五年级下册数学教案

笔构网

2025-12-15教案

请欣赏五年级下册数学教案(精选77篇),由笔构网整理,希望能够帮助到大家。

五年级下册数学教案 篇1

教学目标:

1.知识技能:经历探索分数基本性质的过程,理解分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

2.思考与问题解决:经历观察讨论,操作等学习活动,能对分数的基本性质作出简要的,合理的说明,培养学生的观察,比较,归纳,总结概括的能力。

3.情感态度:经历观察,操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣,鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。

教学重点:

探索,发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。

教学难点:

自主探索,归纳概括分数的基本性质。

教具学具准备:

多媒体课件,正方形纸,彩笔。

教学设计:

一、创设情境,导入新课:

1.课件分别出示两张不同的孙悟空的照片。师:学们仔细看看这两张照片,你有什么发现?(指名回答)。

2.教师引导交流:孙悟空本人没有改变,只不过是外表的打扮装饰发生了改变。

3.学生初步感知了什么变了而什么却没有变的概念。

4.教师导入新课:今天我们就来探讨什么变了而什么没有变的有关内容。教师板书课题:分数的基本性质设计意图:利用学生感兴趣的图片来吸引学生的注意力和观察能力,为下一步学习营造一个轻松活跃的氛围。

二、探究新知。

(一):1.师:在我们在学习这个新的内容之前,我们首先来复习一下除法与分数的关系。学生回答教师板书:

被除数=课件出示:120÷30=(120×2)÷(30×2)=(120÷10)÷(30÷10)= 2.同学们说说这几道相等吗?(指名回答)。

3.教师引导说出商不变的性质,课件出示商不变的性质的定义。

设计意图:通过复习商不变的性质,为下一步更容易的学习分数的基本性质打下基础。

(二)、教学新知。

1.师:请同学们拿出课前准备好的正方形纸,把手中的纸平均折成4份,其中把3份图上你喜欢的颜色。

2.学生操作,教师巡视并特别提醒学生注意“平均分”。

3.展示学生的作业。

4.师:现在请同学们把正方形纸平均分成8份,16份,分好之后你有什么发现?(指名回答)。

5.教师归纳总结,并课件出示:设计意图:同一张纸能平均分成不同的份数,拓展学生的思维能力。

6.引导学生观察:

观察它们的分子和分母是怎样变,学生观察,思考,交流后,教师集体指导观察,并板书:

教师归纳总结后,学生完成课本66页的填空题,完成后集体回答。

设计意图:学生通过动手操作发现一些表象,但这些表象还须上升为科学理论,这就需要学生能透过表象识别表现后蕴藏的规律,这才能知其然且知其所以然,便于以后举一反三,解决同类相关问题。

7.课件出示:(通知互相讨论)

(1)相比较,看看分子分母有什么变化?

(2)在这个变化中,你们发现了什么规律。

8.教师引导学生说出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。(教师特别强调“同时”“同一个数”)。

9.教师提出疑问:为什么要0除外呢?学生回答,教师归纳:因为0和任何数相乘都得0,而分数的分母是不能为0的。

10.同学们,现在你们来看看分数的基本性质和你们以前学习过得商不变性质有什么不同呢?(课件出示两性质作对比)

师:分数的基本性质和商不变性质的规律是一致的。

三、巩固强化,拓展应用。

(1)课件出示:(集体回答)。

(2)指出下列分数是否相等。(指名回答)。

(3)把和化成分母是10而分数大小不变的分数。(指名到台上板演)。

(4)课件出示小故事。

有位老爷爷把一块地分给三个儿子。老大分到了这块地的,老二分到了这块地的。老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?(让学生课后去思考)

设计意图:多样的练习可以让学生及时巩固所学知识,有调动了学习的积极性。

四、回顾总结,梳理新知。

同学们,你们对分数又有了哪些新的了解呢?板书设计:分数的'基本性质数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。

教学反思:

1.创设情境,激发学生兴趣。出示孙悟空的照片激发学生的兴趣,吸引学生的注意力。

2.手脑并用,在操作中深入感知分数。请同学们用一张正方形纸片,动手折一折,通过三次的对折,每次找出一个和相等的分数,比较涂色部分大小有没有变化?(没有)。那么得到了什么结论?教师引导学生观察分子,分母的变化,经历总结得出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。学生对此进行巩固后,再引导学生说出:0除外。学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。

3.巩固练习,围绕中心。在设计练习的过程中,采取多种形式呈现,使学生加深对分数基本性质的理解,激发了学生学习的兴趣,使每个学生都能理解所学知识,学有所获,并进一步学习约分和通分打下了良好的基础。

五年级下册数学教案 篇2

教学目标:

1、知道容积的意义。

2、掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。

3、会计算物体的容积。

教学重点:

1、容积的概念。

2、容积与体积的关系。

教学难点:

容积与体积的关系。

教具:量筒和量杯、不同的饮料瓶、纸杯

教学过程:

一、复习检查:

说出长正方体体积计算公式。

二、准备:

把泥放入一个长方体的小木盒中(压实,与上口平),然后扣出来,量一量泥块的长、宽、高。计算泥块的体积。这个长方体小木盒所能容纳物体的体积是( )。

三、新授:

1、认识容积及容积单位:

(1)箱子、油桶、仓库等所能容纳物体的`体积,叫做它们的容积。

通过上面的“做一做”,我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的容积。

(2)计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。

(3)演示:体积单位与容积单位的关系。

说一说,在生活中哪些物品上标有升或毫升。升和毫升有什么关系呢?教具演示。

①1升(L)=1000毫升(mL)

将1升 的水倒入1立方分米的容器里。

小结:1升(L)=1立方分米(dm3 )

②1升 = 1立方分米

1000毫升 1000立方厘米

1毫升(mL)=1立方厘米( cm3 )

练一练:

1.8L=( )mL 3500mL=( )L 15000cm3 =( )mL=( )L

1.5dm3 =( )L

(4)小组活动:(1)将一瓶矿泉水倒在纸杯中,看看可以倒满几杯?

(2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。

2、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但是要从容器的里面量长、宽、高。

例一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升?

5×4×2 =40(立方分米) 40立方分米=40升

答:这个油箱可以装汽油40升。

做一做:一个正方体油箱,从里面量棱长是1.4米。这个油箱装油有多少升?(订正)

小结:计算容积的步骤是什么?

3、我们知道了计算规则物体的体积的方法,如计算长方体的体积是用长乘宽乘高,计算正方体的体积是棱长的3次方。那有些不规则的物体怎么计算它的体积呢?

出示一个西红柿,谁有办法计算它的体积?小组设计方案:

四、巩固练习:

1、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深2.5分米,它的容积是多少升?

2、一个长方体油箱的容积是20升。这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米?

3、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少?

4、提高题:p55、16

五、作业:

五年级下册数学教案 篇3

信息社会已经到来,信息的获取、分析处理将成为现代人最基本的能力和素质的标志。本课正是基于这一理念,选择具有丰富现实背景的学习材料,学生了解了折线统计图的特点、作用后,在应用部分设置了分析数据、处理信息的练习题,以培养学生根据数据、图像分析事物并作出合理推断的能力。

1、了解折线统计图的特点和作用,初步学会折线统计图的绘制方法。

2、能分析折线统计图,培养学生利用数据、图像分析、判断、预测问题结果或趋势的.能力。

3、让学生体验折线统计图在实际生活中应用的广泛性和重要性,培养正确的数学观,并通过相互交流、讨论,培养合作交流的能力。

一、引入:

1、出示:条形统计图

(1)某电影院上月各类影片观众人数统计图

(2)新芽书苑20xx年3月第一星期故事书销售情况统计图

2、提问:你已知道了条形统计图的哪些知识?

3、现实生活中还有另一种统计图,你见过吗?出示:折线统计图。

(1) 上虞电影院20xx年(1~6)月观众人数统计图。

(2) 百官镇一农户96~20xx年人均收入统计图。

二、展开:

(一)折线统计图的特点和作用。

1、四人小组讨论;条形统计图和折线统计图有什么相同点和不同点?

(1) 学生自由讨论交流。

(2) 这两类统计图最大的区别是什么?

2、结合条形统计图的特点,归纳折线统计图的特点。

3、从折线统计图上我们能看出数量的多少吗?还能了解到什么?

4、结合课本进一步深入了解折线统计图的特点和作用。

(二)折线统计图的绘制。

1、你认为哪幅条形统计图用折线统计图来绘制更合适?

2、小组讨论:把这幅条形统计图绘制成折线统计图你有什么办法?

A、小组讨论 B、汇报 C、提问:绘制的关键是什么?

3、学生尝试绘制。

(1) 出示“我们的调查资料”。

(2) 想一想,哪几组数据用折线统计图绘制比较合适?

(3) 请选择其中一组数据绘制。

(4)小组交流绘制情况,分析增减变化的情况,并 推断发展趋势。

(5)大组交流绘制情况,并纠错。

三、应用

1、出示:李X(住院)的体温变化情况统计图,提问:看图后,你能推断出什么?

2、出示:百官镇一农户96~20xx年人均收入统计图。

思考:A、看图后你有什么感受?

B、你能提出哪些数学问题?

3、对比练习:

(1)出示:“吉祥鞋店20xx年凉鞋、棉鞋销售情况统计图”。

思考:A、两种鞋的销售趋势分别怎样?

B、你有什么建议?

(3) 出示:两家游泳衣专卖店的销售情况统计图。

思考:A、比较这幅图,说说哪一幅比较符合我们的生活实际?

B、猜猜为什么乐乐专卖店会有这样的销售现象

四、总结

你又有什么新收获?你是用什么方法学会的?

五、课外作业

省略

五年级下册数学教案 篇4

【教学内容】

教科书第58页综合应用:设计长方体的包装方案。

【教学目标】

1、通过设计长方体的包装方案让学生认识到在体积相同的情况下,表面积与它的长、宽、高的相差程度有关的道理。

2、通过数学活动,运用所学知识,获得解决简单实际问题的经验、方法以及成功的体验。

3、培养学生的创新意识、策略意识、实践能力和空间观念。

【教学重点】

让学生体验到,在体积相等的情况下,要使表面积较小,长、宽、高应越接近的道理。

【教具学具】

为每组学生准备8个规格为16×8×4(单位:cm)的长方体纸学具盒,包装纸,直尺,透明胶,剪刀等。

【教学过程】

一、课前引入

师:观察自己桌上的学具盒,你发现这些学具盒有什么特点?

生:形状都是长方体,每个盒子的规格都是16×8×4(单位:cm),每组都有8个。

师:如果我们要将这8个长方体盒子包装成1盒,怎样包装更省包装纸呢?今天我们就运用所学知识解决这个问题。(板书课题)

二、设想与摆放

1、设想与摆放

设想:

(1)要将这些长方体的盒子包装起来,在包装的.过程中要考虑哪些问题呢?

(2)要达到节省包装纸的目的,应该考虑哪些问题?学生思考后发表意见:要想节约包装纸,学具盒中间不能留空隙,表面要平整;摆法不同,所用的纸的大小不同;接头处尽量不要浪费等等。

(3)明确长方体盒子的摆法不同是造成包装纸用量大小的主要原因。

2、记录与计算

(1)你认为造成所需包装纸大小不同的主要原因是什么?所需包装纸的面积=所摆的长方体的表面积+接头部分用纸量(按2dm2计算)

生:摆成的大长方体的表面积越大,所用的包装纸越多,反之就少。

(2)究竟哪种摆法会更节约包装纸呢?

师:你们可以先将几个盒子摆一摆,量出所摆的长方体的长、宽、高,计算出摆成的不同长方体的表面积,从而算出所用包装纸的面积,并将数据和计算过程记录下来。

(3)小组合作:记录3种不同摆法下的包装纸用量,并选择一种用纸最少的方案。

为什么这种方案的用纸量会最少?在全班进行交流。

三、交流与比较

比一比谁的方案用纸少,并分析出用纸量不同的原因。

重点思考并讨论:

为什么同样是将8个学具盒打捆包装,表面积的大小会不相同?影响表面积大小的主要原因是什么?将分析的原因记录下来。

四、发现与思考

通过本次包装设计,你有什么发现?

1、物体重合的面积越大,表面积就越小,包装用的纸也就越少。

2、同样的体积下,长方体的表面积与它的长、宽、高的长度有关,长、宽、高的长度越接近,表面积就越小,当长、宽、高相等时,它的表面积最小。

五、知识拓展

师:解决用料省的问题在生活中有什么意义?联系实际谈自己的想法。

师:现在老师这里有20本数学书,想想看,怎样摆表面积最小?为什么?

六、课堂小结

这节课我们学习了什么?你有什么收获?说一说。

五年级下册数学教案 篇5

教学目标

1、知道单位”1”可以是一个物体,也可以是多个物体。认识分数单位,理解分数是分数单位的累积。理解分数的意义,体会分数表示的部分与整体的关系。

2、运用直观教学手段,经历分一分、画一画、折一折、比一比等活动,理解分数的意义,培养学生的动手操作的能力和抽象概括能力,形成从不同角度思考问题的意识。

3、学生在轻松和谐的氛围中主动参与、充分体验,感受数学与生活的密切联系,发展学生的数感。

教学内容分析:

小学阶段对于分数的研究大致分为5个阶段:低年级的平均分和除法、倍的认识、三年级的分数初步认识、五年级的分数再认识、分数的计算、六年级的比。从这些安排来看可以看出五年级的分数再认识是小学阶段一次系统的学习分数,这部分内容是在学生已对分数有了初步的认识的基础上,教材安排的一次理论上的概括。它不仅是前面所学知识的归纳、总结,更是对分数认识上由感性上升到理性的开始,是学习分数四则运算和应用的重要前提。

重难点

重点:

知道单位”1”可以是一个物体,也可以是多个物体。认识分数单位,理解分数是分数单位的累积。

难点:

运用直观教学手段,经历分一分、画一画、折一折、比一比等活动,理解分数的意义,培养学生的动手操作的能力和抽象概括能力,形成从不同角度思考问题的意识。

教学过程

活动1【导入】

一、沟通“1”、整数、分数的联系,度量中感受分数的产生和意义。

师:同学们学习过整数吗?如果用这张红色的纸条表示1,那么你能想办法表示出2吗?3怎样表示呢?我们发现有几个这样的“1”就可以用几来表示。

师:老师这里还有一张纸条(更长的纸条),你知道它表示几吗?(用1作为标准去量发现有不足1的)。

师:这段不足1的长度怎样表示呢?(用分数表示)

在测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。

师:猜一猜,这段不足1的长度是这个标准的几分之几呢?

老师给每个组的同学都提供了一些学具,请利用手中的学具验证你们的猜想。

预设1:两张绿色纸条拼成一个红色纸条,绿色纸条是红色纸条的

预设2:红色纸条对折,不足1的部分是红色纸条的

预设3:两张桔色的纸条。一张桔色的纸条是红色纸条的,两个就是。

我们发现我们只要找到不足1的部分与标准之间的关系,就可以用分数表示了。

在刚才的测量过程中我们发现不足1的部分没办法再以1为标准去测量了,但是我们发现可以用标准的去测量。下面我们就用标准的测量一下,看看粉色纸条是几个,你知道5个是几分之几吗?

活动2【讲授】

二、分物中体会单位“1”可以是多个物体

师:刚才我们找到了,生活中其他的地方有没有呢。

大米

1000克

拿出小片子,请你分别表示出它们的。

我们表示的都是,可是为什么对应的数量却都不相同呢?

回顾一下找的过程,你对分数又有了哪些新的体会?

师小结:除了可以把一个物体或一个图形平均分找到分数,也可以把多个图形或多个物体看作整体通过平均分找到分数。大家平均分的一个物体、一个图形、一个计量单位、一个整体,可以用自然数“1”表示,通常叫做单位“1”

活动3【讲授】

三、分物中认识分数单位,深入体会分数的意义。

师:刚才同学们准确的找到了这些糖的',下面同学们可以自由地利用这些糖来表示你喜欢的分数。

合作建议:

独立思考:想一想、画一画,用这些糖还能表示出哪些分数。

小组讨论:在小组内说一说你找到的分数所表示的意义。

预设:

观察这两个分数你有什么发现吗?

相同点:都是把6块糖平均分成6份

不同点:取的份数不同

联系:2个是

师:你会表示吗?

师:我们发现有几个就是六分之几。

师:你会表示吗?

师:那么有几个就是三分之几。

像、这样的表示一份的分数就叫做分数单位。而像、、这样的分数,我们可以理解为它们都是由分数单位不断累积而成的。

师:有些同学还找到了一样的分数,对吗?

师:表示了这么多分数,谁能来说说分数的意义。

活动4【导入】

四、巩固练习

1、填一填

2、猜一猜

师:请你对自己今天课堂学习的表现和收获进行评价。这里有10颗星星,你认为你可以得到几颗呢?请在纸上进行涂色。

师:谁来说说你获得了这些星星的几分之几呢?请同学们根据他所说的分数想一想他给自己评了几颗星?

师:谁再来说说你自己评了几颗星,同学们想一想他获得了全部星星的几分之几?

师:同学们想不想知道我给大家今天的学习情况评几颗星呢?

出示

师:你知道这是几分之几吗?

有的同学在为没有得到全部的星星而感到遗憾,其实没有点亮的那半颗星才是我今天送给大家最宝贵的礼物,不满足是进步的首要条件,在陈老师心里你们每个人拥有着无限的潜能,我永远期待着你们更精彩的表现。

五年级下册数学教案(精选15篇)

作为一位杰出的老师,通常会被要求编写教案,教案是实施教学的主要依据,有着至关重要的作用。那要怎么写好教案呢?下面是小编为大家整理的五年级下册数学教案,欢迎大家分享。

五年级下册数学教案 篇6

教学内容:

人教版义务教育课程标准教科书五年级下册第84-85页例3、例4及相关练习

学情分析:

《约分》是在学生已经掌握了分数的基本性质和公因数的基础上进行教学的,约分作为分数基本性质的直接应用,它是化简分数的常用方法。学习约分,不但可以提高对分数基本性质的的认识,还为分数的四则运算打下基础。

教学目标:

1、知识和技能目标:理解最简分数和约分的意义,掌握约分的方法,能够正确地进行约分,培养学生观察、比较和概括能力。

2、过程与方法目标:通过学生自主探索理解最简分数和约分的意义,经历探究约分方法的过程,渗透恒等变换思想。

3、情感态度和价值观目标:培养学生运用所学知识解决问题的能力,感受数学与生活的紧密联系。

教学重难点:

重点:最简分数的意义和约分的方法;掌握约分的方法。

难点:能准确的判断约分的结果是不是最简分数。

教具、学具准备:

课件

教学过程

复习铺垫。

课件出示一起回答用列举法找出24和30的公因数和公因数(为24

/

30约分做准备)

1、24的因数有(),30的因数有(),24和30的公因数有(),它们的公因数是()。

2、填空(说说为什么,什么是分数的基本性质)

(教学方法:课件出示复习题,第1题学生在练习本上完成,第2题先默背,然后指名回答,集体订正。)

过渡:这是我们前面所学习的内容,这节课我们接着学习新内容,请看大屏幕。

二、探究新知。

(一)、猜测、验证和比较,理解最简分数的意义

1、出示例3的教学情境图,让学生观察。

2、师:从情境图中,你得到了什么信息?(这是某所学校100米游泳比赛中,三个学生的对话,生1:一共要游100米,小明已经游了75米,生2:他已经游了全程的3

/

4,生3:75

/

100和3

/

4是一回事吗?)

3 、猜一猜:75

/

100和3

/

4

/

是一回事吗?

4、验证:让学生同桌讨论,把验证过程写在练习本上。

5、学生汇报结果,教师课件演示。

6、引导学生比较75

/

100和3

/

4两个分数的异同,得出最简分数的`概念。

相同点:分数的大小相等

不同点:75

/

100分子和分母较大,含有公因数1、5、25;3

/

4分子和分母较小,只含有公因数1。分数的意义,分数单位都不同

总结概念:分子和分母只含有公因数1,像这样的分数叫做最简分数。

活动:请学生例举最简分数的例子。

教师说学生判断,

学生说大家判断

学生说同桌判断

抓住关键:分子和分母只含有公因数1,看是否有公因数2、3、5

8、课件出示练习:指出下面哪些分数是最简分数?为什么?

5

/

7 6

/

9 10

/

12 11

/

12 8

/

10 14

/

169

/

1624

/

25 21

/

24 13

/

17

名回答,说明为什么。

还是抓住关键:分子和分母只含有公因数1

假如都是2或3或5等的倍数,就不只有公因数1。

(二)、探究约分的意义和方法

过渡:刚才,我们一起学习了最简分数,在我们学过的分数中有很多都不是最简分数,我们能不能把它化成最简分数呢?

课件出示例4.判断24

/

30是不是最简分数(不是,除了1外,还有公因数2、3、6)

把24/30化简成最简分数

师提出思考问题:

(1)、化简指什么?使分子分母的数字变小

(2)、化简后大小不能变,要运用什么性质?等式的基本性质

(3)、等式的基本性质中同时乘或除以相同的数(0除外),化简时,是乘,还是除,用什么来除。除,用公因数来除

(4)、化简到什么时候为止?最简分数,分子分母只有公因数1

学生小组内讨论交流,明确题目要求,为探究约分方法做准备。

2、师:请同学们试着做一做,把24/30化简成最简分数。大小不能变。

完成后小组内交流。

巡视,指导。

交流探究结果。

小组汇报结果。

(1)方法一:用分子和分母的公因数(1除外)依次去除。除到最简分数为止

24

/

30=24+30

/

30+2=12

/

152

/

15=12÷3

/

15÷3=4

/

5

(2)方法二:直接用分子和分母的公因数去除。直接得到最简分数。

24

/

30=24+6

/

30+6=4

/

5

/

小结:教师用课件演示比较两种约分方法,并总结约分的意义。

约分的概念:

师:约分还有一种书写方法,请同学们看第85页例4,

并在练习本上写一写约分的这种写法。

6、教师课件直观演示约分的另一种书写格式。

三、巩固练习(课件演示)

过渡:刚才我们一起学习到了最简分数和约分的知识,老师发现大家学得很认真,但不知掌握的怎么样?大家愿意接受挑战吗?

1、判断下面各等式,哪些是约分?为什么?

2、错题改正。

3、指出下列分数分子和分母的公因数。

4、分苹果。

四、课堂小结

这节课我们学习了什么内容?(板书课题:约分)

五、板书设计

约分

方法一:

24

/

30=24÷2

/

30÷2=12

/

15

12

/

15=12÷3

/

15÷3=4

/

5

方法二:

24

/

30=24÷6

/

30÷6=4

/

5

75

/

100= 3

/

4

不同点:分子和分母较大分子和分母较小,

含有公因数1、5、25只含有公因数1

最简分数

教学反思

1、为学生的数学思考搭梯子。

课堂提问是学生进行数学思考的前提,问题过易就没有思考探究的价值,但问题过难,学生又研讨不出来也没有实际意义。本节课的教学,我根据问题的难易和学生的实际情况给学生学习搭梯子。

如:在探究理解最简分数意义这一环节的教学中,学生验证出75

/

100和3

/

4相等以后,我提出了一个问题:75

/

100和3

/

4有什么区别?很多学生都能看出75

/

100分子分母较大,3

/

4分子分母较小,但没有学生从分子和分母的公因数上去比较。接着我给学生搭了个梯子:请同学们从分子和分母的公因数上比较一下看它们有什么区别?很快学生就找出了75

/

100分子分母有公因数1、5、25,而3/4只有公因数1,然后我又在“只有”这个词上加以强调,使学生深刻的理解了最简分数的概念。

又如探究“约分的意义和方法”这个环节,如果直接出示例4:24

/

30,然后让学生自主探究约分的方法,相信很多学生会“丈二和尚摸不着头脑”,无从下手。在出示例4之后,我是这样给学生搭梯子的。我要求学生不动手,先思考三个问题(①、化简指什么?②、化简要运用什么性质?③化简到什么时候为止?),接着让学生交流,明确题目要求,为探究约分方法做准备。通过这两步搭梯子之后,学生也就知道了化简就是把分子分母较大的分数化成分子分母较小的分数,化简要运用分数的基本性质,化简要化到最简分数为止。第三步再让学生自己去探究约分的方法。此时学生已胸中成竹,很自然的探究出了约分的方法,体验了成功的喜悦,突破了本课的教学重点。

2、为学生交流搭台子。

课堂是学生的舞台,需要教师给学生搭台子。只要有探究的地方,就需要交流,学生交流的过程就是在建构知识的过程。因此在理解最简分数和探究约分方法的教学中,我都充分让学生先同桌讨论再全班交流,最后归纳总结形成知识点。我认为教师在教学时,应时刻记住把课堂还给学生,为学生的精彩交流喝彩。只有这样,你的课堂才会因为学生的精彩交流而精彩。

3、不动笔墨不读书。

数学学习是学生动脑、动口、动手的过程。学生在思考交流之后更应让学生动手来写,熟话说“读十遍不如写一遍”。我特别注重学生动手能力的培养,要求学生“不动笔墨不读书”。在复习铺垫中让学生把练习题先写在练习本上,再集体订正;在验证75/100和3/4是否相等的教学时,要求学生把验证过程写在练习本上;在探究约分的方法时,让学生把化简的过程写在练习本上,再交流;在学生看书找约分的另一种书写格式时,我始终要求学生练习写一写。

4、教学环节过渡亦无痕。

好的书法给人感觉“行云流水一气呵成”,好的课堂也应是环环相扣,衔接自然的。本节课我注重教学各个环节的过渡,如:复习铺垫后说:这是我们前面所学习的内容,这节课我们接着学习新内容,请看大屏幕(过渡到最简分数的教学);在学习了最简分数后说:刚才,我们一起学习了最简分数,在我们学过的分数中有很多都不是最简分数,我们能不能把它化成最简分数呢(过渡到约分的教学)?在学习了约分后说:我们一起学习了最简分数和约分的知识,老师发现大家学得很认真,但不知掌握的怎么样?大家愿意接受挑战吗(过渡到巩固练习的教学)?

5、思想方法渗透亦无形。

数学知识和技能的教学是一条明线,数学思想的渗透是教学的一条暗线。数学的每一个知识点都会渗透着一种数学思想,《约分》这一知识点就渗透着恒等变换的数学思想。本课的教学中,恒等变换的数学思想在验证75/100和3/4是否相等和化简分数的教学时得到渗透,在巩固练习中得到不断的内化和深化。

欠缺火候的地方:

有智慧的教师往往能利用课堂即生资源进行教学,使课堂教学更具魅力。整观这节课,本人扑捉学生课堂发言及练习中有用教育资源的能力不够,课堂教学亮点不够亮;其次本人对学生评价的语言还不能较大程度的激发学生的学习兴趣;第三,学生倾听和动笔的习惯还有待进一步提高。

名师张齐华说:好课是从心灵深处流淌出来的。一堂成功的课往往不是教师教学技艺和技巧的简单叠加与拼凑,而是其多年来学识、功底、经验、技巧、智慧、个性乃至人生阅历等在特定教育情境下的一种自然勃发与流淌。如练武之人,境界不是十八般武艺样样精通,而是有深厚内力和“手中无剑,心中有剑”的气魄。自知自己还有很多东西需要不断学习,路漫漫其修远兮,吾将上下而求索。

五年级下册数学教案 篇7

教学目标:

1.知识技能:经历探索分数基本性质的过程,理解分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

2.思考与问题解决:经历观察讨论,操作等学习活动,能对分数的基本性质作出简要的,合理的说明,培养学生的观察,比较,归纳,总结概括的能力。

3.情感态度:经历观察,操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣,鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。

教学重点:

探索,发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。

教学难点:

自主探索,归纳概括分数的基本性质。

教具学具准备:

多媒体课件,正方形纸,彩笔。

教学设计:

一、创设情境,导入新课:

1.课件分别出示两张不同的孙悟空的照片。师:学们仔细看看这两张照片,你有什么发现?(指名回答)。

2.教师引导交流:孙悟空本人没有改变,只不过是外表的打扮装饰发生了改变。

3.学生初步感知了什么变了而什么却没有变的概念。

4.教师导入新课:今天我们就来探讨什么变了而什么没有变的有关内容。教师板书课题:分数的基本性质设计意图:利用学生感兴趣的图片来吸引学生的注意力和观察能力,为下一步学习营造一个轻松活跃的氛围。

二、探究新知。

(一):1.师:在我们在学习这个新的内容之前,我们首先来复习一下除法与分数的关系。学生回答教师板书:

被除数=课件出示:120÷30=(120×2)÷(30×2)=(120÷10)÷(30÷10)= 2.同学们说说这几道相等吗?(指名回答)。

3.教师引导说出商不变的性质,课件出示商不变的性质的定义。

设计意图:通过复习商不变的`性质,为下一步更容易的学习分数的基本性质打下基础。

(二)、教学新知。

1.师:请同学们拿出课前准备好的正方形纸,把手中的纸平均折成4份,其中把3份图上你喜欢的颜色。

2.学生操作,教师巡视并特别提醒学生注意“平均分”。

3.展示学生的作业。

4.师:现在请同学们把正方形纸平均分成8份,16份,分好之后你有什么发现?(指名回答)。

5.教师归纳总结,并课件出示:设计意图:同一张纸能平均分成不同的份数,拓展学生的思维能力。

6.引导学生观察:

观察它们的分子和分母是怎样变,学生观察,思考,交流后,教师集体指导观察,并板书:

教师归纳总结后,学生完成课本66页的填空题,完成后集体回答。

设计意图:学生通过动手操作发现一些表象,但这些表象还须上升为科学理论,这就需要学生能透过表象识别表现后蕴藏的规律,这才能知其然且知其所以然,便于以后举一反三,解决同类相关问题。

7.课件出示:(通知互相讨论)

(1)相比较,看看分子分母有什么变化?(2)在这个变化中,你们发现了什么规律。

8.教师引导学生说出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。(教师特别强调“同时”“同一个数”)。

9.教师提出疑问:为什么要0除外呢?学生回答,教师归纳:因为0和任何数相乘都得0,而分数的分母是不能为0的。

10.同学们,现在你们来看看分数的基本性质和你们以前学习过得商不变性质有什么不同呢?(课件出示两性质作对比)

师:分数的基本性质和商不变性质的规律是一致的。

三、巩固强化,拓展应用。

(1)课件出示:(集体回答)。

(2)指出下列分数是否相等。(指名回答)。

(3)把和化成分母是10而分数大小不变的分数。(指名到台上板演)。

(4)课件出示小故事。

有位老爷爷把一块地分给三个儿子。老大分到了这块地的,老二分到了这块地的。老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?(让学生课后去思考)

设计意图:多样的练习可以让学生及时巩固所学知识,有调动了学习的积极性。

四、回顾总结,梳理新知。

同学们,你们对分数又有了哪些新的了解呢?板书设计:分数的基本性质数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。

教学反思:

1.创设情境,激发学生兴趣。出示孙悟空的照片激发学生的兴趣,吸引学生的注意力。

2.手脑并用,在操作中深入感知分数。请同学们用一张正方形纸片,动手折一折,通过三次的对折,每次找出一个和相等的分数,比较涂色部分大小有没有变化?(没有)。那么得到了什么结论?教师引导学生观察分子,分母的变化,经历总结得出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。学生对此进行巩固后,再引导学生说出:0除外。学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。

3.巩固练习,围绕中心。在设计练习的过程中,采取多种形式呈现,使学生加深对分数基本性质的理解,激发了学生学习的兴趣,使每个学生都能理解所学知识,学有所获,并进一步学习约分和通分打下了良好的基础。

五年级下册数学教案 篇8

教学目标:

知识与技能

1、理解容积的含义,体会容积和体积的关系。

2、认识常用的容积单位,感知建立升和毫升的容积观念。

3、掌握容积的计算方法,能进行单位之间的换算。

过程与方法

1、经历容积概念的探究与理解过程。

2、通过比较,明确容积单位与体积单位的区别和联系。

情感态度与价值观

1、培养学生的观察能力和探究意识。在探索未知的过程中体验学习数学的乐趣,培养学生积极、主动地参与学习和探究活动的态度。

2、渗透“事物之间是相互联系的”这一辩证唯物主义的思想。

教学重点:建立容积的观念,掌握容积单位之间的进率。

教学难点:理解容积与体积的联系与区别。

教学过程:

一、创故事情景

今天老师带来一位神通广大、变化多端的孙悟空,它可厉害呢,有72变。

二、复习导入

第一变 回忆

(1) 什么叫体积?

(2) 体积单位有哪些?它们之间的进率是什么?

(3) 体积的计算方法是什么?

三、探究新知

第二变 思考

1、教学容积概念。

运用你的.预习知识,把魔方、电饭褒、雪梨、汽车的油箱这四种物品分成两类,你是怎样分的?说明理由。

生:空心的 能装东西的

师:你在生活中见过哪些空心的,能装东西的物品?

生:举实例 (饭盒、矿泉水瓶、奶牛盒……)

师:你想知道这些容器里面能装多少东西吗?

这就是我们今天学习的内容:容积和容积单位 (板书)

什么叫容积?从中国文字的字面解释 容:容纳 积:体积。合起来:像电饭褒、汽车的油箱等所能容纳物体的体积,叫它的容积。

练习

根据容积定义判断:

(1)电饭褒的体积就是它的容积( )

计量容积一般可以用体积单位( )

(2)数学书P53页第一题。

突出:体积 (外面量数据) 容积(里面量数据)板书

2、教学容积单位:升和毫升

师:请同学们再仔细观察你带来的物品,看看能否找到有关容积的数学信息?

