数学学习心得

笔构网

2025-11-27心得

请欣赏数学学习心得(精选7篇),由笔构网整理,希望能够帮助到大家。

数学学习心得 篇1

从教第五个年头,今年比较特殊,第一次静下心来学习全面新课标的。结合我平时的教学有下面几点浅显的认识:首先从教育心理学的角度上分析,学习数学,不能仅仅停留在掌握知识的层面上,而必须学会应用。只有如此,才能使所学数学富有生命力,才能真正实现数学的价值。这就要求我们教育工作者必须注意从小培养学生的应用意识。那么,如何在小学数学教学中培养学生的数学应用意识呢?

一、联系生活实际,导入新知教学。

数学知识的形成源于实际的需要和数学内部的需要。义务教育阶段学生学习的大量知识均来源于生活实际,这就为我们努力从学生的生活实际入手引入新知识提供了大量的背景材料。例如,在教学“认识分数”时,结合日常生活中分物品的经历,让学生根据自身的生活经验可以把4个苹果平均分成2份,每份是2个;2瓶矿泉水平均分成2份,每份是1瓶;而 1个蛋糕平均分成2份,每分是多少呢?按照习惯的说法是叫做半个。生活中常会遇到分东西或物品不是整数的情况,在学生学过的数小哪个数可以刚来表示半个,学生找不到这样的数,那么半个该用什么数来表示呢?此时就要学习新的数——分数,这个数又该怎样写,怎样读呢?学生对学习分数有了一种需求和愿望,感受到数学就在自己的身边,就存在于自己熟悉的现实生活中。

二、设计问题情境,增强应用情趣。

人的思维起始于问题。问题情境具有情感上的吸引力,容易激发学生的好奇心,促使学生寻求问题的答案。教育家赞可夫说过:“凡是没有发自内心求知欲和兴趣而学来的东西,是很容易从记忆中挥发掉的。”在教学中,教师要巧妙的设计问题情境,注重存疑,把问号装进学生的头脑,让学生从数学角度去描述客观的事物与现象,寻找与数学有关的因素,主动的运用数学知识和方法解决遇到的实际问题。

三、搜集应用事例,体会应用价值。

在实际的教学过程中,一方面,教师可以自己搜集有关资料并介绍给学生,例如,电子计算机的发明与使用、地图用四种不同颜色区分地区、飞机设计等都和数学有着密切的关系,现代社会已进入“数字化”的世界。另一方面,可以鼓励学生自己通过多种渠道搜集数学应用的具体案例,并相互交流。例如,教学“百分数的意义和写法”时,可以让学生课前搜集关于百分数的资料,像商品标签各种成分的含量、存款利率等。再如,教学“认识千米”时,到图书馆或网上查找世界最长的三大河流是多少千米。通过查阅资料,搜集数学应用的事例,可以让学生了解数学的广泛应用,进一步了解数学的发展,感受数学的文化魅力,体会数学应用价值。

四、创造应用机会,开展实践活动。

实践对于知识的理解、掌握和熟练运用起着重要的作用,只有亲身体验过的知识才会更深刻的理解和熟练的运用。美国数学家彼得?克莱恩说:“学习的三大要素是接触、综合分析、实际参与。”可见培养学生应用意识的最有效的办法应该是让学生有机会亲身实践。例如,教学“百分数”后,做小会计师,在父母的带领下把自己积攒的钱存起来,根据银行的利率算——算,怎样存更合算,熟悉、掌握存款的方法和计算利率的方法,或者到商场购买打折商品,计算打折商品的总价。教师在教学中要把数学知识和生活实际结合起来,引导学生从现实生活中学习数学,再把学到的数学应用到现实中去,培养和发展学生的数学应用意识,形成初步的实践能力。

数学学习心得 篇2

20xx年版义务教育数学课程标准的制定,让我再次感受到了新课程标准制定的完美与完善,课标从基本理念、课程目标、核心概念、课程内容、实施建议等方面都进行了修订,通过这次学习。我发觉这几方面较之以前都有了不同程度的改变和创新,下面我谈谈我的几点感受。

