柱的表面积=

(3)圆柱的表面积练习题

一顶圆柱形厨师帽,高28cm,帽顶直径是20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)

分析,理解题意:求需要用多少面料,就是求帽子的。需要注意的是厨师帽没有下底面,说明它只有个底面。

列式计算:

①帽子的侧面积=

②帽顶的面积=

③这顶帽子需要用面料=

小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟囱用铁皮只求一个侧面积;水桶用铁皮是侧面积+一个底面积;油桶用铁皮是侧面积+2个底面积。求用料多少,一般采用进一法取值,以保证原材料够用。

3、巩固练习

一个圆柱底面半径是2dm,高是4.5dm,求它的表面积。

4、总结:通过这节课的学习,你掌握了什么知识?

圆柱的侧面积

圆柱的表面积

五、教学结束:

布置学生课下复习本节课内容。

教学反思

本节课的教学内容是九年义务教育六年级下册的《圆柱的体积》,我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:

一、学生学到了有价值的知识。

学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的.这样的知识具有个人意义,理解更深刻。

二、培养了学生的科学精神和方法。

新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。

三、促进了学生的思维发展。

传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。

本节课采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。

数学面积的教学设计 篇7

一、 案例背景:

执教班级是五(3)班和五(5)班,这两个班的学生思维都比较活跃,知识面较广。

教学内容是北师大版六年制小学数学第九册第25-26页探索活动(一)《平行四边形的面积》。课前,学生只学了长方形、正方形面积计算,而平行四边形在他们的头脑中还是个直观模型,有关平行四边形特征等知识一无所知。鉴于上述种种情况,对教学进行必要的知识铺垫,以利于这次探索活动有效地开展。从事数学教学工作以来,我崇尚在课堂教学中,尽量为学生创设“合作交流,自主探索”的空间。

二、教材简析:

平行四边形面积的计算,是在学生掌握了长方形和正方形的面积计算,对平行四边形有了初步的认识,清楚了其特征及底和高的概念的基础上进行教学的。若想使学生理解掌握好平行四边形面积公式,必须以长方形的面积和平行四边形的底和高为基础,运用迁移和同化理论,使平行四边形面积的计算公式这一新知识,纳入到原有的认知结构之中。另外,掌握平行四边形面积公式的推导方法,对后面学习其他图形的面积计算会起到积极的迁移作用。

三、教学诠释与研究。

“ 平行四边形的面积”我教学不止一次。以前教的是人教版教材,我把教学的重点放在:借助剪、拼的方法。利用形变积不变的道理,把平行四边形转化为长方形,从而推导出平行四边形的计算公式。教学时,我让学生动手剪、拼,把平行四边形拼成了长方形之后,我就开始下面的启发式提问:①平行四边形的底与长方形的长有什么关系?②平行四边形的高与长方形的宽有什么关系?③转化前后两图形之间什么没有变?启发学生讨论,回答。这样组织教学,学生一般都能得出正确结论,课堂教学进程是一帆风顺的,“效果”是好的。

现在再来审视一下以前的这一节课堂教学,我发现在这种看似良好的效果背后,却潜伏着大的危机:在这样的课堂中,问题由老师提出,思维的路线由老师操纵,学生究竟有多少自主学习的成分?这样的课堂教学貌似“启发式”,实则是由教学操纵的“包办婚姻”,学生是没有“自主权”的。若长此以往,学生只能成为解决问题的高手,而不是发发现问题、提出问题的高手。我们知道,创造源自问题,这样的教育培养出的学生还有创造性吗?