生:500毫升 18.9升

师:升、毫升就是我们今天要学习的容积单位。板书

生:净含量:250毫升 1升……

师:表示什么意思?净含量:250毫升表示瓶子里水的体积是250毫升。而不是瓶子的容积是250毫升,也不是瓶子的体积是250毫升

(选1升和1立方分米来对比,为实验作铺垫)

回应:计量容积,一般用体积单位,什么时候用容积单位?计量液体的体积,用容积单位 板书

练习:(1)四人小组互相说说各自收集物品的容积。

(2)老师也收集了一些物品,考考大家的眼力。出示:数学书P53第三题

3、教学容积单位与体积单位之间的换算。

师:谁知道这两个容积单位之间的进率是多少?生:1000。

师:你是怎么知道的?

生:书上写的。

师:你对这个关系不表示怀疑吗?真理总是通过实践来证明的,想验证一下,你有方法吗?

由学生做实验:1升的冰红茶、500毫升的量杯、1立方分米的容器。

师:从实验中你证实了1升=1000毫升,还得出什么结论?

生:1升=1立方分米。

如此类推:你还能推理出什么关系?

生:1毫升=1立方厘米 1立方米=1000升

练习:数学书P52做一做第一题和P53第四题

第三变:计算

4、教学容积的计算

出示例5,一种小汽车的油箱,里面长5d m ,宽4d m ,高2d m 。这个油箱可以装汽油多少升?

指一名学生读题。(突出容积的计算方法与体积计算方法相同)

(1)分析理解题意:求“这个油箱可以装汽油多少升?”就是求这个油箱的什么?必须知道什么条件?是否具备?怎样算?结果是什么?怎么办?(为什么要改单位?求容积)

(2)学生做完后集体订正。

第四变:运用

四、应用知识,解决问题

咳两声,讲了一节课,老师口干了,很想喝水。

师:谁知道一个正常人每天要喝多少水才合适才健康?

生:1500毫升、1000毫升……

师:你是从哪里知道的?

生:书里介绍的。

师:我们一起来看看数学书P52了解更多的课外知识。同时渗透节约用水的教育。

小组活动:

(要求组长分工要明确:不同的人负责倒水、记录、计算以及汇报,倒水要注意别溢出来,注意纪律。)

(1)将一瓶约( )毫升的矿泉水倒在纸杯中,看看可以倒满几杯。

(2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1 L,正常人一天喝多少杯才健康?

全班分享

五、总结质疑

今天学习了容积和容积单位,你有什么收获?

六、拓展延伸,发展思维

作业:

1 、到商店、超市调查标有容积单位的商品及净含量,编一道有道容积计算的题目并解答。

2、调查一大桶约18升的矿泉水和一瓶500毫升矿泉水的单价,算一算,一大桶矿泉水相当于几瓶这样的小瓶矿泉水,买哪种比较合算?

教学反思:通过这节课,我体会到教师应在尊重教材的基础上,根据学生的实际有目的地对教材内容进行改编和加工,使教材变得生动,更贴近学生实际。例如课本上是在认识容积和容积单位后学习容积的计算的,而在后面的设计中我让学生先观察自己手中的盒子(自备的墨水盒、饼干盒等)的空间形状,再动手操作量出盒子里面的长、宽、高,并计算出盒子的容积,这就变成了学生身边的实际问题,有利于激发学生解决这些问题的欲望。在解决实际问题的过程中,学生应用知识解决问题的能力得到了提高,也让学生体会到“数学是解决实际问题的一种方法。”

教学反思:

在练习题目中,涉及到新课的内容可以再次点出,再次让学生加深印象,这样就节约了时间。在常规课堂中,切忌概念的讲授花费很多时间,概念讲得越多,学生可能越糊涂。其实学生头脑里已经对新概念有所认识和体会,我们只需要把新概念与旧概念的区别和联系讲清楚就行。

五年级下册数学教案 篇9

教学目标:

1.认识长方体和正方体,初步掌握各自特征和内在联系。帮助学生在动手操作的实践中初步建立空间观念,培养学生观察、分析、推理的能力。

2.在认识长方体和正方体的相互联系和变化规律的过程中,初步培养学生辩证唯物主义观点。

教学过程:

一、导入新课,揭示课题

1.师:我们学过哪些基本平面图形?长方形和正方形之间有什么关系?

2.出示一张纸。师:这是什么图形?(长方形)如果把这样大小的许多纸重叠在一起,你们看,是什么形状?(长方体)

3.师:在日常生活中,长方体形的物体我们常见到,如保健箱、粉笔盒等等,你们能说出一些来吗?(砖、墨水瓶盒子、教科书……)

师:长方体和正方体在日常生活中与我们联系很多,在工农业生产中用途很广。今天我们就来学习它。

板书:长方体和正方体的认识

二、示范操作,认识面、棱、顶点

1.拿出一根萝卜,用刀切一刀,要求学生观察并且动手摸一摸切出的面。在学生感受的基础上,告诉学生这叫做“面”。

2.将切出的萝卜平面朝下,再垂直切一刀,取出其中的一块,出示给学生看。

师:这块萝卜有几个面?两个面相交的边叫什么呢?(棱)

3.继续切,把萝卜一面平摆在桌面上,再垂直切一刀,出现了一个新情况,让学生观察后回答,有几个面,有几条棱。

师:三条棱相交的点叫做顶点。

师:刚才我们通过切萝卜的活动认识了物体的面、棱、顶点。

4.教师出示长方体模型,学生取出长方体实物,进行观察,并且摸一摸长方体的面、棱、顶点。然后回答:一个长方体有几个面?几条棱?几个顶点?

三、认识长方体

1.要求学生认真观察手中的长方体实物,并自学课本,同时在黑板上出示下列自学题:

(1)长方体有几个面?每个面是什么图形?哪些面的面积相等?为什么?

(2)长方体有几条棱?哪些棱的长度相等?

(3)长方体有几个顶点?

2.讨论后,教师根据学生回答简要板书。

(1)长方体有6个面,都是长方形。把上下面、左右面、前后面称为相对的面,相对的面面积相等。

(2)长方体有12条棱,同方向的棱长度相等。

(3)长方体8个顶点。

3.接着教师出示有一组相对的面是正方形的长方体,告诉学生这也是长方体,在它的6个面中有一组相对的面是正方形。

板书:在长方体中,也可能有一组相对的面是正方形。

4.指导学生进行想象。

(1)师:

①以上我们学习了有关长方体的知识,回忆一下看,长方体有哪些特征?根据这些特征,联系生活实际中你们见到的一些实物,说说它们的面、棱、顶点(学生根据教师的提问各抒己见,进行讨论)。

②谁能说说教室这个长方体的面、棱和顶点?

(2)出示长方体模型。

①师:你能看到长方体的哪几个面?

②一般我们能看到长方体的三个面。

③出示透视图。告诉学生:这幅图称为长方体的透视图。

(3)尝试练习:判断下列图形中哪些是长方体,说明哪些不是长方体,为什么。

5.认识长方体的长、宽、高。

(1)指导学生观察模型,指着模型的一个顶点问:相交于一个顶点的有几条棱?是哪三条棱?告诉学生:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。习惯上,我们把横的棱长称为长,纵的棱长称为宽,竖的棱长称为高。

(2)教师取出一个长方体模型,让学生指出这个长方体的长、宽、高。再把同一模型换三个位置,分别由学生指出它的'长、宽、高。

(3)要求学生拿出各自带着的录音磁带盒,要求:

①在教师规定的统一摆放位置,分别量出它的长、宽、高各是多少厘米。

②让学生在各自不同的摆放位置,量出长、宽、高并报出数据,让其他学生猜出报数据学生测量时的摆放位置。

(4)尝试练习(略)。

四、认识正方体

1.以练习一第1题,长方体的长、宽、高都是5厘米的立体图形为例,告诉学生:“长、宽、高都相等的长方体叫做正方体,也叫做立方体。”

2.学生取出正方体学具,教师要求学生动手量一量12条棱的长度,观察6个面的形状和大小。教师提出问题:发现了什么?

经过讨论,让学生阅读课本,根据课本的叙述,要求学生讲出:

(1)正方体的特征。

(2)正方体和长方体的关系。

五、总结比较

师:我们分别学习了有关长方体和正方体的知识,请取出按照练习二十二第5题要求制作的纸样,再请大家比较比较:

1.长方体和正方体有什么特征?

2.长方体和正方体有哪些相同点和不同点?

3.两者的关系怎样?

五年级下册数学教案 篇10

教案设计

设计说明

1.以学生自主探究为主,引导学生发现分数与小数的互化方法。

学生通过自主参与、主动探究,可以更好地掌握数学知识。在学生探究分数与小数的互化方法时,给学生提供探究的时间,让学生以小组合作的方式进行探究,再通过比较、整合,得出分数与小数的互化方法。在这个过程中,学生通过自己和同伴的努力,经历了知识形成的全过程。

2.在学生原有的认知水平上促进发展。

本节课的内容相对简单,学生在课前已经有了初步的`了解,因此,在课堂上让学生自主探究,经历知识的形成过程,使得不同水平的学生获得不同层次的发展,收获的多少可能不同,但都能获得成功的体验。

课前准备

教师准备 PPT课件

学生准备 两张完全一样的方格纸

教学过程

⊙创设情境,导入新课

师:今天,老师带着你们一起去“分数王国”和“小数王国”里玩一玩。

(课件出示情境图)

师:“分数王国”里有哪些数呢?“小数王国”里呢?

(生汇报)

师:“分数王国”的士兵和“小数王国”的士兵吵了起来,它们在吵什么?

生:和0.06都说自己更大。

师:和0.06哪个数大?你能帮助它们吗?(板书课题——“分数王国”与“小数王国”)

设计意图:用“分数王国”与“小数王国”里的士兵吵架这个情境导入新课,营造一种氛围,激发孩子的学习兴趣。然后以比较“分数王国”里的与“小数王国”里的0.06哪个数大的问题情境引入,让学生产生分数和小数互化的需要,从而引出本节课的学习内容。

⊙自主探索,学习新知

1.解决问题。

(1)课件出示教材7页情境图。

师:比一比,“分数王国”里的与“小数王国”里的0.06哪个数大?

(2)大胆猜测,探究比较方法。

方法一 把分数化成小数来比较。

=1÷20=0.05,因为0.060.05,所以0.06。

方法二 把小数化成分数来比较。

0.06=,=,因为,所以0.06。

课件展示学生没有想到的画图法,让学生在讨论中理解。

0.06>

师小结:比较分数与小数的大小时,可以把分数化成小数或者把小数化成分数。

2.“分数王国”和“小数王国”分别有不同的尺子,你能帮助“翻译”吗?

(1)认真读题,明确题目中的“翻译”指什么。

(2)鼓励学生根据“分数尺”和“小数尺”中呈现的例子说一说与0.125的互化过程。

(3)引导学生理解数线上的同一个点既能表示一个分数,也能表示一个小数。

3.归纳分数化成小数的方法。

(1)探究将分数化成小数的方法。

把下列分数化成小数:

练习,并思考转化方法。

(2)小组内交流方法。

(3)班内反馈。

要求学生说出转化方法,并讲明转化的原理。

师小结:分数化成小数,就用分子除以分母。根据分数与除法的关系,分数的分子相当于被除数,分母相当于除数。

4.归纳“小数化成分数”的方法。

把0.3,0.27,0.75,0.125化成分数。

练习,探究小数化成分数的方法。

师小结:小数化成分数,原来是几位小数,就在1的后面写几个0作分母,把原来小数的小数点去掉作分子,化成分数后,能约分的要约分。

设计意图:数学知识只有通过学生的主动参与、自主探究,才能转化为学生自己的知识。本教学环节中,学生以小组合作、自主学习的方式进行探究,在多种方法的基础上比较、整合,从而得出分数与小数的互化方法。

五年级下册数学教案 篇11

教学内容:

长方体、正方体的体积计算

教学目标:

1.通过讲授,引导学生找出规律,总结出体积的公式。

2.指导学生运用公式正确计算长方体、正方体的体积。

3.培养学生积极思考、探索新知的思维品质。

教学重点:

长方体、正方体体积计算。

教学难点:

长方体、正方体体积计算

教具运用:

正方体木块若干。

教学过程:

一、复习导入

1.什么叫体积?计量物体的体积常用的单位有哪些?

2.怎样计算一个物体的体积呢?

二、新课讲授

1.长方体体积的计算。

教师课件出示一块长方体积木,一块盖房用的大型砖板。

(1)提问:它们的体积是多少?你是怎样想的?

引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。

教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。

(2)观察操作,探究长方体的体积公式。

小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。

学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。

说明学生拼摆长方体的样式非常多,这里只列举几个。观察:从这张表中,你发现了什么?

学生独立思考,然后小组内讨论交流,得出结论。

小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。

板书:长方体的.体积=长宽高

讲述:如果用字母V表示长方体的体积公式可以写成:V=abh

(3)质疑:求长方体的体积公式需要知道什么条件?

2.探究正方体的体积公式。

(1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。

(2)引导学生明确。正方体的体积=棱长棱长棱长(板书)用字母表示:V=aaa=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)

3.运用长方体的体积公式解决问题。

(1)出示教材第30页的例1。

(2)学生看图,理解题意。

(3)说出题中所给信息,和所求问题。

(4)指名说出长方体的体积公式。

(5)指名学生上台板演过程,其他同学判断。

(6)老师订正书写。V=abh=743=84(cm3)

(7)看图,学生独立在练习本上完成。

(8)指名板演,集体订正。

三、课堂作业

完成课本第31页做一做第1、2题。

四、课堂小结

1.这节课,你有什么收获?

2.在计算长方体和正方体的体积时,要注意哪些问题?

五、课后作业

完成练习册中本课时练习。

板书设计 :

长方体和正方体的体积

长方体的体积=长宽高

V=abh

正方体体积=棱长棱长棱长

V=aaa=a3

五年级下册数学教案 篇12

教学目标:

1、知识技能:经历探索分数基本性质的过程,理解分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

2、思考与问题解决:经历观察讨论,操作等学习活动,能对分数的基本性质作出简要的,合理的说明,培养学生的观察,比较,归纳,总结概括的能力。

3、情感态度:经历观察,操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣,鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。

教学重点:

探索,发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。

教学难点:

自主探索,归纳概括分数的基本性质。

教具学具准备:

多媒体课件,正方形纸,彩笔。

教学设计:

一、创设情境,导入新课

1、课件分别出示两张不同的孙悟空的照片。师:学们仔细看看这两张照片,你有什么发现?(指名回答)。

2、教师引导交流:孙悟空本人没有改变,只不过是外表的打扮装饰发生了改变。

3、学生初步感知了什么变了而什么却没有变的概念。

4、教师导入新课:今天我们就来探讨什么变了而什么没有变的有关内容。教师板书课题:分数的基本性质设计意图:利用学生感兴趣的图片来吸引学生的注意力和观察能力,为下一步学习营造一个轻松活跃的氛围。

二、探究新知。

(一)导入

1、师:在我们在学习这个新的内容之前,我们首先来复习一下除法与分数的关系。学生回答教师板书:

被除数=课件出示:120÷30=(120×2)÷(30×2)=(120÷10)÷(30÷10)=

2、同学们说说这几道相等吗?(指名回答)。

3、教师引导说出商不变的性质,课件出示商不变的性质的定义。

设计意图:通过复习商不变的性质,为下一步更容易的学习分数的基本性质打下基础。

(二)、教学新知

1、师:请同学们拿出课前准备好的正方形纸,把手中的纸平均折成4份,其中把3份图上你喜欢的颜色。

2、学生操作,教师巡视并特别提醒学生注意“平均分”。

3、展示学生的作业。

4、师:现在请同学们把正方形纸平均分成8份,16份,分好之后你有什么发现?(指名回答)。

5、教师归纳总结,并课件出示:设计意图:同一张纸能平均分成不同的份数,拓展学生的思维能力。

6、引导学生观察:

观察它们的分子和分母是怎样变,学生观察,思考,交流后,教师集体指导观察,并板书:

教师归纳总结后,学生完成课本66页的填空题,完成后集体回答。

设计意图:学生通过动手操作发现一些表象,但这些表象还须上升为科学理论,这就需要学生能透过表象识别表现后蕴藏的规律,这才能知其然且知其所以然,便于以后举一反三,解决同类相关问题。

7、课件出示:(通知互相讨论)

(1)相比较,看看分子分母有什么变化?

(2)在这个变化中,你们发现了什么规律。

8、教师引导学生说出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。(教师特别强调“同时”“同一个数”)。

9、教师提出疑问:为什么要0除外呢?学生回答,教师归纳:因为0和任何数相乘都得0,而分数的分母是不能为0的。

10、同学们,现在你们来看看分数的基本性质和你们以前学习过得商不变性质有什么不同呢?(课件出示两性质作对比)

师:分数的基本性质和商不变性质的`规律是一致的。

三、巩固强化,拓展应用

(1)课件出示:(集体回答)。

(2)指出下列分数是否相等。(指名回答)。

(3)把和化成分母是10而分数大小不变的分数。(指名到台上板演)。

(4)课件出示小故事。

有位老爷爷把一块地分给三个儿子。老大分到了这块地的,老二分到了这块地的。老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?(让学生课后去思考)

设计意图:多样的练习可以让学生及时巩固所学知识,有调动了学习的积极性。

四、回顾总结,梳理新知

同学们,你们对分数又有了哪些新的了解呢?板书设计:分数的基本性质数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。

教学反思:

1、创设情境,激发学生兴趣。出示孙悟空的照片激发学生的兴趣,吸引学生的注意力。

2、手脑并用,在操作中深入感知分数。请同学们用一张正方形纸片,动手折一折,通过三次的对折,每次找出一个和相等的分数,比较涂色部分大小有没有变化?(没有)。那么得到了什么结论?教师引导学生观察分子,分母的变化,经历总结得出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。学生对此进行巩固后,再引导学生说出:0除外。学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。

3、巩固练习,围绕中心。在设计练习的过程中,采取多种形式呈现,使学生加深对分数基本性质的理解,激发了学生学习的兴趣,使每个学生都能理解所学知识,学有所获,并进一步学习约分和通分打下了良好的基础。

五年级下册数学教案 篇13

教学目标:

1、结合具体事例,经历认识“方”并解决土石方计算问题的过程。

2、了解“方”的具体含义,能够灵活运用体积计算公式解决一些简单的现实问题。

3、在综合运用所学知识解决现实问题的过程中,感受数学在生活中的广泛应用,培养数学应用意识。

教学重点:

熟练运用长方体和正方体的体积计算公式解决实际问题。

教学难点:

长方体和正方体的体积计算公式演变成“横截面的面积乘长”。

教学过程:

一、巧设情境,激趣引思。

同学们,前面几节课我们学习了体积的有关内容,请大家思考以下问题。

(1)什么是体积?体积的单位有哪些?它们之间的进率是多少?

(2)怎样求长方体的体积?正方体的'体积,长方体和正方体体积计算的统一公式是什么?

(3)学生分组讨论,指名回答问题。

这节课我们运用体积的有关知识,解决实际生活中的问题

二、自主互动,探究新知。

课件出示例题1:让学生读题,讨论:挖出的土与地窖的体积有什么关系? 让学生尝试解决问题 交流计算的结果。

教师介绍“方”,让学生用方描述挖出的土。

课件出示例题及拦河坝的和示意图。

让学生观察,问:你知道了哪些信息? 师帮助学生理解题意。

怎样计算拦河坝的体积?为什么这样计算? 使学生知道:拦河坝的体积=底面积×高。

让学生尝试解决问题,并交流计算的方法和结果。

三、应用拓展,反思交流。

1、应用:

(1)试一试 帮助学生弄清图意,然后鼓励学生提出问题,师生合作解决。

(2)练一练 第1、2题,帮助学生理解题中的事物和信息,再独立完成。

第3、4题,让学生先说一说,要解决问题,先要求出什么?

2、拓展:

练一练5 板书设计:

简单的土石方计算 2×1.6×1.5=4.8(立方米) 拦河坝的体积=横截面面积×长 答:要挖出4.8立方米的土。

横截面的面积:(8+3)×4÷2=22(平方米) 土石体积:22×50=1100(立方米) 答:修这个拦河坝一共需要土石1100立方米。

五年级下册数学教案 篇14

教学内容:观察物体

教学目标:

1.让学生经历观察的过程,认识到从不同的位置观察物体,所看到的形状是不同的。能辨认从正面、左面、上面观察到的简单物体的形状。

2.培养学生从不同角度观察,分析事物的能力。

3.培养学生构建简单的空间想象力。

重点:帮助学生构建初步的空间想象力。

难点:帮助学生构建初步的空间想象力。

教学过程:

一、谜语导入

请同学们猜谜语:“左一片、右一片,摸得着,看不见,是什么呢?”(耳朵)为什么能看见别人的耳朵,却看不见自己的耳朵呢?因为我们观察的角度不一样,那么今天我们就一起来进一步研究观察物体(板书)

二、合作探究

(一)整体观察

1.教师将一个对面涂有相同颜色的长方体举起静止不动,叫学生观察并提问:

你观察到的正方体是什么样的?

在你的位置上观察,你看到了哪几个面?

2.学生汇报交流。

学生自由走动,观察。汇报交流。

3.解释应用

教师出示两个正方体的立体图,一个有虚线,另一个没有。

提问:谁能用刚学到的知识解释一下正方体为什么这样画?

学生解释说明。

(二)分别从三个面进行观察(出示例1)

1.教师提问:我们分别从几个不同的方向去观察这个图形,看看它的正面、左面以及上面分别是什么形状的图形,把它们分别划出来。

学生离开座位自由观察。

2.小组之间相互交流,然后全班交流,学生以组为单位在投影以上展示交流。

总结学生的发言:从不同的方向观察,所看到的形状是不一样的。

三、拓展应用

1.做教科书例2

2.智力游戏:两个同学为一组做游戏,一个同学画,另一个同学猜,负责猜的同学要想办法通过你提问的问题确定这个物体是什么,猜完后,在把物体拿出来验证一下,看是否猜对了。

学生玩游戏,教师指导。

四、总结

本节课你学会了什么?

五、作业布置

兴趣探索,根据以下几幅图找出1的`对面是几,2的对面是几,3的对面是几。

1.不同角度观察一个物体,看到的面都是两个或三个相邻的面,不可能一次看到长方体或正方体相对的面。

2.从一个面看到物体的形状,可以有多种不同的摆放方式。

3.知道从两个面看到的物体的形状,可以确定小立方体的个数范围。

五年级下册数学教案 篇15

【教学目标】

1.使学生通过观察、猜想、验证、理解并掌握3的倍数的特征。

2.引导学生学会判断一个数能否被3整除。

3.培养学生分析、判断、概括的能力。

【重点难点】

理解并掌握3的倍数的特征。

【复习导入】

1.学生口述2的倍数的特征,5的倍数的特征。

2.练习:下面哪些数是2的倍数?哪些数是5的倍数?

324 153 345 2460 986 756

教师:看来同学们对于2、5的倍数已经掌握了,那么3的倍数的特征是不是也只看个位就行了?这节课,我们就一起来研究3的倍数的特征。

板书课题:3的倍数的特征。

【新课讲授】

1.猜一猜:3的倍数有什么特征?

2.算一算:先找出10个3的倍数。

3×1=3 3×2=6 3×3=9

3×4=12 3×5=15 3×6=18

3×7=21 3×8=24 3×9=27

3×10=30……

观察:3的倍数的`个位数字有什么特征?能不能只看个位就能判断呢?(不能)

提问:如果老师把这些3的倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)

12→21 15→51 18→81 24→42 27→72

教师:我们发现调换位置后还是3的倍数,那3的倍数有什么奥妙呢?

(以四人为一小组、分组讨论,然后汇报)

汇报:如果把3的倍数的各位上的数相加,它们的和是3的倍数。

3.验证:下面各数,哪些数是3的倍数呢?

210 54 216 129 9231 9876

小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的倍数。(板书)

4.比一比(一组笔算,另一组用规律计算)。

判断下面的数是不是3的倍数。

3402 5003 1272 2967

5.“做一做”,指导学生完成教材第10页“做一做”。

(1)下列数中3的倍数有。

14 35 45 100 332 876 74 88

①要求学生说出是怎样判断的。

②3的倍数有什么特征?

(2)提示:①首先要考虑谁的特征?(既是2又是5的倍数,个位数字一定是0)

②接着再考虑什么?(最小三位数是100)

③最后考虑又是3的倍数。(120)

【课堂作业】

完成教材第11~12页练习三的第4、6、7、8、9、10、11题。

【课堂小结】

同学们,通过今天的学习活动,你有什么收获和感想?

【课后作业】

完成练习册中本课时练习。

3的倍数的特征

一个数各位上的数字之和是3的倍数,那么这个数就是3的倍数。

教学3的倍数的特征时,教师要注意学生的自主探索过程,通过猜一猜、算一算、想一想、验一验、比一比等教学环节,循序渐进地让学生参与到学习中来,但教师在想一想这个环节中要进行适当点拨、引导,这样效果更明显。

五年级下册数学教案 篇16

【教学内容】

教科书第1~2页的例1以及相关的练习。

【教学目标】

1?理解分数的意义和单位“1”的含义,知道分母、分子的含义和分数各部分的名称,知道生活中分数的广泛用途,会用分数解决生活中的简单问题。

2?培养学生的分析能力和归纳概括能力。

3?通过学生的主动探索,培养学生的成功体验,坚定学生学好数学的信心。

【教具准备】

多媒体课件和视频展示台。

【教学过程】

一、复习引入

师:中秋节到了,小华家买了很多月饼,分月饼的任务当然就落到小华的身上了。你看,小华一会儿就把这几块月饼分好了。你能用分数分别表示这些月饼的阴影部分占一个月饼的几分之几吗? 多媒体课件展示:

等学生完成后,抽学生的作业在视频展示台上展示,集体订正。

二、教学新课

1?教学例1,理解单位“1”

师:第二天,小华的爸爸又买回一盒月饼共8个,并且提出了一个新的分月饼的要求。 课件演示:爸爸对小华说:小华,你把这8个月饼平均分给4个人吧。

师:同学们,你们能用小圆代替月饼,帮小华分一分吗?

等学生分好后,抽一个学生分的小圆在视频展示台上展示。

师:这时,小华的爸爸又提出了问题。

课件演示:爸爸对小华说:每个人得的月饼是这8个月饼的几分之几呢?

引导学生理解把8个月饼平均分成了4份,每份是这8个月饼的14。

师:老师也有个问题,刚才小华分出了1个月饼的1/4,这儿又分出了8个月饼的1/4,同学们看一看,这两个1/4表示的月饼数量一样吗?

多媒体课件演示下面的月饼图:

引导学生理解两个1/4代表的数量不一样。

师:为什么会出现这种现象呢?

引导学生说出前一个1/4是1个月饼的1/4,而后一个1/4是8个月饼的1/4。课件中随学生的回答在图形下出现相应的文字。

师:对。前一个1/4是以1个月饼为一个整体来平均分的,而后一个1/4是以8个月饼为一个整体来平均分的。平均分的整体不一样,对分出来的每份数量有影响吗?

让学生意识到,整体“1”的变化对每份的数量是有影响的。以1个月饼为整体“1”,每份就是1/4个月饼;以8个月饼为整体“1”,每份就是2个月饼。

师:像这样把许多物体组成的一个整体来平均分的'分数还很多,请同学们看一看下面这幅图。 课件出示第2页的熊猫图。

师:这里是把多少只熊猫看作一个整体?平均分成了几份?每份是这个整体的几分之几?

请分一分,并填空。

课件出示单元主题图,要求学生说一说图中的每个分数分别是以什么作为一个整体来平均分的。 师:通过上面的研究,同学们有什么发现?

引导学生说出这些分数都是以许多物体组成的一个整体来平均分的。

师:像这样由一个物体或许多物体组成的一个整体,通常我们把它叫做单位“1”。

板书单位“1”的含义。

师:把12个学生看作一个整体,其中的6个学生是这个整体的几分之几?这里是把谁看作一个整体? 教师再举两个例子,深化学生对单位“1”的理解。

2?理解并归纳分数的意义

师:请同学们拿出一些小棒,把它们平均分成5份或6份,想一想,其中的1份是全部小棒的几分之几?其中的2份呢?其中的3份呢?

学生操作后回答,如:我拿了10根小棒,把它平均分成了5份,每份有2根小棒,这2根小棒是10根小棒的1/5。2份有4根小棒,这4根小棒是10根小棒的2/5??

师:想想自己操作的过程,你能说一说什么是分数吗?

学生讨论后可能这样表述:把单位“1”平均分成几份,表示其中1份或几份的数叫做分数。

师:同学们归纳得很好,但是这句话中出现了两个“几份”,所以我们一般把前一个“几份”说成是若干份。

归纳并板书分数的意义,板书课题。

试一试:涂色部分占整个图形的几分之几?

师:看看最后(五星图)这个分数,请同学们说说这个分数的意义。

生:这个分数表示把15颗五角星平均分成5份,其中的3份占这个图形的35。

师:把15颗五角星平均分成了5份,其中的1份占这个图形的几分之几?(生:1/5)其中的3份呢?(生:3/5)35是由多少个15组成的?(生:3个)所以,35的分数单位是1/5,35/里面有3个这样的分数单位。 说一说:3/7的分数单位是多少?它有多少个这样的分数单位?5/6,9/10呢??

3?说生活中的分数

师:分数在我们生活中应用得非常广泛,书上第3页课堂活动中的两个小朋友正在说生活中的分数,你们能像他们这样说一说生活中的分数吗?

学生说生活中的分数。

三、课堂小结

(略)

四、课堂作业

1?第4页课堂活动第2题。

2?练习一第1,2,3,4题。

分数的意义

师:在三年级的时候,我们初步认识了分数,你能在下面的括号里填上适当的分数吗?

课件出示如下的题目:

(1)把一个月饼平均分成4份,其中的1份是这个月饼的();

(2)把一张手工纸

五年级下册数学教案 篇17

教学目标:

1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。

2、培养学生自主探索、独立思考、合作交流的能力。

3、培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力。

教学重点:

1、理解掌握质数、合数的概念。

2、初步学会准确判断一个数是质数还是合数。

教学难点:区分奇数、质数、偶数、合数。

教学过程:

一、探究发现,总结概念:

1、师:(出示三个同样的小正方形)每个正方形的边长为1,用这样的三个正方形拼成一个长方形,你能拼出几个不同的长方形?

学生独立思考,然后全班交流。

2、师:这样的四个小正方形能拼出几个不同的长方形?

学生各自独立思考,想像后举手回答。

3、师:同学们再想一下,如果有12个这样的小正方形,你能拼出几个不同的长方形?

师:我看到许多同学不用画就已经知道了。(指名说一说)

4、师:同学们,如果给出的正方形的个数越多,那拼出的`不同的长方形的个数——,你觉得会怎么样?

学生几乎是异口同声地说:会越多。

师:确定吗?(引导学生展开讨论。)

5、师:同学们,用小正方形拼长方形,有时只能拼出一种,有时拼出的长方形不止一种。你觉得当小正方形的个数是什么数的时候,只能拼一种?什么情况下拼得的长方形不止一种?并举例说明。

先让学生小组讨论,然后全班交流,师根据学生的回答板书。

师:同学们,像上面这些数(板书的3、13、7、5、11等数),在数学上我们把它们叫做质数,下面的这些数(4、6、8、9、10、12、14、15等数)我们把它们叫做合数。那究竟什么样的数叫质数,什么样的数叫合数呢?

学生独立思考后,在小组内进行交流,然后再全班交流。

引导学生总结质数和合数的概念,结合学生回答,教师板书:(略)

6、让学生举例说说哪些数是质数,哪些数是合数,并说出理由。

7、师:那你们认为“1”是什么数?

让学生独立思考,后展开讨论。

二、动手操作,制质数表。

1、师出示:73。让学生思考着它是不是质数。

师:要想马上知道73是什么数还真不容易。如果有质数表可查就方便了。(同学们都说“是呀”。)

师:这表从哪来呢?

(教师出示百以内数表)这上面是1到100这100个数,它不是质数表,你们能不能想办法找出100以内的质数,制成质数表?谁来说说自己的想法?(让学生充分发表自己的想法。)

2、让学生动手制作质数表。

3、集体交流方法。

三、练习巩固:

完成练习四第1、2题。

四、课题小结:

这节课你在激烈的讨论中有什么收获?

五年级下册数学教案 篇18

信息社会已经到来,信息的获取、分析处理将成为现代人最基本的能力和素质的标志。本课正是基于这一理念,选择具有丰富现实背景的学习材料,学生了解了折线统计图的特点、作用后,在应用部分设置了分析数据、处理信息的'练习题,以培养学生根据数据、图像分析事物并作出合理推断的能力。

1、了解折线统计图的特点和作用,初步学会折线统计图的绘制方法。

2、能分析折线统计图,培养学生利用数据、图像分析、判断、预测问题结果或趋势的能力。

3、让学生体验折线统计图在实际生活中应用的广泛性和重要性,培养正确的数学观,并通过相互交流、讨论,培养合作交流的能力。

一、引入:

1、出示:条形统计图

(1)某电影院上月各类影片观众人数统计图

(2)新芽书苑20xx年3月第一星期故事书销售情况统计图

2、提问:你已知道了条形统计图的哪些知识?