一、理解课标新的基本理念,改变教学方法

新课标的基本理念之一是让学生“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”,从原来的三句变成了现在的两句。基本理念之二是学生学习应当是一个生动活泼的,主动性和富有个性的过程“认真听讲、积极思考、动手实践、自主探索、合作交流等都是学习数学的重要方式,而比未修改之前多了“认真听讲、积极思考”这两种重要的学习方式。

基本理念的转变,对老师的教学和学生的学习都有了更具体的要求,学生是学习的主体,但是好的学习方式也是培养学生全面发展,去做将来对社会有用之人的重要教育方式。所以,我们广大教师不仅要明确自己的角色转变,而且也要熟读新课标的基本理念,让理论知识充实到我们的实践中去,从而更好的驾驭教材,灵活选择新的教法,去适应时代的要求。

二、熟读课程总目标,培养学生能力

新课程总目标的制定,让我们教育工作者为培养时代创新人才肩负起更神圣的使命。有人说过,一般的教师是教“知识”;好的教师是教“过程”;卓越的教师是教“智慧”。新课程总目标的制定不仅仅是对学生为适应未来社会提出了更高的要求,也是对我们老师的教学方式、教学目的提出了新的要求,我们要做卓越的教师,要把学生培养成时代的弄潮儿,培养成国家的栋梁之才。所以,新课标把发展学生发现和提出问题的能力、分析和解决问题的能力及使学生通过数学学习获得必需的基本知识、基本技能、基本思想、基本活动经验,这“四基”、“四能”作为新课程总目标之一、之二,促进小学教育更全面的发展。

三、学习新课标,正确定位教师角色

从新的课标来看,数学活动的教学是师生之间,学生之间交往与共同发展的过程,有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者,所以,有效的数学活动不是老师在台上自说自演,而是应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维,更注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法,因此教师要定位好自己的角色。注重启发式和因材施教,处理好讲授与学生自主学习的关系,发挥主导作用,引导学生学习数学知识,使学生的数学知识与技能得到更好有效的发展。

总而言之,新教材新理念的实施,对我们每位教师提出了更高的要求,只要我们能更好的践行课标新理念,我们的教学舞台将是精彩的,我们教育成果将是丰硕的。

数学学习心得 篇3

基础教育课程改革,既要加强学生的基础性学力,又要提高学生的发展性学力和创造性学力,从而培养学生终身学习的愿望和能力,让学生享受“快乐数学”。因此,本人通过对新课程的学习,就改变学生的学习方式作了如下几方面的探索。

一、提高学习兴趣,变“要我学”为“我要学”

新一轮课程改革很重要的一个方面是改变学生的学习状态,在教学中更重要的是关注学生的学习过程以及情感、态度、价值观、能力等方面的发展。

在平时的教学中,我注意根据不同的教学内容、不同的教学目标,结合学生的特点选用不同的教学方法,努力创设一种和谐、愉悦的教学氛围和各种教学情境,精心设计教学过程和练习。在课堂上给予学生自主探索、合作交流、动手操作的权利,让学生充分发表自己的意见。久而久之,学生体会到成功的喜悦,激发了对数学的好奇心、求知欲以及学习数学的兴趣,觉得数学不再是那些枯燥、乏味的公式、计算、数字,从思想上变“要我学”为“我要学”了。例如,讲授《打折销售》这一节课,先创设一个小商店,我当营业员出示一些商品及其单价,让学生扮顾客进行购物活动,师生互动,课堂气氛热烈。在活动中,学生根据生活经验去理解商品的进价、售价和利润等,在轻松愉快的情境中,让学生自己结合教材进行观察和讨论,“利润是如何产生?”及“每件商品的进价、售价和利润之间有何关系?”等问题,这时学习商品的进价、售价和利润等已成为学生的自身需要。当学生理解了商品的进价、售价和利润等后,同时设计了这样的问题:对本次提到的商品打八折销售,以及打折销售的商品中顾客是否真正得利益?于是又激起了学生的探求欲望。在整个教学过程中,使学生有“一波未平,一波又起”之感,自始至终主动参与学习活动。