如今,我又开始教学这一内容。不同的现在使用的是北师大版的新教材。这一内容出现在五年级数学上册,标题是“探索活动(一)平行四边形的面积”。教材首先展示了这样一个情境:公园准备在一块平行四边形的空地上铺草坪,如何计算这块空地的面积?教材这样安排的目的是让学生面对一个新的问题,思考如何去解决,从而使学生感到学习新知识的必要性;随后,教材提供了两种解决问题的方法:一种是通过数格子的方法,数出这个平行四边形的面积,一种是通过剪与拼的活动,将平行四边形转化为长方形,然后计算出面积,最后,教材安排了观察平行四边形与长方形的关系,从中推导出计算平行四边形面积的公式。教材的编排意图是重在让学生自主探索,在探索活动中,使学生发现并理解平行四边形面积的计算方法。课堂教学时如何体现文本的这一“真谛”呢?新课程提倡教师要依据教材教,而不是教教材。在这一理念指导下,我对教材进行了重组。我根据班上学生的学习习惯和认识基础来创设问题情境。下面是课堂教学中的'开始片断:

小黑板出示:

师:每个小方块的面积是1平方厘米,你能知道上面每个图形的面积是多少吗?

生:图1的面积是12平方厘米。

师:你们是怎么想的?

生1:我是一块块数的。

生2:我发现长方形长是4㎝,宽是3㎝,所以面积是4×3=12(平方厘米)。

师:谁能很快知道图2这个图形的面积吗?

生1:它的面积还是12平方厘米,因为还是由12个小正方形组成的。

生2:把中间的一排往左推一格,所以还是12平方厘米。

生3:把多的一块剪下来拼过去,正好是一个长方形,面积还是12平方厘米。

师:同学们真会动脑筋!我们可用割下来补过去的方法,将图形转变为长方形,很快知道它的面积。谁能很快说出图3的面积?

生1:在图形中间划出一个正方形,面积是9平方厘米,再把两边的三角形拼在一起,面积是3平方厘米,一共是12平方厘米。

生2:把左边的两个小三角形剪下来补在右边也正好是个长方形,面积是12平方厘米。

师:对于这个图形,我们用割补的方法能很快知道它的面积。

接下来,小黑板出示:

比较一下,图中的平行四边形的面积与长方形面积大小如何?

生1:我用数方格的方法:长方形有5×3=15个小方格,而平行四边形有11整格,加上8个半格拼成的4个整格,也是15个方格,平行四边形面积和长方形面积同样大。

生2:我把平行四边形左边的割下一个三角形,补到右边,就得到一个长方形,得到的长方形面积是15个方格,所以,平行四边形的面积也是15个方格,两个图形的面积大小相同。

师:把平行四边形割补成长方形,图形的什么变了,什么没有变?

生:图形的形状变了,面积大小没有变。

师:说得好!我们把割下的一块没有扔掉,而补在这里,正好得到一个长方形,图形的形状变了,但面积没有变。所以,原来的平行四边形的面积是15个小方格。两个图形的面积一样大。

反思:现代建构主义认为,知识并不能简单地由教师或其他人传授给学生而只能由每个学生依据自身已有的知识和经验主动地加以建构。所谓对新的学习材料的“理解 ”,就是学习者依据自身的已有知识和经验(认知绘声绘色)去解释新材料,使新材料与主体的已有知识、经验之间建立起实质性的、非任意的联系。在上述片断中,我设计了三个图形让学生直接说出它们的面积,并对学生用割补的方法给予肯定,为的是学生去探究平行四边形的面积计算方法时能产生学习的正迁移。接着,又设计了面积相等的两个图形,一个是长方形,一个是平行四边形,特别是两个图是在画有小方格的背景上画出的,我还暗示性的画出了平行四边形的高,让学生比较两个图形面积的大小,学生很快就能用数小方格的方法和“割补”法,为下面的推导出平行四边形的面积公式奠定了关键性的一步课后反思时,我觉得这节课在引导学生推导平行四边形面积公式时铺垫、暗示还是多了点,如果抽掉那些铺垫,直接让学生把一个平行四边形剪拼成长方形,这时课堂上又会是怎样的情景呢?我期待着下一次的教学实践。

几经思考,第二天在另一个班上这一内容时,我决定我觉得该给学生更多的自主探索的空间。请看下面的教学片断:

师:刚才同学们用“割补”法将平行四边形转化成长方形,比出了两个图形面积的大小,是不是所有的平行四边形都能用割补的方法转化成长方形呢?请同学们拿出各自的平行四边形纸片,动手剪剪拼拼,看看行不行?