3、现实生活中还有另一种统计图,你见过吗?出示:折线统计图。

(1) 上虞电影院20xx年(1~6)月观众人数统计图。

(2) 百官镇一农户96~20xx年人均收入统计图。

二、展开:

(一)折线统计图的特点和作用。

1、四人小组讨论;条形统计图和折线统计图有什么相同点和不同点?

(1) 学生自由讨论交流。

(2) 这两类统计图最大的区别是什么?

2、结合条形统计图的特点,归纳折线统计图的特点。

3、从折线统计图上我们能看出数量的多少吗?还能了解到什么?

4、结合课本进一步深入了解折线统计图的特点和作用。

(二)折线统计图的绘制。

1、你认为哪幅条形统计图用折线统计图来绘制更合适?

2、小组讨论:把这幅条形统计图绘制成折线统计图你有什么办法?

A、小组讨论 B、汇报 C、提问:绘制的关键是什么?

3、学生尝试绘制。

(1) 出示“我们的调查资料”。

(2) 想一想,哪几组数据用折线统计图绘制比较合适?

(3) 请选择其中一组数据绘制。

(4)小组交流绘制情况,分析增减变化的情况,并 推断发展趋势。

(5)大组交流绘制情况,并纠错。

三、应用

1、出示:李X(住院)的体温变化情况统计图,提问:看图后,你能推断出什么?

2、出示:百官镇一农户96~20xx年人均收入统计图。

思考:A、看图后你有什么感受?

B、你能提出哪些数学问题?

3、对比练习:

(1)出示:“吉祥鞋店20xx年凉鞋、棉鞋销售情况统计图”。

思考:A、两种鞋的销售趋势分别怎样?

B、你有什么建议?

(3) 出示:两家游泳衣专卖店的销售情况统计图。

思考:A、比较这幅图,说说哪一幅比较符合我们的生活实际?

B、猜猜为什么乐乐专卖店会有这样的销售现象

四、总结

你又有什么新收获?你是用什么方法学会的?

五、课外作业

省略

五年级下册数学教案 篇19

教学内容:

义务教育课程标准实验教科书青岛版小学数学五年制五年级下册108-109页。

教学目标:

1.利用已有经验认识和了解简单的"排列",掌握解决问题的策略和方法。体会解决问题策略的多样性。

2.培养初步的观察、分析及推理能力,能有序地、全面地思考问题。

3.尝试用数学的方法来解决生活中的实际问题,感受数学在现实生活中的广泛应用。

4.在数学活动中养成与人合作的良好习惯,并初步学会表达解决问题的大致过程和结果。

教学重点:

培养学生思维的有序性。

教学难点:

抽象概括计算规律。

教学准备:

计数器,答题纸。

教学过程:

一、提出问题:

师:同学们,数学王国里有十个数字,它们是……

生:0、1、2、3、4、5、6、7、8、9。

师:就是0-9,用这简单的十个数字可以提出很多的数学问题。请看大屏幕。

出示课件:例:用1、2、3三个数字可以组成多少个没有重复数字的三位数呢?

师:问题提出来了,敢不敢迎接挑战?

生:敢!

师:谁来说说,你是怎么理解“没有重复数字的三位数”的?

生:举个例子吧,221不行,因为十位上的2和百位上的2重复了。

师:看来“没有重复数字的'三位数”就是指百位、十位、个位三个数位上的数字不能相同。下面请同学们开动脑筋,把你的答案写在练习本上,咱比一比,谁写的又准确,速度又快。

二、研究问题:

1、解决问题:

(学生尝试解决问题)

师:同学们写完了,哪位同学愿意展示一下你的答案?

生:(投影仪展示)123,321,213,132,321。

师:还有其他的写法吗?

生:(投影仪展示)123,132,213,231,312,321。

师:两种写法,你认为哪一种更好?

生:第二种更好。

师:为什么?(学生茫然)同桌讨论一下。

生:第二种更好,因为第一种有遗漏,少了231,而第二名同学是有规律地写的,不会重复也不会遗漏。

师:观察第二种写法有重复或遗漏吗?

生:没有!

师:看来按规律写是不会重复也不会遗漏。老师把这种写法记录下来。

五年级下册数学教案 篇20

教学内容:

长方体、正方体的体积计算

教学目标:

1.通过讲授,引导学生找出规律,总结出体积的公式。

2.指导学生运用公式正确计算长方体、正方体的体积。

3.培养学生积极思考、探索新知的思维品质。

教学重点:

长方体、正方体体积计算。

教学难点:

长方体、正方体体积计算

教具运用:

正方体木块若干。

教学过程:

一、复习导入

1.什么叫体积?计量物体的体积常用的单位有哪些?

2.怎样计算一个物体的体积呢?

二、新课讲授

1.长方体体积的计算。

教师课件出示一块长方体积木,一块盖房用的大型砖板。

(1)提问:它们的体积是多少?你是怎样想的?

引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。

教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。

(2)观察操作,探究长方体的体积公式。

小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。

学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。

说明学生拼摆长方体的样式非常多,这里只列举几个。观察:从这张表中,你发现了什么?

学生独立思考,然后小组内讨论交流,得出结论。

小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。

板书:长方体的体积=长宽高

讲述:如果用字母V表示长方体的体积公式可以写成:V=abh

(3)质疑:求长方体的'体积公式需要知道什么条件?

2.探究正方体的体积公式。

(1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。

(2)引导学生明确。正方体的体积=棱长棱长棱长(板书)用字母表示:V=aaa=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)

3.运用长方体的体积公式解决问题。

(1)出示教材第30页的例1。

(2)学生看图,理解题意。

(3)说出题中所给信息,和所求问题。

(4)指名说出长方体的体积公式。

(5)指名学生上台板演过程,其他同学判断。

(6)老师订正书写。V=abh=743=84(cm3)

(7)看图,学生独立在练习本上完成。

(8)指名板演,集体订正。

三、课堂作业

完成课本第31页做一做第1、2题。

四、课堂小结

1.这节课,你有什么收获?

2.在计算长方体和正方体的体积时,要注意哪些问题?

五、课后作业

完成练习册中本课时练习。

板书设计 :

长方体和正方体的体积

长方体的体积=长宽高

V=abh

正方体体积=棱长棱长棱长

V=aaa=a3

五年级下册数学教案 篇21

教学目标:

1、结合具体事例,经历认识“方”并解决土石方计算问题的过程。

2、了解“方”的具体含义,能够灵活运用体积计算公式解决一些简单的现实问题。

3、在综合运用所学知识解决现实问题的过程中,感受数学在生活中的广泛应用,培养数学应用意识。

教学重点:

熟练运用长方体和正方体的体积计算公式解决实际问题。

教学难点:

长方体和正方体的体积计算公式演变成“横截面的面积乘长”。

教学过程:

一、巧设情境,激趣引思。

同学们,前面几节课我们学习了体积的有关内容,请大家思考以下问题。

(1)什么是体积?体积的单位有哪些?它们之间的'进率是多少?

(2)怎样求长方体的体积?正方体的体积,长方体和正方体体积计算的统一公式是什么?

(3)学生分组讨论,指名回答问题。

这节课我们运用体积的有关知识,解决实际生活中的`问题

二、自主互动,探究新知。

课件出示例题1:让学生读题,讨论:挖出的土与地窖的体积有什么关系?让学生尝试解决问题交流计算的结果。

教师介绍“方”,让学生用方描述挖出的土。

课件出示例题及拦河拥暮褪疽馔肌

让学生观察,问:你知道了哪些信息?师帮助学生理解题意。

怎样计算拦河坝的体积?为什么这样计算?使学生知道:拦河坝的体积=底面积×高。

让学生尝试解决问题,并交流计算的方法和结果。

三、应用拓展,反思交流。

(1)试一试帮助学生弄清图意,然后鼓励学生提出问题,师生合作解决。

(2)练一练第1、2题,帮助学生理解题中的事物和信息,再独立完成。

第3、4题,让学生先说一说,要解决问题,先要求出什么?

五年级下册数学教案 篇22

课题:

列方程解应用题复习(行程问题)

学情分析:

相遇和追及问题的应用题是在学生掌握了一个物体的简单行程问题的基础上,初次接触有关两个物体运行的较复杂的行程问题,其中体现了“运动方向”“出发时间”“运动结果”等新的运动要素,给学生的思维带来了一定的难度。教学时应以一个物体运动的特点和数量关系为基础,让学生认识“相遇及追及”的特征,掌握此类应用题的解答方法,培养学生分析问题和应用所学知识解决实际问题的能力。

教学目标(课时目标):

1、初步理解两个物体在一定距离中同时从两地相向而行所涉及到的几种常见的数量关系;

2、在理解题意的基础上寻找等量关系,知道“相遇问题”的等量关系;一般为:甲行的路程+乙行的路程=两者相距的路程;知道“追击问题”的等量关系,一般为:甲行的路程=乙行的路程

3、逐步掌握画线段图分析题目的方法。

教学重点:寻找未知量和已知量之间的等量关系,从而列出方程,得出应用题的解。

教学难点:认识相遇的过程中理解运用等量关系的解决问题。

教学准备:PPT、练习本

教学过程:

教学活动教学说明

一、复习引入

1、揭题

2、常见的相遇问题类型(手势演示)

(1)同时出发,相向而行

(2)一车先行,另一车再行,相向而行

(3)同时出发,途中一车暂停,相向而行

二、基础练习

1、AB两地相距1000千米,甲列车从A开出驶往B地,2小时后,乙列车从B地开出驶往A地,经过4小时与甲列车相遇,已知,甲列车比乙列车每小时多行10千米,甲列车每小时行多少千米?

(1)画线段图分析题意

(2)找出等量关系

(3)列式

2、两车同时从两地出发相向而行,2小时候相遇,这时甲车比乙车多行99千米,已知甲车的速度是乙车的1、4倍,求甲乙两车各自的速度。

小结:(1)相加=总路程

(2)相差=路程差

3、一列快车从甲城开往乙城,每小时行75千米,一列客车同时从乙城开往B城,每小时行60千米,两列火车在距离两城中点30千米处相遇,相遇时两车各行了多少千米?

小结:(3)到中点相等

4、小巧和小胖同时从学校出发去少年宫,小巧每分钟走80米,小胖每分钟走60米,小巧到达少年宫后立即返回,且在距少年宫400米处与小胖相遇,求相遇的时间。

小结:(4)总路程相等

三、巩固提升

5、一辆客车和一辆货车同时从相距250千米的两地出发,相向而行,客车由于上下车停靠几站后耽误了半小时,结果货车行了2小时后与客车相遇,客车平均每小时行80千米,货车平均每小时行多少千米?

6、一辆摩托车以90千米/时的速度去追赶先出发的汽车,已知汽车的速度是60千米/时,摩托车4小时后追上汽车,汽车比摩托车早出发几小时?

7、有甲乙两个人,甲每分钟走83米,乙每分钟走49米,如果乙先走6分钟后,甲从后面追乙,甲要追多少时间刚刚追到离乙40米?

8、一辆汽车从甲地出发,行了60千米后,一辆摩托车也从甲地开出,3小时后与汽车同时到达乙地,已知摩托车的速度是汽车的1、5倍,求两车各自的速度。

四、思维训练

9、甲乙两人相隔若干米,若相向而行,1分钟相遇,若同向而行,甲5分钟能追上乙,乙的速度是60米/分,求甲的速度。

五、总结评价路程,速度,时间是行程问题中3个最关键的量,所以在新知学习前先搞清他们之间的关系尤为重要。

“相遇问题”的概念较多,如“同时出发”、“相距”、“相遇”、“相对而行”、“相向而行”等。怎样把这些抽象的概念让学生感性地接触并且深刻地理解呢?我借助肢体语言让学生弄明白这些概念,通过生动有趣肢体动作刺激学生的感官,形成两个物体运动的空间观念,调动学生的积极思维,也帮助学生深刻理解概念。

通过画线段图理解了两车行的路程与总路程的关系,然后放手让学生尝试解答例题,这样激发学生强烈的参与意识,最后通过检验求证学生的做法,使学生从中体验到成功的乐趣。

板书设计:列方程解应用题(行程)

相遇问题(1)相加=总路程

(2)相差=路程差

(3)到中点相等

(4)总路程相等

教学反思:

行程问题应用是数学教学中的一个重点,而对于学生来说却是学习的一个难点。在教学中应如何突出重点,特别是突破学生学习的难点,一直以来是我们数学教师不断研究和探讨的问题。本节课学习内容是行程问题复习,包含了相遇问题和追及问题,教学重点是分析问题、解决问题能力的培养,能列方程解决实际问题。通过课前的准备,上课的反思,我对分析问题、解决问题的能力有较深的理解。反思本节课的教学,有很多收获:

1、合理组织安排教材,激发学生主动参与教学

首先复习“速度×时间=路程”这一行程问题的数量关系,为新知识的学习做必要的准备,然后用动作语言让学生了解相遇问题中经常出现的几个要素,这样学生观察起来直观、易懂,兴趣容易调动起来,并以此激发他们的学习欲望。然后再通过例题让学生读题,说等量关系,画线段图等手段理解相遇问题的解决方法。

追及问题与相遇问题都属于行程问题,追及问题比相遇问题较难理解,避免学生学习枯燥无味,我在引入环节是以学生身边的实例为背景引入的。基础练习1,由学生画图独立完成,达到复习相遇问题的特征及相等关系;练习2的出现是对比追及的特征,引出本节课所复习的第二个内容,相遇和追击形成对比,区别不同。由于例题及变式练习是以递进的方式呈现在学生面前,其内容又处在同一背景下,学生就能更好地理解几个问题间的联系和差异,使学生明白此类应用题的特征,进一步提炼解应用题的一般思路。

2、运用线段图进行教学,培养学生的分析、观察能力

学生初步的逻辑思维能力的发展,需要有一个长期的培养过程,要有意识地结合教学内容进行。解应用题的关键是审题,理解题意,找到相等关系。为了突破这个难点,我借助学生画线段图,分析线段图中各量间的关系找到题目中隐含的相等关系,从而解决问题。在讲解例1时,安排学生读题画关键词语,动手演示理解题意,教师教给学生画线段图,运用线段图找到相等关系。在变式练习及例2教学中,由学生尝试画线段图寻找相等关系,学生能很快列出方程进行求解。运用线段图分析比较数量关系,能够变抽象为具体,变繁为简,使等量关系更明确,为学生理解题意加起桥梁。这样不仅可以激发学生的学习兴趣,而且便于培养学生分析、解决问题的能力以及良好的数学思维能力,从而收到事半功倍的效果。

3、为学生提供充分的思考、分析的空间

在本节课的教学中,我始终把分析问题、寻找等量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。上课的过程中虽然有学生合作学习,动手画图找相等关系,但时间短,没有放手让学生自己去探究、去发现,真正体会线段图的.作用。学生认真画图后,我感到纯是模仿较多,不会借助线段图找相等关系。应该好好分析线段图的用途,是解决较复杂问题常见的工具。在以后的教学中,我要注重对学生这方面能力的培养,让学生逐渐掌握分析问题的方法,从而达到解决问题的目的。这使我深刻体会到:课前备课时除了要认真研究教材设计好教学内容外,一定要研究学生,研究教学方法与手段,创设情景让学生主动参与、自主探索,真正促进师生的共同发展。

4、分层递进,满足不同层次需求

在练习中组织了不同层次,不同形式的练习。运用变式练习进一步帮助学生理解相遇问题的题意,开阔学生的思路,让学生理解题变意不变,方法也不变。拓展题的设计有助于调动学生学习积极性,让学有余力的学生再思考,以体现“下要保底,上不封顶”“因材施教”的教学思想。总之,让学生经过多层次的练习,掌握知识,形成技能。

总之,在列方程解应用题的教学中,我们要借助各种教学手段,通过多种途径帮助学生理清题意,寻找各量的关系。我感到学生的困惑是读不懂题意,找不到各量间的关系,不会列方程。通过反思,我再讲应用题时,不要快,题目不要贪多,要精,有典型性,适时变式练习,抓各量之间的关系,尽量列出不同方程求解,达到训练学生思维的目的。分析问题、解决问题的能力要时刻伴随我们平时的教学中,教师要有针对性的思维训练,进一步提高学生的各种能力。

五年级下册数学教案 篇23

【教学内容】

教科书第58页综合应用:设计长方体的包装方案。

【教学目标】

1、通过设计长方体的包装方案让学生认识到在体积相同的情况下,表面积与它的长、宽、高的相差程度有关的道理。

2、通过数学活动,运用所学知识,获得解决简单实际问题的经验、方法以及成功的体验。

3、培养学生的创新意识、策略意识、实践能力和空间观念。

【教学重点】

让学生体验到,在体积相等的情况下,要使表面积较小,长、宽、高应越接近的道理。

【教具学具】

为每组学生准备8个规格为16×8×4(单位:cm)的长方体纸学具盒,包装纸,直尺,透明胶,剪刀等。

【教学过程】

一、课前引入

师:观察自己桌上的学具盒,你发现这些学具盒有什么特点?

生:形状都是长方体,每个盒子的规格都是16×8×4(单位:cm),每组都有8个。

师:如果我们要将这8个长方体盒子包装成1盒,怎样包装更省包装纸呢?今天我们就运用所学知识解决这个问题。(板书课题)

二、设想与摆放

1、设想与摆放

设想:

(1)要将这些长方体的盒子包装起来,在包装的过程中要考虑哪些问题呢?

(2)要达到节省包装纸的目的,应该考虑哪些问题?学生思考后发表意见:要想节约包装纸,学具盒中间不能留空隙,表面要平整;摆法不同,所用的纸的大小不同;接头处尽量不要浪费等等。

(3)明确长方体盒子的摆法不同是造成包装纸用量大小的主要原因。

2、记录与计算

(1)你认为造成所需包装纸大小不同的主要原因是什么?所需包装纸的面积=所摆的长方体的表面积+接头部分用纸量(按2dm2计算)

生:摆成的大长方体的表面积越大,所用的包装纸越多,反之就少。

(2)究竟哪种摆法会更节约包装纸呢?

师:你们可以先将几个盒子摆一摆,量出所摆的长方体的长、宽、高,计算出摆成的不同长方体的表面积,从而算出所用包装纸的面积,并将数据和计算过程记录下来。

(3)小组合作:记录3种不同摆法下的包装纸用量,并选择一种用纸最少的方案。

为什么这种方案的用纸量会最少?在全班进行交流。

三、交流与比较

比一比谁的方案用纸少,并分析出用纸量不同的原因。

重点思考并讨论:

为什么同样是将8个学具盒打捆包装,表面积的`大小会不相同?影响表面积大小的主要原因是什么?将分析的原因记录下来。

四、发现与思考

通过本次包装设计,你有什么发现?

1、物体重合的面积越大,表面积就越小,包装用的纸也就越少。

2、同样的体积下,长方体的表面积与它的长、宽、高的长度有关,长、宽、高的长度越接近,表面积就越小,当长、宽、高相等时,它的表面积最小。

五、知识拓展

师:解决用料省的问题在生活中有什么意义?联系实际谈自己的想法。

师:现在老师这里有20本数学书,想想看,怎样摆表面积最小?为什么?

六、课堂小结

这节课我们学习了什么?你有什么收获?说一说。

五年级下册数学教案 篇24

教学内容:

长方体、正方体的体积计算

教学目标:

1.通过讲授,引导学生找出规律,总结出体积的公式。

2.指导学生运用公式正确计算长方体、正方体的体积。

3.培养学生积极思考、探索新知的思维品质。

教学重点:

长方体、正方体体积计算。

教学难点:

长方体、正方体体积计算

教具运用:

正方体木块若干。

教学过程:

一、复习导入

1.什么叫体积?计量物体的体积常用的单位有哪些?

2.怎样计算一个物体的体积呢?

二、新课讲授

1.长方体体积的计算。

教师课件出示一块长方体积木,一块盖房用的大型砖板。

(1)提问:它们的体积是多少?你是怎样想的?

引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。

教师:请同学们想一想,如果要知道较大物体的`体积,我们能不能用学过的数学知识来计算。

(2)观察操作,探究长方体的体积公式。

小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。

学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。

说明学生拼摆长方体的样式非常多,这里只列举几个。观察:从这张表中,你发现了什么?

学生独立思考,然后小组内讨论交流,得出结论。

小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。

板书:长方体的体积=长宽高

讲述:如果用字母V表示长方体的体积公式可以写成:V=abh

(3)质疑:求长方体的体积公式需要知道什么条件?

2.探究正方体的体积公式。

(1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。

(2)引导学生明确。正方体的体积=棱长棱长棱长(板书)用字母表示:V=aaa=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)

3.运用长方体的体积公式解决问题。

(1)出示教材第30页的例1。

(2)学生看图,理解题意。

(3)说出题中所给信息,和所求问题。

(4)指名说出长方体的体积公式。

(5)指名学生上台板演过程,其他同学判断。

(6)老师订正书写。V=abh=743=84(cm3)

(7)看图,学生独立在练习本上完成。

(8)指名板演,集体订正。

三、课堂作业

完成课本第31页做一做第1、2题。

四、课堂小结

1.这节课,你有什么收获?

2.在计算长方体和正方体的体积时,要注意哪些问题?

五、课后作业

完成练习册中本课时练习。

板书设计 :

长方体和正方体的体积

长方体的体积=长宽高

V=abh

正方体体积=棱长棱长棱长

V=aaa=a3

五年级下册数学教案 篇25

课题:

列方程解应用题复习(行程问题)

学情分析:

相遇和追及问题的应用题是在学生掌握了一个物体的简单行程问题的基础上,初次接触有关两个物体运行的较复杂的行程问题,其中体现了“运动方向”“出发时间”“运动结果”等新的运动要素,给学生的思维带来了一定的难度。教学时应以一个物体运动的特点和数量关系为基础,让学生认识“相遇及追及”的特征,掌握此类应用题的解答方法,培养学生分析问题和应用所学知识解决实际问题的能力。

教学目标(课时目标):

1、初步理解两个物体在一定距离中同时从两地相向而行所涉及到的几种常见的数量关系;

2、在理解题意的基础上寻找等量关系,知道“相遇问题”的等量关系;一般为:甲行的路程+乙行的路程=两者相距的路程;知道“追击问题”的等量关系,一般为:甲行的路程=乙行的路程

3、逐步掌握画线段图分析题目的方法。

教学重点:寻找未知量和已知量之间的等量关系,从而列出方程,得出应用题的解。

教学难点:认识相遇的过程中理解运用等量关系的解决问题。

教学准备:PPT、练习本

教学过程:

教学活动教学说明

一、复习引入

1、揭题

2、常见的相遇问题类型(手势演示)

(1)同时出发,相向而行

(2)一车先行,另一车再行,相向而行

(3)同时出发,途中一车暂停,相向而行

二、基础练习

1、AB两地相距1000千米,甲列车从A开出驶往B地,2小时后,乙列车从B地开出驶往A地,经过4小时与甲列车相遇,已知,甲列车比乙列车每小时多行10千米,甲列车每小时行多少千米?

(1)画线段图分析题意

(2)找出等量关系

(3)列式

2、两车同时从两地出发相向而行,2小时候相遇,这时甲车比乙车多行99千米,已知甲车的速度是乙车的1、4倍,求甲乙两车各自的速度。

小结:(1)相加=总路程

(2)相差=路程差

3、一列快车从甲城开往乙城,每小时行75千米,一列客车同时从乙城开往B城,每小时行60千米,两列火车在距离两城中点30千米处相遇,相遇时两车各行了多少千米?

小结:(3)到中点相等

4、小巧和小胖同时从学校出发去少年宫,小巧每分钟走80米,小胖每分钟走60米,小巧到达少年宫后立即返回,且在距少年宫400米处与小胖相遇,求相遇的时间。

小结:(4)总路程相等

三、巩固提升

5、一辆客车和一辆货车同时从相距250千米的两地出发,相向而行,客车由于上下车停靠几站后耽误了半小时,结果货车行了2小时后与客车相遇,客车平均每小时行80千米,货车平均每小时行多少千米?

6、一辆摩托车以90千米/时的速度去追赶先出发的汽车,已知汽车的速度是60千米/时,摩托车4小时后追上汽车,汽车比摩托车早出发几小时?

7、有甲乙两个人,甲每分钟走83米,乙每分钟走49米,如果乙先走6分钟后,甲从后面追乙,甲要追多少时间刚刚追到离乙40米?

8、一辆汽车从甲地出发,行了60千米后,一辆摩托车也从甲地开出,3小时后与汽车同时到达乙地,已知摩托车的速度是汽车的1、5倍,求两车各自的速度。

四、思维训练

9、甲乙两人相隔若干米,若相向而行,1分钟相遇,若同向而行,甲5分钟能追上乙,乙的速度是60米/分,求甲的速度。

五、总结评价路程,速度,时间是行程问题中3个最关键的量,所以在新知学习前先搞清他们之间的关系尤为重要。

“相遇问题”的概念较多,如“同时出发”、“相距”、“相遇”、“相对而行”、“相向而行”等。怎样把这些抽象的概念让学生感性地接触并且深刻地理解呢?我借助肢体语言让学生弄明白这些概念,通过生动有趣肢体动作刺激学生的感官,形成两个物体运动的空间观念,调动学生的积极思维,也帮助学生深刻理解概念。

通过画线段图理解了两车行的路程与总路程的关系,然后放手让学生尝试解答例题,这样激发学生强烈的参与意识,最后通过检验求证学生的做法,使学生从中体验到成功的乐趣。

板书设计:列方程解应用题(行程)

相遇问题(1)相加=总路程

(2)相差=路程差

(3)到中点相等

(4)总路程相等

教学反思:

行程问题应用是数学教学中的一个重点,而对于学生来说却是学习的一个难点。在教学中应如何突出重点,特别是突破学生学习的难点,一直以来是我们数学教师不断研究和探讨的问题。本节课学习内容是行程问题复习,包含了相遇问题和追及问题,教学重点是分析问题、解决问题能力的培养,能列方程解决实际问题。通过课前的准备,上课的反思,我对分析问题、解决问题的能力有较深的理解。反思本节课的教学,有很多收获:

1、合理组织安排教材,激发学生主动参与教学

首先复习“速度×时间=路程”这一行程问题的数量关系,为新知识的学习做必要的准备,然后用动作语言让学生了解相遇问题中经常出现的几个要素,这样学生观察起来直观、易懂,兴趣容易调动起来,并以此激发他们的学习欲望。然后再通过例题让学生读题,说等量关系,画线段图等手段理解相遇问题的解决方法。

追及问题与相遇问题都属于行程问题,追及问题比相遇问题较难理解,避免学生学习枯燥无味,我在引入环节是以学生身边的实例为背景引入的。基础练习1,由学生画图独立完成,达到复习相遇问题的特征及相等关系;练习2的出现是对比追及的特征,引出本节课所复习的第二个内容,相遇和追击形成对比,区别不同。由于例题及变式练习是以递进的方式呈现在学生面前,其内容又处在同一背景下,学生就能更好地理解几个问题间的`联系和差异,使学生明白此类应用题的特征,进一步提炼解应用题的一般思路。

2、运用线段图进行教学,培养学生的分析、观察能力

学生初步的逻辑思维能力的发展,需要有一个长期的培养过程,要有意识地结合教学内容进行。解应用题的关键是审题,理解题意,找到相等关系。为了突破这个难点,我借助学生画线段图,分析线段图中各量间的关系找到题目中隐含的相等关系,从而解决问题。在讲解例1时,安排学生读题画关键词语,动手演示理解题意,教师教给学生画线段图,运用线段图找到相等关系。在变式练习及例2教学中,由学生尝试画线段图寻找相等关系,学生能很快列出方程进行求解。运用线段图分析比较数量关系,能够变抽象为具体,变繁为简,使等量关系更明确,为学生理解题意加起桥梁。这样不仅可以激发学生的学习兴趣,而且便于培养学生分析、解决问题的能力以及良好的数学思维能力,从而收到事半功倍的效果。

3、为学生提供充分的思考、分析的空间

在本节课的教学中,我始终把分析问题、寻找等量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。上课的过程中虽然有学生合作学习,动手画图找相等关系,但时间短,没有放手让学生自己去探究、去发现,真正体会线段图的作用。学生认真画图后,我感到纯是模仿较多,不会借助线段图找相等关系。应该好好分析线段图的用途,是解决较复杂问题常见的工具。在以后的教学中,我要注重对学生这方面能力的培养,让学生逐渐掌握分析问题的方法,从而达到解决问题的目的。这使我深刻体会到:课前备课时除了要认真研究教材设计好教学内容外,一定要研究学生,研究教学方法与手段,创设情景让学生主动参与、自主探索,真正促进师生的共同发展。

4、分层递进,满足不同层次需求

在练习中组织了不同层次,不同形式的练习。运用变式练习进一步帮助学生理解相遇问题的题意,开阔学生的思路,让学生理解题变意不变,方法也不变。拓展题的设计有助于调动学生学习积极性,让学有余力的学生再思考,以体现“下要保底,上不封顶”“因材施教”的教学思想。总之,让学生经过多层次的练习,掌握知识,形成技能。

总之,在列方程解应用题的教学中,我们要借助各种教学手段,通过多种途径帮助学生理清题意,寻找各量的关系。我感到学生的困惑是读不懂题意,找不到各量间的关系,不会列方程。通过反思,我再讲应用题时,不要快,题目不要贪多,要精,有典型性,适时变式练习,抓各量之间的关系,尽量列出不同方程求解,达到训练学生思维的目的。分析问题、解决问题的能力要时刻伴随我们平时的教学中,教师要有针对性的思维训练,进一步提高学生的各种能力。

五年级下册数学教案 篇26

【教学内容】

认识因数和倍数(教材第5页内容,以及第7页练习二的第1题)。

【教学目标】

1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。

2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

3.培养学生的合作意识、探索意识,以及热爱数学学习的情感。

【重点难点】

理解因数和倍数的含义。

【复习导入】

1. 教师用课件出示口算题。

10÷5= 16÷2=

12÷3= 100÷25=

220÷4= 18×4=

25×4= 24×3=

150×4= 20×86=

学生口算

2. 导入:在乘法算式中,两个因数相乘,得到的结果叫做它们的积。乘法算式表示的是一种相乘的关系,在除法算式中,两个数相除,得到的结果叫做它们的商。除法算式表示的是一种相除的关系,在整数乘法和除法中还有另一种关系,这就是我们这一节课要学习探讨的内容。

(板书课题:因数和倍数(1)

【新课讲授】

1.学习因数和倍数的概念

(1)教师用课件出示教材第5页例1,引导学生观察图上的算式,把这些算式分为两类。

学生说出自己的分类方法,商是整数的分为一类,商不是整数的分为一类。教师以商是整数的第一题为例,板书:12÷2=6。

教师:在这道除法算式中,被除数和除数都是整数,商也是整数,这时我们就可以说12是2和6的倍数,2和6是12的因数。

谁来说一说其他的式子?

学生回答。

教师板书:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。

(2)说一说第一类的算式中,谁是谁的因数?谁是谁的倍数?

学生回答,如:在20÷10=2中,20是10和2的倍数,10和2是20的因数。或:20是10的`倍数,20是2的倍数,10是20的因数,2是20的因数。(3)通过刚才同学们的回答,你发现了什么?

学生回答,教师板书:倍数与因数是相互依存的。

2.举例概括

教师:请同学们注意,为了方便,我们在研究因数和倍数时,所说的数一般指的是自然数,而且其中不包括0。

教师:在自然数中像这样的例子还有很多,我们每个同学都在心中想一个,想好了说给大家听。学生举例,并说出谁是谁的因数,谁是谁的倍数。

教师同时板书。

教师小结:像这样的例子举也举不完,那能不能用比较简洁的方式来叙述因数与倍数的关系呢?

引导学生根据“用字母表示数”的知识表述因数与倍数的关系。

如:M÷N=P,M、N、P都是非0自然数,那么N和P是M的因数,M是N和P的倍数。

A×B=C,A、B、C、都是非0自然数,那么A和B是C的因数,C是A和B的倍数。

你能从这些数中挑出两个数,说出谁是谁的因数,谁是谁的倍数吗?

3、9、15、21、36

学生独立思考并回答。

【课堂作业】

1.完成教材第5页“做一做”。

2.完成教材第7页练习二第1题。

3.下面每一组数中,谁是谁的倍数,谁是谁的因数。16和24和2472和820和5

4.下面的说法对吗?说出理由。

(1)48是6的倍数。

(2)在13÷4=3……1中,13是4的倍数。

(3)因为3×6=18,所以18是倍数,3和6是因数。

【课堂小结】

我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

【课后作业】

完成练习册中本课时练习。

因数和倍数(1)

在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。

因数和倍数一般指的是自然数,而且其中不包括0。

倍数与因数是相互依存的。

本节课的重点是掌握因数和倍数的概念,理解因数和倍数是相互依存的,知识内容比较抽象,知识点比较少,教学中,我采取让学生反复说,互相说的方式,让学生加深理解,提高他们自主学习和合作学习的能力。

因数和倍数(2)

【教学内容】

一个数因数的求法和一个数倍数的求法(教材第6页例2、例3,教材第7~8页练习二第2~8题)。

【教学目标】

1.通过学习使学生掌握找一个数的因数,倍数的方法;

2.学生能了解一个数的因数是有限的,倍数是无限的;

3.能熟练地找一个数的因数和倍数;

4.在解决问题的过程中,培养学生思维的有序性、条理性,增强学生的探究意识和求索精神。

【重点难点】

掌握找一个数的因数和倍数的方法,能熟练地找一个数的因数和倍数。

【复习导入】

说出下列各式中谁是谁的因数?谁是谁的倍数?