二、自主合作探究,变“权威教学”为“共同探讨”

新课程倡导建立自主合作探究的学习方式,对我们教师的职能和作用提出了强烈的变革要求,即要求传统的居高临下的教师地位在课堂教学中将逐渐消失,取而代之的是教师站在学生中间,与学生平等对话与交流;过去由教师控制的教学活动的那种沉闷和严肃要被打破,取而代之的是师生交往互动、共同发展的真诚和激情。因而,教师的职能不再仅仅是传递、训导、教育,而要更多地去激励、帮助、参谋;师生之间的关系不再是以知识传递为纽带,而是以情感交流为纽带;教师的作用不再是去填满仓库,而是要点燃火炬。学生学习的灵感不是在静如止水的深思中产生,而多是在积极发言中,相互辩论中突然闪现。学生的主体作用被压抑,本有的学习灵感有时就会消遁。

在教学中,我大胆放手,给学生充足的时间,让学生成为学习的主角,成为知识的主动探索者。我经常告诉学生:“课堂是你们的,数学课本是你们的,三角板、量角器、圆规等这些学具也是你们的,这节课的学习任务也是你们的。老师和同学都是你们的助手,想学到更好的知识就要靠你们自己。”这样,在课堂上,学生始终处于不断发现问题、解决问题的过程中,一节课下来不但学到了自己感兴趣的知识,还使自己的自主性得到充分发挥。

三、创新型教学,变“单一媒体”为“多种媒体”

当今人类进入了信息时代,以计算机和网络为核心的现代教育技术的不断发展,使我们的教育由一支粉笔、一本教材、一块黑板的课堂教学走向“屏幕教学”,由讲授型教学向创新型教学发展。

在教学中,适时恰当地选用现代教育技术来辅助教学,以逼真、生动的画面,动听悦耳的音响来创造教学的文体化情景,使抽象的教学内容具体化、清晰化,使学生的思维活跃,兴趣盎然地参与教学活动,使其重视实践操作,科学地记忆知识,并且有助于学生发挥学习的主动性,积极思考,使教师以教为主变成学生以学为主,从而提高教学质量,优化教学过程,增强教学效果。数学教师应该从自己学科的角度来研究如何把现代教育技术融入到小学数学学科教学中去,就像使用黑板、粉笔、纸和笔一样自然、流畅,使原本抽象的数学知识形象化、生活化,使学生不仅掌握数学知识,而且喜欢这门学科。

总之,面对新课程改革的挑战,我们必须转变教育观念,多动脑筋,多想办法,密切数学与实际生活的联系,使学生从生活经验和客观事实出发,在研究现实问题的过程中做数学、理解数学和发展数学,让学生享受“快乐数学”。

数学学习心得 篇4

数学学科发展到现在,已成为了分支众多的学科之一,复变函数则是其中一个非常重要的分支,是19世纪,Cauchy, Riemann, Weierstrass 等数学家分别从不同角度建立了复变函数的系统理论,使复变函数真正成为分析数学的一个重要分支。

复变函数是复数域上的微积分,是基于解决数学内部矛盾的间接需要而产生的,是由于在生产实际和科学研究中发现了应用原型而发展起来的!

复变函数现在是大学理工科专业和数学院系数学类专业的一门重要的基础课,但是复变函数的学习要有高等数学的基础,如果没有这方面的知识,学习复变函数无疑会非常困难,因为这门课程在初学者看来非常抽象,理论性太强。作为复变函数的教学工作者,如何使得这门课程的课堂变得生动有趣,而且使学生在学习过程中容易理解,是我们不得不思考的问题。

由于复变函数的导数与可导性、微分与可微性是利用类比的方法从一元实变函数相应概念推广到复数域后得到的,它们在形式上与一元实变函数的导数、可导性与微分一致,因此在教学中应当勤于和善于比较,既要重视共性,更要注意不同点,切实关注在推广到复数域后出现了什么新情况和新问题,探讨出现新问题的原因何在。