学生进行操作实践,加验证。

师:你们手中的平行四边形能不能转化成长方形?谁愿意上讲台前演示给大家看?

学生争着前来演示,沿着平行四边形地高剪开,拼成长方形。

学生演示时,师追问学生:是沿着哪一条线剪的?

生:沿着平行四边形地高剪开的。

师:为什么要沿着高剪?

生:因为长方形的四个角都是直角,不沿着高剪,就拼不成一个长方形。

师:由此看来,对于任何一个平行四边形都可以转化成一个长方形,长方形的面积你们已经会计算了,现在,你们能算出你们手中的平行四边形的面积吗?

有的学生在量着,有的则愣着,有的忍不住抱怨着:它没有告诉什么呀,怎么算?我悄悄地走过去,小声地问:你希望告诉你什么,你就能算了,你有办法自己去知道需要的条件吗?得到启发,该生也拿尺量了起来。

全班交流自己的结果。

生:我量得我手中的平行四边形的底是6㎝,高是4㎝,所以面积是6×4=24(平方厘米)。

师:你能不能告诉大家,计算平行四边形的面积为什么用平行四边形的底乘高?

生:因为用割补的方法把平行四边形转化成长方形,面积不变。我发现长方形的长相当于平行四边形地底,宽相当于平行四边形的高,所以平行四边形的面积是底乘高。

结合学生的回答,板书:

长 方 形 面 积 = 长×宽

平行四边形面积 = 底×高

师:用字母s表示平行四边形的面积,a表示它的底,h表示它的高,计算平行四边形面积的字母公式是怎样的?

生1:s=a×h

生2:还可以用小圆点代替乘号。

生3:还可以省略小圆点,写作:s=ah

师:这节课,你们学到了什么?

生:学会了计算平行四边形的面积。

师:是怎么学会的呢?

部分学生沉默,估计是学生不善于表达。

师:面对着求平行四边形面积的新问题,我们用割补的方法转化成学过的长方形,用旧知识解决了新问题。以后,我们还可以用这种思想方法去获取三角形,梯形面积计算等新知识。你们说这种思想方法重要吗?

反思:对于如何概括出求平行四边形面积的公式?我没有像以前那样由教师提出一个个小问题,然后学生回答,从而得出公式,而是直接先让学生计算手中的平行四边形的面积。如何计算平行四边形的面积呢?这一问题对学生来说具有极大的挑战性。学生居然算出来了,这说明学生的潜力是巨大的。课堂上一定要让学生积极地独立思考,自主探究。如果教师牵着学生走,铺垫太多,会妨碍学生独立思考,不利于学生的发展。平行四边形的面积学生既然求出来了,归纳求平行四边形面积的公式也就水到渠成了。

数学面积的教学设计 篇8

【 教学内容 】人教版小学五年级数学上册《平行四边形的面积》计算。

【 教材分析 】《平行四边形面积》教学是在学生已经掌握并能灵活运用长方形面积计算和平行四边形特征的基础上进行教学的,它将为后面学习梯形、三角形的面积及立体图形的表面积奠定基础,因此起到承上启下的作用。

【 学情分析 】学生虽然已经学过了长方形面积计算方法和平行四边形特征,但小学生的空间想象能力不够丰富,推动平行四边形面积计算公式有困难,因此,本节课将让学生充分运用已有的知识,全面参与新知识的发生、发展和形成过程。

【 教学目标 】:

1、 知识与技能:

(1)学生尝试探索、动手实践推导出平行四边形面积计算公式;

(2)能正确求平行四边形的面积。

2、过程与方法:

让学生经历探索平行四边形面积公式的推导过程,通过操作、观察、比较、推理和概括能力,发展学生的空间观念,渗透转化的思想方法。

3、情感态度与价值观:

培养学生的分析、综合、抽象、概括和解决实际问题的能力,增强学生学习数学的积极性;感受学习数学的快乐。

【 教学重点 】:能正确的求平行四边形的面积。

【 教学难点 】:平行四边形面积的计算公式推导。

【 教具准备 】:平行四边形、长方形、课件、剪刀、直尺

【 教学过程 】:

一、创设情境,揭示课题

同学们,我们的好朋友熊大今天要到一家公司去应聘,可是老板出了道题,这下可把他给难住了,同学们,让我们一起来帮助熊大顺利通关好吗?我们先来看看是一道什么考题。

(出示课件)老板用铁丝做了一个长方形拿住对角一拉成了一个平行四边形,是原来的长方形面积大还是后来的平行四边形面积大呢?让我们先来回忆下关于长方形和平行四边形都学过些什么知识?