20÷4=5 6×3=18

在上面的算式中,6和3都是18的因数,你知道还有哪些数是18的因数吗?18是3的倍数, 你知道还有哪些数是3的倍数吗?这节课我们就来学习如何找一个数的因数和倍数。

(板书课题:因数和倍数(2))

【新课讲授】

(一)找因数:

1.出示例1:18的因数有哪几个?

一个数的因数还不止一个,我们一起找找18的因数有哪些?

学生尝试完成后汇报

(18的因数有: 1,2,3,6,9,18)教师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)

教师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。

2.用这样的方法,请你再找一找36的因数有哪些?

小组合作交流后汇报,36的因数有: 1,2,3,4,6,9,12,18,36

教师:你是怎么找的?

举错例(1,2,3,4,6,6,9,12,18,36)

教师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

仔细看看,36的因数中,最小的是几,最大的是几?

教师板书:一个数的最小因数是1,最大因数是它本身。

3.你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自练本上写一写,然后汇报。

4.其实写一个数的因数除了这样写以外,还可以用集合表示:如18的因数。小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

(二)找倍数:

1.我们一起找到了18的因数,那2的倍数你能找出来吗?

小组合作交流后汇报,2的倍数有:2、4、6、8、10、16、……

教师:为什么找不完?

你是怎么找到这些倍数的? (生:只要用2去乘1、乘2、乘3、乘4、…)那么2的倍数最小是几?最大的你能找到吗?

2.让学生完成做一做1、2小题:找3和5的倍数。汇报

3的倍数有:3,6,9,12

教师:这样写可以吗?为什么?应该怎么改呢?

改写成:3的倍数有:3,6,9,12,……

你是怎么找的?(用3分别乘以1,2,3,……)

5的倍数有:5,10,15,20,……

教师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示2的倍数,3的倍数,5的倍数。

教师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?

(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)【课堂作业】

1.完成课本第7页练习二第2~5题。

2.完成教材第8页练习二第6~8题。

【课堂小结】我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

【课后作业】

完成练习册中本课时练习。

因数和倍数(2)

一个数的因数的个数是有限的,,最小的是1,最大的是它本身.

一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数.

本节课是在学生认识因数和倍数的基础上进行教学的,在找一个数的因数时,如何做到既不重复又不遗漏,对于刚刚对因数和倍数有感性认识的学生来说有一定的困难,教学时充分发挥小组学习的优势,在小组交流的过程中,学生对自己的方法进行反思,吸取同伴的好方法,很好的体现了自主探索和合作交流的教学理念。

五年级下册数学教案 篇27

教学目标

1.理解众数的含义,学会求一组数据的众数,理解众数在统计学上的意义。

2.根据数据的具体情况,选择适当的统计量表示数据的不同特征。

3.进一步提高学生的统计技能,增强学生的统计意识。

教学重难点

教学重点:认识众数,理解众数的意义及作用。

教学难点:众数和中位数平均数的相互区别,在具体情境中如何选择恰当的统计量表示一组数据的一般水平。

教学过程

(一)复习旧知

1、回忆平均数及中位数的求法,指生回答。

2、求下列这组数据的平均数和中位数。生独立完成后课件出示。

(二)完成例1

1.出示例题:

五(2)班要选10名同学组队参加集体舞比赛.下面是20名候选队员的身高情况.(单位:米)

1.32 1.33 1.44 1.45 1.46 1.46 1.47 1.47 1.48 1.48 1.49 1.50 1.51 1.52 1.52 1.52 1.52 1.52 1.52 1.52

师:提出集体舞的.要求:身高接近,跳出的舞才更整齐。你认为参赛队员的身高是多少比较合适?

2.学生小组合作选择10名队员。

3.根据学生汇报,师课件随机演示选择结果。

平均数= (1.32+1.33+1.44+1.45+1.46+1.46+1.47+1.47

+1.48+1.48+1.49+1.50+1.51+1.52+1.52+1.52

+1.52+1.52+1.52+1.52)÷20

=29.5÷20

=1.475

中位数=(1.48+1.49)÷2

=2.97÷2

=1.485

接近1.485m的同学人数太少,不适合大多数同学的

身高。最高的与最矮的相差6cm。

这组数据的中位数是1.485,身高接近1.485m的比较合适。

身高是1.52m的人最多,1.52m左右的比较合适。最高的与最矮的相差3cm。

1 . 52出现的次数最多,最能应这组同学的身高情况.

4.小结:以众数1.52为标准选择队员身高会比较均匀。

师:(小结)集体舞一般要求队员身高差不多,这组数据中1.52出现的次数最多,所以1.52是这组数据的众数。所以以众数1.52为标准选出来的队员身高会很均称,组成的舞蹈队形也会很整齐很美观!

5.师生共同归纳众数概念。

师揭示众数的概念

一组数据中出现次数最多的数据,是这组数据的众数。众数能够反映一组数据的集中情况。

6、做一做,

7、小练习:

学校举办英语百词听写竞赛,五(1)班和五(2)班参赛选手的成绩如下:

求这次英语百词听写竞赛中学生得分的众数.

三个数据存在的数量和意义:

比较三个统计量:

(三)学习众数的特征

师出示练习题:

1、五(1)班21名男生1分钟仰卧起坐成绩如下(单位:次):

19 23 26 29 28 32 34 35 41 33 31

25 27 31 36 37 24 31 29 26 30

(1)这组数据的中位数和众数各是多少?

(2)如果成绩在31~37为良好,有多少人的成绩在良好及良好以上?

2、一个射击队要从两名运动员中选拔一名参加比赛。在选拔赛上两人各打了10发子弹,成绩如下:

甲:9.5 10 9.3 9.5 9.6 9.5 9.4 9.5 9.2 9.5

乙:10 9 10 8.3 9.8 9.5 10 9.8 8.7 9.9

(1)甲、乙成绩的平均数、众数分别是多少?

(2)你认为谁去参加比赛更合适?为什么?

生先独立思考,再全班交流。

师:在找三组数据的众数的过程中,你发现了什么?

生:在一组数据中,众数可能不止一个,也可能没有众数。

师小结:在一组数据中,众数有一个,也有多个,甚至没有。同时众数也反应了一组数据的集中情况。

2、三个数据存在的数量和意义

(四)综合练习

你去商场买过衣服吗?你知道休闲类服装型号的“均码”是什么意思吗?均码一般是根据人的平均身高、胸围等数据确定的统一商品型号,与多数人的型号接近。所以,均码里蕴涵着平均数和众数的原理。

(五)联系情境,应用众数

销售衣服问题。

师:小明很喜欢做社会调查。他到一家服装店调查后,给我们带来了这样的一则信息:服装店销售了20件T恤,尺寸如下:(单位:cm) 42 39 38 40 41 41 42 39 40 41 41 41 41 40 41 40 41 40 40 41

师:从表格中,你发现了什么?如果你是这家服装店的经理,你会怎样进货?

生:讨论交流,发表自己想法。

师:(小结)从中可以看出,在衣服的尺码组成的一组数据中,41cm是这组数据的众数,也就是41cm衣服销售量最大。所以,可以多进一些41cm的衣服。商品的销售里面也要用到众数的知识,由此看来,生活中还真少不了众数啊!

(五)拓展延伸(“生活中的数学”)均码问题。

师:同学们去商场买过衣服吗?如果你去买过会发现,商场里很多休闲的服饰,它的型号都是均码的。我们一起来看一下。

师:课后请同学们调查和了解一下:什么是“均码”?

(六)全课小结

教师:同学们,今天我们上了这节课你收获了什么?

五年级下册数学教案 篇28

【教学内容】

教科书第58页综合应用:设计长方体的包装方案。

【教学目标】

1、通过设计长方体的包装方案让学生认识到在体积相同的情况下,表面积与它的长、宽、高的相差程度有关的道理。

2、通过数学活动,运用所学知识,获得解决简单实际问题的经验、方法以及成功的体验。

3、培养学生的创新意识、策略意识、实践能力和空间观念。

【教学重点】

让学生体验到,在体积相等的情况下,要使表面积较小,长、宽、高应越接近的道理。

【教具学具】

为每组学生准备8个规格为16×8×4(单位:cm)的长方体纸学具盒,包装纸,直尺,透明胶,剪刀等。

【教学过程】

一、课前引入

师:观察自己桌上的学具盒,你发现这些学具盒有什么特点?

生:形状都是长方体,每个盒子的规格都是16×8×4(单位:cm),每组都有8个。

师:如果我们要将这8个长方体盒子包装成1盒,怎样包装更省包装纸呢?今天我们就运用所学知识解决这个问题。(板书课题)

二、设想与摆放

1、设想与摆放

设想:

(1)要将这些长方体的盒子包装起来,在包装的过程中要考虑哪些问题呢?

(2)要达到节省包装纸的目的,应该考虑哪些问题?学生思考后发表意见:要想节约包装纸,学具盒中间不能留空隙,表面要平整;摆法不同,所用的纸的大小不同;接头处尽量不要浪费等等。

(3)明确长方体盒子的摆法不同是造成包装纸用量大小的主要原因。

2、记录与计算

(1)你认为造成所需包装纸大小不同的主要原因是什么?所需包装纸的面积=所摆的长方体的表面积+接头部分用纸量(按2dm2计算)

生:摆成的大长方体的表面积越大,所用的包装纸越多,反之就少。

(2)究竟哪种摆法会更节约包装纸呢?

师:你们可以先将几个盒子摆一摆,量出所摆的长方体的长、宽、高,计算出摆成的不同长方体的表面积,从而算出所用包装纸的.面积,并将数据和计算过程记录下来。

(3)小组合作:记录3种不同摆法下的包装纸用量,并选择一种用纸最少的方案。

为什么这种方案的用纸量会最少?在全班进行交流。

三、交流与比较

比一比谁的方案用纸少,并分析出用纸量不同的原因。

重点思考并讨论:

为什么同样是将8个学具盒打捆包装,表面积的大小会不相同?影响表面积大小的主要原因是什么?将分析的原因记录下来。

四、发现与思考

通过本次包装设计,你有什么发现?

1、物体重合的面积越大,表面积就越小,包装用的纸也就越少。

2、同样的体积下,长方体的表面积与它的长、宽、高的长度有关,长、宽、高的长度越接近,表面积就越小,当长、宽、高相等时,它的表面积最小。

五、知识拓展

师:解决用料省的问题在生活中有什么意义?联系实际谈自己的想法。

师:现在老师这里有20本数学书,想想看,怎样摆表面积最小?为什么?

六、课堂小结

这节课我们学习了什么?你有什么收获?说一说。

五年级下册数学教案 篇29

【教学目标】

1.使学生通过观察、猜想、验证、理解并掌握3的倍数的特征。

2.引导学生学会判断一个数能否被3整除。

3.培养学生分析、判断、概括的能力。

【重点难点】

理解并掌握3的倍数的特征。

【复习导入】

1.学生口述2的倍数的特征,5的倍数的特征。

2.练习:下面哪些数是2的倍数?哪些数是5的倍数?

324 153 345 2460 986 756

教师:看来同学们对于2、5的倍数已经掌握了,那么3的倍数的特征是不是也只看个位就行了?这节课,我们就一起来研究3的倍数的特征。

板书课题:3的倍数的特征。

【新课讲授】

1.猜一猜:3的倍数有什么特征?

2.算一算:先找出10个3的倍数。

3×1=3 3×2=6 3×3=9

3×4=12 3×5=15 3×6=18

3×7=21 3×8=24 3×9=27

3×10=30……

观察:3的倍数的个位数字有什么特征?能不能只看个位就能判断呢?(不能)

提问:如果老师把这些3的倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)

12→21 15→51 18→81 24→42 27→72

教师:我们发现调换位置后还是3的倍数,那3的倍数有什么奥妙呢?

(以四人为一小组、分组讨论,然后汇报)

汇报:如果把3的倍数的各位上的数相加,它们的和是3的倍数。

3.验证:下面各数,哪些数是3的倍数呢?

210 54 216 129 9231 9876

小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的倍数。(板书)

4.比一比(一组笔算,另一组用规律计算)。

判断下面的数是不是3的倍数。

3402 5003 1272 2967

5.“做一做”,指导学生完成教材第10页“做一做”。

(1)下列数中3的'倍数有。

14 35 45 100 332 876 74 88

①要求学生说出是怎样判断的。

②3的倍数有什么特征?

(2)提示:①首先要考虑谁的特征?(既是2又是5的倍数,个位数字一定是0)

②接着再考虑什么?(最小三位数是100)

③最后考虑又是3的倍数。(120)

【课堂作业】

完成教材第11~12页练习三的第4、6、7、8、9、10、11题。

【课堂小结】

同学们,通过今天的学习活动,你有什么收获和感想?

【课后作业】

完成练习册中本课时练习。

3的倍数的特征

一个数各位上的数字之和是3的倍数,那么这个数就是3的倍数。

教学3的倍数的特征时,教师要注意学生的自主探索过程,通过猜一猜、算一算、想一想、验一验、比一比等教学环节,循序渐进地让学生参与到学习中来,但教师在想一想这个环节中要进行适当点拨、引导,这样效果更明显。

五年级下册数学教案 篇30

教学内容:

教材第xx页的内容及第xx页练习的第x题。

教学目标:

1.理解两个数的公倍数和最小公倍数的意义。

2.通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的应用。

3.培养学生抽象、概括的能力。

教学重点:

理解两个数的公倍数和最小公倍数的意义。

教学难点:

自主探索并总结找最小公倍数的方法。

教学具准备:

多媒体课件,学生操作用长方形纸片(长3Cm,宽2Cm)与方格纸。

学方法:

小组合作谈话法。

教学过程:

一、创设情景,生成问题:

前面,我们通过研究两个数的.因数,掌握了公因数和最大公因数的知识。今天,我们来研究两个数的倍数。

二、探索交流,解决问题

1.在数轴上标出4、6的倍数所在的点

拿出老师课前发的画有两条直线的纸。

在第一条直线上找出4的倍数所在的点,画上黑点。在第二条直线上找出6的倍数所在的点,圈上小圆圈。

2.引入公倍数

(1)学生汇报,多媒体课件出现两条数轴,并根据学生报的数,仿效出现黑点和小圆圈。

(2)观察:从4和6的倍数中你发现了什么?

(3)学生回答后,多媒体课件演示两条数轴合并在一起,闪现12和21。

(4)我们发现:有些数既是4的倍数,又是6的倍数,如果让你给这些数起个名,把它们叫做4和6的什么数呢?(板书:公倍数)

说说看,什么叫两个数的公倍数?

3.用集合图表示

如果让你把4的倍数、6的倍数、4和6的公倍数填在下面的图中,你会填吗?试试看。同桌两人可以讨论一下。

4.引人最小公倍数

学生汇报后问:

(1)为什么三个部分里都要添上省略号?

(2)4和6的公倍数还有哪些?有没有最大公倍数?

(3)有没有最小公倍数?4和6的最小公倍数是几?(板书:最小公倍数)

4的倍数6的倍数

4,8,

16,20,

12,24,

4和6的公倍数:

五年级下册数学教案 篇31

教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生

动手操作的能力和抽象,概括,归纳的能力.

教学重点:分数的数感培养,以及与除法的联系.

教学难点:抽象思维的培养.

教学过程:

一,铺垫复习,导入新知 [课件1]

1,提问:A,7/8是什么数 它表示什么

B,7÷8是什么运算 它又表示什么

C,你发现7/8和7÷8之间有联系吗

2,揭示课题.

述:它们之间究竟有怎样的关系呢 这节课我们就来研究"分数与除法的关系".

板书课题:分数与除法的关系

二,探索新知,发展智能

1,教学P90 .例2:把1米长的钢管平均截成3段,每段长多少

提问:A,试一试,你有办法解决这个问题吗

板书:用除法计算:1÷3=0.333……(米)

用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就

是1/3米.

B,这两种解法有什么联系吗

(从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和 1/3是相等的关系.)

板书: 1÷3= 1/3

C,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来

表示 也就是说整数除法的商也可以用谁来表示

2,教学P90 .例3: 把3块饼平均分给4个孩子,每个孩子分得多少块 [课件3]

(1)分析:A,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少 怎么列式

B,同理,把3块饼平均分给4个孩子,每个孩子分得多少 怎么列式 3÷4的商能不能用分数来表示呢

板书: 3÷4= 3/4

(2)操作检验(分组进行)

① 把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼

② 反馈分法.

提问:A,请介绍一下你们是怎么分的

(第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4 块,也就是3/4块.)

(第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的 ,拼起来相当于一块饼的3/4 ,也就是3/4 块.)

B,比较这两种分法,哪种简便些

※ 把5块饼平均分给8个孩子,每个孩子分得多少 说一说自己的分法和想法.

3,小结提问:A,观察上面的'学习,你获得了哪些知识

板书: 被除数 ÷ 除数 = 除数 / 被除数

B,你能举几个用分数表示整数除法的商的例子吗

C,能不能用一个含有字母算式来表示所有的例子

板书: a÷b=b/a (b≠0)

D,b为什么不能等于0

4, 看书P91 深化.

反馈:说一说分数和除法之间和什么联系 又有什么区别

板书:分数是一个数,除法是一种运算.

三,巩固练习 [课件5]

1,用分数表示下面各式的商.

5÷8 24÷25 16÷49 7÷13 9÷9 c÷d

2,口算.

7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )

3, 7/10表示把单位"1"平均分成( )份,表示这样的( )份的数.1÷21表示两个数( ),还可以表示把( )平均分成( )份,表示这样的一份的数.

四,全课小结

当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.

在整数除法中零不能作除数,那么,分数的分母也不能是零.

五,家作

P93 .1,2,3

板书设计: 分数与除法的关系

例2:1÷3=0.333……(米)=1/3(米) 例3:3÷4= 3/4

被除数 ÷ 除数 = 除数 / 被除数

a÷b=b/a (b≠0)

分数是一个数,除法是一种运算

五年级下册数学教案 篇32

教案设计

设计说明

1.以学生自主探究为主,引导学生发现分数与小数的互化方法。

学生通过自主参与、主动探究,可以更好地掌握数学知识。在学生探究分数与小数的互化方法时,给学生提供探究的时间,让学生以小组合作的方式进行探究,再通过比较、整合,得出分数与小数的互化方法。在这个过程中,学生通过自己和同伴的努力,经历了知识形成的全过程。

2.在学生原有的认知水平上促进发展。

本节课的内容相对简单,学生在课前已经有了初步的了解,因此,在课堂上让学生自主探究,经历知识的形成过程,使得不同水平的学生获得不同层次的发展,收获的多少可能不同,但都能获得成功的体验。

课前准备

教师准备 PPT课件

学生准备 两张完全一样的方格纸

教学过程

⊙创设情境,导入新课

师:今天,老师带着你们一起去“分数王国”和“小数王国”里玩一玩。

(课件出示情境图)

师:“分数王国”里有哪些数呢?“小数王国”里呢?

(生汇报)

师:“分数王国”的士兵和“小数王国”的士兵吵了起来,它们在吵什么?

生:和0.06都说自己更大。

师:和0.06哪个数大?你能帮助它们吗?(板书课题——“分数王国”与“小数王国”)

设计意图:用“分数王国”与“小数王国”里的士兵吵架这个情境导入新课,营造一种氛围,激发孩子的学习兴趣。然后以比较“分数王国”里的与“小数王国”里的0.06哪个数大的问题情境引入,让学生产生分数和小数互化的需要,从而引出本节课的学习内容。

⊙自主探索,学习新知

1.解决问题。

(1)课件出示教材7页情境图。

师:比一比,“分数王国”里的与“小数王国”里的0.06哪个数大?

(2)大胆猜测,探究比较方法。

方法一 把分数化成小数来比较。

=1÷20=0.05,因为0.060.05,所以0.06。

方法二 把小数化成分数来比较。

0.06=,=,因为,所以0.06。

课件展示学生没有想到的画图法,让学生在讨论中理解。

0.06>

师小结:比较分数与小数的大小时,可以把分数化成小数或者把小数化成分数。

2.“分数王国”和“小数王国”分别有不同的尺子,你能帮助“翻译”吗?

(1)认真读题,明确题目中的“翻译”指什么。

(2)鼓励学生根据“分数尺”和“小数尺”中呈现的例子说一说与0.125的互化过程。

(3)引导学生理解数线上的同一个点既能表示一个分数,也能表示一个小数。

3.归纳分数化成小数的方法。

(1)探究将分数化成小数的方法。

把下列分数化成小数:

练习,并思考转化方法。

(2)小组内交流方法。

(3)班内反馈。

要求学生说出转化方法,并讲明转化的原理。

师小结:分数化成小数,就用分子除以分母。根据分数与除法的关系,分数的分子相当于被除数,分母相当于除数。

4.归纳“小数化成分数”的方法。

把0.3,0.27,0.75,0.125化成分数。

练习,探究小数化成分数的方法。

师小结:小数化成分数,原来是几位小数,就在1的后面写几个0作分母,把原来小数的小数点去掉作分子,化成分数后,能约分的要约分。

设计意图:数学知识只有通过学生的主动参与、自主探究,才能转化为学生自己的知识。本教学环节中,学生以小组合作、自主学习的方式进行探究,在多种方法的基础上比较、整合,从而得出分数与小数的互化方法。

五年级下册数学教案

作为一位兢兢业业的人民教师,有必要进行细致的教案准备工作,借助教案可以提高教学质量,收到预期的教学效果。优秀的教案都具备一些什么特点呢?以下是小编帮大家整理的五年级下册数学教案,希望对大家有所帮助。

五年级下册数学教案 篇33

教学目标

1.理解众数的含义,学会求一组数据的众数,理解众数在统计学上的意义。

2.根据数据的具体情况,选择适当的统计量表示数据的不同特征。

3.进一步提高学生的统计技能,增强学生的统计意识。

教学重难点

教学重点:认识众数,理解众数的意义及作用。

教学难点:众数和中位数平均数的相互区别,在具体情境中如何选择恰当的统计量表示一组数据的一般水平。

教学过程

(一)复习旧知

1、回忆平均数及中位数的求法,指生回答。

2、求下列这组数据的平均数和中位数。生独立完成后课件出示。

(二)完成例1

1.出示例题:

五(2)班要选10名同学组队参加集体舞比赛.下面是20名候选队员的身高情况.(单位:米)

1.32 1.33 1.44 1.45 1.46 1.46 1.47 1.47 1.48 1.48 1.49 1.50 1.51 1.52 1.52 1.52 1.52 1.52 1.52 1.52

师:提出集体舞的要求:身高接近,跳出的舞才更整齐。你认为参赛队员的身高是多少比较合适?

2.学生小组合作选择10名队员。

3.根据学生汇报,师课件随机演示选择结果。

平均数= (1.32+1.33+1.44+1.45+1.46+1.46+1.47+1.47

+1.48+1.48+1.49+1.50+1.51+1.52+1.52+1.52

+1.52+1.52+1.52+1.52)÷20

=29.5÷20

=1.475

中位数=(1.48+1.49)÷2

=2.97÷2

=1.485

接近1.485m的同学人数太少,不适合大多数同学的

身高。最高的与最矮的相差6cm。

这组数据的中位数是1.485,身高接近1.485m的比较合适。

身高是1.52m的人最多,1.52m左右的比较合适。最高的与最矮的相差3cm。

1 . 52出现的次数最多,最能应这组同学的身高情况.

4.小结:以众数1.52为标准选择队员身高会比较均匀。

师:(小结)集体舞一般要求队员身高差不多,这组数据中1.52出现的次数最多,所以1.52是这组数据的众数。所以以众数1.52为标准选出来的队员身高会很均称,组成的舞蹈队形也会很整齐很美观!

5.师生共同归纳众数概念。

师揭示众数的概念

一组数据中出现次数最多的数据,是这组数据的众数。众数能够反映一组数据的集中情况。

6、做一做,

7、小练习:

学校举办英语百词听写竞赛,五(1)班和五(2)班参赛选手的成绩如下:

求这次英语百词听写竞赛中学生得分的众数.

三个数据存在的数量和意义:

比较三个统计量:

(三)学习众数的特征

师出示练习题:

1、五(1)班21名男生1分钟仰卧起坐成绩如下(单位:次):

19 23 26 29 28 32 34 35 41 33 31

25 27 31 36 37 24 31 29 26 30

(1)这组数据的中位数和众数各是多少?

(2)如果成绩在31~37为良好,有多少人的成绩在良好及良好以上?

2、一个射击队要从两名运动员中选拔一名参加比赛。在选拔赛上两人各打了10发子弹,成绩如下:

甲:9.5 10 9.3 9.5 9.6 9.5 9.4 9.5 9.2 9.5

乙:10 9 10 8.3 9.8 9.5 10 9.8 8.7 9.9

(1)甲、乙成绩的平均数、众数分别是多少?

(2)你认为谁去参加比赛更合适?为什么?

生先独立思考,再全班交流。

师:在找三组数据的众数的过程中,你发现了什么?

生:在一组数据中,众数可能不止一个,也可能没有众数。

师小结:在一组数据中,众数有一个,也有多个,甚至没有。同时众数也反应了一组数据的集中情况。

2、三个数据存在的数量和意义

(四)综合练习

你去商场买过衣服吗?你知道休闲类服装型号的`“均码”是什么意思吗?均码一般是根据人的平均身高、胸围等数据确定的统一商品型号,与多数人的型号接近。所以,均码里蕴涵着平均数和众数的原理。

(五)联系情境,应用众数

销售衣服问题。

师:小明很喜欢做社会调查。他到一家服装店调查后,给我们带来了这样的一则信息:服装店销售了20件T恤,尺寸如下:(单位:cm) 42 39 38 40 41 41 42 39 40 41 41 41 41 40 41 40 41 40 40 41

师:从表格中,你发现了什么?如果你是这家服装店的经理,你会怎样进货?

生:讨论交流,发表自己想法。

师:(小结)从中可以看出,在衣服的尺码组成的一组数据中,41cm是这组数据的众数,也就是41cm衣服销售量最大。所以,可以多进一些41cm的衣服。商品的销售里面也要用到众数的知识,由此看来,生活中还真少不了众数啊!

(五)拓展延伸(“生活中的数学”)均码问题。

师:同学们去商场买过衣服吗?如果你去买过会发现,商场里很多休闲的服饰,它的型号都是均码的。我们一起来看一下。

师:课后请同学们调查和了解一下:什么是“均码”?

(六)全课小结

教师:同学们,今天我们上了这节课你收获了什么?

五年级下册数学教案 篇34

教学目标:

1.知识技能:经历探索分数基本性质的过程,理解分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

2.思考与问题解决:经历观察讨论,操作等学习活动,能对分数的基本性质作出简要的,合理的说明,培养学生的观察,比较,归纳,总结概括的能力。

3.情感态度:经历观察,操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣,鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。

教学重点:

探索,发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。

教学难点:

自主探索,归纳概括分数的基本性质。

教具学具准备:

多媒体课件,正方形纸,彩笔。

教学设计:

一、创设情境,导入新课:

1.课件分别出示两张不同的孙悟空的照片。师:学们仔细看看这两张照片,你有什么发现?(指名回答)。

2.教师引导交流:孙悟空本人没有改变,只不过是外表的打扮装饰发生了改变。

3.学生初步感知了什么变了而什么却没有变的概念。

4.教师导入新课:今天我们就来探讨什么变了而什么没有变的有关内容。教师板书课题:分数的基本性质设计意图:利用学生感兴趣的图片来吸引学生的注意力和观察能力,为下一步学习营造一个轻松活跃的氛围。

二、探究新知。

(一):1.师:在我们在学习这个新的内容之前,我们首先来复习一下除法与分数的关系。学生回答教师板书:

被除数=课件出示:120÷30=(120×2)÷(30×2)=(120÷10)÷(30÷10)= 2.同学们说说这几道相等吗?(指名回答)。

3.教师引导说出商不变的性质,课件出示商不变的性质的定义。

设计意图:通过复习商不变的性质,为下一步更容易的学习分数的基本性质打下基础。

(二)、教学新知。

1.师:请同学们拿出课前准备好的正方形纸,把手中的纸平均折成4份,其中把3份图上你喜欢的颜色。

2.学生操作,教师巡视并特别提醒学生注意“平均分”。

3.展示学生的作业。

4.师:现在请同学们把正方形纸平均分成8份,16份,分好之后你有什么发现?(指名回答)。

5.教师归纳总结,并课件出示:设计意图:同一张纸能平均分成不同的份数,拓展学生的思维能力。

6.引导学生观察:

观察它们的分子和分母是怎样变,学生观察,思考,交流后,教师集体指导观察,并板书:

教师归纳总结后,学生完成课本66页的填空题,完成后集体回答。

设计意图:学生通过动手操作发现一些表象,但这些表象还须上升为科学理论,这就需要学生能透过表象识别表现后蕴藏的规律,这才能知其然且知其所以然,便于以后举一反三,解决同类相关问题。

7.课件出示:(通知互相讨论)

(1)相比较,看看分子分母有什么变化?(2)在这个变化中,你们发现了什么规律。

8.教师引导学生说出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。(教师特别强调“同时”“同一个数”)。

9.教师提出疑问:为什么要0除外呢?学生回答,教师归纳:因为0和任何数相乘都得0,而分数的分母是不能为0的。

10.同学们,现在你们来看看分数的基本性质和你们以前学习过得商不变性质有什么不同呢?(课件出示两性质作对比)

师:分数的基本性质和商不变性质的规律是一致的。

三、巩固强化,拓展应用。

(1)课件出示:(集体回答)。

(2)指出下列分数是否相等。(指名回答)。

(3)把和化成分母是10而分数大小不变的分数。(指名到台上板演)。

(4)课件出示小故事。

有位老爷爷把一块地分给三个儿子。老大分到了这块地的,老二分到了这块地的。老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?(让学生课后去思考)

设计意图:多样的练习可以让学生及时巩固所学知识,有调动了学习的积极性。

四、回顾总结,梳理新知。

同学们,你们对分数又有了哪些新的了解呢?板书设计:分数的基本性质数的`分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。

教学反思:

1.创设情境,激发学生兴趣。出示孙悟空的照片激发学生的兴趣,吸引学生的注意力。

2.手脑并用,在操作中深入感知分数。请同学们用一张正方形纸片,动手折一折,通过三次的对折,每次找出一个和相等的分数,比较涂色部分大小有没有变化?(没有)。那么得到了什么结论?教师引导学生观察分子,分母的变化,经历总结得出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。学生对此进行巩固后,再引导学生说出:0除外。学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。

3.巩固练习,围绕中心。在设计练习的过程中,采取多种形式呈现,使学生加深对分数基本性质的理解,激发了学生学习的兴趣,使每个学生都能理解所学知识,学有所获,并进一步学习约分和通分打下了良好的基础。

五年级下册数学教案 篇35

【教学目标】

1、使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。

2、知道100以内的质数,熟悉20以内的质数。

3、培养学生自主探索、独立思考、合作交流的能力。

4、让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

【重点难点】

质数、合数的意义。

教学过程:

【复习导入】

1、什么叫因数?

2、自然数分几类?(奇数和偶数)

教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。

【新课讲授】

1、学习质数、合数的概念。

(1)写出1 ~20各数的因数。(学生动手完成)

点四位学生上黑板写,教师注意指导。

(2)根据写出的因数的个数进行分类。

(3)教学质数和合数概念。

针对表格提问:什么数只有两个因数,这两个因数一定是什么数?

教师:只有1和它本身两个因数,这样的数叫做质数(或素数)。

如果一个数,除了1和它本身还有别的因数,这样的.数叫做合数。(板书)

2、教学质数和合数的判断。

判断下列各数中哪些是质数,哪些是合数。

17 22 29 35 37 87 93 96

教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)

质数:17 29 37

合数:22 35 87 93 96

3、出示课本第14页例题1。

找出100以内的质数,做一个质数表。

(1)提问:如何很快地制作一张100以内的质数表?

(2)汇报:

①根据质数的概念逐个判断。

②用筛选法排除。

③注意1既不是质数,也不是合数。

五年级下册数学教案 篇36

【教学内容】

教科书第1~2页的例1以及相关的练习。

【教学目标】

1?理解分数的意义和单位“1”的含义,知道分母、分子的含义和分数各部分的名称,知道生活中分数的广泛用途,会用分数解决生活中的简单问题。

2?培养学生的分析能力和归纳概括能力。

3?通过学生的主动探索,培养学生的成功体验,坚定学生学好数学的信心。

【教具准备】

多媒体课件和视频展示台。

【教学过程】

一、复习引入

师:中秋节到了,小华家买了很多月饼,分月饼的任务当然就落到小华的身上了。你看,小华一会儿就把这几块月饼分好了。你能用分数分别表示这些月饼的阴影部分占一个月饼的几分之几吗? 多媒体课件展示:

等学生完成后,抽学生的作业在视频展示台上展示,集体订正。

二、教学新课

1?教学例1,理解单位“1”

师:第二天,小华的爸爸又买回一盒月饼共8个,并且提出了一个新的分月饼的要求。 课件演示:爸爸对小华说:小华,你把这8个月饼平均分给4个人吧。

师:同学们,你们能用小圆代替月饼,帮小华分一分吗?