在这篇报告中,王锦森先生非常生动地介绍了复变函数课程的改革思路和分别讨论了复变函数教学中的难点和重点,并且这些难点和重点的教学方法。

难点和重点介绍方面:讨论了“在复变函数可导性(从而判断函数解析性)的充要条件中,为什么要求函数的实部和虚部必须满足Cauchy-Riemann方程?”内在含义,复变函数的导数的几何意义是否跟实变函数导数的几何意义相同?,一元实函数的微分中值定理能不能推广到复变函数中来?,复变初等函数与相应的实变初等函数之间的关系与差别,复变函数的积分与一元实变函数的第二型曲线积分的不同之处,即,它们积分和式的结构不同,积分的表达形式不同,物理意义不同等等,还讨论了学习Cauchy-Goursat 基本定理应当注意的几个问题,复变函数积分中有没有与一元实变函数微积分中的微积分基本定理和Newton-Leibniz公式相对应的结论等等。

这些难点和重点教学法方面介绍了类比教学法,化“复”为“实”,用“已知”解决“未知”的思想等教学法。

参加培训之前我没有考虑过这些问题,通过这次学习,我对这些难点与重点的认识进一步深入了。以后的教学过程中用到所学的知识,为提高教学质量而努力。

数学学习心得 篇5

一、将三门基础2113课作为一个整体去学,摒弃孤立5261的学习,提倡综合4102的思考

恩格斯曾经说1653过:“数学是研究数和形的科学。”这位先哲对数学的这一概括,从现代数学的发展来看,已经远远不够准确了,但这一概括却点明了数学最本质的研究对象,即为“数”与“形”。比如说,从“数”的研究衍生出数论、代数、函数、方程等数学分支;从“形”的研究衍生出几何、拓扑等数学分支。20世纪以来,这些传统的数学分支相互渗透、相互交叉,形成了现代数学最前沿的研究方向,比如说,代数数论、解析数论、代数几何、微分几何、代数拓扑、微分拓扑等等。可以说,现代数学正朝着各种数学分支相互融合的方向继续蓬勃地发展下去。

数学分析、高等代数、空间解析几何这三门基础课,恰好是数学最重要的三个分支--分析、代数、几何的最重要的基础课程。根据课程的特点,每门课程的学习方法当然各不相同,但是如果不能以一种整体的眼光去学习和思考,即使每门课都得了A,也不见得就学的很好。学院的资深教授曾向我们抱怨:“有的问题只要画个图,想一想就做出来了,怎么现在的学生做题,拿来就只知道死算,连个图也不画一下。”当然,造成这种不足的原因肯定是多方面的。比如说,从教的角度来看,各门课程的教材或授课在某种程度上过于强调自身的特点,很少以整体的眼光去讲授课程或处理问题,课程之间的相互联系也涉及的较少;从学的角度来看,学生们大都处于孤立学习的状态,也就是说,孤立在某门课程中学习这门课程,缺乏对多门课程的整体把握和综合思考。

根据我的经验,将高等代数和空间解析几何作为一个整体去学,效果肯定比单独学好,因为高等代数中最核心的概念是“线性空间”,这是一个几何对象;而且高等代数中的很多内容都是空间解析几何自然的延续和推广。另外,高等代数中还有很多分析方面的技巧,比如说“摄动法”,它是一种分析的方法,可以让我们把问题从一般矩阵化到非异矩阵的情形。因此,要学好高等代数,首先要跳出高等代数,将三门基础课作为一个整体去学,摒弃孤立的学习,提倡综合的思考。

二、正确认识代数学的特点,在抽象和具体之间找到结合点

代数学(包括高等代数和抽象代数)给人的印象就是“抽象”,这与另外两门基础课有很大的不同。以“线性空间”的定义为例,集合V上定义了加法和数乘两种运算,并且这两种运算满足八条性质,那么V就称为线性空间。我想第一次学高等代数的同学都会认为这个定义太抽象了。其实在高等代数中,这样抽象的定义比比皆是。不过这样的抽象是有意义的,因为我们可以验证三维欧氏空间、连续函数全体、多项式全体、矩阵全体都是线性空间,也就是说,线性空间是从许多具体例子中抽象出来的概念,具有绝对的一般性。代数学的研究方法是,从许多具体的例子中抽象出某个概念;然后通过代数的方法对这一概念进行研究,得到一般的结论;最后再将这些结论返回到具体的例子中,得到各种运用。因此,“具体--抽象--具体”,这便是代数学的特点。