那么要想知道那个图形的面积大?我们就需要计算他们的面积,长方形的面积我们以前学过,那平行四边形的面积怎么算呢?这节课就让我们一起来研究:平行四边形面积(板书课题)

二、学习新知

(一)面积公式的推导

1、用数方格法求平行四边形的面积

以前我们学习长方形和正方形面积的时候,用过一种方法——数格子。下面我们就用数方格的方法,看你能不能数出平行四边形和长方形这两个图形的面积?打开数学书87页试试吧。(完成数学书87页)

(多媒体出示)现在大家再仔细观察,通过这个表格你能发现什么?(边说边演示课件)

生:长方形的长和平行四边形的底相等,都是6米,长方形的宽和平行四边形的高相等,都是4米。面积也相等是24平方米。

师:你们都找到这个关系了吗?看来长方形和平行四边形之间存在着非常密切的联系。

数方格虽然可以数出平行四边形的面积,可是在现实生活中,比如草坪或一块地,或者是是一个非常大的平行四边形,我们还能用数方格的.方法吗?(不能)所以我们得研究出一种更简便的方法来计算平行四边形的面积。

(二)动手操作,推导公式

1、提出合作要求

拿出我们准备的平行四边形,刚才我们就发现平行四边形与长方形之间有密切的联系。下面我们就利用这个平行四边形看能不能把它转化成我们学过的长方形,如果能转化成长方形,思考大屏幕上的问题。下面就自己动手操作一下吧!自己做完了,小组交流一下,看看谁的方法更好一些?

2、汇报交流结果

(1)、(实物投影)从这个顶点向对边作高,然后沿高剪开,就得到了一个三角形和一个梯形,把三角形平移到右边,就拼成了一个长方形。

(2)、(实物投影)从平行四边形的这条边上任选一点向对边作高,然后沿高剪开,就得到了两个梯形,再把这个梯形平移到右边,就拼成了长方形。

长方形和原来的平行四边形之间有什么关系呢?想一想,它们什么变了?什么没变呢?(形状变了,面积没变。长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等)。

师:你们都找到这个关系了吗?根据长方形面积=长×宽,你能不能推导出平行四边形面积的计算公式?

生:平行四边形面积=底×高(板书)

师:也就是说,要想求平行四边形面积,必须知道它的底和高。如果用大写字母S表示平行四边形的面积,a表示底,h表示高,谁能用字母描述一下平行四边形面积的公式?

生:S=ah(板书)

你可以根据这个乘法算式写出两个除法算式吗?分别是h=S÷a a =S÷h 这两个公式表示什么?根据这两个公式,当我们已知面积和底就可以算出高,还可以已知面积和高算出底。

(三)面积公式的应用

通过转化我们找到了新旧知识之间的联系,从而解决了新的问题,相信大家在今后的学习中会不断的运用这种方法来学习。下面我们就用我们自己总结的方法来解决实际问题,相信大家一定没有问题。

1、出示例一,平行四边形的花坛的底是6米,高是4米,它的面积是多少?(先独立完成,在集体订正)

S=ah, =6×4

=24(平方米)

答:它的面积是24平方米。

解答时要先写S=ah,再把底和高的数字代进去,再计算出结果。

三、巩固练习

1、熊大进入公司之后又遇到难题了,有需要我们大家的帮助了让我们一起去看看吧?那我们来看看,是什么题把他给难住了?原来求一个平行四边形的面积需要底和高两个条件,但是老板给熊大的平行四边形告诉了很多的条件,这可把他弄糊涂了,你会做吗?在本上试试。