等学生分好后,抽一个学生分的`小圆在视频展示台上展示。

师:这时,小华的爸爸又提出了问题。

课件演示:爸爸对小华说:每个人得的月饼是这8个月饼的几分之几呢?

引导学生理解把8个月饼平均分成了4份,每份是这8个月饼的14。

师:老师也有个问题,刚才小华分出了1个月饼的1/4,这儿又分出了8个月饼的1/4,同学们看一看,这两个1/4表示的月饼数量一样吗?

多媒体课件演示下面的月饼图:

引导学生理解两个1/4代表的数量不一样。

师:为什么会出现这种现象呢?

引导学生说出前一个1/4是1个月饼的1/4,而后一个1/4是8个月饼的1/4。课件中随学生的回答在图形下出现相应的文字。

师:对。前一个1/4是以1个月饼为一个整体来平均分的,而后一个1/4是以8个月饼为一个整体来平均分的。平均分的整体不一样,对分出来的每份数量有影响吗?

让学生意识到,整体“1”的变化对每份的数量是有影响的。以1个月饼为整体“1”,每份就是1/4个月饼;以8个月饼为整体“1”,每份就是2个月饼。

师:像这样把许多物体组成的一个整体来平均分的分数还很多,请同学们看一看下面这幅图。 课件出示第2页的熊猫图。

师:这里是把多少只熊猫看作一个整体?平均分成了几份?每份是这个整体的几分之几?

请分一分,并填空。

课件出示单元主题图,要求学生说一说图中的每个分数分别是以什么作为一个整体来平均分的。 师:通过上面的研究,同学们有什么发现?

引导学生说出这些分数都是以许多物体组成的一个整体来平均分的。

师:像这样由一个物体或许多物体组成的一个整体,通常我们把它叫做单位“1”。

板书单位“1”的含义。

师:把12个学生看作一个整体,其中的6个学生是这个整体的几分之几?这里是把谁看作一个整体? 教师再举两个例子,深化学生对单位“1”的理解。

2?理解并归纳分数的意义

师:请同学们拿出一些小棒,把它们平均分成5份或6份,想一想,其中的1份是全部小棒的几分之几?其中的2份呢?其中的3份呢?

学生操作后回答,如:我拿了10根小棒,把它平均分成了5份,每份有2根小棒,这2根小棒是10根小棒的1/5。2份有4根小棒,这4根小棒是10根小棒的2/5??

师:想想自己操作的过程,你能说一说什么是分数吗?

学生讨论后可能这样表述:把单位“1”平均分成几份,表示其中1份或几份的数叫做分数。

师:同学们归纳得很好,但是这句话中出现了两个“几份”,所以我们一般把前一个“几份”说成是若干份。

归纳并板书分数的意义,板书课题。

试一试:涂色部分占整个图形的几分之几?

师:看看最后(五星图)这个分数,请同学们说说这个分数的意义。

生:这个分数表示把15颗五角星平均分成5份,其中的3份占这个图形的35。

师:把15颗五角星平均分成了5份,其中的1份占这个图形的几分之几?(生:1/5)其中的3份呢?(生:3/5)35是由多少个15组成的?(生:3个)所以,35的分数单位是1/5,35/里面有3个这样的分数单位。 说一说:3/7的分数单位是多少?它有多少个这样的分数单位?5/6,9/10呢??

3?说生活中的分数

师:分数在我们生活中应用得非常广泛,书上第3页课堂活动中的两个小朋友正在说生活中的分数,你们能像他们这样说一说生活中的分数吗?

学生说生活中的分数。

三、课堂小结

(略)

四、课堂作业

1?第4页课堂活动第2题。

2?练习一第1,2,3,4题。

分数的意义

师:在三年级的时候,我们初步认识了分数,你能在下面的括号里填上适当的分数吗?

课件出示如下的题目:

(1)把一个月饼平均分成4份,其中的1份是这个月饼的();

(2)把一张手工纸

五年级下册数学教案

作为一位杰出的教职工,往往需要进行教案编写工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。快来参考教案是怎么写的吧!以下是小编收集整理的五年级下册数学教案,仅供参考,希望能够帮助到大家。

五年级下册数学教案 篇37

教学目标:

1、认识等式,以具体的实例引导学生通过自主的探索活动,初步理解等式的特征。

2、通过观察比较,使学生认识到含有未知数的等式是方程,感受等式与方程的联系与区别,体会方程是特殊的等式。

教学重点:

理解等式的性质,理解方程的意义。

教学难点:

利用等式性质和方程的意义列出方程。

教学准备:

多媒体课件

教学过程:

一、情景引入

出示天平。

知道这是什么吗?你知道它是按照什么原理制造的吗?说说你的想法。

如果天平左边的.物体重50克,右边的放多少克才能保持天平的平衡的呢?

二、教学新课

1、教学例1。

(1)出示例1图。

你会用等式表示天平两边物体的质量关系吗?把它写出来。

50+50=100(板书)

说说你是怎样想的?

(2)指出等式的左边,等式的右边等概念。

等式有什么特征?(等式的左边和右边结果相等;等式用等号连接)

能说说什么样的式子叫做等式吗?(左右两边相等的式子叫做等式)

2、教学例2。

(1)出示例2图。

天平往哪一边下垂说明什么?(哪一边物体的质量多)

你能用式子表示天平两边物体的质量关系吗?

学生独立完成填写,集体汇报。

板书:x+50>100x+50=150

X+50<200x+x=200

如果让你把这四个式子分类,应分为几类?为什么?

指出:左右两边相等的式子就叫做等式,而这些等式与前面所看到的等式又有什么不同?(等式中含有未知数)

知道像x+50=100,x+x=100这样的等式叫什么吗?(方程)

说说什么是方程?你觉得这句话里哪两个词比较重要?(含有未知数、等式)

(2)讨论:等式与方程有什么关系?

小组讨论。

指出:方程一定是等式,但等式不一定是方程。

方程是特殊的等式。他们的关系可以用集合圈表示。

3、教学“试一试”

独立完成,完成后汇报方法。

让学生说一说,每题中的方程哪个更简洁一些?

指出:像500÷2=x,20-12=x虽然也是方程,但在列方程时应尽量避免这样x单独在等号左边或右边的方法。

4、完成“练一练”

(1)完成第1题。

独立完成判断后说说想法。

(2)完成第2题。

(3)完成第3题。

交流所列方程,说说你为什么这样列?你是怎么想的?

三、巩固练习

1、完成练习一第1题。

能说说每个线段表示的意思吗?方程怎样列呢?

小组中交流列式。

2、完成练习一第2题。

理解题意,说说数量关系是怎样的?

列出方程并交流。

3、完成练习一第3题。

四、课堂总结

通过学习,你有哪些收获?

板书设计

方程:

等式50+50=100x+50>100x+50=150

方程X+50<200x+x=200

五年级下册数学教案 篇38

【教学目标】

1.使学生通过观察、猜想、验证、理解并掌握3的倍数的特征。

2.引导学生学会判断一个数能否被3整除。

3.培养学生分析、判断、概括的能力。

【重点难点】

理解并掌握3的倍数的特征。

【复习导入】

1.学生口述2的倍数的特征,5的倍数的特征。

2.练习:下面哪些数是2的倍数?哪些数是5的倍数?

324 153 345 2460 986 756

教师:看来同学们对于2、5的倍数已经掌握了,那么3的倍数的特征是不是也只看个位就行了?这节课,我们就一起来研究3的倍数的特征。

板书课题:3的倍数的特征。

【新课讲授】

1.猜一猜:3的倍数有什么特征?

2.算一算:先找出10个3的倍数。

3×1=3 3×2=6 3×3=9

3×4=12 3×5=15 3×6=18

3×7=21 3×8=24 3×9=27

3×10=30……

观察:3的倍数的个位数字有什么特征?能不能只看个位就能判断呢?(不能)

提问:如果老师把这些3的倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)

12→21 15→51 18→81 24→42 27→72

教师:我们发现调换位置后还是3的倍数,那3的倍数有什么奥妙呢?

(以四人为一小组、分组讨论,然后汇报)

汇报:如果把3的'倍数的各位上的数相加,它们的和是3的倍数。

3.验证:下面各数,哪些数是3的倍数呢?

210 54 216 129 9231 9876

小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的倍数。(板书)

4.比一比(一组笔算,另一组用规律计算)。

判断下面的数是不是3的倍数。

3402 5003 1272 2967

5.“做一做”,指导学生完成教材第10页“做一做”。

(1)下列数中3的倍数有。

14 35 45 100 332 876 74 88

①要求学生说出是怎样判断的。

②3的倍数有什么特征?

(2)提示:①首先要考虑谁的特征?(既是2又是5的倍数,个位数字一定是0)

②接着再考虑什么?(最小三位数是100)

③最后考虑又是3的倍数。(120)

【课堂作业】

完成教材第11~12页练习三的第4、6、7、8、9、10、11题。

【课堂小结】

同学们,通过今天的学习活动,你有什么收获和感想?

【课后作业】

完成练习册中本课时练习。

3的倍数的特征

一个数各位上的数字之和是3的倍数,那么这个数就是3的倍数。

教学3的倍数的特征时,教师要注意学生的自主探索过程,通过猜一猜、算一算、想一想、验一验、比一比等教学环节,循序渐进地让学生参与到学习中来,但教师在想一想这个环节中要进行适当点拨、引导,这样效果更明显。

五年级下册数学教案 篇39

教学目标

1.理解质数、合数的概念和判断方法,能灵活选择方法判断一个数是质数还是合数。

2.引导学生通过动手操作、观察比较、猜想验证、归纳总结出质数、合数的含义。

3.培养学生分析问题的能力和应用数学的意识;体验从特殊到一般的认知发展过程,进一步完善学生对自然数的分类方法的掌握,培养学生思维的灵活性。

教学重难点

1.掌握质数与合数的概念。

2.熟练记忆100以内的质数。

教学过程:

一、复习导入

1.什么叫奇数?什么叫做偶数?

是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。最小的奇数是1,最小的偶数是0。

2.请说一说20和5的因数各有哪些?

有的数的因数个数多,有的数因数个数少。一个数最小的因数是1,最大的因数是它本身。

【设计意图】

通过练习找一个数的因数,让学生明白一个数的因数的个数是有多有少的,初步让学生知道按因数的个数分类怎么分。

二、探究新知

1.找出1~10各数的因数。

1的因数有:1。

2的因数有:1,2。

3的因数有:1,3。

4的因数有:1,2,4。

5的因数有:1,5。

6的因数有:1,2,3,6。

7的因数有:1,7。

8的因数有:1,2,4,8。

9的因数有:1,3,9。

10的因数有:1,2,5,10。

2.按因数的.个数分,你可以分成几类?

只有一个因数:1

只有两个因数:2、3、5、7

有两个以上个因数:4、6、8、9、10

3.明确概念:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。如2,3,5,7都是质数。一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。4,6,15,49都是合数。

注意:

1不是质数,也不是合数。

4.100以内的质数表。

5.100以内质数顺口溜。

2和3,5和7,11、13又17,

19、23、29、31,37和41,

43、47、53、59、61,67和71,

73、79、83、89、97.

【设计意图】

通过质数表和顺口溜让学生熟练记住100以内的质数。

6.想一想:最小的质数和最小的合数分别是多少?

三、课堂练习

1.判断下面说法是否正确?

(1)所有的偶数都是合数。

(2)所有的奇数都是质数。

(3)3的所有倍数都是合数。

(4)一个合数,最少有3个因数。

(5)1既不是质数,也不是合数。

2.将下面各数分别填入指定的圈里。

8395

3.思维训练。

两个质数,和是9,积是多少?

四、课堂总结

通过本节课学习你有哪些收获?

五年级下册数学教案 篇40

【教学内容】

质数和合数(课本第14页例1及第16页练习四1~3题)。

【教学目标】

1.使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。

2.知道100以内的质数,熟悉20以内的质数。

3.培养学生自主探索、独立思考、合作交流的能力。

4.让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

【教学重难点】

重点:理解质数、合数的意义。

难点:掌握判断质数与合数的方法。

【教学过程】

一、复习导入

1.什么叫因数?

2.自然数分几类?(奇数和偶数)

教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。

二、新课讲授

1.学习质数、合数的概念。

(1)写出1~20各数的因数。(学生动手完成)点四位学生上黑板板演,教师注意指导。

(2)根据写出的因数的个数进行分类。(填写下表)

(3)教学质数和合数的.概念。

针对表格提问:什么数只有两个因数,这两个因数一定是什么数?

教师:只有1和它本身两个因数,那么这样的数叫做质数(或素数)。如果一个数,除了1和它本身还有别的因数,那么这样的数叫做合数。(板书)

2.教学质数和合数的判断。

判断下列各数中哪些是质数,哪些是合数。

17 22 29 35 37 87 93 96

教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)

质数:17 29 37

合数:22 35 87 93 96

3.出示课本第14页例题1。

找出100以内的质数,做一个质数表。

(1)提问:如何很快地制作一张100以内的质数表?

(2)汇报:

①根据质数的概念逐个判断。

②用筛选法排除。首先排除掉2的倍数,再排除掉3 的倍数。提问:4的倍数还需不需要排除呢?(不用)接下来我们可以排除掉5、7的倍数,剩下的就是质数。

③注意1既不是质数,也不是合数。

100以内质数表

三、课堂作业

完成教材第16页练习四的第1~3题。

四、课堂小结

这节课,同学们又学到了什么新的本领?

学生畅谈所得。

【板书设计】

质数和合数

一个数,如果只有1和它本身两个因数,那么这样的数叫做质数(或素数)。一个数,如果除了1和它本身还有别的因数,那么这样的数叫做合数。1既不是质数,也不是合数。

【教学反思】

教学质数与合数时,先复习了因数的概念,然后再让学生找出1~20各数的所有因数,并引导学生观察这些数的因数有什么不同,再进行分类,在此基础上引出了质数、合数的概念,学生对一些知识的掌握就会水到渠成,而且还会作出正确判断。

五年级下册数学教案 篇41

【教学内容】

教科书第1~2页的例1以及相关的练习。

【教学目标】

1?理解分数的意义和单位“1”的含义,知道分母、分子的含义和分数各部分的名称,知道生活中分数的广泛用途,会用分数解决生活中的简单问题。

2?培养学生的分析能力和归纳概括能力。

3?通过学生的主动探索,培养学生的成功体验,坚定学生学好数学的信心。

【教具准备】

多媒体课件和视频展示台。

【教学过程】

一、复习引入

师:中秋节到了,小华家买了很多月饼,分月饼的任务当然就落到小华的身上了。你看,小华一会儿就把这几块月饼分好了。你能用分数分别表示这些月饼的阴影部分占一个月饼的几分之几吗? 多媒体课件展示:

等学生完成后,抽学生的作业在视频展示台上展示,集体订正。

二、教学新课

1?教学例1,理解单位“1”

师:第二天,小华的爸爸又买回一盒月饼共8个,并且提出了一个新的分月饼的要求。 课件演示:爸爸对小华说:小华,你把这8个月饼平均分给4个人吧。

师:同学们,你们能用小圆代替月饼,帮小华分一分吗?

等学生分好后,抽一个学生分的小圆在视频展示台上展示。

师:这时,小华的爸爸又提出了问题。

课件演示:爸爸对小华说:每个人得的月饼是这8个月饼的几分之几呢?

引导学生理解把8个月饼平均分成了4份,每份是这8个月饼的14。

师:老师也有个问题,刚才小华分出了1个月饼的1/4,这儿又分出了8个月饼的1/4,同学们看一看,这两个1/4表示的月饼数量一样吗?

多媒体课件演示下面的月饼图:

引导学生理解两个1/4代表的数量不一样。

师:为什么会出现这种现象呢?

引导学生说出前一个1/4是1个月饼的1/4,而后一个1/4是8个月饼的1/4。课件中随学生的回答在图形下出现相应的文字。

师:对。前一个1/4是以1个月饼为一个整体来平均分的,而后一个1/4是以8个月饼为一个整体来平均分的。平均分的整体不一样,对分出来的每份数量有影响吗?

让学生意识到,整体“1”的变化对每份的数量是有影响的'。以1个月饼为整体“1”,每份就是1/4个月饼;以8个月饼为整体“1”,每份就是2个月饼。

师:像这样把许多物体组成的一个整体来平均分的分数还很多,请同学们看一看下面这幅图。 课件出示第2页的熊猫图。

师:这里是把多少只熊猫看作一个整体?平均分成了几份?每份是这个整体的几分之几?

请分一分,并填空。

课件出示单元主题图,要求学生说一说图中的每个分数分别是以什么作为一个整体来平均分的。 师:通过上面的研究,同学们有什么发现?

引导学生说出这些分数都是以许多物体组成的一个整体来平均分的。

师:像这样由一个物体或许多物体组成的一个整体,通常我们把它叫做单位“1”。

板书单位“1”的含义。

师:把12个学生看作一个整体,其中的6个学生是这个整体的几分之几?这里是把谁看作一个整体? 教师再举两个例子,深化学生对单位“1”的理解。

2?理解并归纳分数的意义

师:请同学们拿出一些小棒,把它们平均分成5份或6份,想一想,其中的1份是全部小棒的几分之几?其中的2份呢?其中的3份呢?

学生操作后回答,如:我拿了10根小棒,把它平均分成了5份,每份有2根小棒,这2根小棒是10根小棒的1/5。2份有4根小棒,这4根小棒是10根小棒的2/5??

师:想想自己操作的过程,你能说一说什么是分数吗?

学生讨论后可能这样表述:把单位“1”平均分成几份,表示其中1份或几份的数叫做分数。

师:同学们归纳得很好,但是这句话中出现了两个“几份”,所以我们一般把前一个“几份”说成是若干份。

归纳并板书分数的意义,板书课题。

试一试:涂色部分占整个图形的几分之几?

师:看看最后(五星图)这个分数,请同学们说说这个分数的意义。

生:这个分数表示把15颗五角星平均分成5份,其中的3份占这个图形的35。

师:把15颗五角星平均分成了5份,其中的1份占这个图形的几分之几?(生:1/5)其中的3份呢?(生:3/5)35是由多少个15组成的?(生:3个)所以,35的分数单位是1/5,35/里面有3个这样的分数单位。 说一说:3/7的分数单位是多少?它有多少个这样的分数单位?5/6,9/10呢??

3?说生活中的分数

师:分数在我们生活中应用得非常广泛,书上第3页课堂活动中的两个小朋友正在说生活中的分数,你们能像他们这样说一说生活中的分数吗?

学生说生活中的分数。

三、课堂小结

(略)

四、课堂作业

1?第4页课堂活动第2题。

2?练习一第1,2,3,4题。

分数的意义

师:在三年级的时候,我们初步认识了分数,你能在下面的括号里填上适当的分数吗?

课件出示如下的题目:

(1)把一个月饼平均分成4份,其中的1份是这个月饼的();

(2)把一张手工纸

五年级下册数学教案 篇42

课题:简单的土石方计算

教学目标:

1、结合具体事例,经历认识“方”并解决土石方计算问题的过程。

2、了解“方”的具体含义,能够灵活运用体积计算公式解决一些简单的现实问题。

3、在综合运用所学知识解决现实问题的过程中,感受数学在生活中的广泛应用,培养数学应用意识。

教学重点:

熟练运用长方体和正方体的体积计算公式解决实际问题。

教学难点:

长方体和正方体的`体积计算公式演变成“横截面的面积乘长”。

教学过程:

一、巧设情境,激趣引思。

同学们,前面几节课我们学习了体积的有关内容,请大家思考以下问题。

(1)什么是体积?体积的单位有哪些?它们之间的进率是多少?

(2)怎样求长方体的体积?正方体的体积,长方体和正方体体积计算的统一公式是什么?

(3)学生分组讨论,指名回答问题。

这节课我们运用体积的有关知识,解决实际生活中的问题

二、自主互动,探究新知。

课件出示例题1:让学生读题,讨论:挖出的土与地窖的体积有什么关系? 让学生尝试解决问题 交流计算的结果。

教师介绍“方”,让学生用方描述挖出的土。

课件出示例题及拦河坝的和示意图。

让学生观察,问:你知道了哪些信息? 师帮助学生理解题意。

怎样计算拦河坝的体积?为什么这样计算? 使学生知道:拦河坝的体积=底面积×高。

让学生尝试解决问题,并交流计算的方法和结果。

三、应用拓展,反思交流。

1、应用:

(1)试一试 帮助学生弄清图意,然后鼓励学生提出问题,师生合作解决。

(2)练一练 第1、2题,帮助学生理解题中的事物和信息,再独立完成。

第3、4题,让学生先说一说,要解决问题,先要求出什么?

2、拓展:

练一练5 板书设计:

简单的土石方计算 2×1.6×1.5=4.8(立方米) 拦河坝的体积=横截面面积×长 答:要挖出4.8立方米的土。

横截面的面积:(8+3)×4÷2=22(平方米) 土石体积:22×50=1100(立方米) 答:修这个拦河坝一共需要土石1100立方米。

五年级下册数学教案 篇43

【教学内容】

教科书第58页综合应用:设计长方体的包装方案。

【教学目标】

1、通过设计长方体的包装方案让学生认识到在体积相同的情况下,表面积与它的长、宽、高的相差程度有关的道理。

2、通过数学活动,运用所学知识,获得解决简单实际问题的经验、方法以及成功的体验。

3、培养学生的创新意识、策略意识、实践能力和空间观念。

【教学重点】

让学生体验到,在体积相等的情况下,要使表面积较小,长、宽、高应越接近的道理。

【教具学具】

为每组学生准备8个规格为16×8×4(单位:cm)的长方体纸学具盒,包装纸,直尺,透明胶,剪刀等。

【教学过程】

一、课前引入

师:观察自己桌上的学具盒,你发现这些学具盒有什么特点?

生:形状都是长方体,每个盒子的规格都是16×8×4(单位:cm),每组都有8个。

师:如果我们要将这8个长方体盒子包装成1盒,怎样包装更省包装纸呢?今天我们就运用所学知识解决这个问题。(板书课题)

二、设想与摆放

1、设想与摆放

设想:

(1)要将这些长方体的盒子包装起来,在包装的过程中要考虑哪些问题呢?

(2)要达到节省包装纸的目的,应该考虑哪些问题?学生思考后发表意见:要想节约包装纸,学具盒中间不能留空隙,表面要平整;摆法不同,所用的纸的大小不同;接头处尽量不要浪费等等。

(3)明确长方体盒子的摆法不同是造成包装纸用量大小的主要原因。

2、记录与计算

(1)你认为造成所需包装纸大小不同的主要原因是什么?所需包装纸的面积=所摆的长方体的表面积+接头部分用纸量(按2dm2计算)

生:摆成的'大长方体的表面积越大,所用的包装纸越多,反之就少。

(2)究竟哪种摆法会更节约包装纸呢?

师:你们可以先将几个盒子摆一摆,量出所摆的长方体的长、宽、高,计算出摆成的不同长方体的表面积,从而算出所用包装纸的面积,并将数据和计算过程记录下来。

(3)小组合作:记录3种不同摆法下的包装纸用量,并选择一种用纸最少的方案。

为什么这种方案的用纸量会最少?在全班进行交流。

三、交流与比较

比一比谁的方案用纸少,并分析出用纸量不同的原因。

重点思考并讨论:

为什么同样是将8个学具盒打捆包装,表面积的大小会不相同?影响表面积大小的主要原因是什么?将分析的原因记录下来。

四、发现与思考

通过本次包装设计,你有什么发现?

1、物体重合的面积越大,表面积就越小,包装用的纸也就越少。

2、同样的体积下,长方体的表面积与它的长、宽、高的长度有关,长、宽、高的长度越接近,表面积就越小,当长、宽、高相等时,它的表面积最小。

五、知识拓展

师:解决用料省的问题在生活中有什么意义?联系实际谈自己的想法。

师:现在老师这里有20本数学书,想想看,怎样摆表面积最小?为什么?

六、课堂小结

这节课我们学习了什么?你有什么收获?说一说。

五年级下册数学教案 篇44

第1课时

教学课题:可能性

教学内容:教科书第133-134页内容。

教学目标:

1、结合现实事例,初步学会求简单事件发生的可能性的大小。

2、在游戏中,体验事件发生的等可能性以及游戏规则的公平性。

3、通过解决简单实际问题,体会数学与生活的密切联系,感受学习数学的乐趣。

教学重点:

1、求一些简单事件发生的可能性的大小

2、体会游戏规则公平性。

教学难点:

1、求一些简单事件发生的可能性的大小

2、体会游戏规则公平性。

教学具准备:课前预习、各种颜色的球数个。

教学过程:

一、创设情境、谈话导入

你们喜欢下跳棋吗?下跳棋时你们用什么方法决定谁先走子?

由学生口答

同学们有这么多的办法,我们学校举行了一场跳棋比赛,李力和方明是四年级的种子选手,他们怎样决定谁先走子的?

出示情景图:摸棋子决定吧,摸到红子你先走,摸到蓝子我先走。

出示两袋棋子。

这里有两袋棋子,应该摸哪袋呢?为什么?

学生回答

看来,同学们一致认为摸甲袋棋子公平,(板书:公平)摸甲袋棋子为什么公平呢?

甲袋中红子和蓝子的个数同样多,摸到红子和蓝子的可能性相同吗? (甲袋中摸到红子和蓝子的可能性都是一半)

学生说完后老师小结:红子和蓝子的个数同样多,都占总数的二分之一,也就是摸到红子和蓝子的可能性相等,你能用一个数表示出摸到红子和蓝子的可能性都是多少吗?

为什么用二分之一表示,你是怎样想的?

重点引导学生说出红子和蓝子的个数都占总数的二分之一,所以摸到红子和蓝子的可能性相等,都是二分之一

板书:可能性相等公平

摸乙袋棋子为什么不公平呢?

学生可能出现的情况:

【乙袋中红旗子有1个,摸到红子的可能性是三分之一,蓝子有2个,摸到蓝子的可能性是三分之二,所以摸乙袋不公平。红子的个数占总数的三分之一,蓝子的个数占总数的三分之二,摸到蓝子的可能性大,所以摸乙袋不公平。】

这节我们就学习可能性的大小。

板书:可能性有大小不公平,老师就说,在甲袋中红子和篮子各一个,都占总数的,我们就说在甲袋中摸到红子和篮子的可能性相等都是,然后问学生:在甲袋中摸到红子很篮子的可能性为什么都是呢?

二、合作交流,探究新知:

1、抛硬币

刚才李力和方明用摸棋子的方法决定谁先走子,用抛硬币的方法可以吗? 请同学们认真的读一读游戏规则。

游戏规则:任意抛出一枚硬币,如果正面朝上李力先走,如果反面朝上,方明先走。

你认为这种方法公平吗?为什么?把你的想法说给小组的同学听听。 其实抛硬币这种方法科学家们经过大量的试验证明是公平的,现在让我们一起了解一下他们的实验数据。

浏览抛硬币的数据:

法国数学家、自然科学家蒲丰的实验数据,他做了4040次实验,其中有xx次正面朝上,1992次反面朝上。

美国数学家费勒的实验数据,他做了10000次实验,其中有4979次正面朝上,5021次反面朝上。

英国统计学家皮尔逊的实验数据,他做了24000次实验,其中有1xx次正面朝上,11988次反面朝上。

这些数据说明了什么?找学生回答

通过大量的实验科学家们发现实验的次数越多,正面朝上和反面朝上的可能性就越接近二分之一,所以抛硬币的游戏规则是公平的。

2、转盘摸奖游戏

刚才同学们通过研究摸棋子和抛硬币的游戏规则,知道了可能性有大有小,当可能性相等时游戏规则就是公平的,现在我们就利用刚才的知识做个幸运转转转的游戏好吗?

教师出示颜色大小不等的转盘。

老师决定指针停在红色区域给第一小组发奖品,指针停在绿色区域给第二小组发奖品,指针停在黄色区域给第三小组发奖品,指针停在蓝色区域给第四小组发奖品,指针停在紫色色区域给第五小组发奖品。这样抽奖公平吗?

怎样才能使转盘公平呢?学生回答

教师拿出五等分的转盘,问:使用这个转盘公平吗?为什么? 引导学生说出指针停在每种颜色区域的可能性都是。

3、装球游戏

刚才我们做了幸运转转转游戏,我们再来做个装球的游戏好吗?。谁愿意给大家读一读装球的要求。

你能按要求装球吗?现在请小组长拿出我们的学具,请同学们按要求装球,装完后把你的装球方法说给小组的同学。

班内汇报交流:你是怎样装的,为什么这样装呢?

(相同的方法只说一次) 备注:如果学生没有说出可能性是

4、砸金蛋

刚才我们在游戏中学习了用分数表示可能性的大小,其实在我们的生活中隐藏着许多可能性大小的问题,现在让我们带着一双数学的眼睛走进非常6加1砸金蛋的现场。

你能解决这里面的可能性的问题吗?

出示:在不知情的情况下,第一次砸到一部手机,第二次再砸,再次砸到手机的可能性是()

5、摸牌游戏

同学们喜欢玩扑克牌吗?在我们经常玩的扑克牌中也有有趣的可能性现象呢。

6、成语中的可能性

看来同学们对可能性的问题掌握的很牢固,解决问题已经是十拿九稳了,“十拿九稳”这个成语中用没有我们今天学习的可能性的大小问题呢?

你还能举出这样的例子吗?

看来语文和数学是相通的,只要我们善于观察就会发现很多有趣的现象。

三、课堂总结:这节课你有什么收获呢?

四、限时作业。

五年级下册数学教案 篇45

教学目标:

1、认识等式,以具体的实例引导学生通过自主的探索活动,初步理解等式的特征。

2、通过观察比较,使学生认识到含有未知数的等式是方程,感受等式与方程的联系与区别,体会方程是特殊的等式。

教学重点:

理解等式的性质,理解方程的意义。

教学难点:

利用等式性质和方程的意义列出方程。

教学准备:

多媒体课件

教学过程:

一、情景引入

出示天平。

知道这是什么吗?你知道它是按照什么原理制造的吗?说说你的想法。

如果天平左边的物体重50克,右边的放多少克才能保持天平的平衡的.呢?

二、教学新课

1、教学例1。

(1)出示例1图。

你会用等式表示天平两边物体的质量关系吗?把它写出来。

50+50=100(板书)

说说你是怎样想的?

(2)指出等式的左边,等式的右边等概念。

等式有什么特征?(等式的左边和右边结果相等;等式用等号连接)

能说说什么样的式子叫做等式吗?(左右两边相等的式子叫做等式)

2、教学例2。

(1)出示例2图。

天平往哪一边下垂说明什么?(哪一边物体的质量多)

你能用式子表示天平两边物体的质量关系吗?

学生独立完成填写,集体汇报。

板书:x+50>100x+50=150

X+50<200x+x=200

如果让你把这四个式子分类,应分为几类?为什么?

指出:左右两边相等的式子就叫做等式,而这些等式与前面所看到的等式又有什么不同?(等式中含有未知数)

知道像x+50=100,x+x=100这样的等式叫什么吗?(方程)

说说什么是方程?你觉得这句话里哪两个词比较重要?(含有未知数、等式)

(2)讨论:等式与方程有什么关系?

小组讨论。

指出:方程一定是等式,但等式不一定是方程。

方程是特殊的等式。他们的关系可以用集合圈表示。

3、教学“试一试”

独立完成,完成后汇报方法。

让学生说一说,每题中的方程哪个更简洁一些?

指出:像500÷2=x,20-12=x虽然也是方程,但在列方程时应尽量避免这样x单独在等号左边或右边的方法。

4、完成“练一练”

(1)完成第1题。

独立完成判断后说说想法。

(2)完成第2题。

(3)完成第3题。

交流所列方程,说说你为什么这样列?你是怎么想的?

三、巩固练习

1、完成练习一第1题。

能说说每个线段表示的意思吗?方程怎样列呢?

小组中交流列式。

2、完成练习一第2题。

理解题意,说说数量关系是怎样的?

列出方程并交流。

3、完成练习一第3题。

四、课堂总结

通过学习,你有哪些收获?

板书设计

方程:

等式50+50=100x+50>100x+50=150

方程X+50<200x+x=200

五年级下册数学教案 篇46

教学内容:

长方体、正方体的体积计算

教学目标:

1.通过讲授,引导学生找出规律,总结出体积的公式。

2.指导学生运用公式正确计算长方体、正方体的体积。

3.培养学生积极思考、探索新知的思维品质。

教学重点:

长方体、正方体体积计算。

教学难点:

长方体、正方体体积计算

教具运用:

正方体木块若干。

教学过程:

一、复习导入

1.什么叫体积?计量物体的体积常用的单位有哪些?

2.怎样计算一个物体的体积呢?

二、新课讲授

1.长方体体积的计算。

教师课件出示一块长方体积木,一块盖房用的大型砖板。

(1)提问:它们的体积是多少?你是怎样想的?