在认识了代数学的特点后,就可以有的放矢地学习高等代数了。我们可以通过具体的例子去理解抽象的定义和证明;我们可以将定理的结论运用到具体的例子中,从而加深对定理的理解和掌握;我们还可以通过具体例子的启发,去发现和证明一些新的结果。因此,要学好高等代数,就需要正确认识抽象和具体的辩证关系,在抽象和具体之间找到结合点。

三、高等代数不仅要学代数,也要学几何,更要在代数和几何之间建立一座桥梁

随着时代的变迁,高等代数的教学内容和方式也在不断的发展。大概在90年代之前,国内高校的高等代数教材大多以“矩阵论”作为中心,比较强调矩阵论的相关技巧;90年代之后,国内高校的高等代数教材渐渐地改变为以“线性空间理论”作为中心,比较强调几何的意义。作为缩影,复旦的高等代数教材也经历了这样一个变化过程,1993年之前采用的屠伯埙老师的教材强调“矩阵论”;1993年之后采用的姚慕生老师的教材强调“线性空间理论”。从单纯重视“代数”到“代数”与“几何”并重,这其实是高等代数教学观念的一种全球性的改变,可能这种改变与现代数学的发展密切相关吧!

学好高等代数的有效方法应该是:

深入理解几何意义、熟练掌握代数方法。

其次,高等代数中很多问题都是几何的问题,我们经常将几何的问题代数化,然后用代数的方法去解决它。当然,对于一些代数的问题,我们有时也将其几何化,然后用几何的方法去解决它。

最后,代数和几何之间存在一座桥梁,这就是代数和几何之间的转换语言。有了这座桥梁,我们就可以在代数和几何之间来去自由、游刃有余。因此,要学好高等代数,不仅要学代数,也要学几何,更要在代数和几何之间建立一座桥梁。

四、学好教材,用好教参,练好基本功

复旦现行的高等代数教材是姚慕生老师、吴泉水老师编著的《高等代数学(第二版)》。这本教材从1993年开始沿用至今,已有近20年的历史。教材内容翔实、重点突出、表述清晰、习题丰富,即使与全国各高校的高等代数教材相比,也不失为出类拔萃之作。

复旦现行的高等代数教学参考书是姚慕生老师编著的《高等代数学习方法指导(第二版)》(因为封面为白色,俗称“白皮书”)。这本教参书是数院本科生必备的宝典,基本上人手一册,风行程度可见一斑。

要学好高等代数,学好教材是最低的要求。另外,如何用好教参书,也是一个重要的环节。很多同学购买教参书,主要是因为教材里的部分作业(包括一些很难的证明题)都可以在教参书上找到答案。当然,这一点无可厚非,毕竟这就是教参书的功能嘛!但是,我还是希望一年级的新生能正确地使用教参书,遇到问题首先自己独立思考,实在想不出,再去看懂教参书上的解答,这样才能达到提高能力、锻炼思维的效果。注意:既不独立思考,又不看懂教参书上的解答,只是抄袭,这对自己来说是一种极不负责的行为,希望大家努力避免!

最后,我愿以华罗庚先生的一句诗“勤能补拙是良训,一份辛勤一份才”与大家共勉,祝大家不断进步、学业有成!