总结:底和高必须是相对应的

2、在日常生活中,有很多这样近似平行四边形的图形,请看大屏幕:有一块地近似平行四边形草地,底是43米,高是20.1米。这块地的面积约是多少米?(得数保留整数)

四、总结全课

同学们,熊大经过和同学们一起学习终于学会计算平行四边形的面积了,你们都学会了吗?那谁能说说,你是怎么计算平行四边形面积的?那熊大进公司时的那道考题

数学面积的教学设计 篇9

教学目标

1、经历动手操作、讨论、归纳等探索平行四边形面积公式的过程。

2、掌握平行四边形的面积公式,并用字母表示;会用公式计算平行四边形的面积。

3、在探索平行四边形面积公式的过程中,感受转化的数学思想,感受面积公式推地过程的条理性和数学结论的确定性。

教学重点

掌握并会用公式计算平形四边形的面积。

教学难点

利用转化的数学思想和方法来探索平形四边形面积公式

教学教程:

一、创设情境,引出问题

同学们,老师给你们带来了老朋友,看还认识它们吗?(课件出示长方形、正方形、平行四边形的平面图形,学生识图)

那长方形和正方形的面积与什么有关,怎么计算呢?(学生回答)

平行四边形的面积你会计算吗?它可能与什么有关系呢?(学生猜想)

今天我们就来研究平行四边形的面积公式

二、自主探究,动手操作

1、出示要求

把平行四边形的纸片剪一刀,然后拼成一个长方形。

2、学生动手操作,教师深入学生当中观察指导

3、汇报会交流。

生1:做平行四边形的高,沿着高剪下来,把左边的放在右这拼在一起,就拼成了一个长方形。

生2:我是沉着这个顶点向下做的高,剪下来的三角形放在了右边,拼成了一个平行四边形。

师:要拼成一个长方形要怎么做才能办到呢?

生:只要沿着平行四边形的一条高剪开,就可以拼成一个长方形。

师:对,只要沿着平行四边形的'一条高剪开,再平移就可以拼成一个长方形。

4、议一议:平行四边形和拼出的长方形有什么关系呢?

生1:拼成的长方形的长是平行四边形的底,长方形的高是平行四边形的高。

生2:拼成的平行四边形的面积和长方形的面积想等。

师:那谁来总结一下平行四边形的面积公式。

生:因为长方形的面积等于长乘宽,拼成的长方形的长是平行四边形的底,长方形的高是平行四边形的高。所以平行四边形的面积等于底乘高(指多名同学叙述,教师并随机板书)

5、教师在平行四边形上标出a、h,说明分别表示底和高,用S表示面积,让学生写出字母公式。

生:S=a×h

过渡:刚才通过同学们探索出了平行四边形的面积公式,你们是否会运用了,下面做一下闯关训练。

三、巩固训练,拓展延伸

1、试一试,计算平行四边形的面积。让学生先说一说图上的数据都表示什么,再试着计算。

2、练一练第1题。指名读题,独立完成。

3、问题讨论。提出问题:下图中的两个平行四边形的面积相等吗?为什么?先小组讨论再汇报。

生:两个图形的面积相等,因为它们的底一样,高也相等。

生:平行四边形的面积等于底乘高,它们的底都是2、6,高都是1、8,所以面积相等。

师:也就是说,等底等高的平行四边形的面积想等。

四、课堂小结

通过本节课的学习,你有哪些收获?