引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。

教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。

(2)观察操作,探究长方体的体积公式。

小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。

学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。

说明学生拼摆长方体的样式非常多,这里只列举几个。观察:从这张表中,你发现了什么?

学生独立思考,然后小组内讨论交流,得出结论。

小结:长方体的体积等于长方体所含体积单位的.数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。

板书:长方体的体积=长宽高

讲述:如果用字母V表示长方体的体积公式可以写成:V=abh

(3)质疑:求长方体的体积公式需要知道什么条件?

2.探究正方体的体积公式。

(1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。

(2)引导学生明确。正方体的体积=棱长棱长棱长(板书)用字母表示:V=aaa=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)

3.运用长方体的体积公式解决问题。

(1)出示教材第30页的例1。

(2)学生看图,理解题意。

(3)说出题中所给信息,和所求问题。

(4)指名说出长方体的体积公式。

(5)指名学生上台板演过程,其他同学判断。

(6)老师订正书写。V=abh=743=84(cm3)

(7)看图,学生独立在练习本上完成。

(8)指名板演,集体订正。

三、课堂作业

完成课本第31页做一做第1、2题。

四、课堂小结

1.这节课,你有什么收获?

2.在计算长方体和正方体的体积时,要注意哪些问题?

五、课后作业

完成练习册中本课时练习。

板书设计 :

长方体和正方体的体积

长方体的体积=长宽高

V=abh

正方体体积=棱长棱长棱长

V=aaa=a3

五年级下册数学教案 篇47

一、教学内容

课本P27~30例1、例2。

二、教学目标

1.知识与技能

使学生认识长方体和正方体,并掌握它们面、棱、顶点的特征以及长方体和正方体两者之间的关系。认识长方体的长、宽、高和正方体的棱长。

2.过程与方法

让学生经历探索认识长方体和正方体的过程,培养学生观察、操作、抽象、概括的能力,以及发展学生的空间观念和空间想象力。

3.情感、态度与价值观

使学生形成初步的空间观念,体验所学知识与现实生活的联系,能运用所学知识解决生活中简单的问题,从中获得价值体验。

三、重点难点

1.教学重点

使学生认识长方体和正方体,掌握它们的特征;认识长方体的长、宽、高和正方体的棱长。

2.教学难点

了解长方体和正方体的关系。

四、教学用具

自制课件,学具,长方体、正方体的物品。

五、教学设计

(一)复习准备

(视频脚本三:第三单元长正方体:)

1.我们学过哪些平面图形?长方形和正方形有什么关系?

2.出示收集的各种物体:这些图形同刚才的图形有什么不同?

[设计目的是沟通新旧知识间的联系。]

(二)探索新知

1.认识长方体和正方体。

(1)师出示一些教具,学生拿出收集的学具。

将这些物体进行分类,可以分为几类?

(2)学生小组研究汇报:根据围成的面的不同可以分为:由长方形围成和由正方形围成的。(板书:长方体和正方体)

(3)日常生活中你见过哪些物体是长方体和正方体?

(长正方体认识:动画场景1)

(4)长方体有什么特征呢?什么样的物体叫长方体呢?下面我们来继续研究这个问题。

(5)关于长方体你想学习哪些知识?

师拿出长方体教具,学生拿学具,师给出面、棱、顶点、相对的面、相对的棱的概念,并板书。

2.长方体的特征。

(长正方体认识:动画场景3)

(1)长方体有几个面?(6个)你来猜想一下长方体的面有什么特点?

(2)怎样验证你的猜想?

3.学生验证。

可能会有以下方法:

(1)通过量长和宽计算;

(2)剪下比一比;

(3)将其中一个面描在纸上,用另一个面对比。

4.汇报结论:长方体的6个面都是长方形,相对的面面积相等。

有不同的发现吗?(也有相对的两个面是正方形)

5.教师重点带领学生研究相对的面是正方形的长方体。请大家再来仔细观察这个长方体,还有什么特征?

6.长方体的棱有什么特点?怎样验证?

(长正方体框架制作:动画脚本——场景一、二)

7.学生利用学具验证。

(1)测量;

(2)用学具插一个长方体后,再比较棱的长短。

8.汇报:怎样插长方体,用了什么材料?长方体的棱有什么特点?

12条棱,相对的`4条棱相等。

9.重点研究相对的面是正方形的长方体的棱的特点。

10.填写总结报告。

11.认识长、宽、高。

(1)相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

(2)学生指出自己手中长方体的长、宽、高,并量出长短。

3.正方体的特征。

(长正方体认识:动画场景4)

(1)学生独立研究正方体的特征并填表。

(长正方体框架制作:动画脚本——场景三)

(2)汇报你们是怎样研究的?

4.长方体和正方体的关系。

比较长方体和正方体,它们有什么相同点和不同点?长方体和正方体有什么关系?

相同点:6个面,12条棱,8个顶点。

不同点:

(三)巩固练习

1.下面的图形中,是长方体的在括号里画“△”,是正方体的在括号里画“○”。

2.写出下面各图的名称。

3.观察实物图,然后填空。

(1)橡皮的形状是()。

(2)橡皮的前面是()形,长是()厘米,宽是()厘米,与()的面积相等。

(3)橡皮的右侧面是()形,长是()厘米,宽是()厘米,与()的面积相等。

(4)橡皮的上面是()形,长是()厘米,宽是()厘米,与()的面积相等。

4.看图填空。(单位:厘米)

长()长()长()

宽()宽()宽()

高()高()高()

5.判断。(对的在括号里划“√”,错的划“×”。)

(1)一张很薄的塑料纸,只有正反两个面。()

(2)正方体是特殊的长方体。()

(3)一个长方体中有四个面完全一样,那么另外两个面一定是正方形。()

(4)用一根长120厘米的铁丝围成一个正方体框架,正方体的棱长为20厘米。()

(四)全课总结

在这节课上,使你印象最深的是什么?你还有什么需要解决的问题吗?

(五)板书设计

长方体和正方体的认识

五年级下册数学教案 篇48

教学内容:

义务教育课程标准实验教科书青岛版小学数学五年制五年级下册108-109页。

教学目标:

1.利用已有经验认识和了解简单的"排列",掌握解决问题的策略和方法。体会解决问题策略的多样性。

2.培养初步的观察、分析及推理能力,能有序地、全面地思考问题。

3.尝试用数学的方法来解决生活中的实际问题,感受数学在现实生活中的广泛应用。

4.在数学活动中养成与人合作的良好习惯,并初步学会表达解决问题的大致过程和结果。

教学重点:

培养学生思维的有序性。

教学难点:

抽象概括计算规律。

教学准备:

计数器,答题纸。

教学过程:

一、提出问题:

师:同学们,数学王国里有十个数字,它们是……

生:0、1、2、3、4、5、6、7、8、9。

师:就是0-9,用这简单的十个数字可以提出很多的数学问题。请看大屏幕。

出示课件:例:用1、2、3三个数字可以组成多少个没有重复数字的三位数呢?

师:问题提出来了,敢不敢迎接挑战?

生:敢!

师:谁来说说,你是怎么理解“没有重复数字的三位数”的?

生:举个例子吧,221不行,因为十位上的2和百位上的2重复了。

师:看来“没有重复数字的三位数”就是指百位、十位、个位三个数位上的数字不能相同。下面请同学们开动脑筋,把你的答案写在练习本上,咱比一比,谁写的又准确,速度又快。

二、研究问题:

1、解决问题:

(学生尝试解决问题)

师:同学们写完了,哪位同学愿意展示一下你的答案?

生:(投影仪展示)123,321,213,132,321。

师:还有其他的写法吗?

生:(投影仪展示)123,132,213,231,312,321。

师:两种写法,你认为哪一种更好?

生:第二种更好。

师:为什么?(学生茫然)同桌讨论一下。

生:第二种更好,因为第一种有遗漏,少了231,而第二名同学是有规律地写的,不会重复也不会遗漏。

师:观察第二种写法有重复或遗漏吗?

生:没有!

师:看来按规律写是不会重复也不会遗漏。老师把这种写法记录下来。

五年级下册数学教案 篇49

【教学内容】

教科书第1~2页的例1以及相关的练习。

【教学目标】

1、理解分数的意义和单位“1”的含义,知道分母、分子的含义和分数各部分的名称,知道生活中分数的广泛用途,会用分数解决生活中的简单问题。

2、培养学生的分析能力和归纳概括能力。

3、通过学生的主动探索,培养学生的成功体验,坚定学生学好数学的信心。

【教具准备】

多媒体课件和视频展示台。

【教学过程】

一、复习引入

师:中秋节到了,小华家买了很多月饼,分月饼的任务当然就落到小华的身上了。你看,小华一会儿就把这几块月饼分好了。你能用分数分别表示这些月饼的阴影部分占一个月饼的几分之几吗? 多媒体课件展示:

等学生完成后,抽学生的作业在视频展示台上展示,集体订正。

二、教学新课

1、教学例1,理解单位“1”

师:第二天,小华的爸爸又买回一盒月饼共8个,并且提出了一个新的分月饼的要求。 课件演示:爸爸对小华说:小华,你把这8个月饼平均分给4个人吧。

师:同学们,你们能用小圆代替月饼,帮小华分一分吗?

等学生分好后,抽一个学生分的小圆在视频展示台上展示。

师:这时,小华的爸爸又提出了问题。

课件演示:爸爸对小华说:每个人得的月饼是这8个月饼的几分之几呢?

引导学生理解把8个月饼平均分成了4份,每份是这8个月饼的14。

师:老师也有个问题,刚才小华分出了1个月饼的1/4,这儿又分出了8个月饼的1/4,同学们看一看,这两个1/4表示的月饼数量一样吗?

多媒体课件演示下面的月饼图:

引导学生理解两个1/4代表的数量不一样。

师:为什么会出现这种现象呢?

引导学生说出前一个1/4是1个月饼的1/4,而后一个1/4是8个月饼的1/4。课件中随学生的回答在图形下出现相应的文字。

师:对。前一个1/4是以1个月饼为一个整体来平均分的,而后一个1/4是以8个月饼为一个整体来平均分的。平均分的整体不一样,对分出来的每份数量有影响吗?

让学生意识到,整体“1”的变化对每份的数量是有影响的。以1个月饼为整体“1”,每份就是1/4个月饼;以8个月饼为整体“1”,每份就是2个月饼。

师:像这样把许多物体组成的一个整体来平均分的分数还很多,请同学们看一看下面这幅图。 课件出示第2页的熊猫图。

师:这里是把多少只熊猫看作一个整体?平均分成了几份?每份是这个整体的几分之几?

请分一分,并填空。

课件出示单元主题图,要求学生说一说图中的每个分数分别是以什么作为一个整体来平均分的。 师:通过上面的研究,同学们有什么发现?

引导学生说出这些分数都是以许多物体组成的一个整体来平均分的。

师:像这样由一个物体或许多物体组成的一个整体,通常我们把它叫做单位“1”。

板书单位“1”的含义。

师:把12个学生看作一个整体,其中的6个学生是这个整体的几分之几?这里是把谁看作一个整体? 教师再举两个例子,深化学生对单位“1”的理解。

2、理解并归纳分数的意义

师:请同学们拿出一些小棒,把它们平均分成5份或6份,想一想,其中的1份是全部小棒的几分之几?其中的2份呢?其中的3份呢?

学生操作后回答,如:我拿了10根小棒,把它平均分成了5份,每份有2根小棒,这2根小棒是10根小棒的`1/5。2份有4根小棒,这4根小棒是10根小棒的2/5。

师:想想自己操作的过程,你能说一说什么是分数吗?

学生讨论后可能这样表述:把单位“1”平均分成几份,表示其中1份或几份的数叫做分数。

师:同学们归纳得很好,但是这句话中出现了两个“几份”,所以我们一般把前一个“几份”说成是若干份。

归纳并板书分数的意义,板书课题。

试一试:涂色部分占整个图形的几分之几?

师:看看最后(五星图)这个分数,请同学们说说这个分数的意义。

生:这个分数表示把15颗五角星平均分成5份,其中的3份占这个图形的35。

师:把15颗五角星平均分成了5份,其中的1份占这个图形的几分之几?(生:1/5)其中的3份呢?(生:3/5)35是由多少个15组成的?(生:3个)所以,35的分数单位是1/5,35/里面有3个这样的分数单位。 说一说:3/7的分数单位是多少?它有多少个这样的分数单位?5/6,9/10呢??

3、说生活中的分数

师:分数在我们生活中应用得非常广泛,书上第3页课堂活动中的两个小朋友正在说生活中的分数,你们能像他们这样说一说生活中的分数吗?

学生说生活中的分数。

三、课堂小结

(略)

四、课堂作业

1、第4页课堂活动第2题。

2、练习一第1,2,3,4题。

分数的意义

师:在三年级的时候,我们初步认识了分数,你能在下面的括号里填上适当的分数吗?

课件出示如下的题目:

(1)把一个月饼平均分成4份,其中的1份是这个月饼的( );

(2)把一张手工纸

五年级下册数学教案 篇50

课题:简单的土石方计算

教学目标:

1、结合具体事例,经历认识“方”并解决土石方计算问题的过程。

2、了解“方”的具体含义,能够灵活运用体积计算公式解决一些简单的现实问题。

3、在综合运用所学知识解决现实问题的过程中,感受数学在生活中的广泛应用,培养数学应用意识。

教学重点:

熟练运用长方体和正方体的体积计算公式解决实际问题。

教学难点:

长方体和正方体的体积计算公式演变成“横截面的面积乘长”。

教学过程:

一、巧设情境,激趣引思。

同学们,前面几节课我们学习了体积的有关内容,请大家思考以下问题。

(1)什么是体积?体积的单位有哪些?它们之间的进率是多少?

(2)怎样求长方体的体积?正方体的体积,长方体和正方体体积计算的统一公式是什么?

(3)学生分组讨论,指名回答问题。

这节课我们运用体积的有关知识,解决实际生活中的问题

二、自主互动,探究新知。

课件出示例题1:让学生读题,讨论:挖出的土与地窖的体积有什么关系? 让学生尝试解决问题 交流计算的.结果。

教师介绍“方”,让学生用方描述挖出的土。

课件出示例题及拦河坝的和示意图。

让学生观察,问:你知道了哪些信息? 师帮助学生理解题意。

怎样计算拦河坝的体积?为什么这样计算? 使学生知道:拦河坝的体积=底面积×高。

让学生尝试解决问题,并交流计算的方法和结果。

三、应用拓展,反思交流。

1、应用:

(1)试一试 帮助学生弄清图意,然后鼓励学生提出问题,师生合作解决。

(2)练一练 第1、2题,帮助学生理解题中的事物和信息,再独立完成。

第3、4题,让学生先说一说,要解决问题,先要求出什么?

2、拓展:

练一练5 板书设计:

简单的土石方计算 2×1.6×1.5=4.8(立方米) 拦河坝的体积=横截面面积×长 答:要挖出4.8立方米的土。

横截面的面积:(8+3)×4÷2=22(平方米) 土石体积:22×50=1100(立方米) 答:修这个拦河坝一共需要土石1100立方米。

五年级下册数学教案(通用15篇)

作为一位杰出的教职工,时常会需要准备好教案,教案有助于学生理解并掌握系统的知识。我们应该怎么写教案呢?下面是小编为大家收集的五年级下册数学教案,欢迎阅读与收藏。

五年级下册数学教案 篇51

教学内容:

义务教育课程标准实验教科书青岛版小学数学五年制五年级下册108-109页。

教学目标:

1.利用已有经验认识和了解简单的"排列",掌握解决问题的策略和方法。体会解决问题策略的多样性。

2.培养初步的观察、分析及推理能力,能有序地、全面地思考问题。

3.尝试用数学的方法来解决生活中的实际问题,感受数学在现实生活中的广泛应用。

4.在数学活动中养成与人合作的良好习惯,并初步学会表达解决问题的大致过程和结果。

教学重点:

培养学生思维的有序性。

教学难点:

抽象概括计算规律。

教学准备:

计数器,答题纸。

教学过程:

一、提出问题:

师:同学们,数学王国里有十个数字,它们是……

生:0、1、2、3、4、5、6、7、8、9。

师:就是0-9,用这简单的十个数字可以提出很多的数学问题。请看大屏幕。

出示课件:例:用1、2、3三个数字可以组成多少个没有重复数字的三位数呢?

师:问题提出来了,敢不敢迎接挑战?

生:敢!

师:谁来说说,你是怎么理解“没有重复数字的三位数”的`?

生:举个例子吧,221不行,因为十位上的2和百位上的2重复了。

师:看来“没有重复数字的三位数”就是指百位、十位、个位三个数位上的数字不能相同。下面请同学们开动脑筋,把你的答案写在练习本上,咱比一比,谁写的又准确,速度又快。

二、研究问题:

1、解决问题:

(学生尝试解决问题)

师:同学们写完了,哪位同学愿意展示一下你的答案?

生:(投影仪展示)123,321,213,132,321。

师:还有其他的写法吗?

生:(投影仪展示)123,132,213,231,312,321。

师:两种写法,你认为哪一种更好?

生:第二种更好。

师:为什么?(学生茫然)同桌讨论一下。

生:第二种更好,因为第一种有遗漏,少了231,而第二名同学是有规律地写的,不会重复也不会遗漏。

师:观察第二种写法有重复或遗漏吗?

生:没有!

师:看来按规律写是不会重复也不会遗漏。老师把这种写法记录下来。

五年级下册数学教案 篇52

教学目标:

1、认识常用的体积单位:立方厘米、立方分米、立方米,在数学活动中建立体积是1立方厘米、1立方分米、1立方米的空间观念。

2、自主探索得出相邻体积单位之间的进率,发展学生的空间观念,培养学生的推理能力。

3、培养学习类比能力,从已有知识——面积单位引发思考,初步了解体积单位和面积单位之间的联系与区别。

4、在动手操作、观察比较、质疑反思等活动中,培养团队意识,提升合作精神与质疑能力。

教学重点:

初步建立体积是1立方厘米、1立方分米、1立方米的空间观念,能正确应用体积单位估算常见物体的体积。

教学难点:

通过探索,自主推算出相邻体积单位间的进率。

教学准备:

多媒体课件、体积单位模型、彩泥、魔方等。

教学过程:

一、创设情境,引发思考

师:上一节课,我们认识了体积,什么是物体的体积?

问:体积有大有小,小胖和小巧运用所学知识搭积木、比体积。哪个体积比较大?(生生交流)

师:今天这节课就让我们一起来探究体积单位(揭示课题:体积单位)。

二、合作学习,探究新知

(一)探寻学生已有知识:

问:关于体积单位你已经了解了些什么?让我们先相互交流一下!(生生交流)

(预设:知道常用体积单位有立方厘米、立方分米、立方米,并会用字母表示)

【设计意图:教学是从学生原有的基础和经验出发的,了解学生已知的,分析他们未知的,有针对性地设计教学,才能构建高效课堂】

(二)建立1cm3、1dm3、1m3的空间观念

1、建立1立方厘米的空间观念:

(1)初步感知1cm3有多大:

问:让我们先畅所欲言,你认为1cm3有多大?哪些物体接近1 cm3?(课件展示)

【设计意图:“你认为1cm3有多大?”引导学生用自己的方式表达自己心中1立方厘米的大小,或用身边的物体参照、或用手势比划,或对或错,形式不一的表达方式,更激发了学生探究的热情——究竟1立方厘米有多大。】

(2)触类旁通,定义1 cm3的大小:

师:我们已经知道边长为1cm的正方形,面积是1cm2,你能触类旁通定义1 cm3的大小吗?(同桌讨论)

【设计意图:在教学中,我们应当注意对学生迁移意识的培养,也就是说要注重运用类比的思想。】

(3)进一步感知1cm3的大小:

做一做:请大家四人为一小组,用彩泥捏出一些体积是1立方厘米的正方体。拼一拼,2立方厘米、5立方厘米、10立方厘米分别有多大。

(4)想一想,填一填:

师:我们知道计量一个物体的体积,就是看它含有多少个体积单位。下列长方体或正方体是用几个1立方厘米的正方体积木搭出的?体积是多少?(课件展示)

2、建立1立方分米、1立方米的空间观念:

(1)举一反三:从1 cm3定义1 dm3、1 m3的大小。(生生交流)

【设计意图:在类比的基础上尝试举一反三,不仅使数学知识容易理解,而且对概念的.记忆有水到渠成之感,自然、简洁,从而激发起学生的创造力。】

(2)想象一下:1 dm3、1 m3有多大?哪些物体接近1 dm3、1 m3?(学生举例,课件、教具辅助)

【设计意图:学会定义1dm3和1m3,不等同于就能正确感悟它们实际的空间大小,教师事先准备了3阶魔方、4阶魔方和1个标准1dm3的模型,让学生选择哪一个立方体更接近1dm3,学生通过观察、猜测、验证,从而获得对知识的真正意义。】

(3)学生活动:4个同学为一组,手拉手,围出一个大约1m3的空间。

【设计意图:用3根1m长的木条做成一个互成直角的架子,放在墙角,想象一下1m3的空间有多大。这样的想象也能提升学生对1立方米的空间观念,但是如果能创造一个有趣的学生活动,让学生们在实践活动中体验1立方米的大小,不仅提升了团队协作能力,而且在做中学,更能有效帮助学生建立体积是1立方米的空间大小。】

3、练习(用合适的体积单位表示下面物体):

一块橡皮的体积约是8( )。

一台录音机的体积约是10( )。

运货集装箱的体积约是40( )。

一本新华字典的体积约是0.4( )。

一个西瓜的体积约是5( )。

一间教室的体积约是180( )。

(三)继续类比,探究相邻体积单位间的进率:

1、师:学好知识要能触类旁通,今天我们从已知知识cm2、dm2、m2出发,探索了cm3、dm3、m3这一新知识,同时我们也要关注它们的区别,它们有哪些区别呢?(同桌交换意见)

2、追问:cm2、dm2、m2每相邻两个面积单位间的进率是100,猜想一下cm3、dm3、m3相邻体积单位间的进率又是多少呢?(学生猜想)

【设计意图:安排“猜想”有两层含义,一是进一步引导学生关注到面积单位与体积单位间的区别,更重要的是为了让学生掌握知识、提升能力,我们必须带领学生“再创造”,虽然知识是前人证明和研究出来的,但我们更应该让学生也像数学家们一样学会自己发现,“没有大胆的猜想就做不出伟大的发现”(牛顿)。】

3、验证:你们有什么好方法证明1cm3和1dm3间的关系呢?(课件辅助演示1个——10个——100个——1000个的过程)

【设计意图:在小学数学教学中,我们应当重视“猜想—验证”这一重要思想方法的渗透与培养,使学生在猜想验证中获得探究的乐趣。】

4、运用:同桌合作,请说一说1dm3和1m3间的关系。(课件演示)

5、拓展:通过探究,我们知道每相邻两个体积单位之间的进率是1000,你们还有什么疑问吗?(预设:你能试着说一说1cm3和1m3之间的关系吗?)

【设计意图:学生自己提出探索1cm3和1m3之间的关系,进一步激发学生探究的热情。同时也继续渗透类比的思想方法,或用100×100×100,或用1000×1000,鼓励学生能多角度思考与验证,收获成功的喜悦。】

三、动手操作,质疑反思:(机动,也可作为课后拓展)

学生活动:用一些棱长为1厘米的小正方体,做下面的活动。

1、用4个小正方体可以摆成一个大正方体吗?

2、最少要用多少个小正方体才可以摆成一个大正方体?

3、你能再摆一个大一些的正方体吗?用了多少个小正方体?

【设计意图:以“猜想—验证”为核心,引导学生多角度探索问题,发现规律,并打通与体积单位进率之间的关系。】

四、总结全课,感悟学习方法:

师:通过今天的学习,你有哪些新的收获?(生生互动)

小结:今天我们从已知知识cm2、dm2、m2出发,探索了cm3、dm3、m3这一新知识,学习就要学会触类旁通、举一反三。

五年级下册数学教案 篇53

【教学内容】

质数和合数(课本第14页例1及第16页练习四1~3题)。

【教学目标】

1.使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。

2.知道100以内的质数,熟悉20以内的质数。

3.培养学生自主探索、独立思考、合作交流的能力。

4.让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

【教学重难点】

重点:理解质数、合数的意义。

难点:掌握判断质数与合数的方法。

【教学过程】

一、复习导入

1.什么叫因数?

2.自然数分几类?(奇数和偶数)

教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。

二、新课讲授

1.学习质数、合数的概念。

(1)写出1~20各数的因数。(学生动手完成)点四位学生上黑板板演,教师注意指导。

(2)根据写出的因数的个数进行分类。(填写下表)

(3)教学质数和合数的概念。

针对表格提问:什么数只有两个因数,这两个因数一定是什么数?

教师:只有1和它本身两个因数,那么这样的数叫做质数(或素数)。如果一个数,除了1和它本身还有别的因数,那么这样的`数叫做合数。(板书)

2.教学质数和合数的判断。

判断下列各数中哪些是质数,哪些是合数。

17 22 29 35 37 87 93 96

教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)

质数:17 29 37

合数:22 35 87 93 96

3.出示课本第14页例题1。

找出100以内的质数,做一个质数表。

(1)提问:如何很快地制作一张100以内的质数表?

(2)汇报:

①根据质数的概念逐个判断。

②用筛选法排除。首先排除掉2的倍数,再排除掉3 的倍数。提问:4的倍数还需不需要排除呢?(不用)接下来我们可以排除掉5、7的倍数,剩下的就是质数。

③注意1既不是质数,也不是合数。

100以内质数表

三、课堂作业

完成教材第16页练习四的第1~3题。

四、课堂小结

这节课,同学们又学到了什么新的本领?

学生畅谈所得。

【板书设计】

质数和合数

一个数,如果只有1和它本身两个因数,那么这样的数叫做质数(或素数)。一个数,如果除了1和它本身还有别的因数,那么这样的数叫做合数。1既不是质数,也不是合数。

【教学反思】

教学质数与合数时,先复习了因数的概念,然后再让学生找出1~20各数的所有因数,并引导学生观察这些数的因数有什么不同,再进行分类,在此基础上引出了质数、合数的概念,学生对一些知识的掌握就会水到渠成,而且还会作出正确判断。

五年级下册数学教案(通用15篇)

作为一名默默奉献的教育工作者,常常要根据教学需要编写教案,借助教案可以让教学工作更科学化。那么应当如何写教案呢?以下是小编为大家收集的五年级下册数学教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

五年级下册数学教案 篇54

教学内容:

人教版义务教育课程标准教科书五年级下册第84-85页例3、例4及相关练习

学情分析:

《约分》是在学生已经掌握了分数的基本性质和公因数的基础上进行教学的,约分作为分数基本性质的直接应用,它是化简分数的常用方法。学习约分,不但可以提高对分数基本性质的的认识,还为分数的四则运算打下基础。

教学目标:

1、知识和技能目标:理解最简分数和约分的意义,掌握约分的方法,能够正确地进行约分,培养学生观察、比较和概括能力。

2、过程与方法目标:通过学生自主探索理解最简分数和约分的意义,经历探究约分方法的过程,渗透恒等变换思想。

3、情感态度和价值观目标:培养学生运用所学知识解决问题的能力,感受数学与生活的紧密联系。

教学重难点:

重点:最简分数的意义和约分的方法;掌握约分的方法。

难点:能准确的判断约分的结果是不是最简分数。

教具、学具准备:

课件

教学过程

复习铺垫。

课件出示一起回答用列举法找出24和30的公因数和公因数(为24

/

30约分做准备)

1、24的因数有(),30的因数有(),24和30的公因数有(),它们的公因数是()。

2、填空(说说为什么,什么是分数的基本性质)

(教学方法:课件出示复习题,第1题学生在练习本上完成,第2题先默背,然后指名回答,集体订正。)

过渡:这是我们前面所学习的内容,这节课我们接着学习新内容,请看大屏幕。

二、探究新知。

(一)、猜测、验证和比较,理解最简分数的意义

1、出示例3的教学情境图,让学生观察。

2、师:从情境图中,你得到了什么信息?(这是某所学校100米游泳比赛中,三个学生的对话,生1:一共要游100米,小明已经游了75米,生2:他已经游了全程的3

/

4,生3:75

/

100和3

/

4是一回事吗?)

3 、猜一猜:75

/

100和3

/

4

/

是一回事吗?

4、验证:让学生同桌讨论,把验证过程写在练习本上。

5、学生汇报结果,教师课件演示。

6、引导学生比较75

/

100和3

/

4两个分数的异同,得出最简分数的概念。

相同点:分数的大小相等

不同点:75

/

100分子和分母较大,含有公因数1、5、25;3

/

4分子和分母较小,只含有公因数1。分数的意义,分数单位都不同

总结概念:分子和分母只含有公因数1,像这样的分数叫做最简分数。

活动:请学生例举最简分数的例子。

教师说学生判断,

学生说大家判断

学生说同桌判断

抓住关键:分子和分母只含有公因数1,看是否有公因数2、3、5

8、课件出示练习:指出下面哪些分数是最简分数?为什么?

5

/

7 6

/

9 10

/

12 11

/

12 8

/

10 14

/

169

/

1624

/

25 21

/

24 13

/

17

名回答,说明为什么。

还是抓住关键:分子和分母只含有公因数1

假如都是2或3或5等的倍数,就不只有公因数1。

(二)、探究约分的意义和方法

过渡:刚才,我们一起学习了最简分数,在我们学过的分数中有很多都不是最简分数,我们能不能把它化成最简分数呢?

课件出示例4.判断24

/

30是不是最简分数(不是,除了1外,还有公因数2、3、6)

把24/30化简成最简分数

师提出思考问题:

(1)、化简指什么?使分子分母的数字变小

(2)、化简后大小不能变,要运用什么性质?等式的基本性质

(3)、等式的基本性质中同时乘或除以相同的数(0除外),化简时,是乘,还是除,用什么来除。除,用公因数来除

(4)、化简到什么时候为止?最简分数,分子分母只有公因数1

学生小组内讨论交流,明确题目要求,为探究约分方法做准备。

2、师:请同学们试着做一做,把24/30化简成最简分数。大小不能变。

完成后小组内交流。

巡视,指导。

交流探究结果。

小组汇报结果。

(1)方法一:用分子和分母的公因数(1除外)依次去除。除到最简分数为止

24

/

30=24+30

/

30+2=12

/

152

/

15=12÷3

/

15÷3=4

/

5

(2)方法二:直接用分子和分母的公因数去除。直接得到最简分数。

24

/

30=24+6

/

30+6=4

/

5

/

小结:教师用课件演示比较两种约分方法,并总结约分的意义。

约分的概念:

师:约分还有一种书写方法,请同学们看第85页例4,

并在练习本上写一写约分的这种写法。

6、教师课件直观演示约分的另一种书写格式。

三、巩固练习(课件演示)

过渡:刚才我们一起学习到了最简分数和约分的知识,老师发现大家学得很认真,但不知掌握的怎么样?大家愿意接受挑战吗?

1、判断下面各等式,哪些是约分?为什么?

2、错题改正。

3、指出下列分数分子和分母的公因数。

4、分苹果。

四、课堂小结

这节课我们学习了什么内容?(板书课题:约分)

五、板书设计

约分

方法一:

24

/

30=24÷2

/

30÷2=12

/

15

12

/

15=12÷3

/

15÷3=4

/

5

方法二:

24

/

30=24÷6

/

30÷6=4

/

5

75

/

100= 3

/

4

不同点:分子和分母较大分子和分母较小,

含有公因数1、5、25只含有公因数1

最简分数

教学反思

1、为学生的数学思考搭梯子。

课堂提问是学生进行数学思考的前提,问题过易就没有思考探究的价值,但问题过难,学生又研讨不出来也没有实际意义。本节课的教学,我根据问题的难易和学生的实际情况给学生学习搭梯子。

如:在探究理解最简分数意义这一环节的教学中,学生验证出75

/

100和3

/

4相等以后,我提出了一个问题:75

/

100和3

/

4有什么区别?很多学生都能看出75

/

100分子分母较大,3

/

4分子分母较小,但没有学生从分子和分母的公因数上去比较。接着我给学生搭了个梯子:请同学们从分子和分母的公因数上比较一下看它们有什么区别?很快学生就找出了75

/

100分子分母有公因数1、5、25,而3/4只有公因数1,然后我又在“只有”这个词上加以强调,使学生深刻的理解了最简分数的概念。

又如探究“约分的意义和方法”这个环节,如果直接出示例4:24

/

30,然后让学生自主探究约分的方法,相信很多学生会“丈二和尚摸不着头脑”,无从下手。在出示例4之后,我是这样给学生搭梯子的。我要求学生不动手,先思考三个问题(①、化简指什么?②、化简要运用什么性质?③化简到什么时候为止?),接着让学生交流,明确题目要求,为探究约分方法做准备。通过这两步搭梯子之后,学生也就知道了化简就是把分子分母较大的分数化成分子分母较小的分数,化简要运用分数的基本性质,化简要化到最简分数为止。第三步再让学生自己去探究约分的方法。此时学生已胸中成竹,很自然的探究出了约分的方法,体验了成功的喜悦,突破了本课的教学重点。

2、为学生交流搭台子。

课堂是学生的舞台,需要教师给学生搭台子。只要有探究的地方,就需要交流,学生交流的过程就是在建构知识的过程。因此在理解最简分数和探究约分方法的教学中,我都充分让学生先同桌讨论再全班交流,最后归纳总结形成知识点。我认为教师在教学时,应时刻记住把课堂还给学生,为学生的精彩交流喝彩。只有这样,你的课堂才会因为学生的精彩交流而精彩。

3、不动笔墨不读书。

数学学习是学生动脑、动口、动手的过程。学生在思考交流之后更应让学生动手来写,熟话说“读十遍不如写一遍”。我特别注重学生动手能力的培养,要求学生“不动笔墨不读书”。在复习铺垫中让学生把练习题先写在练习本上,再集体订正;在验证75/100和3/4是否相等的教学时,要求学生把验证过程写在练习本上;在探究约分的方法时,让学生把化简的过程写在练习本上,再交流;在学生看书找约分的另一种书写格式时,我始终要求学生练习写一写。

4、教学环节过渡亦无痕。

好的书法给人感觉“行云流水一气呵成”,好的课堂也应是环环相扣,衔接自然的。本节课我注重教学各个环节的.过渡,如:复习铺垫后说:这是我们前面所学习的内容,这节课我们接着学习新内容,请看大屏幕(过渡到最简分数的教学);在学习了最简分数后说:刚才,我们一起学习了最简分数,在我们学过的分数中有很多都不是最简分数,我们能不能把它化成最简分数呢(过渡到约分的教学)?在学习了约分后说:我们一起学习了最简分数和约分的知识,老师发现大家学得很认真,但不知掌握的怎么样?大家愿意接受挑战吗(过渡到巩固练习的教学)?