数学学习心得 篇6

随着数学教师对数学课程改革的理解和参与不断深入,教师们从课堂单一的数学知识传授者的角色,逐步向数学学习活动的组织者、引导者和合作者转换,教和学开始向和谐统一的方向发展。新课程新理念,对于每位教师来说都是新生事物。现在我们要改变使用了几十年的教学方式和学习方式,确实有一定地难度。但这是时代发展的需要,我们要与时俱进,不改变是不行的。我们要把培养学生的学习能力、探究能力、创新能力和合作学习的能力放在首位。

在新课程教学理念中,课堂是学生自主活动的空间,要让学生在活动中感知、在活动中理解、在活动中提升。每节课都要有数学活动,活动要为探究某个问题而设计,不能只为了活动而活动。为了做到这一点,教师首先要明确活动的目标任务,在活动过程中教师要善于抓探究点,探索什么?怎么样把学生探究过程选择适当的方式暴露出来,再次需要注意探究的过程、方法、结果,学生的活动是否达到预期的效果,最后是教师要把学生的探究过程进行归纳总结,进行一个数学的提升,从而促进对知识的掌握。在探究的过程中,教师要学会倾听学生的结论,努力调动学生活动的积极性,以鼓励为主,对学生得出的哪怕是一点点的成绩也应予以充分的肯定。

新课程强调“人人学有价值的数学”,学生的数学学习内容应当是现实的、有意义的、富有挑战性的。在教学中恰当地创设课堂情境,可以很好落实这一数学理念。从学生已有的生活经验出发,恰当地创设课堂情境,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,可使学生获得数学学习的自信心和兴趣,体会数学与自然、社会、人类生活的联系,让学生在自主探索中建构有价值的数学知识,获得情感、能力、知识的全面发展。

在数学教学实践中,许多学生常常会有疑问:“为什么要学数学?学了数学有什么用?”我们数学老师常常会教育学生数学学习很重要、很有用,但到底有什么用又说不清楚。因此有些学生走上社会后认为,“学习数学除了应付考试以外没有任何价值”。我们的数学教学,让学生感受不到价值,这是个很现实的问题。所以我们的数学需要改革。

1、让学生了解数学知识“从何而来,到何处去”

传统的数学教学就是老师填鸭一样的使劲填,学生既不知道自己学习的知识从何而来,又不知道学习了将到何处去。从生活中来,就是要让数学的新问题从学生生活实际出发,贴近学生的实际情况。到生活中去,就是要让学生将学到的数学知识和技能应用于现实生活,让他们感觉自己学习的东西是有用的,有现实价值的。新课程就很好的重视了这一点,“图形与位置”中,基本上是选取的学校作为背景,统计图表也是以学生关注的生活密切相关。

2、创设现实化、生活化的数学问题情景

我们的老教材,往往忽视对于数学问题情景的创设。有许多问题看似从实际出发,实则离学生的实际有十万八千里,比如随便找一本数学书,几乎所有的应用题都是千篇一律:桃树有多少棵,梨树有多少棵……某车间原计划生产多少台机器(或零件),实际生产了多少……如此机械空洞的内容,试问怎么能让学生进入生活化数学情景呢?而我们的新教材,比较注重数学问题情景的创设,但这些问题情景往往是建立在生活经验之上,象打折问题,追击问题,利润问题,存款问题,这些都是创设了一个生活化的问题情景,体现出数学的应用价值。

3、把数学知识运用于生活实际。

新课标指出:“学生的数学学习内容应当是规实的、有意义的、富有挑战性的……”同时又指出:“要使学生乐意并有更多的精力投入到现实的、探索性的数学活动中去。”特别强调学生将学到的知识再用于解决生活中的实际问题,这不仅给学生一个运用新知充分发散思维的空间,还能促进学生的探索意识和创新意识的形成,从而提高学生的实践能力,做到能够学以致用。选择和设计富有现实意义的、来源于生活的、具有一定数学价值的、具备一定探索性的习题,才能更好地实现这一目的。在数学教材中,与生活实际相联系的习题有很多。例如利用经纬度确定位置,利用电影票找座位,利用统计图看信息等等,不仅我们的练习明显体现数学与生活的联系,我们的数学命题也逐渐体现出这样的倾向。 “数学来源于生活,也必须根植于生活。”紧密联系学生的生活实际,让数学从生活中来,到生活中去,学有应用价值的数学是新课程改革的重要理念。在数学命题中要考虑学生对周边社会及生活环境的认识,增强学生适应环境的能力,渗透日常生活、理财、环保、科技、数学史、信息、法制等教育取向的知识,展现数学的应用价值,体现数学试题的时代气息和学有价值数学的理念。