五、布置作业

1、完成57页第2、3题

2、课下自做一个活动的平行四边形木条框。测量它的底和高,求出它的面积。拉一拉,观察平行四边形的底和高是否发生变化,测量并计算它的面积。

数学面积的教学设计 篇10

【教学内容】

探索活动(二)《三角形的面积》教材第25页——26页

【教学目标】

知识目标:

①使学生经历、理解三角形面积公式的推导过程。

②能正确运用公式进行三角形面积计算,初步学会用转化的数学方法解决实际问题。

能力目标:

①通过动手操作、认真观察、比较、思考等方式,培养学生的空间想象能力、思维能力和较强的动手能力。

②通过讨论及小组合作学习的方式,培养学生的分析综合、抽象概括能力和相互协作学习的能力。

德育目标:

①利用教材上的德育资料对学生进行爱国主义教育。

②通过练习中的德育因素对学生进行交通安全教育。

【教学重点】

理解三角形面积计算公式,正确计算三角形的面积理

【教学难点】

理解三角形面积公式的推导过程。

【课前准备】

三个学习小组分别准备两个完全一样的三角形(一组准备直角三角形,二组准备锐角三角形,三组准备钝角三角形,四组任意)、直尺、剪刀。

教师准备多媒体课件一份、演示教具一套

【教学进程】

一、复习引入

1、出示课件

师:比一比,下面两个图形哪个面积大?

生:观察比较说说你是怎么比较的

师小结,比较两个图形的大小,可以用数格子、旋转、平移的方法。

2、回顾平形四边形面积公式的推导

师:谁能告诉老师平形四边形面积公式推导过程

生答后,师课件演示

师:在这个过程,我们运用了一个什么数学思想。

生:转化

师板书:转化

师:现在,我们已经掌握了几种图形的面积公式了呢?

生答后,师简要小结

3、设疑,引入新课

小明有一张彩纸(课件出示),他想知道这张纸面积,前面我们已经掌握了长方形、正方形、平行四边形的面积计算方法,可这却是个三角形,怎么计算三角形的面积呢?大家想不想来探究一下这个问题?(生答)好,那今天,我们就来学习这个知识

师板书:三角形的面积

二、探究新知

1、知识猜想

师:学习之前,大家先猜一猜,三角形的面积可能跟什么有关?

生讨论、作答(可能和底、高有关)

2、动手实践

一组学生拿出直角三角形学具

二组拿出锐角三角形学具

三组拿出钝角三角形学具

四组拿出任意三角形学具

剪一剪、拼一拼,你能发现什么?

师巡回检查、指导

3、实践汇报

各组汇报实践结果

一组:我们是拿两个完全一样的`三角形通过旋转、平移拼成了一个平形四边形或长方形(长方形也是特殊的平行四边形),这个平行四边形的面积是原三角形面积的2倍,可以通过平行四边形面积算出三角形的面积。

二组:两个完全一样的锐角三角形也可拼成一个平行四边形。

三组:两个完全一样的钝角三角形也可拼成一个平行四边形。

四组:用一个三角形,从他的高的中点处画一条底边的平行线,沿着平行线剪开成一个三角形和一个梯形,再旋转,也可以拼成一个平行四边形,而且这个平行四边形的面积就等于原三角形的面积。

各组就实践汇报展开讨论。

4、演示总结

师:同学们非常聪明,发现了这么多的方法,教师也想了几种方法,大家看一看和你们想的一样不一样?

出示课件(演示1两个完全一样的三角形拼成平行四边形)

师引导生观察

(1)、拼成的平行四边形和原三角形面积有什么关系?

生:平行四边形面积是三角形面积的2倍。

(2)、平行四边形的底和高与三角形的哪些部分有关?

生:平行四边形的高等于三角形的高;

平行四边形的底等于三角形的底

师小结并板书

平等四边形的面积=底×高

三角形的面积=底×高÷2

出示课件(演示2一个三角形剪拼成平行四边形)

师:观察平行四边形面积与原三角形面积有何关系?

生:相等

师:平行四边形的底和高与三角形底、高有什么关系?

生:平行四边形的底等于三角形的底

平行四边形的高等于三角形的高的一半

师小结并板书

平行四边形面积=底×高

三角形面积=底×高÷2

三角形的面积=底×高÷2

字母表示:S=ah÷2

5、师生一起回顾三角形面积公式的推导过程

6、基本练习

师:现在大家可以帮帮小明,算算哪张彩纸的面积了吗?

生:能

师:好那大家帮他算一算

生解答,师巡回检查

强调:

1、注意运用公式

2、注意面积单位

三、巩固检测

1、出示课件

师:每天上学回家,教师、家长都要叮咛同学们注意交通安全,大家认识下列交通标志吗?