5、思想方法渗透亦无形。

数学知识和技能的教学是一条明线,数学思想的渗透是教学的一条暗线。数学的每一个知识点都会渗透着一种数学思想,《约分》这一知识点就渗透着恒等变换的数学思想。本课的教学中,恒等变换的数学思想在验证75/100和3/4是否相等和化简分数的教学时得到渗透,在巩固练习中得到不断的内化和深化。

欠缺火候的地方:

有智慧的教师往往能利用课堂即生资源进行教学,使课堂教学更具魅力。整观这节课,本人扑捉学生课堂发言及练习中有用教育资源的能力不够,课堂教学亮点不够亮;其次本人对学生评价的语言还不能较大程度的激发学生的学习兴趣;第三,学生倾听和动笔的习惯还有待进一步提高。

名师张齐华说:好课是从心灵深处流淌出来的。一堂成功的课往往不是教师教学技艺和技巧的简单叠加与拼凑,而是其多年来学识、功底、经验、技巧、智慧、个性乃至人生阅历等在特定教育情境下的一种自然勃发与流淌。如练武之人,境界不是十八般武艺样样精通,而是有深厚内力和“手中无剑,心中有剑”的气魄。自知自己还有很多东西需要不断学习,路漫漫其修远兮,吾将上下而求索。

五年级下册数学教案 篇55

教学目标:

1、认识等式,以具体的实例引导学生通过自主的探索活动,初步理解等式的特征。

2、通过观察比较,使学生认识到含有未知数的等式是方程,感受等式与方程的联系与区别,体会方程是特殊的等式。

教学重点:

理解等式的性质,理解方程的意义。

教学难点:

利用等式性质和方程的意义列出方程。

教学准备:

多媒体课件

教学过程:

一、情景引入

出示天平。

知道这是什么吗?你知道它是按照什么原理制造的吗?说说你的想法。

如果天平左边的物体重50克,右边的放多少克才能保持天平的平衡的呢?

二、教学新课

1、教学例1。

(1)出示例1图。

你会用等式表示天平两边物体的质量关系吗?把它写出来。

50+50=100(板书)

说说你是怎样想的?

(2)指出等式的左边,等式的右边等概念。

等式有什么特征?(等式的左边和右边结果相等;等式用等号连接)

能说说什么样的式子叫做等式吗?(左右两边相等的式子叫做等式)

2、教学例2。

(1)出示例2图。

天平往哪一边下垂说明什么?(哪一边物体的质量多)

你能用式子表示天平两边物体的质量关系吗?

学生独立完成填写,集体汇报。

板书:x+50>100x+50=150

X+50<200x+x=200

如果让你把这四个式子分类,应分为几类?为什么?

指出:左右两边相等的式子就叫做等式,而这些等式与前面所看到的.等式又有什么不同?(等式中含有未知数)

知道像x+50=100,x+x=100这样的等式叫什么吗?(方程)

说说什么是方程?你觉得这句话里哪两个词比较重要?(含有未知数、等式)

(2)讨论:等式与方程有什么关系?

小组讨论。

指出:方程一定是等式,但等式不一定是方程。

方程是特殊的等式。他们的关系可以用集合圈表示。

3、教学“试一试”

独立完成,完成后汇报方法。

让学生说一说,每题中的方程哪个更简洁一些?

指出:像500÷2=x,20-12=x虽然也是方程,但在列方程时应尽量避免这样x单独在等号左边或右边的方法。

4、完成“练一练”

(1)完成第1题。

独立完成判断后说说想法。

(2)完成第2题。

(3)完成第3题。

交流所列方程,说说你为什么这样列?你是怎么想的?

三、巩固练习

1、完成练习一第1题。

能说说每个线段表示的意思吗?方程怎样列呢?

小组中交流列式。

2、完成练习一第2题。

理解题意,说说数量关系是怎样的?

列出方程并交流。

3、完成练习一第3题。

四、课堂总结

通过学习,你有哪些收获?

板书设计

方程:

等式50+50=100x+50>100x+50=150

方程X+50<200x+x=200

五年级下册数学教案 篇56

教案设计

设计说明

1.以学生自主探究为主,引导学生发现分数与小数的互化方法。

学生通过自主参与、主动探究,可以更好地掌握数学知识。在学生探究分数与小数的互化方法时,给学生提供探究的时间,让学生以小组合作的方式进行探究,再通过比较、整合,得出分数与小数的互化方法。在这个过程中,学生通过自己和同伴的努力,经历了知识形成的全过程。

2.在学生原有的认知水平上促进发展。

本节课的内容相对简单,学生在课前已经有了初步的了解,因此,在课堂上让学生自主探究,经历知识的形成过程,使得不同水平的学生获得不同层次的发展,收获的多少可能不同,但都能获得成功的体验。

课前准备

教师准备 PPT课件

学生准备 两张完全一样的方格纸

教学过程

⊙创设情境,导入新课

师:今天,老师带着你们一起去“分数王国”和“小数王国”里玩一玩。

(课件出示情境图)

师:“分数王国”里有哪些数呢?“小数王国”里呢?

(生汇报)

师:“分数王国”的士兵和“小数王国”的士兵吵了起来,它们在吵什么?

生:和0.06都说自己更大。

师:和0.06哪个数大?你能帮助它们吗?(板书课题——“分数王国”与“小数王国”)

设计意图:用“分数王国”与“小数王国”里的士兵吵架这个情境导入新课,营造一种氛围,激发孩子的学习兴趣。然后以比较“分数王国”里的与“小数王国”里的0.06哪个数大的`问题情境引入,让学生产生分数和小数互化的需要,从而引出本节课的学习内容。

⊙自主探索,学习新知

1.解决问题。

(1)课件出示教材7页情境图。

师:比一比,“分数王国”里的与“小数王国”里的0.06哪个数大?

(2)大胆猜测,探究比较方法。

方法一 把分数化成小数来比较。

=1÷20=0.05,因为0.060.05,所以0.06。

方法二 把小数化成分数来比较。

0.06=,=,因为,所以0.06。

课件展示学生没有想到的画图法,让学生在讨论中理解。

0.06>

师小结:比较分数与小数的大小时,可以把分数化成小数或者把小数化成分数。

2.“分数王国”和“小数王国”分别有不同的尺子,你能帮助“翻译”吗?

(1)认真读题,明确题目中的“翻译”指什么。

(2)鼓励学生根据“分数尺”和“小数尺”中呈现的例子说一说与0.125的互化过程。

(3)引导学生理解数线上的同一个点既能表示一个分数,也能表示一个小数。

3.归纳分数化成小数的方法。

(1)探究将分数化成小数的方法。

把下列分数化成小数:

练习,并思考转化方法。

(2)小组内交流方法。

(3)班内反馈。

要求学生说出转化方法,并讲明转化的原理。

师小结:分数化成小数,就用分子除以分母。根据分数与除法的关系,分数的分子相当于被除数,分母相当于除数。

4.归纳“小数化成分数”的方法。

把0.3,0.27,0.75,0.125化成分数。

练习,探究小数化成分数的方法。

师小结:小数化成分数,原来是几位小数,就在1的后面写几个0作分母,把原来小数的小数点去掉作分子,化成分数后,能约分的要约分。

设计意图:数学知识只有通过学生的主动参与、自主探究,才能转化为学生自己的知识。本教学环节中,学生以小组合作、自主学习的方式进行探究,在多种方法的基础上比较、整合,从而得出分数与小数的互化方法。

五年级下册数学教案 篇57

【教学内容】

教科书第58页综合应用:设计长方体的包装方案。

【教学目标】

1、通过设计长方体的包装方案让学生认识到在体积相同的情况下,表面积与它的长、宽、高的相差程度有关的道理。

2、通过数学活动,运用所学知识,获得解决简单实际问题的经验、方法以及成功的体验。

3、培养学生的创新意识、策略意识、实践能力和空间观念。

【教学重点】

让学生体验到,在体积相等的情况下,要使表面积较小,长、宽、高应越接近的道理。

【教具学具】

为每组学生准备8个规格为16×8×4(单位:cm)的长方体纸学具盒,包装纸,直尺,透明胶,剪刀等。

【教学过程】

一、课前引入

师:观察自己桌上的学具盒,你发现这些学具盒有什么特点?

生:形状都是长方体,每个盒子的规格都是16×8×4(单位:cm),每组都有8个。

师:如果我们要将这8个长方体盒子包装成1盒,怎样包装更省包装纸呢?今天我们就运用所学知识解决这个问题。(板书课题)

二、设想与摆放

1、设想与摆放

设想:

(1)要将这些长方体的盒子包装起来,在包装的过程中要考虑哪些问题呢?

(2)要达到节省包装纸的目的,应该考虑哪些问题?学生思考后发表意见:要想节约包装纸,学具盒中间不能留空隙,表面要平整;摆法不同,所用的纸的大小不同;接头处尽量不要浪费等等。

(3)明确长方体盒子的摆法不同是造成包装纸用量大小的主要原因。

2、记录与计算

(1)你认为造成所需包装纸大小不同的`主要原因是什么?所需包装纸的面积=所摆的长方体的表面积+接头部分用纸量(按2dm2计算)

生:摆成的大长方体的表面积越大,所用的包装纸越多,反之就少。

(2)究竟哪种摆法会更节约包装纸呢?

师:你们可以先将几个盒子摆一摆,量出所摆的长方体的长、宽、高,计算出摆成的不同长方体的表面积,从而算出所用包装纸的面积,并将数据和计算过程记录下来。

(3)小组合作:记录3种不同摆法下的包装纸用量,并选择一种用纸最少的方案。

为什么这种方案的用纸量会最少?在全班进行交流。

三、交流与比较

比一比谁的方案用纸少,并分析出用纸量不同的原因。

重点思考并讨论:

为什么同样是将8个学具盒打捆包装,表面积的大小会不相同?影响表面积大小的主要原因是什么?将分析的原因记录下来。

四、发现与思考

通过本次包装设计,你有什么发现?

1、物体重合的面积越大,表面积就越小,包装用的纸也就越少。

2、同样的体积下,长方体的表面积与它的长、宽、高的长度有关,长、宽、高的长度越接近,表面积就越小,当长、宽、高相等时,它的表面积最小。

五、知识拓展

师:解决用料省的问题在生活中有什么意义?联系实际谈自己的想法。

师:现在老师这里有20本数学书,想想看,怎样摆表面积最小?为什么?

六、课堂小结

这节课我们学习了什么?你有什么收获?说一说。

五年级下册数学教案 篇58

教学内容:

教材第xx页的内容及第xx页练习的第x题。

教学目标:

1.理解两个数的公倍数和最小公倍数的意义。

2.通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的应用。

3.培养学生抽象、概括的能力。

教学重点:

理解两个数的公倍数和最小公倍数的意义。

教学难点:

自主探索并总结找最小公倍数的方法。

教学具准备:

多媒体课件,学生操作用长方形纸片(长3Cm,宽2Cm)与方格纸。

学方法:

小组合作谈话法。

教学过程:

一、创设情景,生成问题:

前面,我们通过研究两个数的因数,掌握了公因数和最大公因数的知识。今天,我们来研究两个数的倍数。

二、探索交流,解决问题

1.在数轴上标出4、6的倍数所在的`点

拿出老师课前发的画有两条直线的纸。

在第一条直线上找出4的倍数所在的点,画上黑点。在第二条直线上找出6的倍数所在的点,圈上小圆圈。

2.引入公倍数

(1)学生汇报,多媒体课件出现两条数轴,并根据学生报的数,仿效出现黑点和小圆圈。

(2)观察:从4和6的倍数中你发现了什么?

(3)学生回答后,多媒体课件演示两条数轴合并在一起,闪现12和21。

(4)我们发现:有些数既是4的倍数,又是6的倍数,如果让你给这些数起个名,把它们叫做4和6的什么数呢?(板书:公倍数)

说说看,什么叫两个数的公倍数?

3.用集合图表示

如果让你把4的倍数、6的倍数、4和6的公倍数填在下面的图中,你会填吗?试试看。同桌两人可以讨论一下。

4.引人最小公倍数

学生汇报后问:

(1)为什么三个部分里都要添上省略号?

(2)4和6的公倍数还有哪些?有没有最大公倍数?

(3)有没有最小公倍数?4和6的最小公倍数是几?(板书:最小公倍数)

4的倍数6的倍数

4,8,

16,20,

12,24,

4和6的公倍数:

五年级下册数学教案 篇59

教学目标:

1、认识常用的体积单位:立方厘米、立方分米、立方米,在数学活动中建立体积是1立方厘米、1立方分米、1立方米的空间观念。

2、自主探索得出相邻体积单位之间的进率,发展学生的空间观念,培养学生的推理能力。

3、培养学习类比能力,从已有知识——面积单位引发思考,初步了解体积单位和面积单位之间的联系与区别。

4、在动手操作、观察比较、质疑反思等活动中,培养团队意识,提升合作精神与质疑能力。

教学重点:

初步建立体积是1立方厘米、1立方分米、1立方米的空间观念,能正确应用体积单位估算常见物体的体积。

教学难点:

通过探索,自主推算出相邻体积单位间的进率。

教学准备:

多媒体课件、体积单位模型、彩泥、魔方等。

教学过程:

一、创设情境,引发思考

师:上一节课,我们认识了体积,什么是物体的体积?

问:体积有大有小,小胖和小巧运用所学知识搭积木、比体积。哪个体积比较大?(生生交流)

师:今天这节课就让我们一起来探究体积单位(揭示课题:体积单位)。

二、合作学习,探究新知

(一)探寻学生已有知识:

问:关于体积单位你已经了解了些什么?让我们先相互交流一下!(生生交流)

(预设:知道常用体积单位有立方厘米、立方分米、立方米,并会用字母表示)

【设计意图:教学是从学生原有的基础和经验出发的,了解学生已知的,分析他们未知的,有针对性地设计教学,才能构建高效课堂】

(二)建立1cm3、1dm3、1m3的空间观念

1、建立1立方厘米的空间观念:

(1)初步感知1cm3有多大:

问:让我们先畅所欲言,你认为1cm3有多大?哪些物体接近1 cm3?(课件展示)

【设计意图:“你认为1cm3有多大?”引导学生用自己的方式表达自己心中1立方厘米的大小,或用身边的物体参照、或用手势比划,或对或错,形式不一的表达方式,更激发了学生探究的热情——究竟1立方厘米有多大。】

(2)触类旁通,定义1 cm3的'大小:

师:我们已经知道边长为1cm的正方形,面积是1cm2,你能触类旁通定义1 cm3的大小吗?(同桌讨论)

【设计意图:在教学中,我们应当注意对学生迁移意识的培养,也就是说要注重运用类比的思想。】

(3)进一步感知1cm3的大小:

做一做:请大家四人为一小组,用彩泥捏出一些体积是1立方厘米的正方体。拼一拼,2立方厘米、5立方厘米、10立方厘米分别有多大。

(4)想一想,填一填:

师:我们知道计量一个物体的体积,就是看它含有多少个体积单位。下列长方体或正方体是用几个1立方厘米的正方体积木搭出的?体积是多少?(课件展示)

2、建立1立方分米、1立方米的空间观念:

(1)举一反三:从1 cm3定义1 dm3、1 m3的大小。(生生交流)

【设计意图:在类比的基础上尝试举一反三,不仅使数学知识容易理解,而且对概念的记忆有水到渠成之感,自然、简洁,从而激发起学生的创造力。】

(2)想象一下:1 dm3、1 m3有多大?哪些物体接近1 dm3、1 m3?(学生举例,课件、教具辅助)

【设计意图:学会定义1dm3和1m3,不等同于就能正确感悟它们实际的空间大小,教师事先准备了3阶魔方、4阶魔方和1个标准1dm3的模型,让学生选择哪一个立方体更接近1dm3,学生通过观察、猜测、验证,从而获得对知识的真正意义。】

(3)学生活动:4个同学为一组,手拉手,围出一个大约1m3的空间。

【设计意图:用3根1m长的木条做成一个互成直角的架子,放在墙角,想象一下1m3的空间有多大。这样的想象也能提升学生对1立方米的空间观念,但是如果能创造一个有趣的学生活动,让学生们在实践活动中体验1立方米的大小,不仅提升了团队协作能力,而且在做中学,更能有效帮助学生建立体积是1立方米的空间大小。】

3、练习(用合适的体积单位表示下面物体):

一块橡皮的体积约是8( )。

一台录音机的体积约是10( )。

运货集装箱的体积约是40( )。

一本新华字典的体积约是0.4( )。

一个西瓜的体积约是5( )。

一间教室的体积约是180( )。

(三)继续类比,探究相邻体积单位间的进率:

1、师:学好知识要能触类旁通,今天我们从已知知识cm2、dm2、m2出发,探索了cm3、dm3、m3这一新知识,同时我们也要关注它们的区别,它们有哪些区别呢?(同桌交换意见)

2、追问:cm2、dm2、m2每相邻两个面积单位间的进率是100,猜想一下cm3、dm3、m3相邻体积单位间的进率又是多少呢?(学生猜想)

【设计意图:安排“猜想”有两层含义,一是进一步引导学生关注到面积单位与体积单位间的区别,更重要的是为了让学生掌握知识、提升能力,我们必须带领学生“再创造”,虽然知识是前人证明和研究出来的,但我们更应该让学生也像数学家们一样学会自己发现,“没有大胆的猜想就做不出伟大的发现”(牛顿)。】

3、验证:你们有什么好方法证明1cm3和1dm3间的关系呢?(课件辅助演示1个——10个——100个——1000个的过程)

【设计意图:在小学数学教学中,我们应当重视“猜想—验证”这一重要思想方法的渗透与培养,使学生在猜想验证中获得探究的乐趣。】

4、运用:同桌合作,请说一说1dm3和1m3间的关系。(课件演示)

5、拓展:通过探究,我们知道每相邻两个体积单位之间的进率是1000,你们还有什么疑问吗?(预设:你能试着说一说1cm3和1m3之间的关系吗?)

【设计意图:学生自己提出探索1cm3和1m3之间的关系,进一步激发学生探究的热情。同时也继续渗透类比的思想方法,或用100×100×100,或用1000×1000,鼓励学生能多角度思考与验证,收获成功的喜悦。】

三、动手操作,质疑反思:(机动,也可作为课后拓展)

学生活动:用一些棱长为1厘米的小正方体,做下面的活动。

1、用4个小正方体可以摆成一个大正方体吗?

2、最少要用多少个小正方体才可以摆成一个大正方体?

3、你能再摆一个大一些的正方体吗?用了多少个小正方体?

【设计意图:以“猜想—验证”为核心,引导学生多角度探索问题,发现规律,并打通与体积单位进率之间的关系。】

四、总结全课,感悟学习方法:

师:通过今天的学习,你有哪些新的收获?(生生互动)

小结:今天我们从已知知识cm2、dm2、m2出发,探索了cm3、dm3、m3这一新知识,学习就要学会触类旁通、举一反三。

五年级下册数学教案 篇60

教学目标:

1、结合具体的情景,自主探索两位数乘两位数的乘法算法。

2、学会进行两位数乘两位数的`乘法计算,并能解决一些简单的实际问题。

教学重点:

1、两位数乘两位数的估算。

2、探索并掌握两位数乘两位数(不进位)的乘法计算。

教学难点:

掌握两位数乘两位数(不进位)的乘法并能熟练计算。

教学理念:

组织学生讨论、交流,使学生体验学习中通过合作交流带来的方便和快乐。

教学准备:

课件。

学生准备:

预习课前知识。

教学过程:

一、实践调查

课前让学生在汇景新城作实地调查,调查本小区住户情况

二、课内交流

1、让同学们根据调查所得的数学信息编一道数学应用题。

2、根据所编的题目独立列式

3、探讨和交流如何解决问题。

(1)尝试通过估算结果解决问题。

A、分组讨论不同的计算过程

B、师:根据以上的结果你能判断“这栋楼能住150户吗?”

(2)讨论算法

三、习题巩固:

1、试一试

11×4324×1244×21

2、练一练:

第1、2题

3、第3题,学生独立思考,理解题意,再进行计算

四、综合应用:

陈老师班上有42名同学,她为同学们购置书包和文具,一个书包24元,一个文具11元,买书包和文具各花了多少钱?一共花了多少钱?

五、课堂总结:今天我们学习了什么知识?你学会了什么?

六、板书设计:

五年级下册数学教案 篇61

教学目标:

1.知识技能:经历探索分数基本性质的过程,理解分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

2.思考与问题解决:经历观察讨论,操作等学习活动,能对分数的基本性质作出简要的,合理的说明,培养学生的观察,比较,归纳,总结概括的能力。

3.情感态度:经历观察,操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣,鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质。

教学重点:

探索,发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。

教学难点:

自主探索,归纳概括分数的基本性质。

教具学具准备:

多媒体课件,正方形纸,彩笔。

教学设计:

一、创设情境,导入新课:

1.课件分别出示两张不同的孙悟空的照片。师:学们仔细看看这两张照片,你有什么发现?(指名回答)。

2.教师引导交流:孙悟空本人没有改变,只不过是外表的打扮装饰发生了改变。

3.学生初步感知了什么变了而什么却没有变的.概念。

4.教师导入新课:今天我们就来探讨什么变了而什么没有变的有关内容。教师板书课题:分数的基本性质设计意图:利用学生感兴趣的图片来吸引学生的注意力和观察能力,为下一步学习营造一个轻松活跃的氛围。

二、探究新知。

(一):1.师:在我们在学习这个新的内容之前,我们首先来复习一下除法与分数的关系。学生回答教师板书:

被除数=课件出示:120÷30=(120×2)÷(30×2)=(120÷10)÷(30÷10)= 2.同学们说说这几道相等吗?(指名回答)。

3.教师引导说出商不变的性质,课件出示商不变的性质的定义。

设计意图:通过复习商不变的性质,为下一步更容易的学习分数的基本性质打下基础。

(二)、教学新知。

1.师:请同学们拿出课前准备好的正方形纸,把手中的纸平均折成4份,其中把3份图上你喜欢的颜色。

2.学生操作,教师巡视并特别提醒学生注意“平均分”。

3.展示学生的作业。

4.师:现在请同学们把正方形纸平均分成8份,16份,分好之后你有什么发现?(指名回答)。

5.教师归纳总结,并课件出示:设计意图:同一张纸能平均分成不同的份数,拓展学生的思维能力。

6.引导学生观察:

观察它们的分子和分母是怎样变,学生观察,思考,交流后,教师集体指导观察,并板书:

教师归纳总结后,学生完成课本66页的填空题,完成后集体回答。

设计意图:学生通过动手操作发现一些表象,但这些表象还须上升为科学理论,这就需要学生能透过表象识别表现后蕴藏的规律,这才能知其然且知其所以然,便于以后举一反三,解决同类相关问题。

7.课件出示:(通知互相讨论)

(1)相比较,看看分子分母有什么变化?(2)在这个变化中,你们发现了什么规律。

8.教师引导学生说出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。(教师特别强调“同时”“同一个数”)。

9.教师提出疑问:为什么要0除外呢?学生回答,教师归纳:因为0和任何数相乘都得0,而分数的分母是不能为0的。

10.同学们,现在你们来看看分数的基本性质和你们以前学习过得商不变性质有什么不同呢?(课件出示两性质作对比)

师:分数的基本性质和商不变性质的规律是一致的。

三、巩固强化,拓展应用。

(1)课件出示:(集体回答)。

(2)指出下列分数是否相等。(指名回答)。

(3)把和化成分母是10而分数大小不变的分数。(指名到台上板演)。

(4)课件出示小故事。

有位老爷爷把一块地分给三个儿子。老大分到了这块地的,老二分到了这块地的。老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?(让学生课后去思考)

设计意图:多样的练习可以让学生及时巩固所学知识,有调动了学习的积极性。

四、回顾总结,梳理新知。

同学们,你们对分数又有了哪些新的了解呢?板书设计:分数的基本性质数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。这就是分数的基本性质。

教学反思:

1.创设情境,激发学生兴趣。出示孙悟空的照片激发学生的兴趣,吸引学生的注意力。

2.手脑并用,在操作中深入感知分数。请同学们用一张正方形纸片,动手折一折,通过三次的对折,每次找出一个和相等的分数,比较涂色部分大小有没有变化?(没有)。那么得到了什么结论?教师引导学生观察分子,分母的变化,经历总结得出:分数的分子和分母同时乘或除以相同的数(0除外)分数大小不变。学生对此进行巩固后,再引导学生说出:0除外。学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。

3.巩固练习,围绕中心。在设计练习的过程中,采取多种形式呈现,使学生加深对分数基本性质的理解,激发了学生学习的兴趣,使每个学生都能理解所学知识,学有所获,并进一步学习约分和通分打下了良好的基础。

五年级下册数学教案 篇62

教学目标:

1、结合具体的情景,自主探索两位数乘两位数的乘法算法。

2。学会进行两位数乘两位数的乘法计算,并能解决一些简单的实际问题。

教学重点:

1、两位数乘两位数的估算。

2、探索并掌握两位数乘两位数(不进位)的乘法计算。

教学难点:

掌握两位数乘两位数(不进位)的乘法并能熟练计算。

教学理念:

组织学生讨论、交流,使学生体验学习中通过合作交流带来的'方便和快乐。

教学准备:

课件。

学生准备:

预习课前知识。

教学过程:

一、实践调查

课前让学生在汇景新城作实地调查,调查本小区住户情况

二、课内交流

1、让同学们根据调查所得的数学信息编一道数学应用题。

2、根据所编的题目独立列式

3、探讨和交流如何解决问题。

(1)尝试通过估算结果解决问题。

A、分组讨论不同的计算过程

B、师:根据以上的结果你能判断“这栋楼能住150户吗?”

(2)讨论算法

三、习题巩固:

1、试一试

11×4324×1244×21

2、练一练:

第1、2题

3、第3题,学生独立思考,理解题意,再进行计算

四、综合应用:

陈老师班上有42名同学,她为同学们购置书包和文具,一个书包24元,一个文具11元,买书包和文具各花了多少钱?一共花了多少钱?

五、课堂总结:今天我们学习了什么知识?你学会了什么?

六、板书设计:

五年级下册数学教案 篇63

信息社会已经到来,信息的获取、分析处理将成为现代人最基本的能力和素质的标志。本课正是基于这一理念,选择具有丰富现实背景的学习材料,学生了解了折线统计图的特点、作用后,在应用部分设置了分析数据、处理信息的练习题,以培养学生根据数据、图像分析事物并作出合理推断的能力。

1、了解折线统计图的特点和作用,初步学会折线统计图的绘制方法。

2、能分析折线统计图,培养学生利用数据、图像分析、判断、预测问题结果或趋势的能力。

3、让学生体验折线统计图在实际生活中应用的广泛性和重要性,培养正确的数学观,并通过相互交流、讨论,培养合作交流的能力。

一、引入:

1、出示:条形统计图

(1)某电影院上月各类影片观众人数统计图

(2)新芽书苑20xx年3月第一星期故事书销售情况统计图

2、提问:你已知道了条形统计图的哪些知识?

3、现实生活中还有另一种统计图,你见过吗?出示:折线统计图。

(1) 上虞电影院20xx年(1~6)月观众人数统计图。

(2) 百官镇一农户96~20xx年人均收入统计图。

二、展开:

(一)折线统计图的特点和作用。

1、四人小组讨论;条形统计图和折线统计图有什么相同点和不同点?

(1) 学生自由讨论交流。

(2) 这两类统计图最大的.区别是什么?

2、结合条形统计图的特点,归纳折线统计图的特点。

3、从折线统计图上我们能看出数量的多少吗?还能了解到什么?

4、结合课本进一步深入了解折线统计图的特点和作用。

(二)折线统计图的绘制。

1、你认为哪幅条形统计图用折线统计图来绘制更合适?

2、小组讨论:把这幅条形统计图绘制成折线统计图你有什么办法?

A、小组讨论 B、汇报 C、提问:绘制的关键是什么?

3、学生尝试绘制。

(1) 出示“我们的调查资料”。

(2) 想一想,哪几组数据用折线统计图绘制比较合适?

(3) 请选择其中一组数据绘制。

(4)小组交流绘制情况,分析增减变化的情况,并 推断发展趋势。

(5)大组交流绘制情况,并纠错。

三、应用

1、出示:李X(住院)的体温变化情况统计图,提问:看图后,你能推断出什么?

2、出示:百官镇一农户96~20xx年人均收入统计图。

思考:A、看图后你有什么感受?

B、你能提出哪些数学问题?

3、对比练习:

(1)出示:“吉祥鞋店20xx年凉鞋、棉鞋销售情况统计图”。

思考:A、两种鞋的销售趋势分别怎样?

B、你有什么建议?

(3) 出示:两家游泳衣专卖店的销售情况统计图。

思考:A、比较这幅图,说说哪一幅比较符合我们的生活实际?

B、猜猜为什么乐乐专卖店会有这样的销售现象

四、总结

你又有什么新收获?你是用什么方法学会的?

五、课外作业

省略

五年级下册数学教案 篇64

教学目标

1、知道单位”1”可以是一个物体,也可以是多个物体。认识分数单位,理解分数是分数单位的累积。理解分数的意义,体会分数表示的部分与整体的关系。

2、运用直观教学手段,经历分一分、画一画、折一折、比一比等活动,理解分数的意义,培养学生的动手操作的能力和抽象概括能力,形成从不同角度思考问题的意识。

3、学生在轻松和谐的氛围中主动参与、充分体验,感受数学与生活的密切联系,发展学生的数感。

教学内容分析:

小学阶段对于分数的研究大致分为5个阶段:低年级的平均分和除法、倍的认识、三年级的分数初步认识、五年级的分数再认识、分数的计算、六年级的比。从这些安排来看可以看出五年级的分数再认识是小学阶段一次系统的学习分数,这部分内容是在学生已对分数有了初步的认识的基础上,教材安排的一次理论上的概括。它不仅是前面所学知识的归纳、总结,更是对分数认识上由感性上升到理性的开始,是学习分数四则运算和应用的重要前提。

重难点

重点:

知道单位”1”可以是一个物体,也可以是多个物体。认识分数单位,理解分数是分数单位的累积。

难点:

运用直观教学手段,经历分一分、画一画、折一折、比一比等活动,理解分数的意义,培养学生的动手操作的能力和抽象概括能力,形成从不同角度思考问题的意识。

教学过程

活动1【导入】

一、沟通“1”、整数、分数的联系,度量中感受分数的产生和意义。

师:同学们学习过整数吗?如果用这张红色的纸条表示1,那么你能想办法表示出2吗?3怎样表示呢?我们发现有几个这样的“1”就可以用几来表示。

师:老师这里还有一张纸条(更长的纸条),你知道它表示几吗?(用1作为标准去量发现有不足1的)。

师:这段不足1的长度怎样表示呢?(用分数表示)

在测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。

师:猜一猜,这段不足1的长度是这个标准的几分之几呢?

老师给每个组的同学都提供了一些学具,请利用手中的学具验证你们的猜想。

预设1:两张绿色纸条拼成一个红色纸条,绿色纸条是红色纸条的

预设2:红色纸条对折,不足1的部分是红色纸条的

预设3:两张桔色的纸条。一张桔色的纸条是红色纸条的,两个就是。

我们发现我们只要找到不足1的部分与标准之间的关系,就可以用分数表示了。

在刚才的测量过程中我们发现不足1的'部分没办法再以1为标准去测量了,但是我们发现可以用标准的去测量。下面我们就用标准的测量一下,看看粉色纸条是几个,你知道5个是几分之几吗?

活动2【讲授】

二、分物中体会单位“1”可以是多个物体

师:刚才我们找到了,生活中其他的地方有没有呢。

大米

1000克

拿出小片子,请你分别表示出它们的。

我们表示的都是,可是为什么对应的数量却都不相同呢?