4、尊重学生的学习方式。

数学课程标准提倡在数学教学中采用探究式教学方式,改变以往过于强调接受式学习方式,这一点正逐渐为人们所熟知。在各种教学观摩和教学评比中,探究式学习方式被应用得越来越多。但选择什么样的教学方式的依据决不能看这种教学方式是否时尚,教学不是赶时髦,关键是看这种方式是否适合你的学生。对于学生来说,适合的才是最好的。所以我们特别要强调的是:尊重学生的学习方式。学生之间存在着差异,不同的学生在学习同一内容时,往往有不同的方式。我们教师要及时发现这种差异,鼓励学生采用个性化的学习方法。

总之,新课程不仅改变了学生,也改变了教师,我们应该多学多看,努力适应新课程。

数学学习心得 篇7

作为一个过来人,我觉得这是比较正常的,题主不需要有多余焦虑。在我大一刚开始学数分和高代时,整个思维模式也受到了“新数学”的洗礼,有一个适应的过程。可能,对于大学之前没怎么接触过这些课程的大部分人,都会有与你类似的感受。

反正我们班在大一之后,有好多弃坑转专业的,认为大学“数学”跟想象的不一样,整天就是概念证明啥的,有些枯燥无味。

我想这主要是因为我们被中学的数学束缚太久,习惯了“计算式”的数学。

想一想,我们在大学之前所接触的数学,主要是初等代数,平面和立体几何,三角函数和圆锥曲线,多项式和不等式等内容,课上所学也注重技巧的运用,和形式的计算及简单的推导。事实上,这些绝大多数是三百年前甚至两千年前的知识,关于现代数学的涉及基本没有。

即使高中时接触到了导数,极值等有关极限的概念,但没有讲更深。很多概念,还是停留在特定模式的计算和“只可意会不可言传”的理解层次上。

而近代数学的发展,特别是分析的严谨化以来,“数学的本质已经不是计算,对数学的精通不意味着能够做复杂计算或者熟练推演符号。近代数学的重心已从计算求解转变为注重理解抽象的概念和关系。

证明不仅仅是按照规则变换对象,而是从概念出发进行逻辑推演。”所以,从高中到大学,所学的数学,内容上可以说是有了质的提升和深化。尤其数分里,很多知识点的定义,真真表现了分析的严谨和自成体系的理论。像极限的表述,就把一个脑海里变动的过程所导致的结果,合理地用定性的语言作了描述。

这很“数学”,不再是意会的说不清道不明。虽然会遇到困难,但是我相信当你耐心地钻进去,体会概念之间的联系,证明的精巧和严谨会极大地刺激你的求知欲,这是数学专业学生的必经之路。

我认为你目前的状态,首先要能清楚地理解每一个概念和定义。如果有不清晰的点,请教一下老师,这是事半功倍的,因为以老师多年的数学功底和教学经验,可以帮助你更准确地把握一些关键知识点和定理的运用,平时要及时地多做练习,掌握一些解题的技巧。

可以买一些教材配套的参考书啥的,遇到不会的,学习一下标准的解答,也不要死磕,毕竟没有那么多时间和精力。一切学习,都是从模仿开始的,根据书上定理或者例题的证明思路,要学着去尝试证明别的题。

总之,要多读,多想,多做,这样你的学习能力的积累和理解力才能提升。学好这些基础课是极其重要的,后续的很多课程:像实变函数、泛函分析,抽象代数等都是数分高代的抽象版,如果一开始的学习里积攒很多不扎实的点,会让以后变得更加难以捉摸。

我自己现在就是,当开始真正研究问题时,不得不耗费精力去弥补之前的不足之处。

守得云开见月明,我觉得如果你是真正爱数学,能作为一名数学专业的学生去感受数学所表现出的优美和深刻是很幸运的,你有机会去真正理解数学是什么?加油,我相信你会做的越来越好

大家都在看