生答、师订正

师:大家观察,这些交通标志都是什么形状?我们能不能算算他们的面积呢?

生独立完成

师统一订正

2、出示课件

师:红领巾中是我们少先队员的标志,我们每个少先队员都要佩戴并热爱他,下面就是一面红领巾图,你能算一算做100面红领巾需要多少布料吗?

生板演师讲解订正

四、回顾总结

师:学完这节课,你都有些什么收获呢?

生讨论、作答

师小结:这节课,我们运用能比的数学思想,通过旋转、平移、剪拼的方法把三角形能化成了已经学过的平行四边形,发现其中的联系,然后通过平行四边形面积公式推导出了三角形的面积公式。通过几道练习,同学们已基本掌握了面积公式的应用,收获了不少新知识,希望以后每节课同学们都能象今天这样满载而归。

附:【板书设计】

三角形的面积

平行四边形面积=底×高

转化

三角形面积=底×高÷2

S=a×h÷2

数学面积的教学设计 篇11

教学目标:

1、使学生通过把几个相同的正方体或长方体拼成较大的长方体的操作活动,探索并发现拼接前后有关几何体表面积的变化规律,并让学生应用发现的规律解决一些简单实际问题。

2、使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考。

3、培养学生的合作能力、空间想象能力和思维能力。

4、使学生进一步体会图形学习与实际生活的联系,感受图形学习的价值,提高数学学习的兴趣和学好数学的自信心。

教学重难点:

通过操作,比较拼成的长方体的表面积与原来两个正方体的表面积的和究竟发生了什么,发现规律,学会分析。

教学准备:正方体小块、长方体盒

教学过程:

一、创设情境,导入新课

1、师:同学们,我们在日常生活中,往往可以看到,把一些长方体或正方体的物品这样摆放(课件),你们能说说这样摆放的理由吗?(对学生说的理由教师可不作过多评述,但如果学生说到与面积有关,适当点评后,引入新课)

今天我们一起来研究物品摆放中的有关数学问题————表面积的变化

2、复习:

(1)请哪位同学说一说长方体表面积的计算方法

(2)出示正方体,师:这个正方体体积是1立方厘米,你知道表面积是多少吗?你是怎样知道的?(复习正方体体积与表面积的公式)

(本环节设计意图:通过观看录像资料,让学生发现,生活中,有些长方体、正方体形状的物品,在摆放的方式上,有时会平铺,有时却要叠放,这些日常生活的常见的现象中,也蕴藏着一定的道理,可以用数学知识来解释这些现象。体现数学的学习价值)

二、探究操作,发现规律

(一)引导操作,探索规律

1、课件出示例题一

将两个体积是1立方厘米的正方休拼成一个长方体(如图),体积有没有变化?拼成的长方体的表面积与原来两个正方体的表面积之和是否相等?

师:(演示操作两个正方体拼成一个长方体,师生同时操作)把两个正方体拼成一个长方体后,你有什么发现?请哪位同学说一说。(学生回答,师在黑板上的.表格中写出相应的数量。)

生:拼成长方体后,体积没有变化

生:表面积变化了

生:表面积减少了

生:减少两个正方形的面,面积是2平方厘米

生:原来正方体的表面积之和是12平方厘米,拼成后的长方体的表面积是10平方厘米。

师:也就是说,把两个正方体拼成一个长方体后,表面积减少了,而且减少的是两个正方形的面的面积。(教师要在黑板上表格里,相应写出2,12,10

同学们说的真好。老师还有一个问题,如果再增加一个正方体、两个正方体、三个正方体,这样拼成的长方体表面积会有怎样的变化呢?

(第一环节设计意图:师生共同演示,学生观察两个正方体拼接前后形状的变化,引发思考,即体积与表面积发生了怎样的变化?学生要拼、看、找的基础上,说出表面积减少的结论,这是探究的第一步,让学生感知,两个正方体相拼,表面积会减少,为进一步探究减少的规律奠定基础)

大家都在看