回顾一下找的过程,你对分数又有了哪些新的体会?

师小结:除了可以把一个物体或一个图形平均分找到分数,也可以把多个图形或多个物体看作整体通过平均分找到分数。大家平均分的一个物体、一个图形、一个计量单位、一个整体,可以用自然数“1”表示,通常叫做单位“1”

活动3【讲授】

三、分物中认识分数单位,深入体会分数的意义。

师:刚才同学们准确的找到了这些糖的,下面同学们可以自由地利用这些糖来表示你喜欢的分数。

合作建议:

独立思考:想一想、画一画,用这些糖还能表示出哪些分数。

小组讨论:在小组内说一说你找到的分数所表示的意义。

预设:

观察这两个分数你有什么发现吗?

相同点:都是把6块糖平均分成6份

不同点:取的份数不同

联系:2个是

师:你会表示吗?

师:我们发现有几个就是六分之几。

师:你会表示吗?

师:那么有几个就是三分之几。

像、这样的表示一份的分数就叫做分数单位。而像、、这样的分数,我们可以理解为它们都是由分数单位不断累积而成的。

师:有些同学还找到了一样的分数,对吗?

师:表示了这么多分数,谁能来说说分数的意义。

活动4【导入】

四、巩固练习

1、填一填

2、猜一猜

师:请你对自己今天课堂学习的表现和收获进行评价。这里有10颗星星,你认为你可以得到几颗呢?请在纸上进行涂色。

师:谁来说说你获得了这些星星的几分之几呢?请同学们根据他所说的分数想一想他给自己评了几颗星?

师:谁再来说说你自己评了几颗星,同学们想一想他获得了全部星星的几分之几?

师:同学们想不想知道我给大家今天的学习情况评几颗星呢?

出示

师:你知道这是几分之几吗?

有的同学在为没有得到全部的星星而感到遗憾,其实没有点亮的那半颗星才是我今天送给大家最宝贵的礼物,不满足是进步的首要条件,在陈老师心里你们每个人拥有着无限的潜能,我永远期待着你们更精彩的表现。

五年级下册数学教案 篇65

课题:简单的土石方计算

教学目标:

1、结合具体事例,经历认识“方”并解决土石方计算问题的过程。

2、了解“方”的具体含义,能够灵活运用体积计算公式解决一些简单的现实问题。

3、在综合运用所学知识解决现实问题的过程中,感受数学在生活中的广泛应用,培养数学应用意识。

教学重点:

熟练运用长方体和正方体的体积计算公式解决实际问题。

教学难点:

长方体和正方体的体积计算公式演变成“横截面的面积乘长”。

教学过程:

一、巧设情境,激趣引思。

同学们,前面几节课我们学习了体积的有关内容,请大家思考以下问题。

(1)什么是体积?体积的单位有哪些?它们之间的进率是多少?

(2)怎样求长方体的体积?正方体的体积,长方体和正方体体积计算的统一公式是什么?

(3)学生分组讨论,指名回答问题。

这节课我们运用体积的有关知识,解决实际生活中的问题

二、自主互动,探究新知。

课件出示例题1:让学生读题,讨论:挖出的土与地窖的体积有什么关系? 让学生尝试解决问题 交流计算的结果。

教师介绍“方”,让学生用方描述挖出的'土。

课件出示例题及拦河坝的和示意图。

让学生观察,问:你知道了哪些信息? 师帮助学生理解题意。

怎样计算拦河坝的体积?为什么这样计算? 使学生知道:拦河坝的体积=底面积×高。

让学生尝试解决问题,并交流计算的方法和结果。

三、应用拓展,反思交流。

1、应用:

(1)试一试 帮助学生弄清图意,然后鼓励学生提出问题,师生合作解决。

(2)练一练 第1、2题,帮助学生理解题中的事物和信息,再独立完成。

第3、4题,让学生先说一说,要解决问题,先要求出什么?

2、拓展:

练一练5 板书设计:

简单的土石方计算 2×1.6×1.5=4.8(立方米) 拦河坝的体积=横截面面积×长 答:要挖出4.8立方米的土。

横截面的面积:(8+3)×4÷2=22(平方米) 土石体积:22×50=1100(立方米) 答:修这个拦河坝一共需要土石1100立方米。

五年级下册数学教案 篇66

【教学目标】

1.使学生通过观察、猜想、验证、理解并掌握3的倍数的特征。

2.引导学生学会判断一个数能否被3整除。

3.培养学生分析、判断、概括的能力。

【重点难点】

理解并掌握3的倍数的特征。

【复习导入】

1.学生口述2的倍数的特征,5的倍数的特征。

2.练习:下面哪些数是2的倍数?哪些数是5的倍数?

324 153 345 2460 986 756

教师:看来同学们对于2、5的倍数已经掌握了,那么3的倍数的特征是不是也只看个位就行了?这节课,我们就一起来研究3的'倍数的特征。

板书课题:3的倍数的特征。

【新课讲授】

1.猜一猜:3的倍数有什么特征?

2.算一算:先找出10个3的倍数。

3×1=3 3×2=6 3×3=9

3×4=12 3×5=15 3×6=18

3×7=21 3×8=24 3×9=27

3×10=30……

观察:3的倍数的个位数字有什么特征?能不能只看个位就能判断呢?(不能)

提问:如果老师把这些3的倍数的个位数字和十位数字进行调换,它还是3的倍数吗?(让学生动手验证)

12→21 15→51 18→81 24→42 27→72

教师:我们发现调换位置后还是3的倍数,那3的倍数有什么奥妙呢?

(以四人为一小组、分组讨论,然后汇报)

汇报:如果把3的倍数的各位上的数相加,它们的和是3的倍数。

3.验证:下面各数,哪些数是3的倍数呢?

210 54 216 129 9231 9876

小结:从上面可知,一个数各位上的数字之和如果是3的倍数,那么这个数就是3的倍数。(板书)

4.比一比(一组笔算,另一组用规律计算)。

判断下面的数是不是3的倍数。

3402 5003 1272 2967

5.“做一做”,指导学生完成教材第10页“做一做”。

(1)下列数中3的倍数有。

14 35 45 100 332 876 74 88

①要求学生说出是怎样判断的。

②3的倍数有什么特征?

(2)提示:①首先要考虑谁的特征?(既是2又是5的倍数,个位数字一定是0)

②接着再考虑什么?(最小三位数是100)

③最后考虑又是3的倍数。(120)

【课堂作业】

完成教材第11~12页练习三的第4、6、7、8、9、10、11题。

【课堂小结】

同学们,通过今天的学习活动,你有什么收获和感想?

【课后作业】

完成练习册中本课时练习。

3的倍数的特征

一个数各位上的数字之和是3的倍数,那么这个数就是3的倍数。

教学3的倍数的特征时,教师要注意学生的自主探索过程,通过猜一猜、算一算、想一想、验一验、比一比等教学环节,循序渐进地让学生参与到学习中来,但教师在想一想这个环节中要进行适当点拨、引导,这样效果更明显。

五年级下册数学教案 篇67

教学内容:

长方体、正方体的体积计算

教学目标:

1.通过讲授,引导学生找出规律,总结出体积的公式。

2.指导学生运用公式正确计算长方体、正方体的体积。

3.培养学生积极思考、探索新知的思维品质。

教学重点:

长方体、正方体体积计算。

教学难点:

长方体、正方体体积计算

教具运用:

正方体木块若干。

教学过程:

一、复习导入

1.什么叫体积?计量物体的体积常用的单位有哪些?

2.怎样计算一个物体的体积呢?

二、新课讲授

1.长方体体积的计算。

教师课件出示一块长方体积木,一块盖房用的大型砖板。

(1)提问:它们的体积是多少?你是怎样想的?

引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。

教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。

(2)观察操作,探究长方体的体积公式。

小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。

学生拼摆,然后填表,集体汇报,老师把有代数性的.数字写在表中。

说明学生拼摆长方体的样式非常多,这里只列举几个。观察:从这张表中,你发现了什么?

学生独立思考,然后小组内讨论交流,得出结论。

小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。

板书:长方体的体积=长宽高

讲述:如果用字母V表示长方体的体积公式可以写成:V=abh

(3)质疑:求长方体的体积公式需要知道什么条件?

2.探究正方体的体积公式。

(1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。

(2)引导学生明确。正方体的体积=棱长棱长棱长(板书)用字母表示:V=aaa=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)

3.运用长方体的体积公式解决问题。

(1)出示教材第30页的例1。

(2)学生看图,理解题意。

(3)说出题中所给信息,和所求问题。

(4)指名说出长方体的体积公式。

(5)指名学生上台板演过程,其他同学判断。

(6)老师订正书写。V=abh=743=84(cm3)

(7)看图,学生独立在练习本上完成。

(8)指名板演,集体订正。

三、课堂作业

完成课本第31页做一做第1、2题。

四、课堂小结

1.这节课,你有什么收获?

2.在计算长方体和正方体的体积时,要注意哪些问题?

五、课后作业

完成练习册中本课时练习。

板书设计 :

长方体和正方体的体积

长方体的体积=长宽高

V=abh

正方体体积=棱长棱长棱长

V=aaa=a3

五年级下册数学教案 篇68

[教学目标]

1、通过生活中的情境,进一步体会小数除法在实际生活中的应用。

2、利用已有知识,自主探究除数是整数商是小数的小数除法的计算方法。

3、正确掌握已学过的小数除法的计算方法,并能运用小数除法解决日常生活中的简单问题。

[教学重点]

除数是整数,商是小数的小数除法的计算方法。

[教学难点]

除得的结果有余数,补“0”继续除。

[教学过程]

一、复习导入

课件出示情境主题图:

开学了,班级购置了打扫卫生用具,买6把笤帚共花了18.6元,买4个簸箕共花了24元。你能提出哪些问题?怎样计算?

引导学生列出算式并独立计算:18.6÷624÷4

计算后说一说整数除法与小数除法的异同。

二、对比中探索,交流中生成

师:复习题中的.两道问题同学们解决得非常好,如果老师把它们稍作改动,你还会不会计算呢?

教师把情境题中的18.6改成18.9,把24改成26.

1、初步尝试,发现问题。

请你尝试计算这两题,你发现了什么?

2、独立思考,尝试解决。

师:有余数还能不能继续除下去?该怎么继续除?试算18.9÷6

3、讨论交流,异中求同。

(1)在小组内汇报自己的计算方法。

(2)展示汇报。(可能出现第4页中几种不同的方法)

(3)对比这几种方法:有什么相同的地方?

引导学生发现,无论是转化成整数,拆分整数与小数分别除,还是竖式的方法,都有一个共同的地方,就是小数的末尾可以添“0”继续除,在具体的情境中可以解释为,18元里有6个3元,9角里有6个1角,剩余的3角可以换算成30分,30分里有6个5分,合在一起就是3.15元。

4、应用方法,归纳总结。

竖式计算26÷4

(1)引导学生发现,整数除以整数有余数时,可以在被除数个位后点小数点,添“0”继续除,商的小数点一定要与被除数的小数点对齐。

(2)尝试总结除数是整数的小数除法的计算方法。

三、巩固练习。

1、买16个玩具恐龙花了12元,平均每个玩具恐龙多少元?

2、错题诊所。

209÷5=41810÷25=41.26÷18=0.7

3、先估算下面各题的商哪些大于1,哪些小于1,再竖式计算。32÷812÷252.45÷3

4、一只蜜蜂的飞行速度是蝴蝶的2倍,如果蜜蜂每小时飞行11千米,蝴蝶每小时能飞行多少千米?

[课堂总结]本节课你有哪些收获?

[板书设计]

打扫卫生

商的小数点要和被除数的小数点对齐。

除到被除数的末尾有余数时,要在余数后边添“0”继续除

五年级下册数学教案 篇69

【教学内容】

质数和合数(课本第14页例1及第16页练习四1~3题)。

【教学目标】

1.使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。

2.知道100以内的质数,熟悉20以内的质数。

3.培养学生自主探索、独立思考、合作交流的能力。

4.让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

【教学重难点】

重点:理解质数、合数的意义。

难点:掌握判断质数与合数的方法。

【教学过程】

一、复习导入

1.什么叫因数?

2.自然数分几类?(奇数和偶数)

教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。

二、新课讲授

1.学习质数、合数的概念。

(1)写出1~20各数的因数。(学生动手完成)点四位学生上黑板板演,教师注意指导。

(2)根据写出的因数的个数进行分类。(填写下表)

(3)教学质数和合数的概念。

针对表格提问:什么数只有两个因数,这两个因数一定是什么数?

教师:只有1和它本身两个因数,那么这样的数叫做质数(或素数)。如果一个数,除了1和它本身还有别的`因数,那么这样的数叫做合数。(板书)

2.教学质数和合数的判断。

判断下列各数中哪些是质数,哪些是合数。

17 22 29 35 37 87 93 96

教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)

质数:17 29 37

合数:22 35 87 93 96

3.出示课本第14页例题1。

找出100以内的质数,做一个质数表。

(1)提问:如何很快地制作一张100以内的质数表?

(2)汇报:

①根据质数的概念逐个判断。

②用筛选法排除。首先排除掉2的倍数,再排除掉3 的倍数。提问:4的倍数还需不需要排除呢?(不用)接下来我们可以排除掉5、7的倍数,剩下的就是质数。

③注意1既不是质数,也不是合数。

100以内质数表

三、课堂作业

完成教材第16页练习四的第1~3题。

四、课堂小结

这节课,同学们又学到了什么新的本领?

学生畅谈所得。

【板书设计】

质数和合数

一个数,如果只有1和它本身两个因数,那么这样的数叫做质数(或素数)。一个数,如果除了1和它本身还有别的因数,那么这样的数叫做合数。1既不是质数,也不是合数。

【教学反思】

教学质数与合数时,先复习了因数的概念,然后再让学生找出1~20各数的所有因数,并引导学生观察这些数的因数有什么不同,再进行分类,在此基础上引出了质数、合数的概念,学生对一些知识的掌握就会水到渠成,而且还会作出正确判断。

五年级下册数学教案 篇70

一、创设情境、激发兴趣

导入:你们都听说过乌鸦喝水的故事吧,聪明的乌鸦是怎么喝到水的?这其中有什么道理?

二、合作学习,自主探究

1.体积的意义。

(1)准备:我们也来做一个实验,取两个同样大小的玻璃杯。先往一个杯子里倒满水;取一块鹅卵石放入另一个杯子,再把第一个杯子里的水倒到第二个杯子里,会出现什么情况?为什么?这说明了什么?(鹅卵石占了一定的空间。)

(2)一个物体都占有一定的空间。下面的电视机、影碟机和手机,哪个所占的空间大?

(3)启发学生概括:物体所占空间的大小叫做物体的体积。(板书)

上面三个物体,哪个体积最大?哪个体积最小?

(4)比较:用学生手中的文具比。谁的体积大?谁的体积小?

师:教室是一个较大的.空间,课桌、讲台、同学、老师等占教室空间的一部分。整个学校是一个大空间,教师、办公室、操场、花池、领操台、旗座等都占有一定的空间,既有自己的体积。而整个宇宙是一个大空间,地球只是宇宙空间的一部分,而地球上的山、川、河流、一切建筑物、人等占地球的一部分。

2.体积单位:

(1)讲:测量长度要用长度单位,测量面积要用面积单位,测量体积要用体积单位。(板书)

认识体积单位:

常用的体积单位有:立方米、立方分米、立方厘米。可以分别写成

(2)认识立方厘米:

出示:棱长是1厘米的正方体,量一量它的棱长是多少?

说明:它的体积是1立方厘米。

谁的体积近似的接近1立方厘米?(色子或一个手指尖的体积大约是1立方厘米)

(3)立方分米:(方法同立方厘米)

粉笔盒的体积接近于1立方分米。

(4)认识立方米:

①出示1立方米的棱长的教具。观察后总结:边长是1米的正方体的体积是1立方米。

②认识1立方米的空间大小。

1立方米水约可以装满500个暖瓶。1立方米的木材约可以做课桌50张。

小结:常用的体积单位有哪些?哪个体积单位大?哪个体积单位小?

体积单位的用途是什么?

3.体积初步认识:

①决定体积大小,是看它含有体积单位的个数。

2.练一练:选择恰当的单位:

橡皮的体积用( ),火车的体积用( ),书包的体积用( )。

3.生活中的数学。

乘分级的行李规定

机场行李托运一般不超过此规格。你知道其他交通工具关于行李的规定吗?

手提行李的三边之和一般不得超过115cm。

五年级下册数学教案 篇71

教学目标:

1、知道容积的意义。

2、掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。

3、会计算物体的容积。

教学重点:

1、容积的概念。

2、容积与体积的关系。

教学难点:

容积与体积的关系。

教具:量筒和量杯、不同的饮料瓶、纸杯

教学过程:

一、复习检查:

说出长正方体体积计算公式。

二、准备:

把泥放入一个长方体的小木盒中(压实,与上口平),然后扣出来,量一量泥块的长、宽、高。计算泥块的体积。这个长方体小木盒所能容纳物体的`体积是( )。

三、新授:

1、认识容积及容积单位:

(1)箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。

通过上面的“做一做”,我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的容积。

(2)计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。

(3)演示:体积单位与容积单位的关系。

说一说,在生活中哪些物品上标有升或毫升。升和毫升有什么关系呢?教具演示。

①1升(L)=1000毫升(mL)

将1升 的水倒入1立方分米的容器里。

小结:1升(L)=1立方分米(dm3 )

②1升 = 1立方分米

1000毫升 1000立方厘米

1毫升(mL)=1立方厘米( cm3 )

练一练:

1.8L=( )mL 3500mL=( )L 15000cm3 =( )mL=( )L

1.5dm3 =( )L

(4)小组活动:(1)将一瓶矿泉水倒在纸杯中,看看可以倒满几杯?

(2)估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。

2、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但是要从容器的里面量长、宽、高。

例一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升?

5×4×2 =40(立方分米) 40立方分米=40升

答:这个油箱可以装汽油40升。

做一做:一个正方体油箱,从里面量棱长是1.4米。这个油箱装油有多少升?(订正)

小结:计算容积的步骤是什么?

3、我们知道了计算规则物体的体积的方法,如计算长方体的体积是用长乘宽乘高,计算正方体的体积是棱长的3次方。那有些不规则的物体怎么计算它的体积呢?

出示一个西红柿,谁有办法计算它的体积?小组设计方案:

四、巩固练习:

1、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深2.5分米,它的容积是多少升?

2、一个长方体油箱的容积是20升。这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米?

3、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少?

4、提高题:p55、16

五、作业:

五年级下册数学教案 篇72

一、创设情境、激发兴趣

导入:你们都听说过乌鸦喝水的故事吧,聪明的乌鸦是怎么喝到水的?这其中有什么道理?

二、合作学习,自主探究

1.体积的意义。

(1)准备:我们也来做一个实验,取两个同样大小的玻璃杯。先往一个杯子里倒满水;取一块鹅卵石放入另一个杯子,再把第一个杯子里的水倒到第二个杯子里,会出现什么情况?为什么?这说明了什么?(鹅卵石占了一定的空间。)

(2)一个物体都占有一定的空间。下面的电视机、影碟机和手机,哪个所占的空间大?

(3)启发学生概括:物体所占空间的大小叫做物体的体积。(板书)

上面三个物体,哪个体积最大?哪个体积最小?

(4)比较:用学生手中的文具比。谁的体积大?谁的体积小?

师:教室是一个较大的空间,课桌、讲台、同学、老师等占教室空间的一部分。整个学校是一个大空间,教师、办公室、操场、花池、领操台、旗座等都占有一定的空间,既有自己的体积。而整个宇宙是一个大空间,地球只是宇宙空间的一部分,而地球上的山、川、河流、一切建筑物、人等占地球的一部分。

2.体积单位:

(1)讲:测量长度要用长度单位,测量面积要用面积单位,测量体积要用体积单位。(板书)

认识体积单位:

常用的体积单位有:立方米、立方分米、立方厘米。可以分别写成

(2)认识立方厘米:

出示:棱长是1厘米的正方体,量一量它的棱长是多少?

说明:它的体积是1立方厘米。

谁的体积近似的接近1立方厘米?(色子或一个手指尖的体积大约是1立方厘米)

(3)立方分米:(方法同立方厘米)

粉笔盒的体积接近于1立方分米。

(4)认识立方米:

①出示1立方米的棱长的教具。观察后总结:边长是1米的正方体的体积是1立方米。

②认识1立方米的空间大小。

1立方米水约可以装满500个暖瓶。1立方米的木材约可以做课桌50张。

小结:常用的体积单位有哪些?哪个体积单位大?哪个体积单位小?

体积单位的用途是什么?

3.体积初步认识:

①决定体积大小,是看它含有体积单位的个数。

2.练一练:选择恰当的单位:

橡皮的体积用( ),火车的体积用( ),书包的体积用( )。

3.生活中的数学。

乘分级的行李规定

机场行李托运一般不超过此规格。你知道其他交通工具关于行李的规定吗?

手提行李的三边之和一般不得超过115cm。

五年级下册数学教案 篇73

一、教学目标

1、在具体的情境中,进一步认识分数,发展数感,体会数学与生活的密切联系。

2、结合具体情境,进一步体会“整数”与“部分”的关系。

二、重点难点

重点:理解整体“1”,体会一个分数对应的“整体”不同,所表示的具体数量也不相同。

难点:充分体会“整数”与“部分”的关系。

三、教学过程

(一)复习旧知,导入新课

1、我们在三年级已经对分数有了初步的认识,你能举出一些分数吗说说它们分别表示什么意义

2、今天我们一起来学习《分数的再认识》。

(二)创设情境,学习新知

活动一:分笔游戏,体会单位一

1、分笔活动,找4名同学拿着自己的笔来到讲台。(笔数是2的倍数:4、4、6、8)

2、请你们4名同学拿出自己笔的1/2,看谁拿的又快又准。

3、另找4名同学检查。

4、同学们自己说说是怎么分的。(把全部铅笔平均分成两份,拿出其中的一份。)

5、师提问:他们都是拿出全部笔的1/2,可是拿出来的笔却有的一样多,有的不一样多,这是为什么呢(每位同学的.总数不一样)

6、师总结:最初每位同学笔的“整体”不同,也就是单位“1”不同造成的,所以,他们的1/2也不同。原来分数还有这样一个特点,你对它是不是又有了新的认识

活动二:教材P34说一说。

1、带着新的认识,我们来判断两个小朋友看的书一样多吗

2、小刚和小明都看了各自书的1/3,他们看得页数一样多吗为什么学生独立思考一会,同桌交流,再全班反馈。

3、师总结:因为书的薄厚不同,也就是总页数不同,所以两人看的页数也不同。(整体不同,相同分数表示的数量也不同。)

4、在什么情况下,他们读的一样多呢(整体相同,相同分数表示的数量也相同。)

5、请同学们再帮老师解决一个问题:王兴国吃了一个苹果的3/4,李晓阳也吃了一个苹果的3/4。王兴国说:“我俩吃的一样多”。李晓阳说:“我吃得比你多。”他们谁说得对呢

(三)巩固练习

1、教材P34画一画。

2、教材P35练一练第一题、第二题。(在练习中,针对错误比较多的,进行集体讲解,少的则个别讲解)

四、板书设计

分数的再认识

整体不同,相同分数表示的数量也不同。

五、教学反思

本节课的教学,我采取以小游戏为开篇来引导学生进一步认识分数,理解分数的意义。在教学和练习中我重点强调了“平均分”和体会“整数”与“部分”的关系。学生在练习时,也能体会到整体不同,相同分数表示的数量也不同,如“印度洋海啸捐款”一题。但在练一练第一题写分数时出现错误很多,其主要原因在于书中没有平均分,而是要画一条辅助线和旋转图形。

五年级下册数学教案 篇74

教学内容:

义务教育课程标准实验教科书《数学》(新世纪版)五年级下册第六单元第82-83页《包装的学问》。

教材分析:

本课教学内容是在学生掌握了长方体特征及表面积计算等相关知识的基础上,进一步探究几个相同长方体组合成新长方体的多种方案以及使其表面积最小的最优策略。教材把《数学与购物》这一系列数学实践活动安排在第六单元后,主要意图是通过这样一系列与生活紧密联系的实践活动,培养学生综合应用所学的知识解决实际问题的能力。在这一系列实践活动中,教材安排了三个内容,主要涉及数与代数、空间与几何两部分知识,在解决生活实际问题的过程中,分别培养了学生的估算意识、计算中的'最优策略以及多个长方体叠放后使其表面积最小的最优策略。本课教学内容是这一系列实践活动中的最后一个内容。

包装问题在日常生活与生产中经常遇到,教材创设包装的情境,使学生综合应用表面积等知识来讨论如何节约包装纸的问题,它不仅培养学生的节约意识,更体现了数学的优化思想。有助于培养学生空间观念,提高解决实际问题的能力,感受数学与实际生活的密切联系。同时有利于学生感悟数学思想,积累数学活动经验。

学情分析:

1、学生已有的知识基础。

在本课学习之前,学生已熟练掌握了长方体、正方体的特征,能准确、迅速地计算出单一物体的棱长、表面积、体积,能把几个相同的正方体组合成新的正方体。初步接触了由两个相同的正方体拼成一个长方体后表面积发生的变化。在第二单元探索活动《露在外面的面》中,又训练了学生有序的观察能力和计算露在外面的面 面积的能力。

2、学生已有的生活经验。

学生大都接触过物品的包装,能清楚地意识到用包装纸包装起来的部分就是求物体的表面积。

3、学生学习本课内容可能遇到的困难及学习方式的研究。

学生在探究由四个或者多个相同的长方体组合成新的长方体时,对于方案的多样化与策略的最优化可能存在问题,通过动手操作大多数学生可以得到由4个相同长方体组合成新的长方体时的六种拼摆方案,但思维可能会无序,对于方法的归纳和总结也存在困难。因此以小组合作的活动方式可以说是本课的较佳路径,让同伴之间相互协作,共同归纳总结,有助于培养学生思维的有序性。

五年级下册数学教案 篇75

教学内容:

长方体、正方体的体积计算

教学目标:

1.通过讲授,引导学生找出规律,总结出体积的公式。

2.指导学生运用公式正确计算长方体、正方体的体积。

3.培养学生积极思考、探索新知的思维品质。

教学重点:

长方体、正方体体积计算。

教学难点:

长方体、正方体体积计算

教具运用:

正方体木块若干。

教学过程:

一、复习导入

1.什么叫体积?计量物体的体积常用的单位有哪些?

2.怎样计算一个物体的体积呢?

二、新课讲授

1.长方体体积的计算。

教师课件出示一块长方体积木,一块盖房用的大型砖板。

(1)提问:它们的体积是多少?你是怎样想的?

引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。

教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。

(2)观察操作,探究长方体的体积公式。

小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。

学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。

说明学生拼摆长方体的样式非常多,这里只列举几个。观察:从这张表中,你发现了什么?

学生独立思考,然后小组内讨论交流,得出结论。

小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。

板书:长方体的体积=长宽高

讲述:如果用字母V表示长方体的体积公式可以写成:V=abh

(3)质疑:求长方体的体积公式需要知道什么条件?

2.探究正方体的'体积公式。

(1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。

(2)引导学生明确。正方体的体积=棱长棱长棱长(板书)用字母表示:V=aaa=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)

3.运用长方体的体积公式解决问题。

(1)出示教材第30页的例1。

(2)学生看图,理解题意。

(3)说出题中所给信息,和所求问题。

(4)指名说出长方体的体积公式。

(5)指名学生上台板演过程,其他同学判断。

(6)老师订正书写。V=abh=743=84(cm3)

(7)看图,学生独立在练习本上完成。

(8)指名板演,集体订正。

三、课堂作业

完成课本第31页做一做第1、2题。

四、课堂小结

1.这节课,你有什么收获?

2.在计算长方体和正方体的体积时,要注意哪些问题?

五、课后作业

完成练习册中本课时练习。

板书设计:

长方体和正方体的体积

长方体的体积=长宽高

V=abh

正方体体积=棱长棱长棱长

V=aaa=a3

五年级下册数学教案 篇76

教学内容:

教材第xx页的内容及第xx页练习的第x题。

教学目标:

1.理解两个数的公倍数和最小公倍数的意义。

2.通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的应用。

3.培养学生抽象、概括的能力。

教学重点:

理解两个数的公倍数和最小公倍数的意义。

教学难点:

自主探索并总结找最小公倍数的方法。

教学具准备:

多媒体课件,学生操作用长方形纸片(长3Cm,宽2Cm)与方格纸。

学方法:

小组合作谈话法。

教学过程:

一、创设情景,生成问题:

前面,我们通过研究两个数的因数,掌握了公因数和最大公因数的知识。今天,我们来研究两个数的倍数。

二、探索交流,解决问题

1.在数轴上标出4、6的倍数所在的点

拿出老师课前发的画有两条直线的纸。

在第一条直线上找出4的倍数所在的点,画上黑点。在第二条直线上找出6的倍数所在的点,圈上小圆圈。

2.引入公倍数

(1)学生汇报,多媒体课件出现两条数轴,并根据学生报的数,仿效出现黑点和小圆圈。

(2)观察:从4和6的倍数中你发现了什么?

(3)学生回答后,多媒体课件演示两条数轴合并在一起,闪现12和21。

(4)我们发现:有些数既是4的倍数,又是6的倍数,如果让你给这些数起个名,把它们叫做4和6的什么数呢?(板书:公倍数)

说说看,什么叫两个数的公倍数?

3.用集合图表示

如果让你把4的`倍数、6的倍数、4和6的公倍数填在下面的图中,你会填吗?试试看。同桌两人可以讨论一下。

4.引人最小公倍数

学生汇报后问:

(1)为什么三个部分里都要添上省略号?

(2)4和6的公倍数还有哪些?有没有最大公倍数?

(3)有没有最小公倍数?4和6的最小公倍数是几?(板书:最小公倍数)

4的倍数6的倍数

4,8,

16,20,

12,24,

4和6的公倍数:

五年级下册数学教案 篇77

教案设计

设计说明

1.以学生自主探究为主,引导学生发现分数与小数的互化方法。

学生通过自主参与、主动探究,可以更好地掌握数学知识。在学生探究分数与小数的互化方法时,给学生提供探究的时间,让学生以小组合作的方式进行探究,再通过比较、整合,得出分数与小数的互化方法。在这个过程中,学生通过自己和同伴的努力,经历了知识形成的全过程。

2.在学生原有的认知水平上促进发展。

本节课的内容相对简单,学生在课前已经有了初步的了解,因此,在课堂上让学生自主探究,经历知识的形成过程,使得不同水平的学生获得不同层次的发展,收获的多少可能不同,但都能获得成功的体验。

课前准备

教师准备 PPT课件

学生准备 两张完全一样的方格纸

教学过程

⊙创设情境,导入新课

师:今天,老师带着你们一起去“分数王国”和“小数王国”里玩一玩。

(课件出示情境图)

师:“分数王国”里有哪些数呢?“小数王国”里呢?

(生汇报)

师:“分数王国”的士兵和“小数王国”的士兵吵了起来,它们在吵什么?

生:和0.06都说自己更大。

师:和0.06哪个数大?你能帮助它们吗?(板书课题——“分数王国”与“小数王国”)

设计意图:用“分数王国”与“小数王国”里的士兵吵架这个情境导入新课,营造一种氛围,激发孩子的学习兴趣。然后以比较“分数王国”里的与“小数王国”里的0.06哪个数大的问题情境引入,让学生产生分数和小数互化的需要,从而引出本节课的学习内容。

⊙自主探索,学习新知

1.解决问题。

(1)课件出示教材7页情境图。

师:比一比,“分数王国”里的与“小数王国”里的0.06哪个数大?

(2)大胆猜测,探究比较方法。

方法一 把分数化成小数来比较。

=1÷20=0.05,因为0.060.05,所以0.06。

方法二 把小数化成分数来比较。

0.06=,=,因为,所以0.06。

课件展示学生没有想到的画图法,让学生在讨论中理解。

0.06>

师小结:比较分数与小数的大小时,可以把分数化成小数或者把小数化成分数。

2.“分数王国”和“小数王国”分别有不同的尺子,你能帮助“翻译”吗?

(1)认真读题,明确题目中的“翻译”指什么。

(2)鼓励学生根据“分数尺”和“小数尺”中呈现的.例子说一说与0.125的互化过程。

(3)引导学生理解数线上的同一个点既能表示一个分数,也能表示一个小数。

3.归纳分数化成小数的方法。

(1)探究将分数化成小数的方法。

把下列分数化成小数:

练习,并思考转化方法。

(2)小组内交流方法。

(3)班内反馈。

要求学生说出转化方法,并讲明转化的原理。

师小结:分数化成小数,就用分子除以分母。根据分数与除法的关系,分数的分子相当于被除数,分母相当于除数。

4.归纳“小数化成分数”的方法。

把0.3,0.27,0.75,0.125化成分数。

练习,探究小数化成分数的方法。

师小结:小数化成分数,原来是几位小数,就在1的后面写几个0作分母,把原来小数的小数点去掉作分子,化成分数后,能约分的要约分。

设计意图:数学知识只有通过学生的主动参与、自主探究,才能转化为学生自己的知识。本教学环节中,学生以小组合作、自主学习的方式进行探究,在多种方法的基础上比较、整合,从而得出分数与小数的互化方法。

大家都在看